人教版八年级下册数学二次根式习题
八年级数学下册《二次根式计算题》练习题与答案(人教版)
八年级数学下册《二次根式计算题》练习题与答案(人教版)一、选择题1.下列等式成立的是( ) A.9-4= 5 B.5×3=15 C.9=±3 D.(-9)2=-92.计算2(6÷3)的结果是( )A. 3B. 2C.2D.2 23.下列变形正确的是( ) A. ; B. ; C. ; D. ;4.关于8的叙述正确的是( )A.在数轴上不存在表示8的点B.8=2+ 6C.8=±2 2D.与8最接近的整数是35.下列计算正确的是( )A.2+3= 5B.6×2=2 3C.6÷122=12 3D.32﹣2=3 6.已知a ,b 分别是6﹣13的整数部分和小数部分,则2a ﹣b 的值为( ) A.3﹣13 B.4﹣13 C.13 D.2+13二、填空题7.计算:8+2= .8.计算:(2﹣3)2+26= .9.计算:(2-23)2= .10.计算(1-2)2+18的值是________. 11.计算28﹣312+2= .12.比较大小:2+6________3+ 5.三、解答题13.计算:12×68.14.计算:(212-313)× 615.计算:(46-42+38)÷2 2.16.计算:6×(13﹣1)17.计算:(2+1)2﹣8+(﹣2)2.18.计算:(27+72)2﹣(27﹣72)2.19.先化简,再求值:(2x +y)2+(x -y)(x +y)-5x(x -y),其中x =2+1,y =-1.20.已知x ,y 为实数,且y =x -12+12-x +12,求4x +|2y ﹣1|﹣y 2-2y +1的值.21.已知a=5+2,b=5﹣2,求a 2+b 2﹣2ab 的值.22.已知121121-=+=y x , ;3x 2+4xy+3y 2求的值.23.阅读下列材料,回答有关问题:在实数这章中,遇到过这样的式子,我们把这样的式子叫做二次根式,根号下的数叫做被开方数.如果一个二次根式的被开方数中有的因数能开得尽方,可以利用a ·b =a ·b(a ≥0,b ≥0);a b =a b (a ≥0,b>0)将这些因数开出来,从而将二次根式化简.当一个二次根式的被开方数中不含开得尽方的因数或者被开方数中不含有分母时,这样的二次根式叫做最简二次根式,例如,13化成最简二次根式是33,27化成最简二次根式是33,几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式,如上面的例子中的13和27就是同类二次根式.(1)请判断下列各式中,哪些是同类二次根式?(2)二次根式中的同类二次根式可以像整式中的同类项一样合并,请计算:2+75-18-150+127- 3.24.阅读下列解题过程.请回答下列问题:(1)观察上面解题过程,请直接写出的结果为 .(2)利用上面所提供的解法,请化简:的值.(3)不计算近似值,试比较(13-11)与(15-13)的大小,并说明理由.参考答案1.B2.C.3.C.4.D.5.B6.C7.答案为:3 2.8.答案为:5.9.答案为:16-8 3.10.答案为:42﹣1.11.答案为:3 2.12.答案为:<.13.解:原式=12×68=9=3. 14.解:原式=9 2.15.解:原式=4+ 6.16.解:原式=6×13﹣6=2﹣ 6.17.解:原式=3+22﹣22+4=7.18.解:原式=(27+72+27﹣72)×(27+72﹣27+72) =47×142=5614.19.解:原式=4x 2+4xy +y 2+x 2-y 2-5x 2+5xy =9xy当x =2+1,y =2-1时原式=9(2+1)(2-1)=9×(2-1)=9×1=9.20.解:∵x ﹣12≥0且12﹣x ≥0 ∴x =12,∴y =12∴原式=4x +|2y ﹣1|﹣(y -1)2=4x +|2y ﹣1|﹣|y ﹣1|=2﹣12=32. 21.解:∵a=5+2,b=5﹣ 2∴a﹣b=2 2∴a2+b2﹣2ab=(a﹣b)2=(22)2=8.22.解:x=2-1,y=2+1,原式的值为2223.解:(1)75=5 3 18=3 21 50=210127=39∴ 2 18150是同类二次根式;751273是同类二次根式.(2)原式=2+53-32-210+39-3=-21210+3739.24.解:(1);。
2023-2024人教版八年级数学下册第16章二次根式专题训练 二次根式的运算与化简求值(含答案)
第16章 二次根式 专题训练 二次根式的运算与化简求值类型1 二次根式的加减运算 1.计算:|2-5|+|4-5|= . 2.计算: (1)24+0.5-⎝ ⎛⎭⎪⎫18+6. (2)248-1813+318-818;(3)32-212-418+348. (4)239x +6x 4-2x 1x. (5)a 2b +ab a -b a b-ab 2. (6)-12 046+⎝⎛⎭⎫12-2-|4-12|+(π-3)0-27.类型2 二次根式的乘除运算 3.计算: (1)112×23= ;(2)(-14)×(-112)= ; (3)-0.45-0.5= ; (4)59÷127= . 4.计算:2318÷(-3)×1327.类型3 二次根式的混合运算 5.计算:12⎝ ⎛⎭⎪⎫75+313-48= . 6.计算:(1)50-(-2)+8× 2. (2)12-1+3(3-6)+8. (3)15×3520÷⎝⎛⎭⎫-13 6.(4)(-3)2+18-6×22; (5)⎝ ⎛⎭⎪⎫72-412+32÷8. (6)⎝⎛⎭⎫318+15 50-40.5÷32.类型4 巧用乘法公式计算 7.计算: (1)(5+3)2.(2)(32+12)(18-23). (3)(3+2)2-(3-2)2. (4)(2-3)2024×(2+3)2023;(5)(2+3-5)2-(2-3+5)2; (6)(3+2)2(3-2)-(3-2)2(3+2).类型5 先化简,再求值8.先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5+4.9.【2023福建】先化简,再求值:÷,其中x =-1.10.先化简,再求值:(x -1-3x +1)÷x -2x 2+x ,其中x =3-2.类型6 巧用二次根式的定义和性质求值 11.若x -3-3-x =(x +y )2,求x -y 的值.12.当x 取何值时,5x -1+4的值最小?最小值是多少?类型7 巧用乘法公式求值13.已知x =2-3,求代数式(7+43)x 2+(2+3)x +3的值.类型8 巧用整体代入法求值14.已知a =3+22,b =3-22,求a 2b -ab 2的值.15.已知x +y =-7,xy =12,求yx y +x yx的值.16.已知x=1-,y=1+,求x2+y2-xy-2x+2y的值.17.【2023长沙南雅中学期末】已知x=3+,y=3-,求下列各式的值.(1)x2-y2;(2)+.参考答案类型1 二次根式的加减运算 1.计算:|2-5|+|4-5|= . 【答案】2 2.计算: (1)24+0.5-⎝⎛⎭⎪⎫18+6. 解:原式=6+14 2. (2)248-1813+318-818;解:原式=83-63+92-2 2 =23+7 2. (3)32-212-418+348. 解:原式=83+2 2. (4)239x +6x 4-2x 1x . 解:原式=3x . (5)a 2b +ab a -ba b-ab 2. 解:原式=a b -b a . (6)-12 046+⎝⎛⎭⎫12-2-|4-12|+(π-3)0-27.解:原式=-1+4-4+23+1-3 3 =- 3.类型2 二次根式的乘除运算 3.计算: (1)112×23= ;(2)(-14)×(-112)= ; (3)-0.45-0.5= ; (4)59÷127= .【答案】1 28 2 31010 15 4.计算:2318÷(-3)×1327.解:原式=⎝⎛⎭⎫-23×1318×13×27=-29×9 2 =-2 2.类型3 二次根式的混合运算 5.计算:12⎝ ⎛⎭⎪⎫75+313-48= . 【答案】12 6.计算:(1)50-(-2)+8× 2. 解:原式=1+2+4=7. (2)12-1+3(3-6)+8. 解:原式=4.(3)15×3520÷⎝⎛⎭⎫-13 6.解:原式=-9 2.(4)(-3)2+18-6×22; 解:原式=3+32-32=3. (5)⎝ ⎛⎭⎪⎫72-412+32÷8. 解:原式=(62-22+42)÷2 2 =82÷2 2 =4.(6)⎝⎛⎭⎫318+15 50-40.5÷32.解:原式=2.类型4 巧用乘法公式计算 7.计算: (1)(5+3)2. 解:原式=8+215. (2)(32+12)(18-23). 解:原式=6.(3)(3+2)2-(3-2)2. 解:原式=4 6. (4)(2-3)2024×(2+3)2023;解:原式=(2-3)2023×(2+3)2023×(2-3)=[(2-3)×(2+3)]2023×(2-3)=-1×(2-3)=-2+3.(5)(2+3-5)2-(2-3+5)2; 解:原式=(2+3-5+2-3+5)× (2+3-5-2+3-5) =22×(23-25) =46-410.(6)(3+2)2(3-2)-(3-2)2(3+2).解:原式=(3+2)(3-2)[](3+2)-(3-2) =(9-2)×2 2 =14 2.类型5 先化简,再求值8.先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5+4. 解:原式=a 2-4+a -a 2 =a -4.当a =5+4时,原式=5+4-4= 5. 9.【2023福建】先化简,再求值:÷,其中x =-1.【解】原式=·=-·=-.当x =-1时,原式=-=-.10.先化简,再求值:(x -1-3x +1)÷x -2x 2+x ,其中x =3-2.解:原式=x 2-1-3x +1×x (x +1)x -2=(x +2)(x -2)x +1×x (x +1)x -2=x (x +2).把x =3-2代入,原式=(3-2)(3-2+2)=3-2 3. 类型6 巧用二次根式的定义和性质求值 11.若x -3-3-x =(x +y )2,求x -y 的值.解:∵x -3≥0,3-x ≥0, ∴x =3,∴y =-3, ∴x -y =6.12.当x 取何值时,5x -1+4的值最小?最小值是多少? 解:当x =15时,5x -1+4的最小值为4.类型7 巧用乘法公式求值13.已知x =2-3,求代数式(7+43)x 2+(2+3)x +3的值. 解:原式=(7+43)(7-43)+(2+3)(2-3)+ 3 =2+ 3.类型8 巧用整体代入法求值14.已知a =3+22,b =3-22,求a 2b -ab 2的值. 解:原式=ab (a -b ) =4 2.15.已知x +y =-7,xy =12,求y xy +xyx 的值.解:∵x +y <0,xy >0,∴x <0,y <0, ∴原式=y ·xy -y +x ·xy-x=-2xy =-4 3. 16.已知x =1-,y =1+,求x 2+y 2-xy -2x +2y 的值. 【解】∵x =1-,y =1+,∴x -y =(1-)-(1+)=-2, xy =(1-)(1+)=-1.∴x 2+y 2-xy -2x +2y =(x -y )2-2(x -y )+xy =(-2)2-2×(-2)+(-1)=7+4.17.【2023长沙南雅中学期末】已知x =3+,y =3-,求下列各式的值.(1)x 2-y 2; 【解】∵x =3+,y =3-,∴x +y =3++3-=6, x -y =3+-(3-)=2, ∴x 2-y 2=(x +y )(x -y )=6×2=12.(2)+.【解】∵x=3+,y=3-,∴x+y=3++3-=6,xy=(3+)×(3-)=4,∴+=====7.。
人教版数学八年级下册第16章 二次根式 随堂测试题含答案
word 版 学初中数16.1《二次根式》一、选择题1.已知 是二次根式,则 x、y 应满足的条件是()A.x≥0 且 y≥0B.C.x≥0 且 y>0D.2.当 a<3 时,化简的结果是( )A.-1B.1C.2a-7D.7-2a3.化简的结果是( )A.y-2xB.yC.2x-y4.下列根式中属最简二次根式的是( )D.-yA.B.C.D.5.在下列各式中,m 的取值范围不是全体实数的是( )A.B.C.D.6.给出下列各式:;其中成立的是( )A.①③④B.①②④7.下列式子中,二次根式的个数是(C.②③④ )D.①②③⑴ ;⑵ ;⑶;⑷ ;⑸;⑹;⑺.A.2B.3C.4D.58.在根式①,② ,③,④中最简二次根式是( )A.①②B.③④C.①③D.①④9.若 a<0,则的值为( )A.3B.﹣3C.3﹣2aD.2a﹣310.若代数式有意义,则实数 x 的取值范围是( )A.x≥1B.x≥2C.x>1D.x>211.已知, 则 2xy 的值为( )A.-15 12.若 y2+4y+4+A.﹣6B.15C.-7.5=0,则 yx 的值为(B.﹣8C.6D.7.5 )D.81 / 14word 版 学二、填空题 13.若是二次根式,则点 A(x,6)的坐标为_____.14.要使等式成立,则 x=________.15.当____时,式子有意义.16.已知 n 是正整数, 189 n 是整数,则 n 的最小值是.17.如图,数轴上点 A 表示的数为 a,化简:.初中数18.已知,当分别取 1,2,3,……,2020 时,所对应 y 值总和是_______.三、解答题 19.比较大小:与.20.已知互为相反数,求 ab 的值.21.已知:实数 a,b 在数轴上的位置如图所示,化简:﹣|a﹣b|.22.已知:=0,求实数 a,b 的值. 2 / 14word 版 学23.已知 a、b 满足等式.(1)求出 a、b 的值分别是多少?(2)试求的值.初中数24.已知 x,y 为实数,且满足,求 x -y 2020 2020 的值.3 / 14word 版 学初中数1.答案为:D 2.答案为:D 3.答案为:B 4.答案为:A 5.答案为:B 6.答案为:A 7.答案为:C 8.答案为:C 9.答案为:A. 10.答案为:B. 11.答案为:A 12.答案为:B 13.答案为(-3,6). 14.答案为:4. 15.答案为:3≤x<5. 16.答案为:21. 17.答案为:2. 18.答案为:2032.19.解:参考答案.因为所以,所以.20.原式=7 21.解:由数轴上点的位置关系,得﹣1<a<0<b<1.﹣|a﹣b|=a+1+2(1﹣b)﹣(b﹣a) =a+1+2﹣2b﹣b+a =2a﹣3b+3. 22.解:由题意得,3a﹣b=0,a2﹣49=0,a+7≠0,解得,a=7,b=21. 23.解:(1)由题意得,2a﹣6≥0 且 9﹣3a≥0, 解得 a≥3 且 a≤3,所以,a=3,b=﹣9;(2) ﹣ + =﹣+=6﹣9﹣3=﹣6.24.解:∵∴+=0∴1+x=0,1-y=0,解得 x=-1,y=1, X2018-y2018=(-1)2018-12018=1-1=0.人教版八年级下册 16.2 《二次根式的乘除》一.选择题1.将 化简后的结果是( )4 / 14word 版 学A.2B.C.22.计算(﹣ )2 的结果是( )A.﹣6B.6C.±63.下列二次根式中,属于最简二次根式的是( )A.B.C.4.+()2 的值为( )A.0B.2a﹣4C.4﹣2a5.实数 a,b 在数轴上对应点的位置如图所示,则化简D.4 D.36 D.初中数D.2a﹣4 或 4﹣2a 的结果为( )A.b﹣aB.a+bC.ab6.已知 x= +1,y= ﹣1,则 xy 的值为( )A.8B.48C.27.化简的结果是( )A.B.C.二.填空题8.计算:的结果是.9.化简 =.10.将 化成最简二次根式为.11.化简:=.12.计算:• (x>0)=.三.解答题(共 6 小题) 13.把下列二次根式化成最简二次根式(1)(2)D.2a﹣b D.6 D.(3)5 / 14word 版 学14.计算: ×4 ÷ .15.计算:•.16.计算:•(﹣)÷(a>0).17.化简:.18.实数在数轴上的位置如图所示,化简:|a﹣b|﹣ .参考答案 一.选择题 1.解: =故选:C.=2 ,6 / 14初中数word 版 学2.解:(﹣ )2=6,故选:B 3.解:A、. =5,故此选项错误;B、 是最简二次根式,故此选项正确;C、 = ,故此选项错误;D、 =2 故选:B.,故此选项错误;4.解:要使有意义,必须 2﹣a≥0,解得,a≤2,则原式=2﹣a+2﹣a=4﹣2a,故选:C.5.解:由数轴得 a<﹣1,b>0,所以原式=|a|+|b|=﹣a+b.故选:A.6.解:当 x= +1,y= ﹣1 时,xy=( +1)( ﹣1)=( )2﹣12=7﹣1 =6, 故选:D.7.解:∵ >0,∴b<0, b =﹣=﹣ .故选:D. 二.填空题 8.解:原式= × =6 .故答案为:6 .7 / 14初中数word 版 学9.解:原式== =2 ,故答案为:2 . 10.解: = ,故答案为: .11.解:因为 >1,所以= ﹣1故答案为: ﹣1.12.解:•(x>0)===4xy2. 故答案为:4xy2. 三.解答题(共 6 小题)13.解:(1)=;(2) =4 ;(3)==.14.解:原式=2 ×4× ÷4 =8 ÷4 =2.15.解:原式= × ×2= =x2. 16.解:原式==8 / 14初中数word 版 学==.初中数17.解:原式==+.18.解:由数轴可知:a<0,b>0,a﹣b<0 所以|a﹣b|﹣ =|a﹣b|﹣|b|=b﹣a﹣b=﹣a.16.3 二次根式的加减一.选择题1.下列二次根式与 2 可以合并的是(A.3B.2.下列计算中,正确的是( )) C.A. + =B.=﹣3 C. =3.计算: ﹣ =( )D.12 D.3 ﹣ =2A.﹣B.0C.D.4.已知 是整数,则 n 的值不可能是( )A.2B.8C.32D.405.如图,从一个大正方形中裁去面积为 16cm2 和 24cm2 的两个小正方形,则余下的面积为( )A.16 cm2 6.计算 ÷ •B.40 cm2C.8 cm2(a>0,b>0)的结果是( )A.B.C.7.已知 a=2+ A.12,b=2﹣ ,则 a2+b2 的值为( )B.14C.16 9 / 14D.(2 +4)cm2 D.b D.18word 版 学8.计算的结果是( )A.0B.C.9.如果与A.0二.填空题10.化简:11.计算:的和等于 3 ,那么 a 的值是( )B.1C.2的结果为.=.12.计算(5 )( 2)=.三.解答题13.(1)2 ﹣6 ;(2)()﹣( ﹣ ).14.计算. (1) ﹣ + . (2) × ﹣ +( ﹣1)0.(3) ÷ ﹣4 +.(4)( ﹣2)2+( )﹣1﹣( )2.15.已知 a= ﹣ ,b= + ,求值:(1) + ;(2)a2b+ab2.16.已知长方形的长为 a,宽为 b,且 a=,b=.(1)求长方形的周长; (2)当 S 长方形=S 正方形时,求正方形的周长.D. D.3初中数10 / 14word 版 学初中数参考答案一.选择题1.解:A、3 与 2 被开方数不相等,不是同类二次根式,故本选项不符合题意; B、 =2 与 2 被开方数不相等,不是同类二次根式,故本选项不符合题意; C、 与 2 被开方数不相等,不是同类二次根式,故本选项不符合题意; D、12 与 2 被开方数相等,是同类二次根式,故本选项符合题意; 故选:D.2.解:A、 + = +2,无法合并,故此选项错误;B、=3,故此选项错误;C、 =1,故此选项错误;D、3 ﹣ =2 ,正确.故选:D.3.解:原式= ﹣ =0.故选:B.4.解:A、当 n=2 时, =2,是整数;B、当 n=8 时, =4,是整数;C、当 n=32 时, =8,是整数;D、当 n=40 时, = =4 ,不是整数;故选:D.5.解:从一个大正方形中裁去面积为 16cm2 和 24cm2 的两个小正方形,大正方形的边长是 + =4+2 , 留下部分(即阴影部分)的面积是(4+2 )2﹣16﹣24=16+16+24﹣16﹣24=16 (cm2).故选:A .6.解:原式=×=11 / 14word 版 学=.故选:A. 7.解:∵a=2+ ,b=2﹣ ,∴a+b=4,ab=4﹣3=1, ∴a2+b2=(a+b)2﹣2ab=42﹣2×1=14. 故选:B. 8.解:原式===.故选:B.9.解:∵与 =2 的和等于 3 ,∴=3 ﹣2 = ,故 a+1=3,则 a=2.故选:C.二.填空题10.解:原式=3 ﹣4 + =0.故答案为:0.11.解:原式=[( +2)( ﹣2)]2020•( =(3﹣4)2020•( ﹣2)﹣2)= ﹣2.故答案为 ﹣2.12.解:原式=5 +10﹣3﹣2 =7+3 ,故答案为:7+3 . 三.解答题13.解:(1)原式=﹣4 ;12 / 14初中数word 版 学初中数(2)原式=2 + ﹣ +=3 + .14.解:(1)原式= ﹣2 +3=2 ;(2)原式=﹣ +1=2 ﹣ +1 = +1; (3)原式=﹣2 +2=2 ﹣2 +2 =2;(4)原式=5﹣4 +4+5﹣5 =9﹣4 . 15.解:∵a= ﹣ ,b= + , ∴a+b=( ﹣ )+( + )=2 ,ab=( ﹣ )( + )=2,(1) +=====12; (2)a2b+ab2 =ab(a+b) =2×2 =4 .13 / 14word 版 学16.解:(1)∵a== ,b==2 ,∴长方形的周长是:2(a+b)=2( +2 )=;(2)设正方形的边长为 x,则有 x2=ab,∴x= === ,∴正方形的周长是 4x=12 .初中数14 / 14。
人教版八年级数学下册第十六章 二次根式习题(含答案)
第十六章 二次根式一、单选题1.下列二次根式中,属于最简二次根式的是( )A B C D22得( ). A .2 B .44x -+C .-2D .44x -3有意义,a 的取值范围是( ) A .0a ≠B .且0a ≠C .2a >-. 或0a ≠D .2a ≥- 且0a ≠ 4.下列各式属于最简二次根式的有( )A B C D 5.下列运算正确的是( )A B )C =±3D .6( ) A .4至5之间B .5至6之间C .6至7之间D .7至8之间 7.下列运算正确的是( )A 5±B 2=-C =D .8.下列代数式能作为二次根式被开方数的是( )A .3﹣πB .aC .a 2+1D .2x+49.若x ≤0,则化简|1﹣x |﹣ 的结果是( )A .1﹣2xB .2x ﹣1C .﹣1D .110.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为S=△ABC 的三边长分别为1,2△ABC 的面积为( )A .1B .2C .3D .4二、填空题11.计算 的结果是_____.122(3)0b +=,则M (a ,b )点的坐标为________.13.若实数m 、n 满足|m ﹣0,且m 、n 恰好是Rt △ABC 的两条边长,则△ABC 的周长是_____.14.分母有理化:=_________.三、解答题15.化简计算:(1(22(1+-.16.已知:实数a ,b ﹣|a ﹣b|.17,等的式子,其实我1==.以上这种化简的步骤叫做分母有理化. (1(249++.答案1.C2.A3.D4.B5.D6.B7.C8.C9.D 10.A 11.12.(1,-3)13.12或14.215.(1)6;(2)+6 16.2a-3b+317.(1(2)3.。
人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)
人教版数学八年级下册第十六章二次根式单元测试卷(含答案解析)一、单选题(共12小题,每小题4分,共计48分)1A.4b B.CD2.下列各数中,与的积不含二次根式的是A.B.CD3m为()A.-10B.-40C.-90D.-1604.若a,b-5,则a,b的关系为A.互为相反数B.互为倒数C.积为-1D.绝对值相等5.下列计算正确的是3==6=3=;a b=-.A.1个B.2个C.3个D.4个6合并的是()A B C D7.若6的整数部分为x,小数部分为y,则(2x)y的值是() A.5-B.3C.-5D.-38.如图,a,b,c的结果是()a c+A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b9.估计的值应在( )A .5和6之间B .6和7之间C .7和8之间 D.8和9之间10有意义,那么直角坐标系中点A(a,b)在() A .第一象限 B .第二象限 C .第三象限D .第四象限11.下列计算正确的是AB . CD12.如果,,那么各式:,,,其中正确的是()A .①②③B .①③C .②③D .①②二、填空题(共5小题,每小题4分,共计20分)13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a﹣的结果是_____.14.已知a 、b满足(a ﹣1)2=0,则a+b=_____.15有意义,则实数x 的取值范围是_____.16.若a ,b 都是实数,b﹣2,则a b 的值为_____. 17.已知实数,互为倒数,其中__________. ()=3=2==0ab > 0a b +<=1=b =-a b a 2=+三、解答题(共4小题,每小题8分,共计32分)18=b+8.(1)求a 的值;(2)求a 2-b 2的平方根.19.已知实数a 满足|300﹣a =a ,求a ﹣3002的值.20.已知点A(5,a)与点B(5,-3)关于x 轴对称,b 为求(1)的值。
人教版初中八年级数学下册第十六章《二次根式》经典复习题(含答案解析)
一、选择题1.下列是最简二次根式的是( )A B CD2.下列说法:①带根号的数是无理数;③实数与数轴上的点是一一对应的关系;④两个无理数的和一定是无理数;⑤已知a =2b =2a 、b 是互为倒数.其中错误的个数有( )A .1个B .2个C .3个D .4个3.下列计算正确的是( )A =±B .=C =D 2=4.x 的取值范围为( )A .x 2≥B .x 2≠C .x 2>D .x 2<5.的结果估计在( ) A .10到11之间 B .9到10之间C .8到9之间D .7到8之间 6.当x在实数范围内有意义( ) A .1x > B .1≥x C .1x < D .1x ≤7.x 的取值范围是( )A .x <1B .x >1C .x≥1D .x≤18.( )A .B .C .D .无法确定 9.下列式子中无意义的是( )A .B .C .D . 10.下列算式中,正确的是( )A .3=B =C =D 4=11.下列计算正确的是( )A . 3B .1122+=C.3=D312.)A.1个B.2个C.3个D.4个13.下列各式中,一定是二次根式的个数为()10),232a a a⎫+<⎪⎭A.3个B.4个C.5个D.6个14.n为().A.2 B.3 C.4 D.515.)0a<得()A B.C D.二、填空题16.3+=__________.17.化简题中,有四个同学的解法如下:========他们的解法,正确的是___________.(填序号)18.________________.19.已知b>0=_____.20.23()a-=______(a≠0),2-=______,1-=______.21.如图,在长方形内有两个相邻的正方形A,B,正方形A的面积为2,正方形B的面积为6,则图中阴影部分的面积是__________.22.已知5ab =,则b a a b=__. 23.比较大小:310524.已知223y x x =--,则()x x y +的值为_________. 25.已知8817y x x =--,则x y +的平方根为_________.26.(1031352931643-⎛⎫++= ⎪⎝⎭__________. 三、解答题27.计算:(183(26)27+(211513(1)(0.5)2674÷; (3)52311x y x y +=⎧⎨+=⎩; (4)4(2)153123x y y x +=-⎧⎪+⎨=-⎪⎩. 28.(1232;(2)计算:122729.计算(1)3222(2333 30.计算:(11850(2)73)(73)。
人教版八年级数学下册第十六章二次根式单元测试卷(含答案)
⼈教版⼋年级数学下册第⼗六章⼆次根式单元测试卷(含答案)第⼗六章⼆次根式单元测试卷题号⼀⼆三总分得分⼀、选择题(每题3分,共30分)1.要使⼆次根式错误!未找到引⽤源。
有意义,x必须满⾜()A.x≤2B.x≥2C.x>2D.x<22.下列⼆次根式中,不能与错误!未找到引⽤源。
合并的是()A.错误!未找到引⽤源。
B.错误!未找到引⽤源。
C.错误!未找到引⽤源。
D.错误!未找到引⽤源。
3.下列⼆次根式中,最简⼆次根式是()A.错误!未找到引⽤源。
B.错误!未找到引⽤源。
C.错误!未找到引⽤源。
D.错误!未找到引⽤源。
4.下列各式计算正确的是()A.错误!未找到引⽤源。
+错误!未找到引⽤源。
=错误!未找到引⽤源。
B.4错误!未找到引⽤源。
-3错误!未找到引⽤源。
=1C.2错误!未找到引⽤源。
×3错误!未找到引⽤源。
=6错误!未找到引⽤源。
D.错误!未找到引⽤源。
÷错误!未找到引⽤源。
=35.下列各式中,⼀定成⽴的是()A.错误!未找到引⽤源。
=(错误!未找到引⽤源。
)2B.错误!未找到引⽤源。
=(错误!未找到引⽤源。
)2C.错误!未找到引⽤源。
=x-1D.错误!未找到引⽤源。
=错误!未找到引⽤源。
·错误!未找到引⽤源。
6.已知a=错误!未找到引⽤源。
+1,b=错误!未找到引⽤源。
,则a与b的关系为()A.a=bB.ab=1C.a=-bD.ab=-17.计算错误!未找到引⽤源。
÷错误!未找到引⽤源。
×错误!未找到引⽤源。
的结果为()A.错误!未找到引⽤源。
B.错误!未找到引⽤源。
C.错误!未找到引⽤源。
D.错误!未找到引⽤源。
8.已知a,b,c为△ABC的三边长,且错误!未找到引⽤源。
+|b-c|=0,则△ABC的形状是()A.等腰三⾓形B.等边三⾓形C.直⾓三⾓形D.等腰直⾓三⾓形9.已知a-b=2错误!未找到引⽤源。
-1,ab=错误!未找到引⽤源。
人教版八年级下册数学第十六章《二次根式》单元测试题(含答案)
人教版八年级下册数学第十六章《二次根式》单元测试题(含答案)一、 选择题(本大题共10小题,每小题2分,共20分)1. 下列式子一定是二次根式的是( ) A. 2--x B. x C. 22+x D. 22-x2. 二次根式13)3(2++m m 的值是( ) A. 23 B. 32 C.22 D. 0 3. 若13-m 有意义,则m 能取的最小整数值是( )A. m =0B. m =1C. m =2D. m =34. 若x < 0,则xx x 2-的结果是( ) A. 0 B. -2 C. 0或-2 D. 25. 下列二次根式中属于最简二次根式的是( ) A. 14 B. 48 C. b a D. 44+a6. 如果)6(6-=-•x x x x ,那么( )A. 0≥xB. 6≥xC. 60≤≤xD. x 为一切实数 7. 小明的作业本上有以下四题: ①24416a a =;②a a a 25105=⨯;③a a a a a=•=112;④a a a =-23。
做错的题是( )A. ①B. ②C. ③D. ④ 8. 化简6151+的结果是( ) A. 3011 B. 33030 C. 30330 D. 11309. 若最简二次根式a +1与a 24-的被开方数相同,则a 的值为( ) A. 43-=a B. 34=a C. 1=a D. 1-=a10. 若n 75是整数,则正整数n 的最小值是( )A. 2B. 3C. 4D. 5二、 填空题(本大题共10小题,每小题3分,共30分)11. 若b b -=-332)(,则b 的取值范围是___________。
12. 2)52(-=__________。
13. 若m < 0,则332m m m ++=_______________。
14. 231-与23+的关系是____________。
15. 若35-=x ,则562++x x 的值为___________________。
人教八年级数学下册-二次根式(附习题)
探索新知
思考 (1)面积为3 的正方形的边长为___3____,面积为
S 的正方形的边长为___S____.
被开方数都大于0
(2)一个长方形围栏,长是宽的2 倍,面积为130
m2,则它的宽为__6_5___m.
被开方数可
(3)一个物体从高处自由落下,落以到是地分面数所用的
时间 t(单位:s)与开始落下的高度h(单位:m)满足关系
(1)3的平方根是___3___
(2)3的算术平方根是___3____
(3)5 有意义吗?为什么? 0 呢?
(4)一个非负数a的算术平方根应表示为__a___a___0__
正数有两个平方根且互为相反数;
平方根的性质:0有一个平方根就是0;
负数没有平方根.
算术平方根的性质:正数和0都有算术平方根;
16.1 二次根式
第2课时 二次根式的性质
新课导入
我们知道二次根式 a 中a≥0,那么二次 根式 a 还有哪些性质呢?
学习目标
(1)知道 a ≥0(a≥0),会用非负数的性质
解题.
a
(2)会用公式 a2 =a(a≥0)进行计算.
(3)知道形如 的化简方法及结果.
探索新知
知识点 1 二次根式的性质 探究 当a>0时,a 是什么数? a 0 当a=0时,a 是什么数? a 0 当 a 有意义时,a是什么数? a≥0
2.使 x 3 有意义的x的取值范围是 x≥-3 .
3.下列各式中一定是二次根式的是( B )
A. x 1
B. ( x 1)2
C. a2 1
D. 1 x
4.二次根式
1 a
中,字母a的取值范围是(
2023年人教版八年级数学下册第十六章《二次根式》综合测试卷附答案解析
2023年八年级数学下册第十六章《二次根式》综合测试卷1.下列各式是二次根式的是()A.-7B.m C.a 2+1D.332.若式子x +1+x -2在实数范围内有意义,则x 的取值范围是()A.x >-1B.x ≥-1C.x ≥-1且x ≠0D.x ≤-13.下列二次根式中,是最简二次根式的是()A.2B.12C.12D.94.4.下列运算正确的是()A.2+3=5B.30=0C.(-2a )3=-8a 3D.a 6÷a 3=a 25.化简二次根式(-5)2×3的结果为()A.-53B.53C.±53 D.30×3的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.估计5+2×10的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间8.若x <0,则x -x 2x 的结果是()A.0B.-2C.0或2D.29.已知a ,b ,c 为△ABC 的三边长,且a 2-2ab +b 2+|b -c |=0,则△ABC 的形状是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形10.如图,长方形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A.2B.2C.22D.6二、填空题(每题3分,共24分)11.比较大小:35________27(填“>”“<”或“=”).12.计算:24-323=________.13.比较:5-12________12(填“>”“=”或“<”).14.实数a 在数轴上对应的点的位置如图所示,则(a -4)2+(a -11)2化简后为________.15.【2022·贺州】若实数m ,n 满足|m -n -5|+2m +n -4=0,则3m +n =________.16.△ABC 的面积S =12cm 2,底边a =23cm,则底边上的高为__________.17.已知a ≠0,b ≠0且a <b ,化简-a 3b 的结果是__________.18.已知三角形的三边长分别为a ,b ,c ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式S =p (p -a )(p -b )(p -c ),其中p =a +b +c 2;我国南宋时期数学家秦九韶曾提出利用三角形的三边求其面积的秦九韶公式S 的三边长分别为2,3,4,则其面积是________.三、解答题(19题16分,其余每题10分,共66分)19.计算:(1)(6+8)×3÷32;-12+(1-2)0-|3-2|;(3)(6-412+38)÷22;(4)(1+3)(2-6)-(22-1)2.20.先化简,再求值:23x 9x +y 2x y 3-21x -5x =12,y =4.21.已知等式|a -2023|+a -2024=a 成立,求a -20232的值.22.已知一个长方形花坛与一个圆形花坛的面积相等,长方形花坛的长为140πm,宽为35πm,求这个圆形花坛的半径.23.【跨学科题】据研究,高空抛物下落的时间t(单位:s)和高度h(单位:m)近似满足公式t=h5 (不考虑风速的影响).(1)求从40m高空抛物到落地的时间.(2)小明说从80m高空抛物到落地时间是(1)中所求时间的2倍,他的说法正确吗?如果不正确,请说明理由.(3)已知高空坠落物体动能(单位:焦耳)=10×物体质量×高度,某质量为0.05kg的鸡蛋经过6s后落在地上,这个鸡蛋产生的动能是多少?你能得到什么启示?(注:杀伤无防护人体只需要65焦耳的动能)24.我们学习了二次根式,那么所有的非负数都可以看成是一个数的平方,如3=(3)2,5=(5)2,下面我们观察:(2-1)2=(2)2-2×1×2+12=2-22+1=3-22;反之,3-22=2-22+1=(2-1)2,∴3-22=(2-1)2,∴3-22=2-1.(1)化简3+2 2.(2)化简4+2 3.(3)化简4-12.(4)若a±2b=m±n,则m,n与a,b的关系是什么?并说明理由.答案一、1.C2.C 3.A 4.C 5.B 6.D 7.B 8.D 9.B 10.B 二、11.>12.613.>14.715.716.43cm17.-a -ab点拨:∵a ≠0,b ≠0,∴-a 3b >0,a 3b <0.∴a ,b 异号.又∵a <b ,∴a <0,b >0.∴-a 3b =-a -ab .18.3154三、19.解:(1)原式=(32+26)÷32=1+233;(2)原式=-2-23+1-(2-3)=-2-23+1-2+3=-3-3;6-412+3×24=32-1+3=32+2;(4)原式=2×(1+3)×(1-3)-(8-42+1)=2×(1-3)-8+42-1=-22-8+42-1=22-9.20.解:原式=2x x +xy -x x +5xy=x x +6xy .当x =12,y =4时,原式=1212+612×4=24+62=2524.21.解:由题意得a -2024≥0,∴a ≥2024.原等式变形为a -2023+a -2024=a .整理,得a -2024=2023.两边平方,得a -2024=20232,∴a -20232=2024.22.解:长方形花坛的面积为140π×35π=70π(m 2),∴圆形花坛的面积为70πm 2.设圆形花坛的面积为S m 2,半径为r m,则S =πr 2,即70π=πr 2,∴r=70ππ=70.故这个圆形花坛的半径为70m. 23.解:(1)由题意知h=40m,∴t=h5=405=8=22(s).(2)不正确.理由如下:当h=80m时,t=805=16=4(s).∵4≠2×22,∴不正确.(3)当t=6s时,6=h5,∴h=180m.∴鸡蛋产生的动能为10×0.05×180=90(焦耳).启示:严禁高空抛物.24.解:(1)3+22=(2+1)2=2+1.(2)4+23=(3+1)2=3+1.(3)4-12=4-23=(3-1)2=3-1.+n=a,=b.理由:把a±2b=m±n两边平方,得a±2b=m+n±2mn,+n=a,=b.。
初中数学人教版八年级下册第十六章 二次根式16.1 二次根式-章节测试习题(1)
章节测试题1.【答题】若与互为相反数,则x+y的值=______。
【答案】27【分析】互为相反数的两个数之和等于0.【解答】根据题意得+=0,∵≥0 且≥0∴=0 且=0∴且解得∴x+y=15+12=272.【答题】实数a在数轴上的位置如图,化简+a=______.【答案】1【分析】根据二次根式的性质,可化简二次根式,根据整式的加法,可得答案.【解答】解:+a=1﹣a+a=1,3.【答题】函数中自变量的取值范围______.【答案】x≥2【分析】根据被开方数非负来解.【解答】根据被开方数非负,得到关于x的不等式,x-2≥0求解即可.4.【答题】若在实数范围内有意义,则x的取值范围是______.【答案】x≥3【分析】被开方数或被开方式是非负数【解答】由于被开方数或被开方式是非负数得x﹣3≥0,即x≥35.【答题】要使有意义,则x的取值范围是______.【答案】x≥4【分析】根据算术平方根的意义,可知其被开方数为非负数.【解答】根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为:x≥4.方法总结:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然后列不等式求解即可,是一个中考常考的简单题.6.【题文】想一想:将等式=3和=7反过来的等式3=和7=还成立吗?式子:9==和4==成立吗?仿照上面的方法,化简下列各式:(1)2(2)11(3)6【答案】成立,、、【分析】当a≥0时,a=,所以对于有理数与二次根式相乘的形式的化简,可以将根号外的非负数通过这样的变形后,再用二次根式的乘法法则化简.【解答】解:等式3=和7=成立,9==和4==成立.(1);(2);(3).方法总结:本题主要考查了二次根式的非负性,二次根式有双重非负性,即二次根式的被开方数是非负数,二次根式的值是非负数,所以每一个非负数都可以根据二次根式的双重非负性写成二次根式的形式.7.【题文】若y=++3,求xy的值。
【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)
人教版数学八年级下第16章二次根式单元考试题(有答案)人教版八年级数学下册第十六章二次根式单元检测卷总分:150分,时间:120分钟;姓名:;成绩:;一、选择题(4分×12=48分)1、下列二次根式是最简二次根式的是()C.B.2)A. B.C.3a能够取的值是()A. 0B. 1C. 2D.34有意义的条件是()A.x≥1B.x≤1C.x≠1D.x<15、若135a是整数,则a的最小正整数值是( )A.15 B.45 C.60 D.1356、则实数x的取值范围在数轴上的表示正确的是( )=-)7aA. -B.C. -D.8、已知(5m=n,如果n是整数,则m可能是()A. 5 C.9、下列计算正确的是( )A. 4B. 1C. 3 210、若a 、b 、c )A. 2a -2cB. -2cC. 2bD.2a11、已知a ,b a 、b ,则下列表示正确的是( )A. 0.3abB. 3abC. 0.1abD.0.9ab12、定义:m Δn =(m+n )2,m ※n =mn -2,则[(]Δ)的值是()C. 5二、填空题(4分×6=24分)13= ;14、已知矩形的长为cm cm ,则矩形的面积为 ;15、当a = 时,16、已知a =,b =,则a 2b+ab 2= ;171x =成立的条件是 ;1822510b b +=,则a+b 的平方根是 ;三、22a 10分×2=20分)19、计算(1)21+( (2)2019+(-1)20、计算:(1)220,0)a a b >>(2)2(0,0)aa b m n ÷>>四、解答题(9分×4=36分)21、用四张一样大小的长方形纸片拼成一个正方形ABCD ,如图所示,它的面积是75,AE=22、化简求值:2(2)(2)(2)(43)a b a b a b b a b +-+--+,其中a 1,b ;23、观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式: 121212)12)(12()12(1121-=--=-+-⨯=+ 232323)23)(23()23(1231-=--=-+-⨯=+ 同理可得:32321-=+ 从计算结果中找出规律,并利用这一规律计算.......1)的值24、已知a,b,c在数轴上如图所示,化简:+b c五、解答题(10分+12分=22分)25、现有一组有规律的数:1,-1,2,-2,3,-3,1,-1,2,-2,3,-3,…,其中1,-1,2,-2,3,-3这6个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2018个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加,如果和为520,那么一共是多少个数的平方相加?26、小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+()2.善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为整数),则有=m2+2n2∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若=()2,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若)2,且a 、m 、n 均为正整数,求a 的值?2019年春人教版数学八年级下第16章二次根式单元考试题答案一、选择题CDBDA CABDA AB二、填空题13、1; 14、2; 15、6; 16、6; 17、x ≥-1;18、±3三、解答题19、计算:(1)5; (2)0;20、(1)12a 3b 2;(2)2221a ab a b -+; 四、解答题21、22、;23、2017;24、-a五、解答题25、(1)第50个数是-1.(2)从第1个数开始的前2018个数的和是0.(3)一共是261个数的平方相加.26、26、(1)223,2m n mn + (2)16,8,2,2(答案不唯一)(3)7或13.人教版初中数学八年级下册第十六章《二次根式》单元基础卷一、选择题(每小题3分,共30分)1x 的取值范围是( ).A. 1x >B. 1x ≥C. 1x <D. 1x ≤ 2.若a -1+b 2-4b +4=0,则ab 的值等于( )A .-2B .0C .1D .23.=x 的取值范围是( ) A. 2x ≠B. 0x ≥C. 2x >D. 2x ≥4.是同类二次根式的是( )。
人教版八年级数学下二次根式章节练习题
第16章二次根式单元测试一、单选题(共10题;共30分)1.下列二次根式中,与也是同类二次根式的是()A. B. C. D.2.•-3 ,贝U x与y关系是(A.x> yB.x= yC.k yD.xy= 13.若av 1,化简的—IX -1=()A.a-2B.2-aC.aD.-a4.下列各式中是二次根式的是()A. B. C.D.& (xv 0)5.卜列计算正确的是()A. + =2 B也-也=0C归也=4 D火一疥。
36.计算也.柝的结果是:( )A.12B.2C.2D.47.卜列一次根式中,最简二次根式是()A.;必B.C.D.8. (2016?来宾)卜列计算正确的是()A;-后也B.3 2/3=6^1? C. (2 也)2=16 D丙=1 9. 下列根式中,是最简二次根式的有()① &云;② 辰二?;③/T?;④性;⑤;⑥虹2A. ②③⑤B.②③⑥C.②③④⑥D.①③⑤⑥10. 若也有意义,贝U a的取值范围是()A. 一切数B.正数C非负数D.非零数、填空题(共8题;共24分)11. 化简混=.12. 函数近;中,自变量x的取值范围是y=、13. 计算-七耗的结果是、5沛14. 计算:=- = _____________15. 若式子J_ 4在实数范围内有意义,贝U x的取值范围是16. 计算:厄X0 =.17. =.三、解答题(共6题;共48分)18. 实数a、b在数轴上的位置如图所示,化简:而—时-化-厅,f .__.__._I 8 G-2 -1 0 1 2 319. 已知实数a满足|a - 1|+ 血-2 =a,求a的值.20. 若x, y都是实数,且y』£-4 +1,求&+3y的值.21. 已知实数a, b, c在数轴上的位置如图所示,化简:- l a+c l+T —b l -22. 已知A=2辰耳,B寸由门,C^Jl/S十1)其中A, B都是最简二次根式,且A+B=C,分别求出a和x的值.23. 计算修—俺;答案解析、单选题1、【答案】B【考点】同类二次根式【解析】A、爪三=2饵与也被开方数不同,故不是同类二次根式;B、拘=3也与也被开方数相同,是同类二次根式・c、k4=2瓶与ys被开方数不同,不是同类二次根式;D、标=3也与「被开方数不同,不是同类二次根式;故选B2、【答案】B【考点】分母有埋化左* 、L 2 —JI 、【解析】「n,而*+由,故选B.【分析】先把y进行分母有理化得到- Ji,即可得到x与y的关系.3、【答案】D【考点】二次根式的性质与化简【解析】【解答】解:临_ 1- T=|a - 1| - 1,.. av 1,a- 1 v 0,.,•原式=|a - 1| - 1= (1 - a) - 1 = - a,故选:D.【分析】根据公式WW=|a|可知:- 1=|a - 1| - 1,由于av 1,所以a - 1< 0,再去绝对值,化简.【考点】二次根式的定义【解析】【解答】解:A、审的根指数为3,不是二次根式;B、Q的被开方数-1V 0,无意义;C、也的根指数为2,且被开方数2>0,是二次根式;D、依的被开方数xv 0,无意义;故选:C.【分析】根据二次根式的定义逐一判断即可.5、【答案】B【考点】二次根式的混合运算【解析】【解答】解::也+也=卒^ ,故选项A错误;••,占―丙=0,故选项B正确;^2^2=2,故选项C错误;.火-3)' =3,故选项D错误;故选B.【分析】计算出各个选项中式子的正确结果,即可得到哪个选项是正确.6、【答案】B【考点】二次根式的乘除法【解析】【解答】解:也 &=但6 =整,故选B.【分析】根据二次根式的乘法法则把被开方数相乘,再根据二次根式的性质化成最简即可.7、【答案】D【考点】最简二次根式【解析】【解答】解:B错误;C错误;^3?是最简二次根式,D正确,故选:D.【分析】根据最简二次根式的概念进行判断即可.【考点】二次根式的混合运算【解析】【解答】解:A、$—饵不能化简,所以此选项错误;B、3 &X 20=6 招,所以此选项正确;C、(2也)2=4 X 2=8所以此选项错误;本题选择正确的,故选B.【分析】A、'和£不是同类二次根式,不能合并;B、二次根式相乘,系数相乘作为积的系数,被开方数相乘,作为积中的被开方数;G二次根式的乘方,把每个因式分别平方,再相乘;D、次根式的除法,把分母中的根号化去.本题考查了二次根式的混合运算,熟练掌握二次根式的计算法则是关键,要注意:①二次根式的运算结果要化为最简二次根式;②与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的;③灵活运用二次根式的性质,选择恰当的解题途径.9、【答案】B【考点】最简二次根式【解析】【解答】解:② 限T ;③批;⑥g[是最简二次根式, 故选:B.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式).是否同时满足,同时满足的就是最简二次根式,否则就不是.10、【答案】C【考点】二次根式有意义的条件【解析】【解答】解:也有意义,贝U aAQ 故选:C.【分析】根据二次根式中的被开方数是非负数可得答案.、填空题11、 【答案】/应【考点】二次根式的化简求值【解析】[解答]- /和- 2口考点:二次根式的性质与化简.【分析】原二次根式的被开方数中含有未开尽方的因数 4a,因此要将它开方到根号外.12、 【答案】xv 1 且x^O【考点】 二次根式有意义的条件【解析】【解答】由题意得:1-xx^Q解得x< 1且x 乒0.【分析】让二次根式的被开方数为非负数,分母不为 0列式求解即可.13、 【答案】匹 2【考点】 二次根式的加减法【解析】【解答】解:胃6-4皿?=击-4乂明=冬.故答案为:. 2【分析】首先化简二次根式进而合并求出即可.14、 【答案】后1【考点】二次根式的乘除法故答案为:X A £ . J故答案为:【分析】根据二次根式的乘除法,即可解答.15、【答案】x >J【考点】 二次根式有意义的条件【解析】【解答】解:由题意得, 3x- 4>Q 解得,xf,【分析】根据二次根式有意义的条件列出不等式,解不等式即可.16、【答案】6【考点】二次根式的乘除法【解析】【解答】解:原式=2「寸=6. 故答案为:6.【分析】先将二次根式化为最简,然后再进行二次根式的乘法运算即可.17、【答案】2【考点】算术平方根【解析】【解答】解:... 22=4,..也=2.故答案为:2【分析】如果一个数X的平方等于a,那么X是a的算术平方根,由此即可求解.三、解答题18、【答案】解:由实数a、b在数轴上的位置知,a<0 , b>0=-a-b-(b-a)=-2b.【考点】二次根式的化简求值【解析】【分析】由实数a、b在数轴上的位置确定a、b的正负,从而根据二次根式的性质化简 ,19、【答案】解:根据二次根式有意义的条件可得a-2AQ 解得:a*|a - 1|+在-N =a,a- 1+ =a,,:您-二=1,a=3.【考点】二次根式有意义的条件【解析】【分析】根据二次根式有意义的条件可得a-2>0,解不等式可得a的取值范围,进而可得a- 1> 0,根据绝对值的性质可得a - 1寸2-2 =a,整理可得血底=1,进而可得a的值.fr-4> 020、【答案】解:由题意得:,解得:X=4,则y=1,&+3y=2+3=5.【考点】二次根式有意义的条件【解析】【分析】首先根据二次根式有意义的条件可得:L [巾,解不等式组可得x=4,然后t4-X > 0再代入y=^!q +,4、x+1可得y的值,进而可得&+3y的值.21、【答案】解:由图可知,av 0, CV0, b> 0,且|c| v |b| ,所以,a+cv 0, c- bv 0,-|a+c|+ Ac-br - | -b|,=-a+a+c+b- c— b,=0.【考点】二次根式的性质与化简【解析】【分析】根据数轴判断出a、b、c的正负情况以及绝对值的大小,然后根据绝对值和二次根式的性质去掉根号和绝对值号,再进行计算即可得解.22、【答案】解:•. A=20+ 3 , B寸汕],A, B都是最简二次根式,诘山必成十1) , A+B=C,... a+3=3a- 1,解得:a=2,A=2.技,B=.* ,••• A+B=3,. • A+B=Cr I =320 (x+1) =180,x=8.【考点】最简二次根式【解析】【分析】根据最简二次根式的定义得出关于a的方程,求出a的值,求出A和B,得出HlthO+I) =3& ,求出方程的解即可.=2a.【考点】二次根式的乘除法【解析】【分析】把二次根式的被开方数相除,再根据二次根式的性质开出来即可.。
人教版八年级数学下册二次根式练习题
人教版八年级数学下册二次根式练习题初中数学试卷八年级下二次根式练题2017.316.1 二次根式:1.使式子x-4有意义的条件是什么?2.当什么条件下,x+2+1-2x有意义?3.若-m+1/m+1有意义,则m的取值范围是什么?4.当x≤1时,(1-x)²是二次根式。
5.在实数范围内分解因式:x^4-9=(x^2+3)(x^2-3)。
x^2-22x+2=(x-11-√119)(x-11+√119)。
6.若4x^2=2x,则x的取值范围是什么?7.已知(x-2)^2=2-x,则x的取值范围是什么?8.化简:x^2-2x+1/x-1的结果是什么?9.当1≤x≤5时,√(x²-6x+9)≤x-3.10.把a-√a+1的值移到根号内等于√(a+1)-1.11.使等式(x-1)²+x-5=1的根号外的因式移到根号内等于x-1.12.若a-b+1与a+2b+4互为相反数,则a-b=2.13.在式子x(x^2)。
2.y+1(y=-2)。
-2x(x≠0)。
33.x^2+1.x+y 中,二次根式有几个?答案是B,3个。
14.下列各式中一定是二次根式的是:C,a^2+1.15.若2a/b=a^3,则(2-a)^2-(a-3)^2等于什么?答案是A,5-2a。
16.若A=(a^2+4)/4,则A=a^2/4+1.17.若a≤1,则(1-a)^3化简后为1-3a+3a^2-a^3.18.能使等式x/(x-2)=1成立的x的取值范围是x≠2.19.计算(2a-1)^2+(1-2a)^2的值是什么?答案是B,4a-2.20.下面的推导中开始出错的步骤是什么?答案是C,(3)。
21.若x-y+y^2-4y+4=0,则xy的值是2.修改后的文章已经没有明显的格式错误和问题段落,同时每段话也进行了小幅度的改写,使其更加易读易懂。
)22.当a= -1/2时,代数式2a+1+1取值最小,最小值为3/2.23.去掉下列各根式内的分母:1)。
初中数学八下《二次根式》常考练习题及参考答案与解析(人教版)
《二次根式》常考练习题及参考答案与解析一、选择题(共40小题)1.(2018春•宿松县期末)在下列各式中,一定是二次根式的是()A.B.C.D.2.(2018秋•漳州期末)下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1 D.2x+43.(2019春•徐州期末)下列计算正确的是()A.B.C.D.4.(2018春•黔南州期末)下列运算正确的是()A.2+=2B.5﹣=5 C.5+=6D.+2=3 5.(2017春•汇川区校级期中)若,则x的值等于()A.4 B.±2 C.2 D.±46.(2018春•阆中市期末)若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.37.(2019春•万年县期中)把根号外的因式化到根号内:﹣a=()A.B.C.﹣D.8.(2019春•陆川县期末)下列等式正确的是()A.B.C.D.9.(2017春•硚口区期中)若=4﹣b,则b满足的条件是()A.b>4 B.b<4 C.b≥4 D.b≤4 10.(2016秋•开福区校级期末)若x<0,则的结果是()A.0 B.﹣2 C.0或﹣2 D.211.(2019春•中山市期末)下列运算结果正确的是()A.=﹣3 B.(﹣)2=2 C.÷=2 D.=±4 12.(2019•鄂州模拟)把根号外的因式移入根号内得()A.B.C.D.13.化简的结果是()A.﹣B.﹣C.﹣D.﹣14.(2018春•郯城县期中)已知a=+,b=,则a与b的关系是()A.a=b B.ab=1 C.a=﹣b D.ab=﹣515.(2018春•罗庄区期末)已知:a=,b=,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方相等16.(2019春•凤凰县期末)下列根式中,属于最简二次根式的是()A.﹣B.C.D.17.(2010春•苏州期末)下列二次根式中,最简二次根式是()A.B.C.D.18.(2019秋•静安区月考)下列二次根式是最简二次根式的是()A.B.﹣C.D.19.(2012秋•衡水期末)下列二次根式中,最简二次根式是()A.B.C.D.20.(2017秋•路北区期末)下列二次根式中可以和相加合并的是()A.B.C.D.21.(2019秋•闵行区校级月考)下列说法中,正确的是()A.被开方数不同的二次根式一定不是同类二次根式B.只有被开方数完全相同的二次根式才是同类二次根式C.同类二次根式一定都是最简二次根式D.两个最简二次根式不一定是同类二次根式22.(2017秋•中江县期末)下列二次根式中,能通过加减运算与合并为一个二次根式的是()A.B.C.D.23.(2018春•徐汇区校级期末)如果+有意义,那么代数式|x﹣1|+的值为()A.±8 B.8C.与x的值无关D.无法确定24.(2018秋•织金县期末)如果y=+2,那么(﹣x)y的值为()A.1 B.﹣1 C.±1 D.025.(2015秋•陕西月考)a,b的位置如图,则下列各式有意义的是()A.B.C.D.26.(2018•荔湾区模拟)若代数式有意义,则实数x的取值范围是()A.x≥﹣2 B.x≤﹣2 C.x>﹣2 D.x<﹣227.(2014•东丽区三模)若实数a,b满足+=3,﹣=3k,则k的取值范围是()A.﹣3≤k≤2 B.﹣3≤k≤3 C.﹣1≤k≤1 D.k≥﹣128.(2012秋•洪湖市期中)下列各式,不论x为任何数都没有意义的是()A.B.C.D.29.(2018秋•高碑店市期末)下列运算中正确的是()A.﹣=B.2+3=6C.=D.(+1)(﹣1)=330.(2016春•杭州校级期中)下列运算正确的是()A.2﹣=1B.(﹣)2=2C.=﹣=3﹣2=1D.=±1131.(2019春•阜阳期中)(2﹣)2018(2+)2019的值为()A.﹣1 B.2C.﹣2D.2+32.(2015•钦州)对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结果为()A.2﹣4B.2 C.2D.2033.(2018秋•醴陵市期末)已知a=3+,b=3﹣,则代数式的值是()A.24 B.±2C.2D.234.(2015•蓬溪县校级模拟)已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.1535.(2019春•许昌期末)已知x=+1,y=﹣1,则x2+xy+y2的值为()A.10 B.8 C.6 D.436.(2014•张家港市模拟)已知实数x,y满足x+y=﹣2a,xy=a(a≥1),则的值为()A.a B.2a C.a D.237.(2012秋•富顺县校级月考)若实数x、y满足x2+y2﹣4x﹣2y+5=0,则的值是()A.1 B.+C.3+2D.3﹣238.(2013•宁波自主招生)设等式在实数范围内成立,其中a、x、y是三个不同的实数,则的值是()A.3 B.C.2 D.39.(2019春•西湖区校级月考)如果f(x)=并且f()表示当x=时的值,即f()==,f()表示当x=时的值,即f()=,那么f()+f()+f()+f()+的值是()A.n B.n C.n D.n+40.(2019秋•天心区校级期末)已知a、b、c是△ABC三边的长,则+|a+b﹣c|的值为()A.2a B.2b C.2c D.2(a一c)二、填空题(共30小题)41.(2019春•曲靖期末)若是一个正整数,则正整数m的最小值是.42.(2018秋•杨浦区期中)计算:=.43.(2019•聊城二模)计算﹣的结果是.44.(2019春•东至县期末)与最简二次根式是同类二次根式,则m=.45.(2017秋•南开区期末)二次根式与的和是一个二次根式,则正整数a的最小值为;其和为.46.(2016春•寿光市期末)若最简二次根式与是同类二次根式,则a =.47.(2013秋•罗平县校级期中)等式=成立的条件是.48.(2012•山西模拟)若规定符号“*”的意义是a*b=ab﹣b2,则2*()的值是.49.(2015秋•达州校级月考)设的整数部分为a,小数部分为b,则的值等于.50.(2015•鄂州)若使二次根式有意义,则x的取值范围是.51.(2019•岳池县模拟)要使代数式有意义,x的取值范围是.52.(2018秋•松桃县期末)若代数式有意义,则实数x的取值范围是.53.(2018•陇南)使得代数式有意义的x的取值范围是.54.(2019春•西湖区校级月考)已知y=+8x,则的算术平方根为.55.(2014•吴江市模拟)设a=,b=2+,c=,则a、b、c从小到大的顺序是.56.(2013秋•南通月考)在下列二次根式,中,最简二次根式的个数有个.57.(2013春•阳谷县期末)若和都是最简二次根式,则m=,n=.58.(2012秋•集贤县期中)若两个最简二次根式与可以合并,则x=.59.(2018•皇姑区二模)化简的结果是.60.(2014秋•慈利县校级期末)若m<0,化简2n=.61.(2015春•崆峒区期末)已知a,b,c为三角形的三边,则=.62.(2018春•襄城区期中)化简的结果为.63.(2019春•睢县期中)已知a,b,c为三个整数,若,,,则a,b,c的大小关系是.64.(2013•江都市一模)若二次根式=4﹣x,则x.65.(2018秋•牡丹区期末)若的整数部分是a,小数部分是b,则a2+(1+)ab=.66.(2019春•江汉区期末)已知xy=2,x+y=4,则+=.67.(2019秋•兰考县期中)当a<﹣b<1时,化简÷的结果为.68.(2013•沙市区一模)已知m=1+,n=1﹣,则代数式的值为.69.(2011•内江)若m=,则m5﹣2m4﹣2011m3的值是.70.(2019春•成武县期末)如图,在矩形ABCD中,不重叠地放上两张面积分别是5cm2和3cm2的正方形纸片BCHE和AEFG.矩形ABCD没被这两个正方形盖住的面积是.三、解答题(共30小题)71.(2019春•伊通县期末)计算:×﹣(+)(﹣)72.(2016•夏津县自主招生)计算:.73.(2015春•赵县期末)化简:(1);(2).74.(2018春•新泰市期末)计算(1)(2﹣1)2+(+2)(﹣2)(2)(﹣2)×﹣6.75.(2019秋•浦东新区校级月考)已知x=,y=,且19x2+123xy+19y2=1985.试求正整数n.76.(2013•黔西南州)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a=,b=;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)若a+4=,且a、m、n均为正整数,求a的值?77.(2014秋•石鼓区校级期中)若3,m,5为三角形三边,化简:﹣.78.(2012秋•罗田县期中)化简求值:已知:x=,求x2﹣x+1的值.79.(2013秋•崇阳县期末)阅读下面问题:;;.试求:(1)的值;(2)(n为正整数)的值.80.(2018秋•新华区校级月考)阅读下列解题过程:;请回答下列问题:(1)观察上面的解题过程,化简:①②(2)利用上面提供的解法,请计算:.81.(2019秋•长宁区期中)计算:2÷•.82.(2014春•巢湖市月考)已知x为奇数,且,求的值.83.(2013秋•婺城区校级月考)若代数式有意义,则x的取值范围是什么?84.(2019秋•景县期末)已知y=+﹣4,计算x﹣y2的值.85.(2018春•黄冈期中)若a,b为实数,a=+3,求.86.(2013秋•仪征市期末)某同学作业本上做了这么一道题:“当a=时,试求a+的值”,其中是被墨水弄污的,该同学所求得的答案为,请你判断该同学答案是否正确,说出你的道理.87.(2019秋•兰考县期中)若a,b是一等腰三角形的两边长,且满足等式,试求此等腰三角形的周长.88.(2018春•罗平县期末)已知实数a,b,c在数轴上的位置如图所示,化简|a|﹣+﹣.89.(2019春•黄石期中)已知a,b,c为实数且c=,求代数式c2﹣ab的值.90.(2011秋•东台市校级期中)(1)化简:•(﹣4)÷(2)已知x=﹣1,求x2+3x﹣1的值.91.(2013•金湾区一模)观察下列各式及证明过程:(1);(2);(3).验证:;.a.按照上述等式及验证过程的基本思想,猜想的变形结果并进行验证;b.针对上述各式反映的规律,写出用n(n≥1的自然数)表示的等式,并验证.92.(2014春•陕县校级月考)已知:x=,求x2+的值.93.(2017春•江津区期中)已知x=﹣2,y=+2,求:(1)x2y+xy2;(2)+的值.94.(2019春•潮南区期末)已知a=,求的值.95.(2019春•鞍山期末)已知:,,求代数式x2﹣xy+y2值.96.(2015春•饶平县期末)先化简,再求值:•,其中.97.(2017春•黄冈期中)化简求值:,求的值.98.(2014春•霸州市期末)先化简,后求值:,其中.99.(2019春•襄州区期末)先化简,再求值:(+b),其中a+b=2.100.(2015春•重庆校级期末)先化简,再求值.,其中.参考答案与解析一、选择题(共40小题)1.(2018春•宿松县期末)在下列各式中,一定是二次根式的是()A.B.C.D.【知识考点】二次根式的定义.【思路分析】根据二次根式的定义作出选择:式子(a≥0)叫做二次根式.【解答过程】解:A、是三次根式;故本选项符合题意;B、被开方数﹣10<0,不是二次根式;故本选项不符合题意;C、被开方数a2+1>0,符合二次根式的定义;故本选项符合题意;D、被开方数a<0时,不是二次根式;故本选项不符合题意;故选:C.【总结归纳】本题主要考查了二次根式的定义.式子(a≥0)叫做二次根式,特别注意a≥0,a是一个非负数.2.(2018秋•漳州期末)下列代数式能作为二次根式被开方数的是()A.3﹣πB.a C.a2+1 D.2x+4【知识考点】二次根式的定义.【思路分析】直接利用二次根式的定义分别分析得出答案.【解答过程】解:A、3﹣π<0,则3﹣π不能作为二次根式被开方数,故本选项不符合题意;B、a的符号不能确定,则a不能作为二次根式被开方数,故本选项不符合题意;C、a2+1一定大于0,能作为二次根式被开方数,故本选项符合题意;D、2x+4的符号不能确定,则a不能作为二次根式被开方数,故本选项不符合题意;故选:C.【总结归纳】此题主要考查了二次根式的定义,正确把握二次根式的定义是解题关键.3.(2019春•徐州期末)下列计算正确的是()A.B.C.D.【知识考点】二次根式的加减法.【思路分析】结合选项根据二次根式的加减法的运算法则求解即可.【解答过程】解:A、﹣=2﹣=,故本选项符合题意;B、+≠,故本选项不符合题意;C、3﹣=2≠3,故本选项不符合题意;D、3+2≠5,故本选项不符合题意.故选:A.【总结归纳】本题考查了二次根式的加减法,解答本题的关键是掌握其运算法则:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.4.(2018春•黔南州期末)下列运算正确的是()A.2+=2B.5﹣=5 C.5+=6D.+2=3【知识考点】二次根式的加减法.【思路分析】原式各项合并得到结果,即可做出判断.【解答过程】解:A、2+不能合并,故本选项不符合题意;B、5﹣=4,故本选项不符合题意;C、5+=6,故本选项符合题意;D、+2不能合并,故本选项不符合题意,故选:C.【总结归纳】此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.5.(2017春•汇川区校级期中)若,则x的值等于()A.4 B.±2 C.2 D.±4【知识考点】二次根式的加减法.【思路分析】方程左边化成最简二次根式,再解方程.【解答过程】解:原方程化为:=10,合并得:=10∴=2,即2x=4,∴x=2.故选:C.【总结归纳】本题考查了二次根式的加减法.掌握二次根式的加减运算法则是解题的关键,先化为最简二次根式,再将被开方数相同的二次根式进行合并.解无理方程,需要方程两边平方,注意检验算术平方根的结果为非负数.6.(2018春•阆中市期末)若的整数部分为x,小数部分为y,则的值是()A.B.C.1 D.3【知识考点】二次根式的加减法.【思路分析】因为的整数部分为1,小数部分为﹣1,所以x=1,y=﹣1,代入计算即可.【解答过程】解:∵的整数部分为1,小数部分为﹣1,∴x=1,y=﹣1,∴=﹣(﹣1)=1.故选:C.【总结归纳】关键是会表示的整数部分和小数部分,再二次根式的加减运算,即将被开方数相同的二次根式进行合并.7.(2019春•万年县期中)把根号外的因式化到根号内:﹣a=()A.B.C.﹣D.【知识考点】二次根式的性质与化简.【思路分析】根据被开方数是非负数,可得a的取值范围,根据二次根式的性质,可得答案.【解答过程】解:由被开方数是非负数,得﹣a≥0.﹣a=×=,故选:B.【总结归纳】本题考查了二次根式的性质与化简,利用被开方数是非负数得出a的取值范围是解题关键.8.(2019春•陆川县期末)下列等式正确的是()A.B.C.D.【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的性质1和性质2逐一判断即可得.【解答过程】解:A.=2,故本选项不符合题意;B.()2=2,故本选项符合题意;C.﹣=﹣2,故本选项不符合题意;D.(﹣)2=2,故本选项不符合题意;故选:B.【总结归纳】本题主要考查二次根式的性质与化简,解题的关键是掌握二次根式的性质1与性质2.9.(2017春•硚口区期中)若=4﹣b,则b满足的条件是()A.b>4 B.b<4 C.b≥4 D.b≤4【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的性质列出不等式,解不等式即可.【解答过程】解:∵=4﹣b,∴4﹣b≥0,解得,b≤4,故选:D.【总结归纳】本题考查的是二次根式的化简,掌握二次根式的性质:=|a|是解题的关键.10.(2016秋•开福区校级期末)若x<0,则的结果是()A.0 B.﹣2 C.0或﹣2 D.2【知识考点】二次根式的性质与化简.【思路分析】根据二次根式的意义化简.【解答过程】解:若x<0,则=﹣x,∴===2,故选:D.【总结归纳】本题考查了二次根式的性质与化简.二次根式规律总结:当a≥0时,=a;当a≤0时,=﹣a.11.(2019春•中山市期末)下列运算结果正确的是()A.=﹣3 B.(﹣)2=2 C.÷=2 D.=±4【知识考点】二次根式的性质与化简;二次根式的乘除法.【思路分析】直接利用二次根式的性质分别分析得出答案.【解答过程】解:A、=3,故本选项不符合题意;B、(﹣)2=2,故本选项符合题意;C、÷=,故本选项不符合题意;D、=4,故本选项不符合题意;故选:B.【总结归纳】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.12.(2019•鄂州模拟)把根号外的因式移入根号内得()A.B.C.D.【知识考点】二次根式的乘除法.【思路分析】根据二次根式的性质及二次根式成立的条件解答.【解答过程】解:∵成立,∴﹣>0,即m<0,∴原式=﹣=﹣.故选:D.【总结归纳】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.二次根式成立的条件:被开方数大于等于0,含分母的分母不为0.13.化简的结果是()A.﹣B.﹣C.﹣D.﹣【知识考点】二次根式的乘除法.【思路分析】直接进行分母有理化即可求解.【解答过程】解:原式===﹣.故选:C.【总结归纳】本题考查了二次根式的乘除法,解答本题的关键是进行分母有理化.14.(2018春•郯城县期中)已知a=+,b=,则a与b的关系是()A.a=b B.ab=1 C.a=﹣b D.ab=﹣5【知识考点】分母有理化.【思路分析】根据平方差公式,可分母有理化,根据实数的大小比较,可得答案.【解答过程】解:b===+,a=+,故选:A.【总结归纳】本题考查了分母有理化,利用平方差公式将分母有理化是解题关键.15.(2018春•罗庄区期末)已知:a=,b=,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方相等【知识考点】实数的性质;分母有理化.【思路分析】求出ab的乘积是多少,即可判断出a与b的关系.【解答过程】解:∵ab=×==1,∴a与b互为倒数.故选:C.【总结归纳】此题主要考查了分母有理化的方法,以及实数的性质和应用,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.16.(2019春•凤凰县期末)下列根式中,属于最简二次根式的是()A.﹣B.C.D.【知识考点】最简二次根式.【思路分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答过程】解:A、﹣=﹣,被开方数含分母,故本选项不符合题意;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故本选项符合题意;C、=4,被开方数含能开得尽方的因数或因式,故本选项不符合题意;D、=2,被开方数含能开得尽方的因数或因式,故本选项不符合题意;故选:B.【总结归纳】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.17.(2010春•苏州期末)下列二次根式中,最简二次根式是()A.B.C.D.【知识考点】最简二次根式.【思路分析】最简二次根式应满足的条件:①被开方数的因数是整数,因式是整式;②被开方数的因式的指数必须小于根指数2.【解答过程】解:A、不符合上述条件②,即=2,不是最简二次根式,故本选项不符合题意;B、符合上述条件,是最简二次根式,故本选项符合题意;C、不符合上述条件①,即=,不是最简二次根式,故本选项不符合题意;D、不符合上述条件②,即=|x|,不是最简二次根式,故本选项不符合题意.故选:B.【总结归纳】此题考查了最简二次根式应满足的条件.18.(2019秋•静安区月考)下列二次根式是最简二次根式的是()A.B.﹣C.D.【知识考点】最简二次根式.【思路分析】根据二次根式的性质化简,根据最简二次根式的概念判断.【解答过程】解:A、=,不是最简二次根式,故本选项不符合题意;B、,是最简二次根式,故本选项符合题意;C、=|2a+1|,不是最简二次根式,故本选项不符合题意;D、=,不是最简二次根式,故本选项不符合题意;故选:B.【总结归纳】本题考查的是最简二次根式的概念、二次根式的性质,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.19.(2012秋•衡水期末)下列二次根式中,最简二次根式是()A.B.C.D.【知识考点】最简二次根式.【思路分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行判断,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答过程】解:A、=|a|,可化简,不是最简二次根式,故本选项不符合题意;B、==,可化简,不是最简二次根式,故本选项不符合题意;C、==3,可化简,不是最简二次根式,故本选项不符合题意;D、=,不能开方,符合最简二次根式的条件,故本选项符合题意.故选:D.【总结归纳】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.20.(2017秋•路北区期末)下列二次根式中可以和相加合并的是()A.B.C.D.【知识考点】同类二次根式.【思路分析】先化简二次根式,再根据被开方数相同进行解答即可.【解答过程】解:A、不能与合并,故本选项不符合题意;B、=3,可以与合并,故本选项符合题意;C、=,不能与合并,故本选项不符合题意;D、=2,不能与合并,故本选项不符合题意;故选:B.【总结归纳】本题考查了同类二次根式,掌握同类二次根式的定义是解题的关键.21.(2019秋•闵行区校级月考)下列说法中,正确的是()A.被开方数不同的二次根式一定不是同类二次根式B.只有被开方数完全相同的二次根式才是同类二次根式C.同类二次根式一定都是最简二次根式D.两个最简二次根式不一定是同类二次根式【知识考点】同类二次根式.【思路分析】根据同类二次根式的概念判断.【解答过程】解:A、被开方数不同的二次根式可以是同类二次根式,故本选项不符合题意;B、化简后被开方数完全相同的二次根式才是同类二次根式,故本选项不符合题意;C、同类二次根式不一定都是最简二次根式,故本选项不符合题意;D、两个最简二次根式不一定是同类二次根式,故本选项符合题意;故选:D.【总结归纳】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.22.(2017秋•中江县期末)下列二次根式中,能通过加减运算与合并为一个二次根式的是()A.B.C.D.【知识考点】同类二次根式.【思路分析】根据同类二次根式的定义逐个判断即可.【解答过程】解:=2,A、不能和合并为一个二次根式,故本选项不符合题意;B、能和合并为一个二次根式,故本选项符合题意;C、不能和合并为一个二次根式,故本选项不符合题意;D、=5不能和合并为一个二次根式,故本选项不符合题意;故选:B.【总结归纳】本题考查了同类二次根式,能熟记同类二次根式的定义是解此题的关键.23.(2018春•徐汇区校级期末)如果+有意义,那么代数式|x﹣1|+的值为()A.±8 B.8C.与x的值无关D.无法确定【知识考点】二次根式有意义的条件;二次根式的性质与化简.【思路分析】首先求出x的取值范围,再利用绝对值以及二次根式的性质化简求出即可.【解答过程】解:∵+有意义,∴x﹣1≥0,9﹣x≥0,解得:1≤x≤9,∴|x﹣1|+=x﹣1+9﹣x=8,故选:B.【总结归纳】本题主要考查了二次根式与绝对值的性质,正确化简二次根式是解题关键.24.(2018秋•织金县期末)如果y=+2,那么(﹣x)y的值为()A.1 B.﹣1 C.±1 D.0【知识考点】二次根式有意义的条件.【思路分析】直接利用二次根式的性质得出x,y的值,进而得出答案.【解答过程】解:∵y=+2,∴1﹣x≥0,x﹣1≥0,解得:x=1,故y=2,则(﹣1)2=1.故选:A.【总结归纳】此题主要考查了二次根式有意义的条件,正确得出x的值是解题关键.25.(2015秋•陕西月考)a,b的位置如图,则下列各式有意义的是()A.B.C.D.【知识考点】数轴;二次根式有意义的条件.【思路分析】根据二次根式中的被开方数必须是非负数,否则二次根式无意义.【解答过程】解:在数轴上,右边的数总大于左边的数,∴a>b,即a﹣b>0,根据二次根式的性质,被开方数大于等于0,可知二次根式有意义.故选:B.【总结归纳】本题主要考查了二次根式的意义和性质,掌握和理解二次根式的概念和性质是解题的关键.26.(2018•荔湾区模拟)若代数式有意义,则实数x的取值范围是()A.x≥﹣2 B.x≤﹣2 C.x>﹣2 D.x<﹣2【知识考点】二次根式有意义的条件.【思路分析】直接利用二次根式有意义的条件分析得出答案.【解答过程】解:代数式有意义,故x+2>0,解得:x>﹣2.故选:C.【总结归纳】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.27.(2014•东丽区三模)若实数a,b满足+=3,﹣=3k,则k的取值范围是()A.﹣3≤k≤2 B.﹣3≤k≤3 C.﹣1≤k≤1 D.k≥﹣1【知识考点】二次根式有意义的条件.【思路分析】依据二次根式有意义的条件即可求得k的范围.【解答过程】解:若实数a,b满足+=3,又有≥0,≥0,故有0≤≤3 ①,0≤≤3,则﹣3≤﹣≤0 ②①+②可得﹣3≤﹣≤3,又有﹣=3k,即﹣3≤3k≤3,化简可得﹣1≤k≤1.故选:C.【总结归纳】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.28.(2012秋•洪湖市期中)下列各式,不论x为任何数都没有意义的是()A.B.C.D.【知识考点】二次根式有意义的条件.【思路分析】根据有理数的性质以及平方数非负数对各选项分析判断后利用排除法求解.【解答过程】解:A、x≤0时,﹣6x≥0,有意义,故本选项不符合题意;B、x=0时,﹣x2=0,有意义,故本选项不符合题意;C、x为任何数,﹣x2﹣1≤﹣1,无意义,故本选项符合题意;D、﹣x2≥﹣1时,﹣x2+1≥0,有意义,故本选项不符合题意.故选:C.【总结归纳】本题考查了二次根式有意义的条件,判断出各选项中被开方数的正负情况是解题的关键.29.(2018秋•高碑店市期末)下列运算中正确的是()A.﹣=B.2+3=6C.=D.(+1)(﹣1)=3【知识考点】二次根式的混合运算.【思路分析】根据二次根式的运算法则对每一项分别进行判断,即可得出正确答案.【解答过程】解:A、﹣=2﹣=,故本选项不符合题意;B、2+3=5,故本选项不符合题意;C、÷=,故本选项符合题意;D、(+1)(﹣1)=2﹣1=1,故本选项不符合题意;故选:C.【总结归纳】本题考查了二次根式的运算,关键是熟练掌握二次根式的运算法则,注意把二次根式进行化简.30.(2016春•杭州校级期中)下列运算正确的是()A.2﹣=1B.(﹣)2=2C.=﹣=3﹣2=1D.=±11【知识考点】二次根式的混合运算.【思路分析】根据二次根式混合运算法则,一一判断即可.【解答过程】解:A、2﹣=,故本选项不符合题意;B、(﹣)2=2,故本选项符合题意;C、==,故本选项不符合题意;D、=11,故本选项不符合题意;故选:B.【总结归纳】本题考查二次根式的混合运算,乘法公式等知识,解题的关键是熟练掌握二次根式的化简以及混合运算法则,属于中考常考题型.31.(2019春•阜阳期中)(2﹣)2018(2+)2019的值为()A.﹣1 B.2C.﹣2D.2+【知识考点】二次根式的混合运算.【思路分析】先利用积的乘方得到原式=[(﹣2)(+2)]2018•(+2),然后根据平方差公式计算.【解答过程】解:(2﹣)2018(2+)2019=[(﹣2)(+2)]2018(+2)=(5﹣4)2018(+2)=1×(+2)=2+.故选:D.【总结归纳】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.32.(2015•钦州)对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结果为()A.2﹣4B.2 C.2D.20【知识考点】二次根式的混合运算.【思路分析】根据题目所给的运算法则进行求解.【解答过程】解:∵3>2,∴3※2=﹣,∵8<12,∴8※12=+=2×(+),∴(3※2)×(8※12)=(﹣)×2×(+)=2.故选:B.【总结归纳】本题考查了二次根式的混合运算,解答本题的关键是根据题目所给的运算法则求解.33.(2018秋•醴陵市期末)已知a=3+,b=3﹣,则代数式的值是()A.24 B.±2C.2D.2【知识考点】二次根式的化简求值.【思路分析】首先把原式变为,再进一步代入求得答案即可.【解答过程】解:∵a=3+,b=3﹣,∴a+b=6,ab=4,∴===2.故选:C.【总结归纳】此题考查二次根式的化简求值,抓住式子的特点,灵活利用完全平方公式变形,使计算简便.34.(2015•蓬溪县校级模拟)已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.15【知识考点】二次根式的化简求值.。
人教版八年级数学下册二次根式(全章)习题及答案
人教版八年级数学下册二次根式(全章)习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN二次根式16.1 二次根式:1. 有意义的条件是 。
2. 当__________3. 11m +有意义,则m 的取值范围是 。
4. 当__________x 是二次根式。
5. 在实数范围内分解因式:429__________,2__________x x -=-+=。
6. 2x =,则x 的取值范围是 。
7. 2x =-,则x 的取值范围是 。
8. )1x 的结果是 。
9. 当15x ≤5_____________x -=。
10. 把的根号外的因式移到根号内等于 。
11. 1x =+成立的条件是 。
12. 若1a b -+互为相反数,则()2005_____________a b -=。
13. )()()230,2,12,20,3,1,x y y x x x x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个14. 下列各式一定是二次根式的是( )15. 若23a ,则- )A. 52a -B. 12a -C. 25a -D. 21a -16. 若A==( ) A. 24a + B. 22a + C. ()222a + D. ()224a + 17. 若1a ≤)A. (1a -B. (1a -C. (1a -D. (1a -18.=x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2x D. 2x ≥ 19.)A. 0B. 42a -C. 24a -D. 24a -或42a -20. 下面的推导中开始出错的步骤是( )()()()()23123224==-==∴=-∴=- A. ()1 B. ()2 C. ()3 D. ()421.2440y y -+=,求xy 的值。
22. 当a 取什么值时,代数式1取值最小,并求出这个最小值。
23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式习题
一、选择
1、下列代数式中二次根式有总有意义的有( ) ⑴2
1,⑵16-,⑶9+a ,⑷12+x ,⑸222++a a , ⑹x -(0≤x ),⑺()23-m 。
A 、3个
B 、4个
C 、5个
D 、6个 2、如果x
--35是二次根式,那么x 应适合的条件是( ) A 、x ≥3 B 、x ≤3 C 、x >3 D 、x <3
3、化简:21a -+的结果为( )
A 、4—2a
B 、0
C 、2a —4
D 、4
4、22)(-化简的结果是( b )
(A) –2 (B) 2 (C) ±2 (D) 4 5、使代数式8a a -+有意义的a 的范围是( )
(A )0>a (B )0<a (C )0=a (D )不存在
6、若01=++-y x x ,则20052006y x +的值为: ( )
(A )0 (B )1 (C ) -1 (D ) 2
7、下列各式中一定成立的是( )
A 、2=
B 、2=
C 2x =-
D 、a a 2=
8、如果一个三角形的三边长分别为1、k 、3,化简
|32|8136472-++--k k k 结果是( )
A 、—5
B 、1
C 、13
D 、19—4k
二、填空 1、二次根式2
12--x x 有意义时的x 的范围是 。
2、若x 、y 都为实数,且152********+-+-=x x y ,则y x +2=________。
3、若实数a 、b 、c 在数轴上的位置如图则化简
=-+-++-||||)(22a c c b b a a 。
b
4、若 ,则a 的取值范围是
5、若△ABC 的三边长为a,b,c ,其中a 和b 满足 , 则c 的取值范围是
6、实数在数轴上的位置如图示, 化简|a-1|+=-2)2(a 。
7、若 ,则 的平方根为( )
A .16
B .±16
C .±4
D .±2
8、代数式234x -
-__________ 。
9、若
221<<x ,则化简()1222-+-x x =__________。
10、若代数式()()2242-+-a a 的值是常数2,则a 的取值范围是___________。
11、求下列二次根式中字母x 的取值范围:
(1)
12-x ,(2) 52-x ,(3)x x --+22,(4)11-+x x ,(5)32+x ⑹ x x -22.
02=+a a 09622=+-+-b b a 22=+a 2)2(+a。