第三章(2)周期信号的频谱分析

合集下载

实验三-周期信号的频谱分析-实验报告

实验三-周期信号的频谱分析-实验报告

信号与系统实验报告实验三周期信号的频谱分析学院专业班级学号指导教师实验报告评分:_______实验三 周期信号的频谱分析一、实验目的1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法;2、观察截短傅里叶级数而产生的“Gibbs 现象”,了解其特点以及产生的原因;3、掌握各种典型的连续时间非周期信号的频谱特征。

二、实验容实验前,必须首先阅读本实验原理,读懂所给出的全部例程序。

实验开始时,先在计算机上运行这些例程序,观察所得到的信号的波形图。

并结合例程序应该完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。

实验前,一定要针对下面的实验项目做好相应的实验准备工作,包括事先编写好相应的实验程序等事项。

Q3-1 编写程序Q3_1,绘制下面的信号的波形图:-+-=)5cos(51)3cos(31)cos()(000t t t t x ωωω∑∞==10)cos()2sin(1n t n n nωπ其中,ω0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos(ω0t)、cos(3ω0t)、cos(5ω0t) 和x(t) 的波形图,给图形加title ,网格线和x 坐标标签,并且程序能够接受从键盘输入的和式中的项数。

抄写程序Q3_1如下: clear,%Clear all variablesclose all,%Close all figure windowsdt = 0.00001; %Specify the step of time variable t = -2:dt:4; %Specify the interval of time w0=0.5*pi; x1=cos(w0.*t); x2=cos(3*w0.*t); x3=cos(5*w0.*t);N=input('Type in the number of the harmonic components N='); x=0; for q=1:N;x=x+(sin(q*(pi/2)).*cos(q*w0*t))/q; endsubplot(221)plot(t,x1)%Plot x1axis([-2 4 -2 2]);grid on,title('signal cos(w0.*t)')subplot(222)plot(t,x2)%Plot x2axis([-2 4 -2 2]);grid on,title('signal cos(3*w0.*t))')subplot(223)plot(t,x3)%Plot x3axis([-2 4 -2 2])grid on,title('signal cos(5*w0.*t))')执行程序Q3_1所得到的图形如下:Q3-2给程序Program3_1增加适当的语句,并以Q3_2存盘,使之能够计算例题1中的周期方波信号的傅里叶级数的系数,并绘制出信号的幅度谱和相位谱的谱线图。

第三章第二节离散信号频域分析

第三章第二节离散信号频域分析
若 Y (k ) X 1 (k ) X 2 (k )
则 y (n ) IDFS [Y (k )] x1 (m) x2 (n m)
m 0
N 1
x2 (m) x1 (n m)
m 0
N 1
证: y(n) IDFS[ X 1 (k ) X 2 (k )]
j

2
j j e 2 e 2
e
3 j 2
sin 2 sin / 2
求x n 的8点DFT N 8
X k X e j
3 j k 2 4

2 k 8
e
2 sin 2 k 8 1 2 sin k 2 8 sin k 2 sin k 8
若 则有
2.周期序列的移位 设
则 如果m>N,则m=m1+Nm2
3.周期卷积 设 和 DFS系数分别为
都是周期为N的周期序列,它们的


上式表示的是两个周期序列的卷积,称为周期卷积。 周期为N的两个序列的周期卷积的离散傅里叶级数等于 它们各自离散傅里叶级数的乘积。
周期卷积的计算:
周期卷积中的序列 和 对m都是周 期为N的周期序列,它们的乘积对m也是以N为周期的, 周期卷积仅在 一个周期内求和。 相乘和相加运 算仅在m=0到N-1的区间内进行。计算出 n=0到N-1(一个周期)的结果后,再将其进行周期延拓, 就得到周期卷积 。 周期卷积满足交换律
j
2 nk N
一个域的离散造成另一个域的周期延拓, 因此离散傅里叶变换的时域和频域都是 离散的和周期的。
离散时间、连续频率—序列的傅里叶变换

周期信号的频域分析

周期信号的频域分析

周期信号的频域分析周期信号是指在一定时间间隔内,信号的波形和幅度重复的一种信号。

频域分析是指将一个信号从时域(时间域)转换到频域(频率域),以便更好地理解信号的频率特性和频谱分布。

f(t) = a0 + ∑(an*cos(nω0t) + bn*sin(nω0t))其中,a0为直流分量,an和bn分别为傅里叶级数的系数,ω0 =2π/T为基础角频率。

要进行频域分析,首先需要计算出信号的傅里叶系数an和bn。

计算步骤如下:1.计算直流分量a0,即信号f(t)在一个周期内的平均值。

2. 计算余弦项的系数an,使用公式:an = (2/T) * ∫(f(t)*cos(nω0t)dt)其中,∫表示对t从0到T的积分。

3. 计算正弦项的系数bn,使用公式:bn = (2/T) * ∫(f(t)*sin(nω0t)dt)同样,∫表示对t从0到T的积分。

计算出所有的an和bn之后,可以得到信号f(t)的频谱分布。

频谱是指信号在频率域上的幅度分布,可以用幅度谱和相位谱来表示。

1. 幅度谱表示信号各个频率分量的幅度大小。

幅度谱可以通过计算an和bn的幅度来得到,即幅度谱A(f) = sqrt(an^2 + bn^2)。

2. 相位谱表示信号各个频率分量的相位差。

相位谱可以通过计算an 和bn的相位差来得到,即相位谱ϕ(f) = atan(bn/an)。

通过这些计算,我们可以获得信号在频域上的频谱分布,进一步分析信号的频率特性。

频域分析的应用十分广泛。

在通信系统中,频域分析可以用于分析信号的频率偏移、频率响应等问题,为系统的调试和优化提供依据。

在音频和视频信号处理中,频域分析可以用于音频信号的均衡和滤波,视频信号的去噪和增强等。

此外,频域分析还在图像处理、生物医学信号处理等领域得到广泛应用。

总之,周期信号的频域分析是一种将信号从时域转换到频域的方法,可以帮助我们更好地理解信号的频率特性和频谱分布。

通过计算傅里叶系数,可以得到信号的幅度谱和相位谱,从而分析信号在频域上的特性。

DSP实验报告-周期信号的频谱分析处理

DSP实验报告-周期信号的频谱分析处理

实验报告一、实验目的和要求谱分析即求信号的频谱。

本实验采用DFT/FFT技术对周期性信号进行谱分析。

通过实验,了解用X(k)近似地表示频谱X(ejω)带来的栅栏效应、混叠现象和频谱泄漏,了解如何正确地选择参数(抽样间隔T、抽样点数N)。

二、实验内容和步骤2-1 选用最简单的周期信号:单频正弦信号、频率f=50赫兹,进行谱分析。

2-2 谱分析参数可以从下表中任选一组(也可自定)。

对各组参数时的序列,计算:一个正弦周期是否对应整数个抽样间隔?观察区间是否对应整数个正弦周期?2-3 对以上几个正弦序列,依次进行以下过程。

2-3-1 观察并记录一个正弦序列的图形(时域)、频谱(幅度谱、频谱实部、频谱虚部)形状、幅度谱的第一个峰的坐标(U,V)。

2-3-2 分析抽样间隔T、截断长度N(抽样个数)对谱分析结果的影响;2-3-3 思考X(k)与X(e jω)的关系;2-3-4 讨论用X(k)近似表示X(ejω)时的栅栏效应、混叠现象、频谱泄漏。

三、主要仪器设备MATLAB编程。

四、操作方法和实验步骤(参见“二、实验内容和步骤”)五、实验数据记录和处理clc;clf;clear;%清除缓存%第一组数据的MATLAB程序(之后几组只需要将参数改变即可) T=0.000625;length=32;n=0:length-1;t=0:0.0001:31;%原序列和采样序列xn=sin(2*pi*50*n*T);xt=sin(2*pi*50*t);%画第一幅图(原序列和采样序列)figure(1);subplot(2,1,1);plot(t,xt);xlabel('t');ylabel('xt');axis([0,0.2,-1.1,1.1]);title('原序列时域');subplot(2,1,2);stem(n,xn ,'filled');xlabel('n');ylabel('xn');axis([0,length,-1.1,1.1]);title('采样后序列时域');%画第二幅图(采样序列实部、虚部、模和相角)figure(2);subplot(2,2,1);stem(n,real(xn) ,'filled');xlabel('n');ylabel('real(xn)');axis([0,length,-1.1,1.1]);title('采样序列的实部');subplot(2,2,2);stem(n,imag(xn) ,'filled');xlabel('n');ylabel('imag(xn)');axis([0,length,-1.1,1.1]);title('采样序列的虚部');subplot(2,2,3);stem(n,abs(xn) ,'filled');xlabel('n');ylabel('abs(xn)');axis([0,length,-1.1,1.1]);title('采样序列的模');subplot(2,2,4);stem(n,angle(xn) ,'filled');xlabel('n');ylabel('angle(xn)');axis([0,length,-(pi+0.5),pi+0.5]);title('采样序列的相角');%计算DFTDFT=fft(xn,length);%画第三幅图(DFT的幅度、实部和虚部)figure(3);subplot(3,1,1);stem(n,abs(DFT) ,'filled');xlabel('k');%DFT后的频域变量为kylabel('abs(DFT)');title('DFT 幅度谱');subplot(3,1,2);stem(n,real(DFT) ,'filled');xlabel('k');ylabel('real(DFT)');title('DFT的实部');subplot(3,1,3);stem(n,imag(DFT) ,'filled');xlabel('k');ylabel('imag(DFT)');title('DFT的虚部');六、实验结果与分析实验结果:第一组数据:实验名称:DFT/FFT的应用之一 确定性信号谱分析姓名:张清学号:3110103952 P.4第二组数据:第三组数据:第四组数据:第五组数据:第六组数据:6-1 实验前预习有关概念,并根据上列参数来推测相应频谱的形状、谱峰所在频率(U)和谱峰的数值(V)、混叠现象和频谱泄漏的有无。

周期信号频谱分析

周期信号频谱分析

实验名称:周期信号的频谱分析教材名称:电工电子实验技术(下册)页码:P142 实验目的:1、了解和掌握周期信号频谱分析的基本概念;2、掌握Multisim软件用于频谱分析的基本方法;3、加深理解周期信号时域参数变化对其谐波分量的影响及变化趋势。

实验任务:1、根据9-1给定的波形和参数测量各谐波分量的幅度值。

2、根据所测数据绘制每一波形的谱线图。

设计提示:实验电路图:图一、分析用电路及信号发生器调整窗口实验结果:表9-1数据:周期信号的频谱分析(Multisim)0 10 20 30 40 50 60 70 80 90 100 矩形波10%-4.023 1.923 1.833 1.689 1.499 1.273 1.024 0.763 0.506 0.263 0.047 矩形波30%-2.023 5.123 3.040 0.699 0.897 1.271 0.659 0.236 0.739 0.595 0.046 矩形波50%-0.022 6.366 0.045 2.121 0.045 1.271 0.045 0.906 0.045 0.703 0.045 正弦波0 4.999 0 0 0 0 0 0 0 0 0三角波50%0 4.053 0 0.451 0 0.162 0 0.083 0 0.050 0三角波70%0 3.903 1.147 0.166 0.177 0.193 0.079 0.030 0.072 0.048 0三角波90%0 3.479 1.654 1.012 0.669 0.450 0.298 0.186 0.103 0.043 0N 0 1 2 3 4 5 6 7 8 9 10 注:谱线数取10+直流。

矩形波10%:矩形波30%:矩形波50%:正弦波50%:三角波50%:三角波70%:三角波90%:实验中注意事项:1、仿真过程中要在Simulate/Fourier Analysis/Output Variables中添加要进行分析的节点。

第13讲 周期信号的频谱及其特点

第13讲 周期信号的频谱及其特点

号的调制与解调等等。
精选版课件ppt
2
本章主要内容
3.1 3.2 3.3 3.4 3.5
周期信号的分解与合成 周期信号的频谱及特点 非周期信号的频谱 傅氏变换的性质与应用(1) 傅氏变换的性质与应用(2)
精选版课件ppt
3
本章主要内容
3.6 周期信号的频谱 3.7 系统的频域分析 3.8 无失真传输系统与理想低通滤波器 3.9 取样定理及其应用 3.10 频域分析用于通信系统
0 0 20 30 40 50
0.15
精选版课件ppt
14
周期信号的单边频谱
已知周期信号 f(t)11c o ts2 1s in t
2 4 3 4 3 6
求其基波周期T,基波角频率0,画出它的单边频谱图。
解:将f(t)改写为: f(t) 1 1 c o t s2 1 c o t s 2 4 3 4 3 62
精选版课件ppt
13
周期信号的单边频谱
画出周期信号 f(t) 的振幅频谱和相位频谱。
f(t) 1 si0 n t 2 co 0 t sco 20 ts ( 4 )
f(t) 1 5 co 0 ts 0 .( 1) 5 c o 20 s t 4
Ak 5
k
0.25
1
1
0
0
20 30 40 50
相位频谱图描述各次谐波的相位与频率的关系。
根据周期信号展开成傅里叶级数的不同形式,频谱图又分 为单边频谱图和双边频谱图。
精选版课件ppt
8
周期信号的单边频谱
周期信号 f ( t ) 的三角函数形式的傅里叶级数展开式为
f(t)A0 Ancos(n1tn) n1
A n 与 n 1 的关系称为单边幅度频谱;

§3.2 周期信号的频谱和功率谱

§3.2 周期信号的频谱和功率谱

不变,T增大,谱线间隔
1
2 T
减小,谱线逐渐密集,幅度
A T
பைடு நூலகம்


当 T
1 0
A 0 T
非周期信号连续频谱
非周期信号 n1 连续频率
2.当T不变, 减小时
T不变
1
2 间隔不变
T
A 振幅为0的谐波频率
T
2
,
4
,......
信号与系统
练习:周期信号的频谱描绘
不改变 不改变 不改变
Fn
2 T
2
f (t)dt
T
2 A
2
Adt
2
T
信号与系统
练习:周期信号的频谱描绘
a 2 nT
T
2 T
2
f (t) cos n1tdt
2A sin n n T
2 A
T
sin n
T
n
2A Sa(n )
T
T
T
f (t)
A
T
2 A
T
n 1
Sa( n
T
)
cos(n1t )
A 2A
TT
S a(
立叶展开式并画出其频谱图。
1
解: f(t) 在一个周期内可写为如下形式
Tt
f (t) 2 t T t T
T
22
f(t) 是奇函数,故 an 0
信号与系统
4
bn T
T 2 0
f (t) sin n1tdt
4 T
T 2 0
2t T
sin
n1tdt
(1
2
T
)
An &n 2

第三章:信号的频域分析

第三章:信号的频域分析

三.非周期信号的频谱
X(t)与│X(f)│之间存在:
三.非周期信号的频谱
∵许多时间函数(例如:正弦函数)的总能 量无限,但其功率有限。 ∴考虑在(-∞,+∞)上的平均功率:


−∞
x2 (t)dt = ∫ X ( f ) df
2 −∞

(巴赛伐等式)
(3-11)
T →∞
lim
上式为总能量的频谱表达式, 左边为X(t)在(-∞,+∞)之间的总能量, 右边│X(f)│2称为X(t)的能谱密度。
∞ -∞
x (t ) = ∫

−∞
X ( f ) e j (2π ft +φ ( f ) ) df
(3-10)
取实部

+∞ −∞
X (ω ) e

X ( f ) cos(2πft + ϕ ( f ))df
n
X ( f ) = 2 π X (ω )
称 X ( f ) 为 x (t ) 的连续频谱。一般
它的巴赛伐等式为:
四.平稳随机信号的频谱
∵平稳随机信号不是周期信号
(3-13)
2

2 −∞ T

x (t )dt = ∫ X ( f , T ) df
−∞

∴其频谱应为连续谱 又∵样本曲线的波形各不相同 ∴幅值谱没有意义 ∴平稳随机信号的频谱是指功率谱密度。
lim 可得: T →∞
∞ 1 ∞ 2 1 2 xT (t )dt = ∫ lim X ( f , T ) df ∫ − ∞ − ∞ T →∞ 2T 2T
式(3-9)代入(3-5)得:
X (ω ) =
x (t) =

周期信号的时域及其频域分析

周期信号的时域及其频域分析

周期信号的时域及其频域分析周期信号是指具有固定周期的信号,即在其中一时间区间内重复出现的信号。

对于周期信号的时域分析,主要包括以下几个方面:1.周期:周期信号的主要特征是具有固定的周期。

周期可以通过观察信号的周期性重复来确定,也可以通过计算信号的基波频率的倒数得到。

2.幅值:周期信号的幅值是指信号在各个周期中的最大值或最小值。

幅值可以表示信号的强度或振幅大小。

3.相位:周期信号的相位是指信号相对于一些参考点的位置。

相位可以用角度或时间来表示,通常用角度表示。

4. 周期谐波分解:周期信号可以用一组基本波形的线性组合来表示,这组基本波形称为谐波。

周期信号的谐波分解可以用Fourier级数展开来实现。

Fourier级数展开将周期信号分解为基频和各个谐波的叠加,其中基频是周期信号的最低频率分量,谐波是基频的整数倍。

对于周期信号的频域分析,主要包括以下几个方面:1.频谱:频谱是指信号的频率成分及其强度。

周期信号的频谱通常是离散的,只包含基波和谐波成分。

2.频率分量:频率分量是指信号中的各个频率成分。

周期信号中的频率分量由基频和谐波组成。

3.谱线:谱线是频谱图中的一条直线,代表一些频率成分的强度。

周期信号的谱线通常为离散的峰值。

4.谱分辨率:谱分辨率是指频谱分析能够区分不同频率分量的能力。

谱分辨率取决于采样频率和频率分辨率。

频域分析可以通过傅里叶变换来实现。

傅里叶变换能够将信号从时域转换到频域,得到信号的频谱。

对于周期信号,可以使用傅里叶级数展开来进行频域分析,得到信号的频率成分及其强度。

综上所述,周期信号的时域分析主要关注周期、幅值和相位等特征,而频域分析则关注频率成分及其强度。

通过时域及频域分析,可以深入理解周期信号的性质和特点,从而更好地理解和处理周期信号。

Signal_2_周期信号的频谱

Signal_2_周期信号的频谱

Cn
1 An 2
复指数形式的傅里叶级数的复系数
的计算公式为(P15)
1 Cn T0

T0 / 2
T0 / 2
f (t )e
jn0t
dt
24
例:求周期为T的矩形脉冲信号的频 谱图(见教案,难度较大,不讲)
25
周期矩形脉冲信号的频谱
E f (t ) 0 (t (t
2 T2 T 2 sin n 0tdt T 0 sin n 0 tdt
0


, ,
n 2, 4, (偶数) n 1,3, (奇数)
4 1 1 f (t ) sin 0 t sin 3 0 t sin 5 0 t 3 5
2 bn x(t ) sin n 0 tdt 0 T
18
T 2 T 2
2 an x(t ) cosn0tdt T
8E 1 2 T n 0
2
T 2 T 2


T 2
0
n 0 t cosn 0 td (n 0 )t
, n 1,3, n 2,4,
n
是单边频谱,只取n>0的项;
但就数学关系式本身而言,前者是关于n的偶函数, 后者是关于n的奇函数
10
例1 周期方波的傅里叶级数
11
• 解: (1)在一个周期内,波形与横轴围成的面 积上、下相等,所以它的平均值 T 1 2 a0 T x(t )dt 0 T 2 (2)为奇函数,因此余弦项的系数

29
位相谱的解释
注意: n
bn tg n an
(负号一定要写在上面)

信号与系统分析基础----周期信号的频谱周期信号的频谱分析——傅里叶级数

信号与系统分析基础----周期信号的频谱周期信号的频谱分析——傅里叶级数

n1t
sin
m1t
0
2
T 2 T 2
cos n1t
cos m1t
T , 2 0,
mn mn
T 2 T 2
sin n1t
sin m1t
T , 2 0,
mn mn
3
2.级数形式
周期信号
f t ,周期为T1
, 基波角频率为1
2
T1
在满足狄氏条件时,可展成:
f (t) a0 an cos n1t bn sin n1t
§3.2 周期信号的频谱分析——傅里叶级数
1
主要内容
•三角函数形式的傅氏级数 • 指数函数形式的傅氏级数 •两种傅氏级数的关系 • 频谱图
2
一.三角函数形式的傅里叶级数
1.三角函数集
cosn1t , sin n1 t是一个完备的正交函数集
由积分可知
t在一个周期内,n=0,1,....
T
2 T
cos
周期信号可分解为直流,基波(1)和各次谐波 (n1 : 基波角频率的整数倍)的线性组合.
cn ~ 关系曲线称为幅度频谱图 n ~ 关系曲线称为相位频谱图
可画出频谱图
周期信号频谱具有离散性,谐波性,收敛性
9
二.指数函数形式的傅里叶级数
1.复指数正交函数集 e jn1t n 0,1,2
2.级数形式 f (t ) F (n1 ) e jn1t
f
2
(
t
)dt
t2 t1
f 2 (t )
f
1
(t
)dt
0
若在区间(t1,t2)内,复变函数集 {gr (t)}(r 1,2,...,n)
满足关系

信号与系统第3章

信号与系统第3章

于变量n从
,所以称为双边频谱。
25
直流 分量
复指数谐波幅值分量
复指数谐波相位分量
26
3.2.2 周期信号频谱的特点及频带宽度 1. 周期信号频谱的特点 ★离散性 ★谐波性 ★收敛性
27
2. 周期矩形脉冲信号的频谱
f(t) E
0
T
t
周期矩形脉冲信号的周期为T,脉冲宽度为 。
28
周期矩形脉冲信号的傅里叶系数,即频谱 函数为
➢ 三角形式中的傅里叶系数是实函数,而指数形 式中的傅里叶系数一般是复函数。
➢ 是 的偶函数, 是 的奇函数。
19
➢三角傅里叶级数:可以通过不同频率正 弦分量的合成进行仿真。
➢指数傅里叶级数:由于客观上复频率分 量无法描述,所以不能进行仿真。
➢引入复频率分量的意义在于使得数学分 析更加方便,容易描述。
用频谱图描述信号是频域表示的一种方式,它简便、 直观地反映出各个频率分量中振幅和相位与频率变 化的关系。(见图3.2-1、图3.2-2)
23
1.单边频谱
直流• 三角傅里叶级数
分量
正弦谐正波弦分谐量波(分n量>(1)n>,1幅)值都 随着频率的变化而变化
24
2.双边频谱 • 指数傅里叶级数
其中 称为幅度频谱; 称为相位频谱。由
本节要求: 熟悉傅里叶变换的主要性质其含义
51
3.4.1 线性



,则对于任意常数 a1 和 a2,
注意:只有同频率的分量才能进行运算。而 频域加法运算后,其频域范围为两个频谱函 数中最小的下限值,到最大的上限值。
52
3.4.2 对称性

,则
若 为偶函数,则

周期信号的频谱分析

周期信号的频谱分析

周期信号的频谱分析周期信号是指在一定时间内重复出现的信号,其频谱分析是对周期信号在频域上的描述和分析。

频谱分析是信号处理领域中的重要内容,它能够揭示周期信号的频率成分以及它们在信号中的相对强度。

周期信号可以用正弦函数来表示,即一个频率为f的正弦波。

频谱分析的目的就是要确定这个周期信号中包含的各个频率成分。

为了进行频谱分析,我们通常使用傅里叶变换。

傅里叶变换可以将一个周期信号转换为一系列频率成分的复数表示。

傅里叶变换将一个周期信号分解成一系列复振幅和相位分量。

复振幅表示了信号中每个频率分量的强度,而相位则表示了每个频率分量的相对位置。

通过傅里叶变换,我们可以得到一个频谱图,它显示了信号中各个频率成分的幅度和相位信息。

在频谱图中,横轴表示频率,纵轴表示振幅。

每个频率成分对应的幅度可以通过幅度谱来表示,而相位信息则可以通过相位谱来表示。

通过分析频谱图,我们可以得到周期信号中的主要频率成分、频率分量的强度以及它们在信号中的相对位置。

频谱分析在信号处理领域中有着广泛的应用。

例如,它可以用于音频信号的处理与分析。

在音频信号中,不同的频率成分对应着不同的音调和音色。

通过频谱分析,我们可以识别音频信号中的主要频率分量,从而实现对音频信号的合成、去噪等处理操作。

另外,频谱分析也可以用于振动信号和通信信号的分析。

在振动信号分析中,频谱分析可以帮助我们了解结构的固有频率以及存在的振动模态。

而在通信信号分析中,频谱分析可以帮助我们了解信号的带宽和调制方式,从而实现信号的解调和解码。

总之,周期信号的频谱分析是对周期信号在频域上的描述和分析。

通过傅里叶变换,我们可以将周期信号分解成一系列频率成分,并通过频谱图来展示这些成分的幅度和相位信息。

频谱分析在信号处理领域中有着广泛的应用,对于理解和处理周期信号具有重要作用。

周期信号的频谱

周期信号的频谱

例题:O tf (t )T /31-TT如右图所示的周期性矩形脉冲信号(周期为T )经过一个低通滤波器,求其响应及响应的平均功率。

已知该滤波器的传递函数为()()⎪⎪⎩⎪⎪⎨⎧<≤<-≤=--时时时T T e T T e j H j j ωππωππωπωωωτωτ6,063,3/23,分析:周期信号可以分解成直流、基波、高次谐波等分量每个分量经过滤波器 复数解法解:求傅立叶系数:⎰-=3/001T tjn n dt eTC ωO tf (t )T /31-TT令ω0=2π/T3/0001T t jn eTjn ωω--=3/3sin 31ππjn e n c -⎪⎭⎫ ⎝⎛=3100==C A 2nj n n A eC ϕ=~基波和n 次谐波的复数表示低通滤波器只通过低于3ω0的信号,因此信号中只有直流、基波和二次谐波分量通过。

输出信号中的直流分量为:()3100==ωωj H A解:输出信号中的基波分量的复数表示为:()()τωπωωφπω0013/13sin 32+-=⎪⎭⎫ ⎝⎛=j j e c j H eA 输出信号中的二次谐波分量的复数表示为:()()τωπωωφπω00223/22232sin 94+-=⎪⎭⎫⎝⎛=j j e c j H e A 输出信号的时域表达式为:⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+τωπωπτωπωπ00002322cos 32sin 943cos 3sin 3231t c t c 输出信号的平均功率为:280.02sin 41sin 211222≈⎥⎤⎢⎡⎪⎫⎛+⎥⎤⎢⎡⎪⎫ ⎛+⎪⎫ ⎛=ππc c P out第三章:信号的频谱§3-1 周期信号的频谱§3-2 非周期信号的频谱密度 傅立叶变换与频谱密度信号的频谱分布与带宽基本信号的频谱密度§3-3 频谱分析的基本定理§3-4 采样定理傅立叶变换的引出如何从频域描述一个非周期信号?tf (t )傅立叶级数?——显然不行怎么办?退而求其次,先考虑描述函数在有限区间[a,b)上的一段吧tf a,b (t )a btf T (t )a b考虑有限区间周期扩展再扩展成周期T =b -a 的函数f T (t )f T (t ):周期函数~可以用傅立叶级数表示在区间[a,b)上与f (t ) 相同傅立叶变换的引出tf T (t )a b()(),1100dt et f Tdte tf T C tjn bat jn ba T n ωω--⎰⎰==()()()⎪⎪⎩⎪⎪⎨⎧=-++∈-++=∑∞-∞=b a t b f a f b a t t f t f eC n tjn n或,2)0(0,,2)0(00ω傅立叶级数只在区间(a,b ) 上收敛于f (t ),因此C n 并不是f (t ) 的复频谱如果f T (t ) 满足狄利克雷条件,则可以展开成傅立叶级数:定义:则:ω0=2π/T傅立叶变换的引出进一步,选取对称区间[-T /2,T /2)。

3.2.1 周期信号的频谱周期信号的频谱分析——傅里叶级数

3.2.1  周期信号的频谱周期信号的频谱分析——傅里叶级数

4
狄利克雷(Dirichlet)条件 条件1:在一周期内,如果有间断点存在,则间断点的 数目应是有限个。
条件2:在一周期内,极大值和极小值的数目应是有 限个;
条件3:在一周期内,信号绝对可积;
5
狄利克雷(Dirichlet)条件1:例1 不满足条件1的例子如下图所示,这个信号的周期 为8,它是这样组成的:后一个阶梯的高度和宽度是前一 个阶梯的一半。可见在一个周期内它的面积不会超过8, 但不连续点的数目是无穷多个。
0
1
1
0
1
2 1
2 1
指数形式的频谱图
F n 1
0.15
n
0.5
1.12
1
1.12
0.5
2 1
0.15 2 1
1
0.25
2 1 1
0
1
1
0
0.15
2 1
0.25
21
四.总结
(1)周期信号f(t)的傅里叶级数有两种形式

满足离散性,谐波性不满足收敛性,频带无限宽
26
一.频谱结构
f (t ) E
/ 2
脉宽为 脉冲高度为E 周期为T1
T1
/2
T1
t
1. 指数函数形式的谱系数
2. 频谱特点
27
1.指数形式的谱系数
1 F ( n 1 ) T1
1 = T1
jn 1 t

T1
T1
2 2
f ( t )e jn1t d t
bn n tg a n
1
关于的偶函数(实际 n 取正值) 关于的奇函数(实际 n 取正值) 关于的偶函数 关于 的奇函数

周期信号的频谱的特点

周期信号的频谱的特点

周期信号的频谱的特点对于周期信号,其频谱特点主要有以下几个方面:1.频谱呈现出离散的频率分量:周期信号的频谱是由一系列离散的频率分量组成的,这些频率分量可以看作是正弦波的谐波。

具体来说,周期信号的基波频率对应着信号的周期,而高次谐波频率对应着信号的周期的整数倍。

因此,周期信号的频谱呈现出离散的频率分量。

2.频率分量的幅值逐渐衰减:对于周期信号的频谱,随着频率的增大,各个频率分量的幅值逐渐衰减。

这是因为周期信号的频谱是由一系列频率为整数倍的正弦波叠加而成的,而高次谐波频率对应着幅度较小的频率分量。

因此,随着频率的增大,高次谐波频率分量的幅值逐渐变小,频谱呈现出幅度逐渐衰减的特点。

3.频谱具有对称性:对于实信号的周期信号,其频谱具有对称性。

具体来说,周期信号的频谱关于零频率轴对称。

这是因为周期信号的频谱是由实信号频谱叠加而成的,而实信号频谱及其傅里叶变换的共轭都是对称的,因此周期信号的频谱具有对称的特点。

4.频谱的带宽与周期信号的周期有关:对于周期信号,其频谱的带宽与信号的周期有关。

具体来说,频谱的带宽在理论上等于周期的倒数。

这是因为在频谱中,由于频率分量的间隔等于周期的倒数,频谱的带宽也等于周期的倒数。

5.频谱的相位对称性:对于周期信号,它的频谱在幅度谱的基础上还有相位谱。

频谱的相位是随着频率变化的,由于周期信号的频率分量是正弦波,而正弦波的相位是以周期为单位的,所以频谱的相位也具有周期性。

具体来说,频谱的相位存在对称性,即频率分量的相位和其对称频率分量的相位相差180度。

这是由于正弦波的周期性特点决定的。

综上所述,周期信号的频谱特点包括频谱呈现出离散的频率分量、频率分量的幅值逐渐衰减、频谱具有对称性、频谱的带宽与周期信号的周期有关,以及频谱的相位对称性等。

这些特点在信号处理和通信系统中具有重要的理论和实际意义,为信号的分析、处理和传输提供了基础。

《信号与系统》第3章

《信号与系统》第3章

信号与系统讲稿
• 这部经典著作将欧拉、伯努利等人在一 些特殊情形下应用的三角级数方法发展 成内容丰富的一般理论,三角级数后来 就以傅里叶的名字命名。 • 《热的解析理论》影响了整个19世纪分 析严格化的进程。
信号与系统讲稿
3.1
周期性信号的频域分析
教学目标:掌握周期性信号频谱的概念, 会用傅里叶级数表示周期信号。
或 E 2 E f (t ) T1 T1 n1 Sa 2 n 1

Cos( n1t )
若将展开指数形式的傅里叶级数,由式(8)可得:
1 Fn T1

T1 2 T 1 2
Ee
ห้องสมุดไป่ตู้
jn1t
E n1 dt Sa T1 2
幅度谱cn和相位谱 见书P104页。
特别注意:书P103 1. 2. 3. P105 “对称方波信号有两个特点: (1)它是正负交替的信号,其直流分量(a0 等于零。 (2) 它的脉宽等于周期的一半,即 ”
信号与系统讲稿 第三章

信号与系统讲稿
二. 三. 四. 五.
周期锯齿脉冲信号(书P106,自学) 周期三角脉冲信号(书P106,自学) 周期半波余弦信号(书P108,自学) 周期全波余弦信号(书P108,自学)
n 1

a0 d0 2 dn
2 2 an bn 1
n tg
an bn
n次谐波的初相角
信号与系统讲稿
三. 频谱的概念
f ( t )为时间函数,而c0、cn、n为频率函数, 所以,信号从用时间函数来表达过渡到用频率函 数来表达。 1. 幅度频谱:cn 随频率变化的情况用图 来表示就叫幅度频谱。 2. 相位频谱:n随频率变化的情况用图 来表示就叫相位频谱。

连续时间系统的频域分析

连续时间系统的频域分析

第三章.连续时间系统的频域分析一、任意信号在完备正交函数系中的表示法(§)信号分解的目的:● 将任意信号分解为单元信号之和,从而考查信号的特性。

●简化电路分析与运算,总响应=单元响应之和。

1.正交函数集任意信号)(t f 可表示为n 维正交函数之和:原函数()()()t g t g t g r Λ21,相互正交:⎩⎨⎧=≠=⋅⎰nm K nm dt t g t g m t t n m ,,0)()(21()t g r 称为完备正交函数集的基底。

一个信号可用完备的正交函数集表示,.正弦函数集有许多方便之处,如易实现等,我们主要讨论如何用正弦函数集表示信号。

2.能量信号和功率和信号(§一)设()t i 为流过电阻R 的电流,瞬时功率为R t i t P )()(2=一般说来,能量总是与某一物理量的平方成正比。

令R = 1Ω,则在整时间域内,实信号()t f 的能量,平均功率为: 讨论上述两个式子,只可能出现两种情况: ✍∞<<W 0(有限值) 0=P✍∞<<P 0(有限值)∞=W满足✍式的称为能量信号,满足✍式称功率信号。

3.帕斯瓦尔定理设{})(t g r 为完备的正交函数集,即信号的能量 基底信号的能量 各分量此式称为帕斯瓦尔定理 P331 式(6-81) (P93, P350) 左边是信号能量,右边是各正交函数的能量。

物理意义:一个信号所含有的能量(功率)恒等于此信号在完备正交函数集中各分量能量(功率)之和。

二、周期信号的频谱分析——傅里叶级数(1) 周期信号傅里叶级数有两种形式三角形式: ()∑∞=++=1110sin cos )(n n nt n b t n aa t f ωω=∑∞=++110)cos(n n nt n cc ϕω指数形式:t jn n e n F t f 1)()(1ωω∑∞-∞==(2) 周期信号的频谱是离散谱,三个性质收敛性()↓↑)(,1ωn F n谐波性:(离散性)谱线只出现在1ωn 处,唯一性:)(t f 的谱线唯一(3)两种频谱图的关系● 三角形式:ω~n c ,ωφ~n 单边频谱● 指数形式:ωω~)(1n F , ωφ~n 双边频谱两者幅度关系 )(1ωn F =()021≠n c n000a c F ==● 指数形式的幅度谱为偶函数 ●指数形式的相位谱为奇函数(4) 引入负频率对于双边频谱,负频率)(1ωn ,只有数学意义,而无物理意义。

第三章§3.2 周期信号的频谱分析——傅里叶级数

第三章§3.2 周期信号的频谱分析——傅里叶级数

T

2 T 2
T , cos n 1 t cos m 1 t dt 2 0, T , sin n 1 t sin m 1 t dt 2 0,
m n m n m n m n
X
T

2 T 2
请画出其幅度谱和相位谱。
化为余弦形式
f (t ) 1 π 5 cos( 1 t 0 . 15 π ) cos 2 1 t 4
c0 1
三角函数形式的傅里叶级数的谱系数
三角函数形式的频谱图
cn
c1
0 0
5 2 . 236
n
2 . 24 c2
a n
j bn

T

T 0
f ( t ) co s n 1t d t j
T
1 T

T 0
f ( t ) sin n 1t d t

1 T

f ( t )e
0
j n 1t
dt
t 0 T1 t0
因 此 F n 1
1 T

f (t ) e
j n 1t
n
j n 1t

n 0 , 1, 2
jn 1t
f (t )


F (n 1 ) e
4
a
n 1

n
co s n 1t b n sin n 1t
利用欧拉公式
sin n 1 t
co s n 1 t
周期信号
周期信号: 定义在区间 ( , ) ,每隔一定时间 T ,按相同规律重 复变化的信号,如图所示 。它可表示为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n
2
Sa( x) sin x x
---------取样函数
1.它是偶函数。
2. 当 x 0 时,Sa( x) 1 。
3.当 x k k 0 时,函数值为0。
Sax
1
3 2
0
2
它是无限拖尾的衰减振荡。
3 x
n
Fn T Sa( 2 )
n 0, 1, 2, .....
该周期性矩形脉冲的指数形式傅里叶级数展开式为:
第三为收敛性,此频谱的各次谐波分量的振幅虽然随nΩ 的变化有起伏变化,但总的趋势是随着nΩ的增大而逐渐减小。 当nΩ→∞时,|Fn|→0。
周期性矩形脉冲信号的频谱还有自己的特点 :
1、各谱线的幅度按包络线 Sa( )的规律变化。
T
2
在2
m (m
1,
2,...)各处,即
2m
的各处,
包络为零,其相应的谱线,亦即相应的频谱分量也等
第一个零点时谱线的序号:n 2
n 2 T
由上图 可以看出,此周期信号频谱具有以下几个特点:
第一为离散性,此频谱由不连续的谱线组成,每一条谱线 代表一个正弦分量,所以此频谱称为不连续谱或离散谱。
第二为谐波性,此频谱的每一条谱线只能出现在基波频率 Ω的整数倍频率上,即含有Ω的各次谐波分量,而决不含有非 Ω的谐波分量。
o 2 3 4 5 6
- 10° - 15°
- 30°
- 20°
- 30°
- 45°
- 45° (b)
图 3.3-2 信号的双边频谱 (a) 振幅谱; (b) 相位谱
二、 周期矩形脉冲的频谱
设有一幅度为1,脉冲宽度为 的周期性矩形脉
冲,其周期为 T ,求其复傅里叶系数。
f t
1
T 2 0 2 T
复习
• 1、傅里叶级数的三角形式 • 2、傅里叶级数的指数形式 • 3、傅里叶系数的奇偶性
3.3 周期信号的频谱
一、 周期信号的频谱
f (t)
A0 2
An cos(nt n)
n1
Fne
n
jnt
Fn
1 2
Ane jn
Fn e jn
1 T
T
2f
T 2
t e jnt dt
如果将 An ~ n ,n ~ n 的关系绘成下面的线图,
试画出f(t)的振幅谱和相位谱。
解 f(t)为周期信号,题中所给的f(t)表达式可视为f(t)的傅里
叶级数展开式。据
f
ห้องสมุดไป่ตู้
(t)
A0 2
n1
An cos(nt
n )
可知,其基波频率Ω=π(rad/s),基本周期T=2 s,ω=2π、3π、 6 π分别为二、 三、六次谐波频率。且有
A0 1 2
A1 3
T 相邻谱线的间隔 零,周期信号的
离散频谱 非周期信号的连续频谱。
f (t) =T/4
0
Tt
f (t) =T/ 8
1/ 4
Fn
2/
0
4/
8/
1/ 8
Fn
0
Tt
f (t)
=T/16
0
2/
4/
1/16
Fn
0
Tt
0
2/
图3.3-4 脉冲宽度与频谱的关系
16/ 8/ 4/
f (t) T=4
1/ 4
3
5
n
f t
n 1,3,5,
1
T
0
T
t
1
看作是周期性矩形脉冲
T 2
时的情况,其偶次谐
波恰恰落在频谱包络线的零值点,所以它的频谱只
包含基波和奇次谐波分量。
周期锯齿脉冲信号的傅里叶级数:
f
t
E
sint
1 2
sin2t
1 3
sin3t
1 4
sin4t
E 1 n1 1 sinnt
n1
f (t)
Fne jnt
n
T
n
Sa (
n
2
)e jnt
Fn
1
4
T
Sa
2
4
2
0
2
4
图4.3-4 周期矩形脉冲的频谱(T=4)
T 4
Fn
1
4
T
Sa
2
4
2
0
2
4
相邻谱线的间隔: 2
T
零点的位置: n k n k 2
2
第一个零点的位置:
n
2
k 0
图 3.3-1 (a)振幅谱; (b) 相位谱
30 ° 30 °
20 °
|F n |
2
1.5
1.5
1
1
1
0.4 0.2
0.4 0.2
- 6- 5 - 4- 3- 2 - o 2 3 4 5 6
(a)
n 45 °
45 °
30 ° 30 °
20 °
15° 10°
- 6- 5 - 4- 3- 2 -
便可清楚而直观地看出各频率分量的相对大小及各
分量的相位,分别称为幅度谱和相位谱(单边)。
如果将 Fn ~ n,n ~ n的关系绘成下面的线图,
同样可清楚而直观地看出各频率分量的相对大小及各 分量的相位,也分别称为幅度谱和相位谱(双边)。
例 3.3-1 f (t) 1 3cos(t 10) 2 cos(2t 20) 0.4 cos(3t 45) 0.8cos(6t 30),
Fn
0 T 2T 3T 4T t
0
f (t) T=8
1/ 8
2/ Fn
0
T
f (t) T=16
2T t
0
2/
1/16
Fn
0
f (t) T
Tt
0
/T
2/ Fn
0
t
0
2/
图3.3-5 周期与频谱的关系
4/ 4/ 4/ 4/
思考:
f t 4 [sint 1 sin3t 1 sin5t .... 1 sinnt ...]
n
f t
E 2
T
0
T
t
E 2
周期三角脉冲信号的傅里叶级数:
f
t
E 2
4E
2
cost
1 32
cos3t
1 52
cos5t
f t
E
t
T
0
T
三、 周期信号的功率
2T
t
图 3.3-3 周期矩形脉冲
f t
1
T 2 0 2 T
2T
t
Fn
1 T
T
2 T
f (t )e jnt dt
2
1
T
2
e jnt dt
2
1 e jnt 2
1
e
j
n
2
e
j
n
2
T jn jTn
2
1 jTn
2
j
sin
n
2
T
sin
n
2
n
2
T sa
n
2
Fn
T
S
a
A2 2
1 0 1 10 2 20
A3 0.4
3 45
A6 0.8
6 30
其余 An 0
An 3 3
o 2 3 4 5 6
(a)
n 45 °
45 °
2 2
30 ° 30 °
20 °
1
0.8
15° 10°
0.4
o 2 3 4 5 6
(a)
o
2
3
4 5
6
(b)
n 45 °
45 °
于零。
2、周期矩形脉冲信号包含无限多条谱线,也就是说,
它可分解为无限多个频率分量。
通常把频率范围
0
f
1
(0
2
)
称为周期矩形脉冲
信号的带宽,用符号 F 表示,即周期矩形脉冲信
号的频带宽度为 F 1 。
3、周期相同,脉冲宽度不同时信号的频谱: 谱线间隔不变,但零点位置变化。
周期不同,脉冲宽度相同时信号的频谱: 零点位置不变,谱线间隔变化。
相关文档
最新文档