苏教版初中数学八年级下册教案(全册)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版小学数学八年级下册教案(全册)

第七章

教学目标与要求:

(1)了解不等式的意义,掌握不等式的基本性质。

(2)会解一元一次不等式(组),能正确用轴表示解集。

(3)能够根据具体问题中的数量关系,用一元一次不等式(组),解决简单的问题。

知识梳理:

(1)不等式及基本性质;

(2)一元一次不等式(组)及解法与应用;

(3)一元一次不等式与一元一次方程与一次函数。

1不等式:用不等号表示不等关系的式子叫做不等式

2不等式的解:能使不等式成立的未知数的值叫做不等式的解。

不等式的解集:一个含有未知数的不等式的解的全体叫做这个不等式的解集。

3不等式的性质:○1不等式的两边都加上(或减去)同一个整式,不等号的方向不变。

○2不等式的两边都乘(或除以)一个正数,不等号的方向不变。不等式的两边都乘(或除以)一个负数,不等号的方向改变。

4解一元一次不等式的步骤与解一元一次方程类似。

但是,在不等式两边都乘(或除以)同一个不等于0的数时,必须根据这个数是正数,还是负数,正确地运用不等式的性质2,特别要注意在不等式两边都乘(或除以)同一个负数时,要改变不等号的方向。

5用一元一次不等式解决问题步骤:(1)审:认真审题,分清已知量、未知量的及其关系,找出题中不等关系,要抓住题设中的关键字“眼”,如“大于”、“小于”、“不小于”、“不大于”等的含义。

(2)设:设出适当的未知数。

(3)列:根据题中的不等关系,列出不等式。

(4)解:解出所列不等式的解集。

(5)答:写出答案,并检验答案是否符合题意。

6一元一次不等式组:

由几个含有同一个未知数的一次不等式组成的不等式组叫做一元一次不等式组。

不等式组中所有不等式的解集的公共部分叫做这个不等式组的解集,求不等式组解集的过程叫解不等式组。

一元一次不等式组解决实际问题的步骤:与一元一次不等式解决实际问题类似,不同之处在与列出不等式组,并解出不等式组。

7一元一次不等式与一元一次方程、一次函数

当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值;当已知一次函数中的一个变量范围时,可以用一元一次不等式(组)确定另一个变量取值的范围。

基础知识练习:

1、用适当的符号表示下列关系:(1)X 的2/3与5的差小于1; (2)X 与6的和不大于9 (3)8与Y 的2倍的和是负数 2. 已知a <b,用“<”或“>”号填空:

①a-3 b-3 ②6a 6b ③-a -b ④a-b 0 3. 当0<

x 与ax 的大小关系是 4. 如果

121

<x 的解集是___________,x 4

1

-≤-8的解集是___________。

6. 三个连续自然数的和小于15,这样的自然数组共有( ) A 、6组 B 、5组 C 、4组 D 、3组

7. 当x 取下列数值时,能使不等式01<+x ,02>+x 都成立的是( ) A 、-2.5 B 、-1.5 C 、0 D 、1.5 8.利用数轴求下列不等式的解集:

⎩⎨⎧≥12

>x x ⎩

⎨⎧0x 1

<<x

⎩⎨⎧03

><x x ⎩

⎨⎧41><x x 典型例题分析:

例1.

已知a <b,用<、>或=填空:

1+a 1+b a-2 b-2 3-a 3-b 4a 4b 2-a 2

-b

例2.解下列不等式(组),并将结果在数轴上表示出来:

(1). 6

3

4123+≤

-+x x (2). ⎪⎪⎩⎪⎪⎨

⎧-<--+≤--).3(3)3(23

2,521123x x x x x

例3.已知关于x 的方程3k -5x =-9的解是非负数,求k 的取值范围。

例4.已知关于x 、y 的方程组⎩⎨⎧=-=+m y x y x 21

2.

(1)求这个方程组的解;

(2)当m 取何值时,这个方程组的解中,x 大于1且y 不小于-1.

例5.已知3x+y=2,当y 取何值时,-1<x ≤2 ?

例6. 宁启铁路泰州火车站有某公司待运的甲种货物1530吨,乙种货物1150吨,现计划用50节A 、B 两种型号的车厢将这批货物运至北京.已知每节A 型货厢的运费是0.5万元,每节B 型货厢的运费是0.8万元;甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排A 、B 两种货厢的节数,共有几种方案?请你设计出来,并说明哪种方案的运费最少,最少运费是多少?

例7.作出函数y=2x-5的图象,观察图象回答下列问题:(1)x 取哪些值时,2x-5>0?(2)x 取哪些值时,2x-5<0?(3)x 取哪些值时,2x-5>3?

课后练习巩固:

1.下列不等式中,是一元一次不等式的是

A .2x -1>0

B .-1<2

C .3x-2y <-1

D .y 2

+3>5 2.不等式54≤-x 的解集是 A .x ≤54-

B .x ≥54-

C .x ≤45-

D .x ≥4

5- 3.当a 时,不等式(a —1)x >1的解集是x <

1

1

-a 。

4. 不等式x-8>3x-5的最大整数解是 。

5. .若不等式组841x x x m

+<-⎧

⎨>⎩

的解集是x >3,则m 的取值范围是 。 6. 若y 1=-x+3,y 2=3x-4,当x 时y 1<y 2。

7. 如果m <n <0,那么下列结论错误的是( )

n 1

n

>1 8. 把不等式组1010

x x +≥⎧⎨

-⎩<的解集表示在数轴上,正确的是( )

9. 解不等式(组),并把不等式组的解集在数轴上表示出来: (1)32x -+<23x -+; (2)2

2x +≥213

x -. (3)451

442x x x x -≥+⎧⎨

+<-⎩

; (4)5<1-4x<17。

10. 若()2

320x x y m -+--=中y 为非负数,求m 的范围.

11. 将一堆苹果分给几个孩子,如果每人分3个,那么多8个;如果前面每人分5个,那么最后一人得到的苹果不足3个。问:有几个孩子?有多少个苹果?

A

B C

D

相关文档
最新文档