圆与圆的位置关系练习题

合集下载

高考数学专题复习:直线与圆、圆与圆的位置关系

高考数学专题复习:直线与圆、圆与圆的位置关系

高考数学专题复习:直线与圆、圆与圆的位置关系一、单选题1.已知圆22:2440A x y x y +---=,圆22:2220B x y x y +++-=,则两圆的公切线的条数是( ) A .1条B .2条C .3条D .4条2.已知点(,)P x y 是直线l :40kx y -+=(0k >)上的动点,过点P 作圆C :2220x y y =++的切线PA ,A 为切点,若||PA 最小为2时,圆M :220x y my +-=与圆C 外切,且与直线l 相切,则m 的值为( )A .2-B .2C .4D 23.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是( ) A .23-B .13C .43D .24.已知直线10x my m -+-=被圆O :224x y +=所截得的弦长为m =( )A .1-B .1C .2D .5.已知直线():10l mx y m R +-=∈是圆22:4210C x y x y +-++=的对称轴,过点()2,A m -作圆C 的一条切线,切点为B ,则AB 等于( )A .4B .C .D .36.设a ,b 为正数,若圆224210x y x y ++-+=关于直线10ax by -+=对称,则2a bab+的最小值为( ) A .9B .8C .6D .107.已知圆221:4240C x y x y ++--=,2223311:222C x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,则这两圆的公共弦长为( )A .2B .C .2D .18.设0r >,圆()()22213x y r -++=与圆2216x y +=的位置关系不可能是( ) A .相切B .相交C .内切或内含D .外切或相离9.已知圆C :()()22cos sin 3x y θθ-+-=交直线1y =-于A ,B 两点,则对于θ∈R ,线段AB 长度的最小值为( )A .1B C D .210.在同一平面直角坐标系下,直线ax by ab +=和圆222()()x a y b r -+-=(0ab ≠,0r >)的图象可能是( ).A .B .C .D .11.圆1C :221x y +=与圆2C :()224310x y k x y +++-=(k ∈R ,0k ≠)的位置关系为( )A .相交B .相离C .相切D .无法确定12.若直线:1l y kx =-与圆()()22:212C x y -+-=相切,则直线l 与圆()22:23D x y -+=的位置关系是( ) A .相交 B .相切 C .相离 D .不确定二、填空题13.圆22230x y y ++-=被直线0x y k +-=分成两段圆弧,且较短弧长与较长弧长之比为1:3,则k =________.14.过原点且倾斜角为60︒的直线与圆2240x y y +-=相交,则直线被圆截得的弦长为_____.15.过点()2,0与圆22 A: 230x y x +--+=相切的直线方程为__________.16.若直线mx +2ny -4=0(m ,n ∈R )始终平分圆22420x y x y +--=的周长,则mn 的取值范围是________. 三、解答题17.已知以点()1,1A 为圆心的圆与直线1:220l x y ++=相切,过点()2,0B 的动直线l 与圆A 相交于M 、N 两点. (1)求圆A 的方程;(2)当4MN =时,求直线l 的方程.18.已知圆C :222430x y x y ++-+=.(1)若直线l 过点(2,0)-且被圆C 截得的弦长为2,求直线l 的方程;(2)从圆C 外一点P 向圆C 引一条切线,切点为M ,O 为坐标原点,且PM PO =,求PM 的最小值.19.直线l :y x =与圆C :()()221316x y -+-=相交于A 、B 两点.(1)求平行于l 且与圆C 相切的直线方程; (2)求ABC 面积.20.已知圆C 过点()2,0R 、()4,2S -,且圆心C 在直线280x y --=上. (1)求圆C 的方程;(2)若点P 在圆C 上,O 为原点,()(),00A t t >,求tan POA ∠的最大值.21.已知圆C 的方程为226440x y x y ++-+=.(1)若直线:10l x y -+=与圆C 相交于M 、N 两点,求||MN 的长; (2)已知点()1,5P ,点Q 为圆C 上的动点,求||PQ 的最大值和最小值.22.已知直线:20l mx y m -+-=,C 的方程为22240x y x y +--=. (1)求证:l 与C 相交;(2)若l 与C 的交点为A 、B 两点,求OAB 的面积最大值.(O 为坐标原点)参考答案1.B 【分析】分别求得两圆的圆心坐标和半径,结合两圆的位置关系的判定方法,求得两圆的位置关系,即可求解. 【详解】由圆22:2440A x y x y +---=可化为22(1)(2)9x y -+-=, 可得圆心坐标为(1,2)A ,半径为3R =,由圆22:2220B x y x y +++-=可化为22(1)(1)4x y +++=, 可得圆心坐标为(1,1)B --,半径为2r,则圆心距为d AB == 又由5,1R r R r +=-=,所以R r AB R r -<<+, 可得圆A 与圆B 相交,所以两圆公共切线的条数为2条. 故选:B. 2.B 【分析】根据题意当CP 与l 垂直时,||PA 的值最小,进而可得2k =,再根据圆M 与圆C 外切可得0m >,根据圆M 与直线l 相切,利用圆心到直线的距离等于圆的半径,即可求出. m 的值.【详解】圆C 的圆心为(0,1)C -,半径为1,当CP 与l 垂直时,||PA 的值最小,此时点C 到直线l 的距离为d =,由勾股定理得22212+=,又0k >,解得2k =, 圆M 的圆心为(0,)2mM ,半径为||2m , ∵圆M 与圆C 外切,∴||1|(1)|22m m+=--,∴0m >,∵圆M 与直线l 相切,∴|4|2m m -+=2m =, 故选:B 3.C 【分析】根据直线与圆的位置关系和点到直线的距离公式建立不等式,解之可得选项. 【详解】圆C 的标准方程为22(4)1x y -+=,半径1r =,当圆心(4,0)到直线2y kx =-的距离1d r ≤+时,满足题意,圆心在直线上的射影点即满足题意,故有2d =≤,解得403k ≤≤,即k 的最大值为43, 故选:C. 4.A 【分析】由于直线过定点(1,1)--P,而||OP =OP 垂直,从而由斜率的关系列方程可求出m 【详解】∵直线10x my m -+-=过定点(1,1)--P ,连接OP,则||OP ∴直线10x my m -+-=与OP 垂直,11m=-, ∴1m =-, 故选:A. 5.A 【分析】根据直线():10l mx y m R +-=∈是圆22:4210C x y x y +-++=的对称轴,则圆心在直线l 上,求得m ,由过点()2,A m -作圆C 的一条切线,切点为B ,利用勾股定理即可求得AB . 【详解】由方程224210x y x y +-++=得()()22214x y -++=,圆心为()2,1C -,因为直线l 是圆C 的对称轴,所以圆心在直线l 上,所以1m =,所以A 点坐标为()2,1-,则AC =4AB =.故选:A . 6.A 【分析】求出圆的圆心坐标,得到,a b 的关系,然后利用基本不等式求解不等式的最值即可. 【详解】解:圆224210x y x y ++-+=,即()()22214x y ++-=,所以圆心为(2,1)-, 所以210a b --+=,即21a b +=,因为0a >、0b >,则2222(2)(2)2252229a b a b a b a b ab a ab ab abab+++++⋅===,当且仅当13b a ==时,取等号. 故选:A . 7.C 【分析】先求出两圆的公共弦所在直线的方程,用垂径定理求弦长. 【详解】由题意知221:4240C x y x y ++--=,222:3310C x y x y ++--=,将两圆的方程相减,得30x y +-=,所以两圆的公共弦所在直线的方程为30x y +-=.又因为圆1C 的圆心为(2,1)-,半径3r =,所以圆1C 的圆心到直线30x y +-=的距离d ==所以这两圆的公共弦的弦长为222223222d .故选:C. 8.D 【分析】计算出两圆圆心距d ,并与两圆半径和作大小比较,由此可得出结论. 【详解】两圆的圆心距d 4r +,4r +,所以两圆不可能外切或相离.9.C 【分析】由题意圆C 的圆心C 在单位圆上,求出点C到直线1y =-的距离的最大值,根据圆的弦长AB =. 【详解】解:由圆C :()()22cos sin 3x y θθ-+-=,知该圆的半径r =()cos ,sin C θθ在单位圆221x y +=上,∵原点O到直线1y =-12=,则点C 到直线1y =-的距离d 的最大值为13122+=,由AB =d 取最大值32时,线段AB故选:C .10.D 【分析】根据直线的位置及圆心所在的象限判断参数a 、b 的符号,进而确定正确选项. 【详解】直线ax by ab +=在x ,y 轴上的截距分别为b 和a ,圆心横坐标为a ,纵坐标为b . A :由直线位置可得0b <,而由圆的位置可得0b >,不正确. B :由直线位置可得0a >,而由圆的位置可得0a <,不正确. C :由直线位置可得0a >,而由圆的位置可得0a <,不正确.D :由直线位置可得0a >,0b <,而由圆的位置可得0a >,0b <,正确.11.A 【分析】求出两圆的圆心和半径,再求出两圆的圆心距,与两圆的半径和差比较可得结论 【详解】解:圆1C :221x y +=的圆心1(0,0)C ,半径为11r =,由()224310x y k x y +++-=,得222325(2)()124x k y k k +++=+,所以圆2C 的圆心为23(2,)2C k k --,半径2r所以12121C C r r +=1>0k ≠)1,所以1221C C r r >-所以两圆相交. 故选:A 12.A 【分析】由直线l 与圆C 相切可构造方程求得k;分别在2k =2k =过比较圆心到直线距离与圆的半径之间大小关系可得位置关系. 【详解】由圆C 方程知其圆心()2,1C直线l 与圆C相切,=2k =由圆D 方程知其圆心()2,0D,半径r =∴圆心D 到直线l距离d =当2k =(()222233021d r+-=-=<+,即d r <,此时圆D 与直线l 相交;当2k =(()222233021d r --=-=<+,即d r <,此时圆D 与直线l 相交; 综上所述:圆D 与直线l 相交. 故选:A. 13.1或3- 【分析】由题意可知较短弧所对圆心角是90︒,此时圆心到直线0x y k +-==,再由点到直线的距离公式求解即可 【详解】由题意知,圆的标准方程为()2214x y ++=,较短弧所对圆心角是90︒,所以圆心()0,1-到直线0x y k +-==1k =或3k =-.故答案为:1或3- 14.【分析】由已知求出直线方程,将圆方程化为标准方程求出圆心和半径,然后求出圆心到直线的距离,再利用弦长、弦心距和半径的关系求出弦长 【详解】解:由题意得直线方程为tan60y x =︒0y -=, 由2240x y y +-=,得22(2)4x y +-=,则圆心为(0,2),半径为2, 所以圆心(0,2)0y -=的距离为1d ==,所以所求弦长为=故答案为:15.x =2或)2y x =-. 【分析】 分斜率不存在和斜率存在两种情况讨论:斜率不存在时,直线l :x =2与圆相切;斜率存在时,设其为k ,则直线l :()2y k x =-,利用圆心到直线的距离等于半径,列方程求出k ,即可求出直线方程.【详解】圆22 A: 230x y x +--+=化为标准方程:()(22 11x y -+=,所以当过点()2,0的直线斜率不存在时,直线l :x =2与圆相切;过点()2,0的直线斜率存在时,设其为k ,则直线l :()2y k x =-,因为l 与圆A 相切,所以圆心到直线的距离等于半径,1=,解得:k =,此时l:)2y x =-. 故答案为:x =2或)2y x =-. 16.(,1]-∞【分析】 由题意得直线过圆心,进而得到2240m n +-=,所以mn 可转化为()2n n -,结合二次函数的值域即可求解.【详解】因为直线mx +2ny -4=0(m ,n ∈R )始终平分圆22420x y x y +--=的周长,所以直线经过圆心,又因为圆心为()2,1,则2240m n +-=,即2m n +=,因此2m n =-,所以()()2222111mn n n n n n =-=-+=--+≤,所以mn 的取值范围是(,1]-∞,故答案为:(,1]-∞.17.(1)()()22115x y -+-=;(2)2x =或0y =.【分析】(1)利用圆心到直线的距离求半径,即可得圆的方程;(2)首先考查直线斜率不存在的直线,判断是否满足4MN =,当直线的斜率存在时,设直线20kx y k --=,利用弦长公式求得斜率k ,即可得直线方程.【详解】解:(1)由题意可知,点A 到直线1l 的距离d =因为圆A 与直线1l 相切,则圆A 的半径r d ==所以,圆A 的标准方程为()()22115x y -+-=(2)①当直线l 的斜率不存在时因为直线l 的方程为2x =.所以圆心A 到直线l 的距离11d =.由(1)知圆的半径为r 4MN ==. 故2x =是符合题意的一条直线.②当直线l 的斜率存在时设直线l 的斜率为k ,则直线20kx y k --=圆心A 到直线l 的距离1d =因为22212MN d r ⎛⎫+= ⎪⎝⎭所以245+=,即()2211k k +=+,解得0k = 因此,直线l 的方程为0y =综上所述,直线l 的方程为2x =或0y =.18.(1)2x =-或3460x y -+=;(2. 【分析】(1)根据题意,由圆的方程分析圆的圆心与半径,分直线的斜率存在与不存在两种情况讨论,求出直线的方程,综合即可得答案;(2)根据题意,连接MC ,PC ,分析可得PMC △为直角三角形,即222||||||PM PC MC =-,设(,)P x y ,分析可得||MC ||||PM PO =,分析可得2222(1)(2)2x y x y ++--=+,变形可得P 的轨迹方程,据此结合直线与圆的方程分析可得答案.【详解】解:(1)222430x y x y ++-+=可化为22(1)(2)2x y ++-=.当直线l 的斜率不存在时,其方程为2x =-,易求得直线l 与圆C 的交点为(2,1)A -,()23B -,,2AB =,符合题意;当直线l 的斜率存在时,设其方程为(2)y k x =+,即20kx y k -+=,则圆心C 到直线l 的距离1d ,解得34k =. 所以直线l 的方程为3460x y -+=,综上,直线l 的方程为2x =-或3460x y -+=.(2)如图,PM 为圆C 的切线,连接MC ,PC ,则CM PM ⊥.所以PMC △为直角三角形.所以222PM PC MC =-.设点P 为(,)x y ,由(1)知点C 为(1,2)-,MC =PM PO =,P 的轨迹方程为2430x y -+=. 求PM 的最小值,即求PO 的最小值,也即求原点O 到直线2430x y -+=的距离,代入点到直线的距离公式可求得PM 的最小值d =19.(1)20x y -++或20x y -+-=;(2)【分析】(1)设切线方程为y x b =+,由切线定义求得b ,进而求得结果;(2)作CD AB ⊥,由点到直线距离公式求得CD ,再由弦长公式求得AB ,进而求得面积.【详解】(1)设切线方程为y x b =+,则圆心(1,3)C 到切线的距离4d r ==,解得2b =±所以切线方程为20x y -++或20x y -+-=;(2)作CD AB ⊥,垂足为D ,CD ==,∴AB ==∴1122ABC S AB CD =⋅=⨯△20.(1)()2244x y -+=;(2 【分析】 (1)根据垂径定理的逆定理可得弦RS 的垂直平分线过原点,又圆心C 在直线280x y --=上,联立直线方程即可得解;(2)根据题意知当OP 与圆相切时,tan POA ∠值最大,计算即可得解.【详解】(1)由20142RS k --==--,线段RS 中点坐标为(3,1)-, 所以线段RS 的垂直平分线为4y x =-,即40x y --=,由28040x y x y --=⎧⎨--=⎩可得圆C 的圆心为(4,0),易得半径2r ,所以圆C 的方程为22(4)4x y -+=;(2)由圆心在x 轴正半轴上,由()(),00A t t >,所以OA 在正半轴上,由090POA <∠<,故当OP 和圆相切时,即P 为切点时POA ∠最大,此时tan POA ∠最大,tanPOA ∠=. 21.(1)2;(2)最大值为8,最小值为3.【分析】(1)先将圆的方程化为标准方程,得出圆心坐标和半径,求出圆心到直线l 的距离,由勾股定理可得答案.(2)先求出PC 的长度,由圆的性质可得PC r PQ PC r -≤≤+,从而得到答案.【详解】解:(1)圆C 的一般式方程为()()22329x y ++-=,即圆心()C 3,2-,半径3r =,所以圆心C 到直线l :10x y -+=的距离d ==所以弦长 2MN ==;(2)5PC ,又3r =,所以max 8PQ PC r =+=,min 2PQ PC r =-=,即PQ 的最大值为8,最小值为3.22.(1)证明见解析;(2)5【分析】 (1)由题知直线l 过定点1,2,且为C 的圆心,故l 与C 相交;(2)由题知2AB r ==l 与直线OC 垂直时,O 到直线l 的距离最大,最大值为OC =.【详解】解:(1)由题知直线():21l y m x -=-,C 的标准方程为()()22125x y -+-=, 所以直线l 过定点1,2,为圆的圆心,所以直线过C 的圆心,故l 与C 相交;(2)由(1)知直线:20l mx y m -+-=过圆C 的圆心,C 的半径为r =所以2AB r ==所以当O 到直线l 的距离最大时,OAB 的面积取最大值,故当直线l 与直线OC 垂直时,O 到直线l 的距离最大,最大值为OC =所以OAB 的面积最大值为11522AB OC =。

高中数学圆与圆的位置关系总结练习含答案解析S

高中数学圆与圆的位置关系总结练习含答案解析S

2.2.3 圆与圆的位置关系圆与圆的位置关系及判定1.圆与圆的位置关系圆与圆的位置关系外离外切相交内切内含公共点个数0 ①② 1 02.设两圆半径分别为r1,r2,圆心距为d,则两圆相交时,r1,r2,d的关系为③.两圆外切时,r1,r2,d的关系为④.3.设两圆方程分别为x2+y2+D1x+E1y+F1=0,x2+y2+D2x+E2y+F2=0,联立得{x2+y2+D1x+E1y+F1=0,x2+y2+D2x+E2y+F2=0,方程组有两组不同实数解⇔两圆⑤,有⑥实数解⇔两圆相切,无实数解⇔两圆外离.圆系方程的应用1.(2014湖北黄冈期中,★☆☆)圆C1:x2+y2+4x-4y+4=0与圆C2:(x-2)2+(y-5)2=9的公切线有条.思路点拨求出圆心距,即可得出结论.2.(2013江苏白蒲模拟,★★☆)求圆心在直线x-y-4=0上,且经过两圆x2+y2-4x-6=0和x2+y2-4y-6=0交点的圆的方程.思路点拨本题解法较多,可考虑利用公共弦求解,也可以利用圆系方程求解.3.(2014江苏建湖中学训练,★★☆)已知圆M:x2+y2-2mx-2ny+m2-1=0与圆N:x2+y2+2x+2y-2=0交于A,B两点,且这两点平分圆N的圆周,求圆心M的轨迹方程,并求圆M的半径最小时的方程.思路点拨从几何性质入手分析,抓住圆心和半径分析圆的方程.4.(2013苏南四校月考,★★★)已知☉O:x2+y2=1和点M(4,2).(1)过点M向☉O引切线l,求直线l的方程;(2)求以点M为圆心,且被直线y=2x-1截得的弦长为4的☉M的方程;(3)设P为(2)中☉M上任一点,过点P向☉O引切线,切点为Q.试探究:平面内是否存在一定点R,使得PQPR为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.一、填空题1.已知圆O1:x2+y2-2x-4y+4=0与圆O2:x2+y2-8x-12y+36=0,两圆的位置关系为.2.圆C1:(x+2)2+(y-m)2=9与圆C2:(x-m)2+(y+1)2=4外切,则m的值为.3.若a2+b2=4,则圆(x-a)2+y2=1与圆x2+(y-b)2=1的位置关系是.4.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程是.5.已知半径为1的动圆与圆(x-5)2+(y+7)2=16相切,则动圆圆心的轨迹方程是.6.点P在圆x2+y2-8x-4y+11=0上,点Q在圆x2+y2+4x+2y+1=0上,则|PQ|的最小值是.7.集合M={(x,y)|x2+y2≤4},N={(x,y)|(x-1)2+(y-1)2≤r2},且M∩N=N,则r的取值范围是.8.设A={(x,y)|y=√2a2-x2,a>0},B={(x,y)|(x-1)2+(y-√3)2=a2,a>0},若A∩B≠⌀,则a的最大值为.9.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为.10.圆C1:x2+y2=1与圆C2:x2+y2-2x-2y+1=0的公共弦所在直线被圆C3:(x-1)2+(y-1)2=254截得的弦长是.二、解答题11.试分别确定圆C1:x2+y2+4x-6y+12=0与C2:x2+y2-2x-14y+k=0(k<50)外切、内切、相交、内含、外离时,k的取值范围.12.已知圆x2+y2-4ax+2ay+20(a-1)=0(a≠2).(1)求证:对于任意实数a(a≠2),该圆过定点;(2)若该圆与圆x2+y2=4相切,求实数a的值.知识清单①1 ②2 ③|r 1-r 2|<d<r 1+r 2 ④d=r 1+r 2 ⑤相交 ⑥两组相同链接高考1.答案 3解析 C 1(-2,2),r 1=2,C 2(2,5),r 2=3,|C 1C 2|=√(-2-2)2+(2-5)2=5,∵|C 1C 2|=r 1+r 2,∴圆C 1与圆C 2外切.所以圆C 1与圆C 2有3条公切线.2.解析 解法一:由{x 2+y 2-4x -6=0,x 2+y 2-4y -6=0,得到两圆公共弦所在直线方程为y=x, 由{y =x ,x 2+y 2-4y -6=0, 解得{x 1=-1,y 1=-1或{x 2=3,y 2=3.∴圆x 2+y 2-4x-6=0和x 2+y 2-4y-6=0的交点分别为A(-1,-1)、B(3,3), 线段AB 的垂直平分线方程为y-1=-(x-1). 由{y -1=-(x -1),x -y -4=0,得{x =3,y =-1. ∴所求圆的圆心为(3,-1), 半径为√(3-3)2+[3-(-1)]2=4. ∴所求圆的方程为(x-3)2+(y+1)2=16. 解法二:由解法一,求得A(-1,-1)、B(3,3). 设所求圆的方程为(x-a)2+(y-b)2=r 2,由{a -b -4=0,(-1-a )2+(-1-b )2=r 2,(3-a )2+(3-b )2=r 2,得{a =3,b =-1,r 2=16. ∴所求圆的方程为(x-3)2+(y+1)2=16. 解法三:设经过两圆交点的圆系方程为 x 2+y 2-4x-6+λ(x 2+y 2-4y-6)=0(λ≠-1), 即x 2+y 2-41+λx-4λ1+λy-6=0. ∴圆心坐标为(21+λ,2λ1+λ),又∵圆心在直线x-y-4=0上, ∴21+λ-2λ1+λ-4=0,即λ=-13,∴所求圆的方程为x 2+y 2-6x+2y-6=0.3.解析 两圆方程相减,得公共弦AB 所在的直线方程为2(m+1)x+2(n+1)y-m 2-1=0, 由于A,B 两点平分圆N 的圆周,所以A,B 为圆N 直径的两个端点, 即直线AB 过圆N 的圆心N,而N(-1,-1),所以-2(m+1)-2(n+1)-m 2-1=0, 即m 2+2m+2n+5=0,即(m+1)2=-2(n+2)(n≤-2), 又圆M 的圆心M(m,n),所以圆心M 的轨迹方程为(x+1)2=-2·(y+2)(y≤-2), 又圆M 的半径r=2+1≥√5(n≤-2), 当且仅当n=-2,m=-1时半径取得最小值,∴当圆M 的半径最小时,圆M 的方程为x 2+y 2+2x+4y=0.4.解析 (1)显然,直线l 的斜率存在.设切线l 的方程为y-2=k(x-4),易得√k 2+1=1,解得k=8±√1915. ∴切线l 的方程为y-2=8±√1915(x-4). (2)圆心到直线y=2x-1的距离为√5,设圆M 的半径为r,则r 2=22+(√5)2=9,∴☉M 的方程为(x-4)2+(y-2)2=9.(3)假设存在这样的点R(a,b),设点P 的坐标为(x,y),相应的定值为λ(λ>0), 根据题意及勾股定理可得PQ=√x 2+y 2-1, ∴√x 2+y 2√(x -a )+(y -b )=λ,即x 2+y 2-1=λ2(x 2+y 2-2ax-2by+a 2+b 2),(*) 又点P 在☉M 上, ∴(x -4)2+(y-2)2=9,即x 2+y 2=8x+4y-11,代入(*)式得,8x+4y-12=λ2[(8-2a)x+(4-2b)y+(a 2+b 2-11)].若系数对应相等,则等式恒成立,∴{λ2(8-2a )=8,λ2(4-2b )=4,λ2(a 2+b 2-11)=-12,解得a=2,b=1,λ=√2或a=25,b=15,λ=√103, ∴可以找到这样的定点R,使得PQPR 为定值.当点R 的坐标为(2,1)时,比值为√2; 当点R 的坐标为(25,15)时,比值为√103.基础过关一、填空题 1.答案 外切解析 由题意得圆的半径分别为1,4,圆心距为√(4-1)2+(6-2)2=5=4+1,故两圆外切. 2.答案 2或-5解析 圆C 1:(x+2)2+(y-m)2=9的圆心为(-2,m),半径为3;圆C 2:(x-m)2+(y+1)2=4的圆心为(m,-1),半径为2.依题意有√(-2-m )2+(m +1)2=3+2, 即m 2+3m-10=0, 解得m=2或m=-5. 3.答案 外切解析 ∵两圆的圆心分别为O 1(a,0),O 2(0,b),半径r 1=r 2=1,∴O 1O 2=√a 2+b 2=2=r 1+r 2,则两圆外切. 4.答案 (x±4)2+(y-6)2=36解析 设所求圆的圆心为(a,6),由两圆内切,得√a 2+(6-3)2=6-1,解得a=±4,则此圆的方程是(x±4)2+(y-6)2=36.5.答案 (x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9解析 动圆圆心的轨迹是以已知圆的圆心(5,-7)为圆心,以3或5为半径的圆. 6.答案 3√5-5解析 (x-4)2+(y-2)2=9的圆心为C 1(4,2),半径为r 1=3;(x+2)2+(y+1)2=4的圆心为C 2(-2,-1),半径为r 2=2.又|C 1C 2|=3√5,显然两圆外离,所以|PQ|的最小值是3√5-5. 7.答案 (0,2-√2]解析 由于M∩N=N,故圆(x-1)2+(y-1)2=r 2在圆x 2+y 2=4内部,当两圆内切时,√2=2-r,则r=2-√2,因此r 的取值范围是(0,2-√2].8.答案2(√2+1)解析A表示以O(0,0)为圆心,√2a为半径的半圆,B表示以O'(1,√3)为圆心,a为半径的圆.∵A∩B≠⌀,即半圆O与圆O'有公共点,则当两圆内切时,a最大,即√2a-a=OO'=2,∴a的最大值为2(√2+1).9.答案√7解析记直线y=x+1上任意一点与圆心的距离为h,记切线长为l,则始终有等量关系h2=l2+1.故当h取得最小值时,切线长取最小值,易知h的最小值即为圆心到直线y=x+1的距离,故hmin=2√2,此时l=√7.10.答案√23解析圆C1与圆C2的公共弦所在直线的方程为x2+y2-1-(x2+y2-2x-2y+1)=0,即x+y-1=0.圆心C3到直线x+y-1=0的距离d=√2=√22,所以所求弦长为2√r2-d2=2√254-12=√23.二、解答题11.解析将两圆的一般方程化为标准方程,C1:(x+2)2+(y-3)2=1,C2:(x-1)2+(y-7)2=50-k.圆C1的圆心为C 1(-2,3),半径r1=1;圆C2的圆心为C2(1,7),半径r2=√50-k(k<50).从而圆心距d=√(-2-1)2+(3-7)2=5.当两圆外切时,d=r1+r2,即1+√50-k=5,解得k=34;当两圆内切时,d=|r1-r2|,即|1-√50-k|=5,解得k=14;当两圆相交时,|r1-r2|<d<r1+r2,即|1-√50-k|<5<1+√50-k,解得14<k<34;当两圆内含时,d<|r1-r2|,即|1-√50-k|>5,解得k<14;当两圆外离时,d>r1+r2,即1+√50-k<5,解得34<k<50.12.解析(1)证明:将圆的方程整理得(x2+y2-20)+a(-4x+2y+20)=0,此方程表示过圆x2+y2=20与直线-4x+2y+20=0的交点的圆系.解方程组{x2+y2=20,-4x+2y+20=0得{x=4,y=-2,所以该圆恒过定点(4,-2).(2)圆的方程可化为(x-2a)2+(y+a)2=5(a-2)2(a≠2).若两圆外切,则2+√5(a -2)2=√(2a -0)2+(-a -0)2,解得a=1+√55. 若两圆内切,则|2-√5(a -2)2|=√(2a -0)2+(-a -0)2,解得a=1-√55或a=1+√55(舍去). 综上所述,a=1±√55.。

圆与圆的位置关系参考答案

圆与圆的位置关系参考答案

2.5.2 圆与圆的位置关系参考答案1.圆C 1:x 2+y 2+4x +8y -5=0与圆C 2:x 2+y 2+4x +4y -1=0的位置关系为( )A .相交B .外切C .内切D .外离答案 C解析 由已知,得C 1(-2,-4),r 1=5,C 2(-2,-2),r 2=3,则d =|C 1C 2|=2,所以d =|r 1-r 2|,所以两圆内切.2.圆x 2+y 2-2x -5=0与圆x 2+y 2+2x -4y -4=0的交点为A ,B ,则线段AB 的垂直平分线的方程是( )A .x +y -1=0B .2x -y +1=0C .x -2y +1=0D .x -y +1=0答案 A解析 圆x 2+y 2-2x -5=0的圆心为M (1,0),圆x 2+y 2+2x -4y -4=0的圆心为N (-1,2),两圆的相交弦AB 的垂直平分线即为直线MN ,其方程为y -0x -1=2-0-1-1,即x +y -1=0. 3.圆(x -4)2+y 2=9和圆x 2+(y -3)2=4的公切线有( )A .1条B .2条C .3条D .4条 答案 C解析 圆(x -4)2+y 2=9的圆心为(4,0),半径为3,圆x 2+(y -3)2=4的圆心为(0,3),半径为2. 两圆的圆心距为42+32=5=2+3,两圆相外切,故两圆的公切线的条数为3.4.已知圆C :x 2+y 2-2x +m =0与圆(x +3)2+(y +3)2=36内切,则实数m 的值为( )A .0B .-120C .0或-120D .5答案 C解析 将圆C :x 2+y 2-2x +m =0化为标准方程为(x -1)2+y 2=1-m ,由两圆内切可得|6-1-m |=5,解得m =0或-120.5.圆C 1:(x -1)2+y 2=4与圆C 2:(x +1)2+(y -3)2=9的相交弦所在的直线为l ,则直线l 被圆O :x 2+y 2=4截得的弦长为( ) A.13 B .4 C.43913 D.83913答案 D解析 由圆C 1与圆C 2的方程相减得l :2x -3y +2=0.圆心O (0,0)到l 的距离d =21313,圆O 的半径R =2, 所以截得的弦长为2R 2-d 2=24-413=83913. 6.(多选)下列圆中与圆C :x 2+y 2+2x -4y +1=0相切的是( )A .(x +2)2+(y +2)2=9B .(x -2)2+(y +2)2=9C .(x -2)2+(y -2)2=25D .(x -2)2+(y +2)2=49答案 BCD解析 由圆C :x 2+y 2+2x -4y +1=0,可知圆心C 的坐标为(-1,2),半径r =2.A 项,圆心C 1(-2,-2),半径r 1=3.∵|C 1C |=17∈(r 1-r ,r 1+r ),∴两圆相交;B 项,圆心C 2(2,-2),半径r 2=3,∵|C 2C |=5=r +r 2,∴两圆外切,满足条件;C 项,圆心C 3(2,2),半径r 3=5,∵|C 3C |=3=r 3-r ,∴两圆内切;D 项,圆心C 4(2,-2),半径r 4=7,∵|C 4C |=5=r 4-r ,∴两圆内切.7.已知圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线,则实数a ,b 的关系是________.答案 4a 2+b 2=1解析 圆C 1:x 2+y 2+4ax +4a 2-4=0,化为标准方程为(x +2a )2+y 2=4,圆心坐标为(-2a ,0),半径长为2.圆C 2:x 2+y 2-2by +b 2-1=0,化为标准方程为x 2+(y -b )2=1.圆心坐标为(0,b ),半径长为1.由于两圆只有一条公切线,所以两圆相内切,所以(2a )2+b 2=2-1=1,整理得4a 2+b 2=1.8.经过直线x +y +1=0与圆x 2+y 2=2的交点,且过点(1,2)的圆的方程为________.答案 x 2+y 2-34x -34y -114=0 解析 由已知可设所求圆的方程为x 2+y 2-2+λ(x +y +1)=0,将(1,2)代入,可得λ=-34,故所求圆的方程为x 2+y 2-34x -34y -114=0. 9.已知两圆C 1:x 2+y 2=4,C 2:(x -1)2+(y -2)2=r 2(r >0),直线l :x +2y =0.(1)当圆C 1与圆C 2相交且公共弦长为4时,求r 的值;(2)当r =1时,求经过圆C 1与圆C 2的交点且和直线l 相切的圆的方程.解 (1)由圆C 1:x 2+y 2=4,知圆心C 1(0,0),半径r 1=2,又由圆C 2:(x -1)2+(y -2)2=r 2(r >0),可得x 2+y 2-2x -4y +5-r 2=0,两式相减可得公共弦所在的直线方程为2x +4y -9+r 2=0.因为圆C 1与圆C 2相交且公共弦长为4,此时相交弦过圆心C 1(0,0),即r 2=9(r >0),解得r =3.(2)设过圆C 1与圆C 2的圆系方程为(x -1)2+(y -2)2-1+λ(x 2+y 2-4)=0(λ≠-1),即(1+λ)x 2+(1+λ)·y 2-2x -4y +4(1-λ)=0,所以⎝⎛⎭⎫x -1λ+12+⎝⎛⎭⎫y -2λ+12=4λ2+1(λ+1)2,由圆心到直线x +2y =0的距离等于圆的半径,可得⎪⎪⎪⎪1λ+1+4λ+15=4λ2+1|λ+1|,解得λ=1,故所求圆的方程为x 2+y 2-x -2y =0. 10.已知圆C :x 2+y 2-6x -8y +21=0.(1)若直线l 1过定点A (1,1),且与圆C 相切,求l 1的方程;(2)若圆D 的半径为3,圆心在直线l 2:x -y +2=0上,且与圆C 外切,求圆D 的方程. 解 (1)圆C :x 2+y 2-6x -8y +21=0化为标准方程为(x -3)2+(y -4)2=4,所以圆C 的圆心为(3,4),半径为2.①若直线l 1的斜率不存在,即直线为x =1,符合题意.②若直线l 1的斜率存在,设直线l 1的方程为y -1=k (x -1).即kx -y -k +1=0.由题意知,圆心(3,4)到已知直线l 1的距离等于半径2,所以|3k -4-k +1|k 2+1=2,即|2k -3|k 2+1=2, 解得k =512,所以直线方程为5x -12y +7=0. 综上,所求l 1的方程为x =1和5x -12y +7=0.(2)依题意,设D (a ,a +2).又已知圆C 的圆心为(3,4),半径为2,由两圆外切,可知|CD |=5,∴(a -3)2+(a +2-4)2=5,解得a =-1或a =6.∴D (-1,1)或D (6,8),∴所求圆D 的方程为(x +1)2+(y -1)2=9或(x -6)2+(y -8)2=9.11. 设两圆C 1,C 2都和两坐标轴相切,且都过点(4,1),则两圆圆心的距离|C 1C 2|为( ) A .4 B .4 2 C .8 D .82答案 C解析 ∵两圆与两坐标轴都相切,且都经过点(4,1),∴两圆圆心均在第一象限且都在直线y =x 上.设两圆的圆心分别为(a ,a ),(b ,b ),则有(4-a )2+(1-a )2=a 2,(4-b )2+(1-b )2=b 2,即a ,b 为方程(4-x )2+(1-x )2=x 2的两个根,整理得x 2-10x +17=0,∴a +b =10,ab =17.∴(a -b )2=(a +b )2-4ab =100-4×17=32,∴|C 1C 2|=(a -b )2+(a -b )2=32×2=8.12.(多选)圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2+2x -4y =0的交点为A ,B ,则有( )A .公共弦AB 所在直线的方程为x -y =0B .线段AB 中垂线的方程为x +y -1=0C .公共弦AB 的长为22D .P 为圆O 1上一动点,则P 到直线AB 距离的最大值为22+1 答案 ABD解析 对于A ,由圆O 1:x 2+y 2-2x =0与圆O 2:x 2+y 2+2x -4y =0的交点为A ,B , 两式作差可得4x -4y =0,即公共弦AB 所在直线方程为x -y =0,故A 正确;对于B ,圆O 1:x 2+y 2-2x =0的圆心为(1,0),又k AB =1,则线段AB 中垂线的斜率为-1,即线段AB 中垂线的方程为y -0=-1×(x -1),整理可得x +y -1=0,故B 正确;对于C ,圆O 1:x 2+y 2-2x =0,圆心O 1(1,0)到直线x -y =0的距离d =|1-0|12+(-1)2=22,半径r =1,所以|AB |=21-⎝⎛⎭⎫222=2,故C 不正确; 对于D ,P 为圆O 1上一动点,圆心O 1(1,0)到直线x -y =0的距离为d =22,半径r =1,即P 到直线AB 距离的最大值为22+1,故D 正确. 13.在平面直角坐标系xOy 中,已知圆C 1 : x 2 +y 2=8与圆C 2 : x 2+y 2+2x +y -a =0相交于A ,B 两点.若圆C 1上存在点P ,使得△ABP 为等腰直角三角形,则实数a 的值组成的集合为________________. 答案 {}8,8-25,8+25解析 由题知,直线AB 为2x +y +8-a =0,当∠P AB =90°或∠PBA =90°时,设C 1到AB 的距离为d ,因为△ABP 为等腰直角三角形,所以d =12|AB |,即d =8-d 2,所以d =2,所以|8-a |22+12=d =2, 解得a =8±25, 当∠APB =90°时,AB 经过圆心C 1,则8-a =0,即a =8.14.过两圆x 2+y 2-2y -4=0与x 2+y 2-4x +2y =0的交点,且圆心在直线l :2x +4y -1=0上的圆的方程是________________.答案 x 2+y 2-3x +y -1=0解析 设圆的方程为x 2+y 2-4x +2y +λ(x 2+y 2-2y -4)=0(λ≠-1),则(1+λ)x 2-4x +(1+λ)y 2+(2-2λ)y -4λ=0,把圆心⎝ ⎛⎭⎪⎫21+λ,λ-11+λ代入直线l :2x +4y -1=0的方程, 可得λ=13, 所以所求圆的方程为x 2+y 2-3x +y -1=0.15.在平面直角坐标系xOy 中,圆C :x 2-2ax +y 2-2ay +2a 2-1=0上存在点P 到点(0,1)的距离为2,则实数a 的取值范围是______________.答案 ⎣⎢⎡⎦⎥⎤1-172,0∪⎣⎢⎡⎦⎥⎤1,1+172 解析 因为圆C :x 2-2ax +y 2-2ay +2a 2-1=0,所以(x -a )2+(y -a )2=1,其圆心C (a ,a ),半径r =1.因为点P 到点(0,1)的距离为2,所以P 点的轨迹为x 2+(y -1)2=4.因为P 又在(x -a )2+(y -a )2=1上,所以圆C 与圆x 2+(y -1)2=4有交点,即2-1≤a 2+(a -1)2≤2+1,所以1-172≤a ≤0或1≤a ≤1+172. 所以实数a 的取值范围是⎣⎢⎡⎦⎥⎤1-172,0∪⎣⎢⎡⎦⎥⎤1,1+172. 16.已知圆M 与圆N :⎝⎛⎭⎫x -532+⎝⎛⎭⎫y +532=r 2关于直线y =x 对称,且点D ⎝⎛⎭⎫-13,53在圆M 上. (1)判断圆M 与圆N 的位置关系;(2)设P 为圆M 上任意一点,A ⎝⎛⎭⎫-1,53,B ⎝⎛⎭⎫1,53,P ,A ,B 三点不共线,PG 为∠APB 的平分线,且交AB 于G ,求证:△PBG 与△APG 的面积之比为定值.(1)解 N ⎝⎛⎭⎫53,-53关于直线y =x 的对称点为M ⎝⎛⎭⎫-53,53, 所以圆M 的半径r =|MD |2=⎝⎛⎭⎫-53+132+⎝⎛⎭⎫53-532=43, 所以圆M 的方程为⎝⎛⎭⎫x +532+⎝⎛⎭⎫y -532=169. 又|MN |=⎝⎛⎭⎫1032+⎝⎛⎭⎫1032=1023>43×2, 故圆M 与圆N 相离.(2)证明 设P (x 0,y 0),则|P A |2=(x 0+1)2+⎝⎛⎭⎫y 0-532=(x 0+1)2+169-⎝⎛⎭⎫x 0+532=-43x 0,|PB |2=(x 0-1)2+⎝⎛⎭⎫y 0-532=(x 0-1)2+169-⎝⎛⎭⎫x 0+532=-163x 0, 所以⎝⎛⎭⎫|P A ||PB |2=14,即|P A ||PB |=12. 又PG 为∠APB 的平分线,故S △BPG S △APG =|PB ||P A |=2为定值.。

圆与圆的位置关系综合练习

圆与圆的位置关系综合练习

圆与圆的位置综合练习一.选择题(共10小题)1.(2010•防城港)在数轴上,点A所表示的实数是﹣2,⊙A的半径为2,⊙B的半径为1,若⊙B与⊙A外切,则在数轴上点B所表示的实数是()A.1B.﹣5 C.1或﹣5 D.﹣1或﹣32.(2009•肇庆)若⊙O1与⊙O2相切,且O1O2=5,⊙O1的半径r1=2,则⊙O2的半径r2是()A.3B.5C.7D.3或73.(2009•临沂)已知⊙O1和⊙O2相切,⊙O1的直径为9cm,⊙O2的直径为4cm.则O1O2的长是()A.5cm或13cm B.2.5cm C.6.5cm D.2.5cm或6.5cm4.(2009•佛山)将两枚同样大小的硬币放在桌上,固定其中一枚,而另一枚则沿着其边缘滚动一周,这时滚动的硬币滚动了()A.1圈B.1.5圈C.2圈D.2.5圈5.(2009•滨州)已知两圆半径分别为2和3,圆心距为d,若两圆没有公共点,则下列结论正确的是()A.0<d<1 B.d>5 C.0<d<1或d>5 D.0≤d<1或d>56.(2008•雅安)已知两圆圆心距是5,半径分别为2和3,则两圆的位置关系为()A.相离B.相交C.内切D.外切7.(2008•宁夏)已知⊙O1和⊙O2相切,两圆的圆心距为9cm,⊙O1的半径为4cm,则⊙O2的半径为()A.5cm B.13cm C.9cm或13cm D.5cm或13cm8.(2007•肇庆)若两圆没有公共点,则两圆的位置关系是()A.外离B.外切C.内含D.外离或内含9.(2007•襄阳)如图,△ABC是边长为10的等边三角形,以AC为直径作⊙O,D是BC上一点,BD=2,以点B 为圆心,BD为半径的⊙B与⊙O的位置关系为()A.相交B.外离C.外切D.内切10.(2007•泰安)半径分别为13和15的两圆相交,且公共弦长为24,则两圆的圆心距为()A.或14 B.或4C.14 D.4或14二.填空题(共8小题)11.(2012•攀枝花)如图,以BC为直径的⊙O1与⊙O2外切,⊙O1与⊙O2的外公切线交于点D,且∠ADC=60°,过B点的⊙O1的切线交其中一条外公切线于点A.若⊙O2的面积为π,则四边形ABCD的面积是_________.12.(2011•绍兴)如图,相距2cm的两个点A、B在直线l上.它们分别以2cm/s和1cm/s的速度在l上同时向右平移,当点A,B分别平移到点A1,B1的位置时,半径为1cm的⊙A1,与半径为BB1的⊙B相切.则点A平移到点A1,所用的时间为_________s.13.(2010•宁夏)如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是_________米.14.(2008•绍兴)如图中的圆均为等圆,且相邻两圆外切,圆心连线构成正三角形,记各阴影部分面积从左到右依次为S1,S s,S3,…,S n,则S12:S4的值等于_________.15.(2008•三明)如图,在以O为圆心的两个同心圆中,大圆的直径AB交小圆于C、D两点,AC=CD=DB,分别以C、D为圆心,以CD为半径作圆.若AB=6cm,则图中阴影部分的面积为_________cm2.16.(2007•河池)若两圆的半径分别为5cm和3cm,圆心距为1cm,则这两个圆的位置关系是_________.17.(2004•郫县)已知半径3cm,4cm的两圆外切,那么半径为6cm且与这两圆都相切的圆共有_________个.18.(2000•嘉兴)如图,⊙O1与⊙O2交于点A,B,延长⊙O2的直径CA交⊙O1于点D,延长⊙O2的弦CB交⊙O1于点E.已知AC=6,AD:BC:BE=1:1:5,则DE的长是_________.三.解答题(共5小题)19.(2012•鼓楼区二模)如图,已知边长为10的菱形ABCD,对角线BD、AC交于点O,AC=12,点P在射线BD 上运动,过点P分别向直线AB、AD作垂线,垂足分别为E、F.(1)对角线BD长为_________;(2)设PB=x,以PO为半径的⊙P与以DF为半径的⊙D相切时,求x的值.20.(2008•静安区二模)如图,在四边形ABCD中,∠B=90°,AD∥BC,AB=4,BC=12,点E在边BA的延长线上,AE=2,点F在BC边上,EF与边AD相交于点G,DF⊥EF,设AG=x,DF=y.(1)求y关于x的函数解析式,并写出定义域;(2)当AD=11时,求AG的长;(3)如果半径为EG的⊙E与半径为FD的⊙F相切,求这两个圆的半径.21.如图,正方形网格中,每个小正方形的边长为1个单位,以O为原点建立平面直角坐标系,圆心为A(3,0)的⊙A被y轴截得的弦长BC=8.解答下列问题:(1)求⊙A 的半径;(2)请在图中将⊙A 先向上平移6 个单位,再向左平移8个单位得到⊙D,并写出圆心D的坐标;(3)观察你所画的图形,对⊙D 与⊙A 的位置关系作出合情的猜想,并直接写出你的结论.聪明的小伙伴,你完成整张试卷全部试题的解答后,如果还有时间对问题(3)的猜想结论给出证明,将酌情另加1~5分,并计入总分.22.如图,在平台上用直径为100mm的两根圆钢棒嵌在大型工件的两侧,测量大的圆形工件的直径,设两圆钢棒的外侧的距离为xmm,工件的直径为Dmm.(1)求出D(mm)与x(mm)之间的函数关系式;(2)当图形工件的直径D小于圆钢棒的直径时,上面所求得的D与x的函数关系式还是否仍然适用?请说明理由.23.实验探究:同学们,你注意过烟盒里的香烟是如何摆放的吗?已知,一个烟盒的长为56mm,宽为22mm,高为87mm,一根烟的直径是8mm,若把20根香烟摆放在烟盒中,请你探究合理的摆放方法.圆与圆的位置综合练习参考答案与试题解析一.选择题(共10小题)1.(2010•防城港)在数轴上,点A所表示的实数是﹣2,⊙A的半径为2,⊙B的半径为1,若⊙B与⊙A外切,则在数轴上点B所表示的实数是()A.1B.﹣5 C.1或﹣5 D.﹣1或﹣3考点:圆与圆的位置关系.专题:压轴题.分析:本题直接告诉了两圆的半径及位置关系,根据数量关系与两圆位置关系的对应情况便可直接得出答案.外离,则P>R+r;外切,则P=R+r;相交,则R﹣r<P<R+r;内切,则P=R﹣r;内含,则P<R﹣r.(P表示圆心距,R,r分别表示两圆的半径).解答:解:设数轴上点B所表示的实数是b,则AB=||b﹣(﹣2)|=|b+2|,⊙B与⊙A外切时,AB=2+1,即|b+2|=3,解得b=1或﹣5,故选C.点评:本题考查了由数量关系及两圆位置关系求圆心坐标的方法.2.(2009•肇庆)若⊙O1与⊙O2相切,且O1O2=5,⊙O1的半径r1=2,则⊙O2的半径r2是()A.3B.5C.7D.3或7考点:圆与圆的位置关系.专题:压轴题.分析:两圆相切,包括了内切或外切,即d=R+r,d=R﹣r,分别求解.解答:解:∵这两圆相切∴⊙O1与⊙O2的位置关系是内切或外切,O1O2=5,⊙O1的半径r1=2,所以r1+r2=5或r2﹣r1=5,解得r2=3或7.故选D.点评:本题考查了由两圆位置关系来判断半径和圆心距之间数量关系的方法.两圆的半径分别为R和r,且R≥r,圆心距为d:外离d>R+r;外切d=R+r;相交R﹣r<d<R+r;内切d=R﹣r;内含d<R﹣r.3.(2009•临沂)已知⊙O1和⊙O2相切,⊙O1的直径为9cm,⊙O2的直径为4cm.则O1O2的长是()A.5cm或13cm B.2.5cm C.6.5cm D.2.5cm或6.5cm考点:圆与圆的位置关系.专题:压轴题.分析:半径不相等的两圆相切有两种情况:内切和外切,不要只考虑其中一种情况.由⊙O1与⊙O2的直径分别为9cm和4cm得两圆的半径分别为4.5cm、2cm;当两圆外切时,O1O2=4.5+2=6.5(cm);当两圆内切时,O1O2=4.5﹣2=2.5(cm),所以O1O2的值为6.5cm或2.5cm.注意,相同半径的两圆只有外切与外离,而没有内切与内含的位置关系.解答:解:∵⊙O1和⊙O2相切,∴两圆可能内切和外切,∴当两圆外切时,O1O2=4.5+2=6.5(cm);当两圆内切时,O1O2=4.5﹣2=2.5(cm);∴O1O2的长是2.5cm或6.5cm.∴故选D.点评:本题考查两圆的位置关系.特别注意:两圆相切,则可能有两种情况,内切或外切.4.(2009•佛山)将两枚同样大小的硬币放在桌上,固定其中一枚,而另一枚则沿着其边缘滚动一周,这时滚动的硬币滚动了()A.1圈B.1.5圈C.2圈D.2.5圈考点:圆与圆的位置关系.专题:压轴题;转化思想.分析:根据自身的周长和滚动的周长求解.解答:解:设圆的半径是r,则另一枚沿着其边缘滚动一周所走的路程是以2r为半径的圆周长,即是4πr,它自身的周长是2πr.即一共滚了2圈.故选C.点评:此题要特别注意正确分析另一枚则沿着其边缘滚动一周所走的路程.5.(2009•滨州)已知两圆半径分别为2和3,圆心距为d,若两圆没有公共点,则下列结论正确的是()A.0<d<1 B.d>5 C.0<d<1或d>5 D.0≤d<1或d>5考点:圆与圆的位置关系.专题:压轴题.分析:若两圆没有公共点,则可能外离或内含,据此考虑圆心距的取值范围.解答:解:若两圆没有公共点,则可能外离或内含,外离时的数量关系应满足d>5;内含时的数量关系应满足0≤d<1.故选D.点评:考查了两圆的位置关系和数量关系之间的等价关系.6.(2008•雅安)已知两圆圆心距是5,半径分别为2和3,则两圆的位置关系为()A.相离B.相交C.内切D.外切考点:圆与圆的位置关系.专题:压轴题.分析:由两圆的半径分别2和3,圆心距为5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵两圆的半径分别为2和3,圆心距为5,又∵2+3=5,∴两圆的位置关系是外切.故选D.点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.7.(2008•宁夏)已知⊙O1和⊙O2相切,两圆的圆心距为9cm,⊙O1的半径为4cm,则⊙O2的半径为()A.5cm B.13cm C.9cm或13cm D.5cm或13cm考点:圆与圆的位置关系.专题:压轴题;分类讨论.分析:根据两圆的位置关系与圆心距和两圆半径之间的数量关系之间的联系即可解决问题.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离,则d>R+r;外切,则d=R+r;相交,则R﹣r<d<R+r;内切,则d=R﹣r;内含,则d<R﹣r.解答:解:两圆相切时,有两种情况:内切和外切.当外切时,另一圆的半径=9+4=13cm;当内切时,另一圆的半径=9﹣4=5cm.故选D.点评:本题考查了两圆相切时,两圆的半径与圆心距的关系,注意有两种情况.8.(2007•肇庆)若两圆没有公共点,则两圆的位置关系是()A.外离B.外切C.内含D.外离或内含考点:圆与圆的位置关系.分析:此题要求两个圆的位置关系,可观察两个圆之间的交点个数,一个交点两圆相切(内切或外切),两个交点两圆相交,没有交点两圆相离(外离或内含).解答:解:外离或内含时,两圆没有公共点.故选D.点评:此题考查的是两个圆之间的位置关系,解此类题目时可根据两个圆的交点个数来判断两个圆的位置关系.9.(2007•襄阳)如图,△ABC是边长为10的等边三角形,以AC为直径作⊙O,D是BC上一点,BD=2,以点B 为圆心,BD为半径的⊙B与⊙O的位置关系为()A.相交B.外离C.外切D.内切考点:圆与圆的位置关系;等边三角形的性质.专题:压轴题.分析:要判断两圆的位置关系,需要明确两圆的半径和两圆的圆心距,再根据数量关系进一步判断两圆的位置关系.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离,则d>R+r;外切,则d=R+r;相交,则R﹣r<d<R+r;内切,则d=R﹣r;内含,则d<R﹣r.解答:解:根据题意,得:圆O的直径是10,点B到点O的距离是5,则5>5+2,所以⊙B与⊙O的位置关系为外离.故选B.点评:本题考查了由数量关系来判断两圆位置关系的方法.10.(2007•泰安)半径分别为13和15的两圆相交,且公共弦长为24,则两圆的圆心距为()A.或14 B.或4C.14 D.4或14考点:相交两圆的性质.分析:利用了连心线垂直平分公共弦,勾股定理求解,注意两圆相交的情况有两种情况.解答:解:如图,圆A与圆B相交于点C,D,CD与AB交于点E,AC=15,BC=13,由于连心线AB垂直平分CD,有CE=12,△ACE,△BCE是直角三角形,由勾股定理得,AE=9,BE=5,而两圆相交的情况有两种,当为左图时,AB=AE﹣BE=9﹣5=4,当为右图时,AB=AE+BE=14.故选D.点评:本题利用了连心线垂直平分公共弦,勾股定理.二.填空题(共8小题)11.(2012•攀枝花)如图,以BC为直径的⊙O1与⊙O2外切,⊙O1与⊙O2的外公切线交于点D,且∠ADC=60°,过B点的⊙O1的切线交其中一条外公切线于点A.若⊙O2的面积为π,则四边形ABCD的面积是12.考点:相切两圆的性质;含30度角的直角三角形;勾股定理;矩形的判定与性质;切线长定理.专题:计算题;压轴题.分析:设⊙O1的半径是R,求出⊙O2的半径是1,连接DO2,DO1,O2E,O1H,AO1,作O2F⊥BC于F,推出D、O2、O1三点共线,∠CDO1=30°,求出四边形CFO2E是矩形,推出O2E=CF,CE=FO2,∠FO2O1=∠CDO1=30°,推出R+1=2(R﹣1),求出R=3,求出DO1,在Rt△CDO1中,由勾股定理求出CD,求出AH==AB,根据梯形面积公式得出×(AB+CD)×BC,代入求出即可.解答:解:∵⊙O2的面积为π,设⊙O2的半径是r,则π×r2=π∴⊙O2的半径是1,∵AB和AH是⊙O1的切线,∴AB=AH,设⊙O1的半径是R,连接DO2,DO1,O2E,O1H,AO1,作O2F⊥BC于F,∵⊙O1与⊙O2外切,⊙O1与⊙O2的外公切线DC、DA,∠ADC=60°,∴D、O2、O1三点共线,∠CDO1=30°,∴∠DAO1=60°,∠O2EC=∠ECF=∠CFO2=90°,∴四边形CFO2E是矩形,∴O2E=CF,CE=FO2,∠FO2O1=∠CDO1=30°,∴DO2=2O2E=2,∠HAO1=60°,∵O1O2=2O1F(在直角三角形中,30度角所对的直角边等于斜边的一半),又∵O1F=R﹣1,O1O2=R+1,∴R+1=2(R﹣1),解得:R=3,即DO1=2+1+3=6,在Rt△CDO1中,由勾股定理得:CD=3,∵∠HO1A=90°﹣60°=30°,HO1=3,∴AH==AB,∴四边形ABCD的面积是:×(AB+CD)×BC=×(+3)×(3+3)=12.故答案为:12.点评:本题考查的知识点是勾股定理、相切两圆的性质、含30度角的直角三角形、矩形的性质和判定,本题主要考查了学生能否运用性质进行推理和计算,题目综合性比较强,有一定的难度.12.(2011•绍兴)如图,相距2cm的两个点A、B在直线l上.它们分别以2cm/s和1cm/s的速度在l上同时向右平移,当点A,B分别平移到点A1,B1的位置时,半径为1cm的⊙A1,与半径为BB1的⊙B相切.则点A平移到点A1,所用的时间为或3s.考点:圆与圆的位置关系.专题:压轴题;数形结合;分类讨论.分析:首先设点A平移到点A1,所用的时间为ts,根据题意求得AB=2cm,AA1=2tcm,BB1=tcm,再分别从内切与外切四种情况分析求解,即可求得答案.解答:解:设点A平移到点A1,所用的时间为ts,根据题意得:AB=2cm,AA1=2tcm,A1B=(2﹣2t)cm,BB1=tcm,如图,此时外切:2﹣2t=1+t,∴t=;如图,此时内切:2﹣2t=1﹣t,∴t=1,此时两圆心重合,舍去;或2﹣2t=t﹣1,解得:t=1,此时两圆心重合,舍去;如图,此时内切:2t﹣t+1=2,∴t=1,此时两圆心重合,舍去;如图:此时外切:2t﹣t﹣1=2,∴t=3.∴点A平移到点A1,所用的时间为1或3s.故答案为:或3.点评:此题考查了圆与圆的位置关系.解题的关键是注意数形结合与方程思想,分类讨论思想的应用,注意别漏解.13.(2010•宁夏)如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是米.考点:相切两圆的性质.专题:压轴题.分析:连接三个圆的圆心,构造等边三角形.根据等边三角形的性质进行求解.解答:解:连接三个圆的圆心,构造等边三角形,则等边三角形的边长是1.根据等边三角形的三线合一和勾股定理,得等边三角形的高是.则其最高点与地面的距离是(1+)米.点评:此题主要是构造等边三角形,根据等边三角形的性质进行计算.14.(2008•绍兴)如图中的圆均为等圆,且相邻两圆外切,圆心连线构成正三角形,记各阴影部分面积从左到右依次为S1,S s,S3,…,S n,则S12:S4的值等于19:7.考点:相切两圆的性质.专题:压轴题;规律型.分析:首先正确求得第一个图形的面积,然后结合图形发现面积增加的规律,从而进行分析求解.解答:解:设圆的半径是1,在第一个图形中,阴影部分的面积是3π﹣π=π;观察图形发现:阴影部分的面积依次增加1.5π.所以第四个图形的面积是2.5π+1.5π×3=7π,第12个图形的面积是2.5π+1.5π×11=19π.所以它们的比值是.点评:此类题的关键是找规律,根据规律进行计算.15.(2008•三明)如图,在以O为圆心的两个同心圆中,大圆的直径AB交小圆于C、D两点,AC=CD=DB,分别以C、D为圆心,以CD为半径作圆.若AB=6cm,则图中阴影部分的面积为4πcm2.考点:圆与圆的位置关系.分析:根据圆的中心对称性,大圆与小圆之间的部分全等,故阴影部分的面积是两圆面积差的一半.解答:解:观察图形,发现:阴影部分的面积是两圆面积差的一半,即S阴影=(S大圆﹣S小圆)=(π×32﹣π×12)=4π.点评:这里要能够把阴影部分合到一起整体计算.16.(2007•河池)若两圆的半径分别为5cm和3cm,圆心距为1cm,则这两个圆的位置关系是内含.考点:圆与圆的位置关系.分析:先计算两圆半径的和与差,再与圆心距比较,得出结论.解答:解:因为5﹣3>1,根据圆心距与半径之间的数量关系可知,⊙O1与⊙O2的位置关系是内含.点评:本题考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为d:外离d>R+r;外切d=R+r;相交R﹣r<d<R+r;内切d=R﹣r;内含d<R﹣r.17.(2004•郫县)已知半径3cm,4cm的两圆外切,那么半径为6cm且与这两圆都相切的圆共有4个.考点:圆与圆的位置关系.专题:压轴题.分析:两圆相切有内切和外切两种情况,本题只要画出图形加以判断即可.解答:解:如图:与两圆相切的有4个.点评:本题考查的是圆与圆的位置关系,解此类题目常常要结合图形再进行判断.18.(2000•嘉兴)如图,⊙O1与⊙O2交于点A,B,延长⊙O2的直径CA交⊙O1于点D,延长⊙O2的弦CB交⊙O1于点E.已知AC=6,AD:BC:BE=1:1:5,则DE的长是9.考点:圆内接四边形的性质;解分式方程;圆与圆的位置关系;相交两圆的性质;相似三角形的判定与性质.专题:压轴题.分析:连接公共弦AB,构成圆内接四边形ABED,根据圆内接四边形的性质,可证明△ABC∽△EDC,从而得出与AD、BC、BE有关的比例线段,根据AD:BC:BE=1:1:5,设线段长度,代入比例式可求CD、CE的长,在Rt△EDC中,用勾股定理求ED.解答:解:连接AB,在圆内接四边形ABED中,∠BAC=∠E,∠ABC=∠EDC,因为AC为⊙O2直径,则∠ABC=90°,于是△ABC∽△EDC,因为AD:BC:BE=1:1:5,所以,设AD=x,BC=x,BE=5x;于是:=,即6x2=36+6x,x2﹣x﹣6=0,解得x=3,x=﹣2(负值设去),在Rt△EDC中,ED==9.点评:本题考查的是对圆心角和圆周角的关系,以及圆的内接四边形的外角和相应的内对角关系的应用.解答此类题关键是通过角的关系,在解题中应用中间角来寻找等量关系.三.解答题(共5小题)19.(2012•鼓楼区二模)如图,已知边长为10的菱形ABCD,对角线BD、AC交于点O,AC=12,点P在射线BD 上运动,过点P分别向直线AB、AD作垂线,垂足分别为E、F.(1)对角线BD长为16;(2)设PB=x,以PO为半径的⊙P与以DF为半径的⊙D相切时,求x的值.考点:相切两圆的性质;勾股定理;菱形的性质.分析:(1)根据菱形性质求出AO长,OB=OD,AC⊥BD,根据勾股定理求出BO,即可求出BD;(2)设PB=x,则PD=BD﹣PB=16﹣x.在Rt△PFD中,求出DF=DP•cos∠ADB=(16﹣x),分为两种情况:①当⊙P与⊙D外切时:第一种情况,当P点在点O的左侧,PO=8﹣x,根据相切两圆性质得出PO+DF=PD,代入得出方程(8﹣x)+(16﹣x)=16﹣x,求出x即可;第二种情况,当P点在点O的右侧,PO=x﹣8,根据相切两圆的性质得出PO+DF=PD,代入得出方程(x﹣8)+(16﹣x)=16﹣x,求出方程的解即可;②当⊙P与⊙D内切时:第三种情况,PO=PB﹣OB=x﹣8,根据OP﹣DF═PD,得出方程(x﹣8)﹣(16﹣x)=16﹣x,求出即可;第四种情况,点P在点D右侧时,PF=OD=8,则DP=10,PB=26.解答:(1)解:∵四边形ABCD是菱形,∴AO=OC=AC=6,OB=OD,AC⊥BD,由勾股定理得:BO===8,∴BD=16,故答案为:16.(2)PB=x,则PD=BD﹣PB=16﹣x.∵PF⊥AD,∴在Rt△PFD中,DF=DP•cos∠ADB=(16﹣x);①当⊙P与⊙D外切时:情况一:当P点在点O的左侧,PO=OB﹣PB=8﹣x,此时PO+DF=PD,∴(8﹣x)+(16﹣x)=16﹣x,解得,x=6;情况二:当P点在点O的右侧,PO=PB﹣OB=x﹣8,此时PO+DF=PD,∴(x﹣8)+(16﹣x)=16﹣x,解得,x=;②当⊙P与⊙D内切时:情况三:点P在D的左侧时,PO=PB﹣OB=x﹣8,∵PD>DF,∴DF﹣OP═PD,∴(x﹣8)﹣(16﹣x)=16﹣x,解得,x=;情况四:点P在点D右侧时,DF=OD=8,则DP=10,PB=26,综上所述,PB的长为6或或或26.点评:本题考查了解直角三角形,菱形的性质,勾股定理,相切两圆的性质等知识点,主要考查学生综合运用性质进行推理和计算的能力,题目综合性比较强,难度偏大,注意要进行分类讨论.20.(2008•静安区二模)如图,在四边形ABCD中,∠B=90°,AD∥BC,AB=4,BC=12,点E在边BA的延长线上,AE=2,点F在BC边上,EF与边AD相交于点G,DF⊥EF,设AG=x,DF=y.(1)求y关于x的函数解析式,并写出定义域;(2)当AD=11时,求AG的长;(3)如果半径为EG的⊙E与半径为FD的⊙F相切,求这两个圆的半径.考点:相似三角形的判定与性质;勾股定理;相切两圆的性质.专题:压轴题;探究型.分析:(1)先根据AD∥BC,∠B=90°求出∠EAG=∠B=90°,在Rt△AEG中根据勾股定理可用x表示出EG的值,再根据平行线分线段成比例可得出=,进而可得到关于x、y的关系式,由二次根式有意义的条件求出x的取值范围即可;(2)由△DFG∽△EAG可得到=,可用x表示出GD的值,再把AD=11代入即可求出x的值,进而得出AG的长;(3)①当⊙E与⊙F外切时,EF=EG+FD=EG+FG,再由△DFG∽△EAG即可求出AG=AE=2,进而可得出⊙E与⊙F的半径;②当⊙E与⊙F内切时,EF=FD﹣EG,再把EF、FD及ED的关系式代入即可求出x的值,由勾股定理即可求出两圆的半径.解答:解:(1)∵AD∥BC,∠B=90°,∴∠EAG=∠B=90°,∴EG==,∵=,∴FG===,∵∠DFG=∠EAG=90°,∠EGA=∠DGF,△DFG∽△EAG,∴=,∴=,∴y关于x的函数解析式为y=,定义域为0<x≤4.(2)∵△DFG∽△EAG,∴=,∴=,∴GD=.当AD=11时,x+=11,x1=1,x2=,经检验它们都是原方程的根,且符合题意,所以AG的长为1或.(3)当⊙E与⊙F外切时,EF=EG+FD=EG+FG,∴FD=FG,∵△DFG∽△EAG,∴∠E=∠AGE=∠FGD=∠GDF.∴AG=AE=2;∴⊙E的半径EG=,⊙F的半径FD=.当⊙E与⊙F内切时,EF=FD﹣EG,∴3=﹣,∵≠0,∴3=,∴x=1,∴⊙E的半径EG==,⊙F的半径FD=,∴⊙E的半径为2,⊙F的半径为4;或⊙E的半径为,⊙F的半径为4.点评:本题考查的是相似三角形的判定与性质、勾股定理及两圆相切的性质,涉及面较广,难度较大,在解(3)时要注意分两圆外切与内切两种情况进行讨论.21.如图,正方形网格中,每个小正方形的边长为1个单位,以O为原点建立平面直角坐标系,圆心为A(3,0)的⊙A被y轴截得的弦长BC=8.解答下列问题:(1)求⊙A 的半径;(2)请在图中将⊙A 先向上平移6 个单位,再向左平移8个单位得到⊙D,并写出圆心D的坐标;(3)观察你所画的图形,对⊙D 与⊙A 的位置关系作出合情的猜想,并直接写出你的结论.聪明的小伙伴,你完成整张试卷全部试题的解答后,如果还有时间对问题(3)的猜想结论给出证明,将酌情另加1~5分,并计入总分.考点:垂径定理;勾股定理;圆与圆的位置关系;坐标与图形变化-平移.专题:作图题.分析:(1)连接AB,根据垂径定理求出BO,根据勾股定理求出AB即可;(2)根据已知画出图形即可,根据平移规律求出D的坐标即可;(3)根据图形即可得出结论.解答:(1)解:∵x轴⊥y轴,A在x轴上,∴BO=CO=4,连接AB,由勾股定理得:AB==5,答:⊙A的半径是5.(2)解:如图:圆心D的坐标是(﹣5,6).(3)解:⊙D 与⊙A 的位置关系是外切.点评:本题考查了对勾股定理,垂径定理,圆与圆的位置关系,坐标与图形变化﹣平移等知识点的应用,解此题的关键是根据题意画出图形,培养了学生分析问题的能力,同时也培养了学生观察图形的能力,题型较好,难度适中.22.如图,在平台上用直径为100mm的两根圆钢棒嵌在大型工件的两侧,测量大的圆形工件的直径,设两圆钢棒的外侧的距离为xmm,工件的直径为Dmm.(1)求出D(mm)与x(mm)之间的函数关系式;(2)当图形工件的直径D小于圆钢棒的直径时,上面所求得的D与x的函数关系式还是否仍然适用?请说明理由.考点:相切两圆的性质;勾股定理;切线的性质.专题:计算题.分析:(1)设三圆的圆心分别为A、B、C,连接AB,则AB过切点E,连接AC,则AC过切点F,连接BC,AN,AN交BC于M,由题意得出AB=AC=50+,BC=x﹣(50+50)=x﹣100,AN=﹣50,在△ABM中根据勾股定理得出D和x的方程,求出即可;(2)根据(1)结合图形仍能得出函数解析式,即可得出答案.解答:(1)解:如图设三圆的圆心分别为A、B、C,连接AB,则AB过切点E,连接AC,则AC过切点F,连接BC,AN,AN交BC于M,由题意得:AB=AC=50+,BC=x﹣(50+50)=x﹣100,AN=﹣50,∵AC=AB,AM⊥BC,∴BM=CM=(x﹣100)=x﹣50,在Rt△ABM中,由勾股定理得:AB2=AM2+BM2,∴=+,即D=x2﹣x+25.(2)解:当图形工件的直径D小于圆钢棒的直径时,上面所求得的D与x的函数关系式能仍然适用,因为那样时,三圆同时与平台相切,有两大圆都与小圆相切时,得出的方程与(1)中的方程相同,所有上面所求得的D与x的函数关系式能仍然适用.点评:本题考查了相切两圆的性质,切线的性质,勾股定理等知识点的应用,能根据题意得出方程是解此题的关键,主要考查学生的观察能力和构造直角三角形的能力,题目比较典型,有一定的难度.23.实验探究:同学们,你注意过烟盒里的香烟是如何摆放的吗?已知,一个烟盒的长为56mm,宽为22mm,高为87mm,一根烟的直径是8mm,若把20根香烟摆放在烟盒中,请你探究合理的摆放方法.考点:相切两圆的性质;勾股定理.专题:计算题.分析:分为两种情况:(1)并列摆放,根据烟的直径和烟盒的长、宽得出只能放14根;(2)若错位摆放,连接O1O2、O2O3、O3O1,解答:解:(1)若并列摆放,如图①,因为烟的直径为8mm,所以AD方向上能并排放(根)烟,而在AB方向上,因为8×3=24>22,所以只能放两根,即烟盒只能放2×7=14(根)烟,此法不行.(2)若错位摆放,如图②,连接O1O2、O2O3、O3O1,则O2O3=O3O1=8mm,△O1O2O3为等腰三角形,过O3作O3E⊥O1O2,则E是O1O2的中点.=7(mm).所以在Rt△O1O3E中,(mm).故排列后中排所需空间长度=(mm),三排所需宽度为AB=22mm,故此摆放符合要求.点评:本题考查了对相切两圆的性质,勾股定理,等腰三角形性质的运用,主要培养学生分析问题和解决问题的能力,注意:分类讨论啊.。

初中数学【与圆有关的位置关系】练习题

初中数学【与圆有关的位置关系】练习题

初中数学【与圆有关的位置关系】练习题一.选择题(共10小题)1.在平面直角坐标系中,圆心为坐标原点,⊙O的半径为10,则P(﹣10,1)与⊙O的位置关系为()A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定2.如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为()A.32°B.31°C.29°D.61°3.如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0B.1C.2D.34.一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径是()A.1.5cm B.7.5cmC.1.5cm或7.5cm D.3cm或15cm5.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()A.E、F、G B.F、G、H C.G、H、E D.H、E、F6.直角△ABC,∠BAC=90°,AB=8,AC=6,以A为圆心,4.8长度为半径的圆与直线BC的公共点的个数为()A.0B.1C.2D.不能确定7.如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10B.8<AB≤10C.4≤AB≤5D.4<AB≤58.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P 沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1B.1或5C.3D.59.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4B.2<r<4C.1<r<8D.2<r<810.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,P A⊥PB,且P A、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3B.4C.6D.8二.填空题(共4小题)11.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是3<r<5.12.如图,在平面直角坐标系中,A(0,4)、B(4,4)、C(6,2),则经过A、B、C三点的圆弧所在圆的圆心M的坐标为;点D坐标为(8,﹣2),连接CD,直线CD 与⊙M的位置关系是.13.如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为.14.⊙O的半径为R,点O到直线l的距离为d,R,d是方程x2﹣4x+m=0的两根,当直线l与⊙O相切时,m的值为.三.解答题(共3小题)15.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.16.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC,①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.答案一.选择题(共10小题)1.在平面直角坐标系中,圆心为坐标原点,⊙O的半径为10,则P(﹣10,1)与⊙O的位置关系为()A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定【解答】解:∵圆心P的坐标为(﹣10,1),∴OP==.∵⊙O的半径为10,∴>10,∴点P在⊙O外.故选:B.2.如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为()A.32°B.31°C.29°D.61°【解答】解:如图所示:连接OC、CD,∵PC是⊙O的切线,∴PC⊥OC,∴∠OCP=90°,∵∠A=119°,∴∠ODC=180°﹣∠A=61°,∵OC=OD,∴∠OCD=∠ODC=61°,∴∠DOC=180°﹣2×61°=58°,∴∠P=90°﹣∠DOC=32°;故选:A.3.如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0B.1C.2D.3【解答】解:设OP与⊙O交于点N,连结MN,OQ,如图,∵OP=4,ON=2,∴N是OP的中点,∵M为PQ的中点,∴MN为△POQ的中位线,∴MN=OQ=×2=1,∴点M在以N为圆心,1为半径的圆上,当点M在ON上时,OM最小,最小值为1,∴线段OM的最小值为1.故选:B.4.一个点到圆的最小距离为6cm,最大距离为9cm,则该圆的半径是()A.1.5cm B.7.5cmC.1.5cm或7.5cm D.3cm或15cm【解答】解:分为两种情况:①当点P在圆内时,最近点的距离为6cm,最远点的距离为9cm,则直径是15cm,因而半径是7.5cm;②当点P在圆外时,最近点的距离为6cm,最远点的距离为9cm,则直径是3cm,因而半径是1.5cm.故选:C.5.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为()A.E、F、G B.F、G、H C.G、H、E D.H、E、F【解答】解:∵OA==,∴OE=2<OA,所以点E在⊙O内,OF=2<OA,所以点F在⊙O内,OG=1<OA,所以点G在⊙O内,OH==2>OA,所以点H在⊙O外,故选:A.6.直角△ABC,∠BAC=90°,AB=8,AC=6,以A为圆心,4.8长度为半径的圆与直线BC的公共点的个数为()A.0B.1C.2D.不能确定【解答】解:∵∠BAC=90°,AB=8,AC=6,∴BC=10,∴斜边上的高为:=4.8,∴d=4.8cm=r=4.8cm,∴圆与该直线AB的位置关系是相切,交点个数为1,故选:B.7.如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10B.8<AB≤10C.4≤AB≤5D.4<AB≤5【解答】解:当AB与小圆相切,∵大圆半径为5,小圆的半径为3,∴AB=2=8.∵大圆的弦AB与小圆有公共点,即相切或相交,∴8≤AB≤10.故选:A.8.如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P 沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1B.1或5C.3D.5【解答】解:当⊙P位于y轴的左侧且与y轴相切时,平移的距离为1;当⊙P位于y轴的右侧且与y轴相切时,平移的距离为5.故选:B.19.如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A 的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4B.2<r<4C.1<r<8D.2<r<8【解答】解:连接AD,∵AC=4,CD=3,∠C=90°,∴AD=5,∵⊙A的半径长为3,⊙D与⊙A相交,∴r>5﹣3=2,∵BC=7,∴BD=4,∵点B在⊙D外,∴r<4,∴⊙D的半径长r的取值范围是2<r<4,故选:B.10.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,P A⊥PB,且P A、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3B.4C.6D.8【解答】解:∵P A⊥PB,∴∠APB=90°,∵AO=BO,∴AB=2PO,若要使AB取得最小值,则PO需取得最小值,连接OM,交⊙M于点P′,当点P位于P′位置时,OP′取得最小值,过点M作MQ⊥x轴于点Q,则OQ=3、MQ=4,∴OM=5,又∵MP′=2,∴OP′=3,∴AB=2OP′=6,故选:C.二.填空题(共4小题)11.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是3<r<5.【解答】解:在直角△ABD中,CD=AB=4,AD=3,则BD==5.由图可知3<r<5.故答案为:3<r<5.12.如图,在平面直角坐标系中,A(0,4)、B(4,4)、C(6,2),则经过A、B、C三点的圆弧所在圆的圆心M的坐标为(2,0);点D坐标为(8,﹣2),连接CD,直线CD与⊙M的位置关系是相切.【解答】解:(1)如图,经过A、B、C三点的圆弧所在圆的圆心M的坐标为(2,0).故答案为(2,0);(2)连接MC,MD,MC2=42+22=20,CD2=42+22=20,MD2=62+22=40,MD2=MC2+CD2,∴∠MCD=90°,又∵MC为半径,∴直线CD是⊙M的切线;故答案为:相切.13.如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为2﹣2或2+2..【解答】解:在y=﹣x+1中,令x=0,则y=1,令y=0,则x=2,∴A(0,1),B(2,0),∴AB=;如图,设⊙M与AB相切与C,连接MC,则MC=2,MC⊥AB,∵∠MCB=∠AOB=90°,∠B=∠B,∴△BMC~△ABO,∴,即,∴BM=2,∴OM=2﹣2,或OM=2+2.∴m=2﹣2或m=2+2.故答案为:2﹣2,2+2.14.⊙O的半径为R,点O到直线l的距离为d,R,d是方程x2﹣4x+m=0的两根,当直线l与⊙O相切时,m的值为4.【解答】解:∵d、R是方程x2﹣4x+m=0的两个根,且直线L与⊙O相切,∴d=R,∴方程有两个相等的实根,∴△=16﹣4m=0,解得,m=4,故答案为:4.三.解答题(共3小题)15.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.【解答】解:(1)直线DE与⊙O相切,理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°﹣90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8﹣x)2=22+x2,解得:x=4.75,则DE=4.75.16.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC,①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.【解答】解:(1)如图①,连接OC,∵OC=OA,CD=OA,∴OC=CD,∴∠ODC=∠COD,∵CD是⊙O的切线,∴∠OCD=90°,∴∠ODC=45°;(2)如图②,连接OE.∵CD=OA,∴CD=OC=OE=OA,∴∠1=∠2,∠3=∠4.∵AE∥OC,∴∠2=∠3.设∠ODC=∠1=x,则∠2=∠3=∠4=x.∴∠AOE=∠OCD=180°﹣2x.①AE=OD.理由如下:在△AOE与△OCD中,∴△AOE≌△OCD(SAS),∴AE=OD.②∠6=∠1+∠2=2x.∵OE=OC,∴∠5=∠6=2x.∵AE∥OC,∴∠4+∠5+∠6=180°,即:x+2x+2x=180°,∴x=36°.∴∠ODC=36°.。

圆与圆的位置关系典型例题

圆与圆的位置关系典型例题

圆与圆的位置关系典型例题
一、两个圆的半径分别为3和5,圆心之间的距离为7,则这两个圆的位置关系是?
A. 相离
B. 外切
C. 相交
D. 内切
(答案)C
二、已知两圆的半径之和为10,半径之差为4,圆心距为6,那么这两个圆的位置关系是?
A. 内切
B. 外切
C. 相交
D. 相离
(答案)A
三、设两圆的半径分别为R和r,且R > r,圆心距为d,若d = R - r,则两圆的位置关系为?
A. 相交
B. 外切
C. 内切
D. 相离
(答案)C
四、两个圆的半径分别为2和3,圆心之间的距离为1,则两圆的位置关系是?
A. 相离
B. 外切
C. 内切
D. 相交且一圆内含于另一圆
(答案)D
五、圆O1和圆O2的半径分别为3cm和4cm,圆心距O1O2为5cm,则圆O1和圆O2的位置关系是?
A. 相交
B. 外切
C. 内切
D. 相离
(答案)B
六、两个圆的半径分别为6和8,圆心之间的距离为2,则这两个圆的位置关系是?
A. 相交
B. 外切
C. 内切
D. 一圆内含于另一圆
(答案)D
七、已知两圆的半径分别为5和3,圆心距为8,那么两圆的位置关系是?
A. 相交
B. 外切
C. 内切
D. 无法确定
(答案)B
八、两个圆的半径分别为4和6,圆心之间的距离为10,则这两个圆?
A. 相交
B. 外切
C. 内切
D. 相离
(答案)B。

圆和圆的位置关系专题训练

圆和圆的位置关系专题训练




C 在 oD 外 .
。 誊
D .可能 在 oD 内也可 能在 oD外 2 o0的 半 径 为 3e . m,点 是 oD外 一 点 , O 4c M= m。则 以 为 圆心且 与 oD相 切 的 圆 的半 径 一定 是 (
A. N 或 7e 1 1 C m
8 已 知 4 B 3 。 C是 射 线 D . :0 , O B上 的 一点 , j 且 O = . 以 C为 圆心 , 为半径 的 网与射 C 4若 r
线 O 有 两个 不 同 的交点 ,则 r 取值 范 A 的
嗣是 — — .
坐标为 整数 的点 P有 —


个.


1 . 知 两 同 的 半 径 分 别 是 5和 6 圆 心 距 0已 .
+2 x 5 >—+

1 . 图 . oD 中 , 是 弦 , 是 oD 的 切 5如 在 _ 4 4C
A 夕 离 . C 内含 .
B 夕 切 . D 外离 或 内含 .
2 已知两 圆的 圆心 距为 3 两 圆的半 径分 别 是 . .
方 程 x- x 3 0的 两 个 根 , 那 么 这 两 个 圆 24 + =
的位 置关 系是 ( A 外离 . C 相 交 .
) . B 外 切 . D 内切 .

生 活 中没 有 什 么 可 怕 的 东 西 , 有 需 要 理 解 的 东 西 。— — 居里 夫人 只
, ,
;’ 和 的 置 系 题 练 孽圆 圃 位 关 专 训
( )・ A

A 相 离 .

B 相 切 .

或 1 4 4

圆与圆的位置关系

圆与圆的位置关系

圆与圆的位置关系【基础知识点】12例题1、如图 ,⊙A与⊙B内切,⊙A与⊙C外切,⊙A、⊙B、⊙C的半径分别是,2+,∠BAC=60°,求BC的长。

2-62,2623、两圆的公切线:和两个圆都想切的直线叫做两圆的公切线,包括外公切线、内公切线。

(1)外公切线:两个圆在公切线同旁时,这样的公切线叫做外公切线。

(2)内公切线:两个圆在公切线两旁时,这样的公切线叫做内公切线。

(3)公切线的长:公切线上两个切点间的距离叫做公切线的长。

4、两圆相交的重要定理:相交两圆的连心线垂直平分公共弦。

例题2、已知⊙1和⊙2的半径分别为8cm和5cm,它们相交于A、B,且AB=6cm,求圆心距O1O2.(自己作图,考虑两种情况,分类讨论:圆心在AB同侧或者异侧)例题3、如图,已知直角三角形ABC的斜边AB为4,内切圆半径为26 ,求三角形ABC的面积。

例题4、(2011•南京)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P为BC的中点,动点Q从点P出发,沿射线PC方向以2cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.(1)当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;(2)已知⊙O为△ABC的外接圆.若⊙P与⊙O相切,求t的值.例题5、(2008•威海)如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1厘米.⊙A 以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(t≥0).(1)试写出点A,B之间的距离d(厘米)与时间t(秒)之间的函数表达式;(2)问点A出发后多少秒两圆相切?例题6、(2011•绵阳)如图,在梯形ABCD中,AB∥CD,∠BAD=90°,以AD为直径的半圆O与BC 相切.(1)求证:OB⊥OC;(2)若AD=12,∠BCD=60°,⊙O1与半⊙O外切,并与BC、CD相切,求⊙O1的面积.例题7、(2007•南充)如图是某城市一个主题雕塑的平面示意图,它由置放于地面l上两个半径均为2米的半圆与半径为4米的⊙A构成.点B、C分别是两个半圆的圆心,⊙A分别与两个半圆相切于点E、F,BC长为8米.求EF的长.例题8(2011•黄石)已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,B,O1重合),直线CB与⊙O1交于另一点D.(1)如图(1),若AD是⊙O1的直径,AC是⊙O2的直径,求证:AC=CD;(2)如图(2),若C是⊙O1外一点,求证:O1C丄AD;(3)如图(3),若C是⊙O1内的一点,判断(2)中的结论足否成立.例题9、(2006•成都)已知:如图,⊙O与⊙A相交于C,D两点,A,O分别是两圆的圆心,△ABC内接于⊙O,弦CD交AB于点G,交⊙O的直径AE于点△CDE,连接BD.(1)求证:△ACG∽△DBG;(2)求证:AC2=AG•AB;6,15,且CG:CD=1:4,求AB和BD的长(3)若⊙A,⊙O的直径分别为5【课堂练习】一、填空与选择1、(2010•宁夏)如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是__米.2、(2010•菏泽)如图,在正方形ABCD中,O是CD边上的一点,以O为圆心,OD为半径的半圆恰好与以B为圆心,BC为半径的扇形的弧外切,则∠OBC的正弦值为________3、(2008•绍兴)如图中的圆均为等圆,且相邻两圆外切,圆心连线构成正三角形,记各阴影部分面积从左到右依次为S1,Ss,S3,…,Sn,则S12:S4的值等于__________。

与圆有关的位置关系训练题

与圆有关的位置关系训练题

与圆有关的位置关系训练题一、选择题1.(2022秋•烟台期末)已知⊙O的半径为3,OP=5,则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.不能确定2.(2022秋•东阳市期末)如图,在等腰三角形ABC中,AB=AC,点D是AC 的中点,若以AB为直径作圆,则下列判断正确的是()A.点C一定在⊙O外B.点C一定在⊙O上C.点D一定在⊙O外D.点D一定在⊙O上3.(2022秋•越秀区校级期末)已知⊙O的直径是8,P点到圆心O的距离为6,则P点与⊙O的位置关系是()A.在圆上B.在圆内C.在圆外D.无法确定4.(2022秋•荔湾区校级期末)如图,在Rt△ABC中,∠C=90°,∠A=60°,AC=4cm,以点C为圆心,以5cm长为半径作圆,则AB的中点D与⊙C的位置关系是()A.圆上B.圆外C.圆内D.不确定5.(2022秋•泰山区期末)如图,点P(3,4),⊙P半径为2,A(2.5,0),B (5,0),点M是⊙P上的动点,点C是MB的中点,则AC的最大值是()A.32B.52C.72D.926.(2022秋•桃城区校级期末)以直角坐标系的原点O为圆心,√2为半径作⊙O,则点P(﹣1,1)与⊙O的位置关系是()A.在⊙O内B.在⊙O上C.在⊙O外D.不能确定7.(2022秋•霸州市期末)已知AB是⊙O的任意一条直径,求证:⊙O是以直径AB所在直线为对称轴的轴对称图形.下列为证明过程,嘉琪为保证推理更严谨,想在方框中“∵OP=OP′,”和“∴PM=MP′,”之间做补充,下列叙述正确的是()证明:如图,设点P是⊙O上除点A、B以外任意一点,过点P作PP′⊥AB,交⊙O于点P′,垂足为点M,若点M与圆心O不重合,连接OP,OP′,在△OPP′中,∵OP=OP′,∴PM=MP′,则AB是PP′的垂直平分线,若点M与圆心O重合,显然AB是PP′的垂直平分线,∴对于圆上任意一点P,在圆上都有关于直线AB的对称点P′∴⊙O是以直径AB所在直线为对称轴的轴对称图形.A.推理严谨,不必补充B.应补充:∴△OPP′是等腰三角形C.应补充:又∵PP′⊥ABD.应补充:∴△OPP′是等腰三角形,又∵PP′⊥AB8.(2022秋•河西区校级期末)已知的⊙O半径为3cm,点P到圆心O的距离OP=2cm,则点P()A.在⊙O外B.在⊙O上C.在⊙O内D.无法确定9.(2022秋•安徽期末)如图,⊙O是△ABC的外接圆,若△OBC为等腰直角三角形,则tan A的值为()A.1B.√33C.√22D.√310.(2022秋•鼓楼区校级期末)下列说法正确的是()A.三点确定一个圆B.三角形的外心到三角形三边的距离相等C.平分弦的直径垂直于弦D.垂直于弦且过圆心的直线平分这条弦11.(2022秋•滨城区校级期末)如图,等腰Rt△ABC内接于圆O,直径AB=2√2,D是圆上一动点,连接AD,CD,BD,且CD交AB于点G.下列结论:①DC平分∠ADB;②∠DAC=∠AGC;③当BD=2时,四边形ADBC的周长最大;④当AD=CD,四边形ADBC的面积为8√3,正确的有()A.①②B.①②③C.①③④D.②③④12.(2022秋•和硕县校级期末)如图,△ABC内接于⊙O,∠C=30°,AB=4,则⊙O的半径为()A.√3B.2C.2√3D.4 13.(2022•馆陶县模拟)如图,已知△ABC内接于⊙O,AB=2,AC=√3,BC =1,则AĈ的长是()A.π3B.2π3C.√3π3D.2√3π314.(2022秋•定海区期中)△ABC的外心在三角形的内部,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.无法判断15.(2021秋•厦门期末)如图,△ABC内接于圆,弦BD交AC于点P,连接AD.下列角中,是AB̂所对圆周角的是()A.∠APB B.∠ABD C.∠ACB D.∠BAC 16.(2022秋•海淀区校级月考)如图,等腰△ABC内接于⊙O,其中AB=BC,下列结论不一定成立的是()A.∠1=∠2B.∠2=∠4C.∠AOB=2∠1D.∠AOC=4∠1 17.(2022秋•安徽期末)如图,若圆O的半径为3,点O到一条直线的距离为3,则这条直线可能是()A.l1B.l2C.l3D.l418.(2022秋•江北区校级月考)在平面直角坐标系xOy中,以点A(3,4)为圆心,4为半径的圆与y轴所在直线的位置关系是()A.相离B.相切C.相交D.无法确定19.(2021秋•辛集市期末)⊙O的半径为4,直线m上一点P与点O的距离为1,则直线m与⊙O的位置关系为()A.相离B.相交C.相切D.无法判断20.(2022秋•海淀区校级月考)如图,在△ABC中,AB=AC=5,BC=8,以A 为圆心作一个半径为3的圆,下列结论中正确的是()A.点B在⊙A内B.直线BC与⊙A相离C.点C在⊙A上D.直线BC与⊙A相切21.(2021秋•双滦区期末)在△ABC中,AB=AC=5,BC=8,以A为圆心2.5为半径的圆.下列结论中正确的是()A.直线BC与圆O相切B.直线BC与⊙O相离C.点B在圆内D.点C在圆上22.(2021秋•遵化市期末)设⊙O的半径是6cm,点O到直线l的距离为d,⊙O 与直线l有公共点,则()A.d>6cm B.d=6cm C.0≤d<6cm D.0≤d≤6cm 23.(2021秋•北仑区期末)⊙O的半径为5,若直线l与该圆相交,则圆心O到直线l的距离可能是()A.3B.5C.6D.10 24.(2021秋•阳谷县期末)已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是()A.相离B.相切C.相交D.相离、相切、相交都有可能25.(2022秋•昭阳区校级期末)已知△ABC中,∠C=90°,BC=a,CA=b,AB=c.⊙O是△ABC的内切圆,下列选项中,⊙O的半径为()A.a+b−c2B.a−b−c2C.2abcD.aba+b26.(2022秋•越秀区校级期末)如图,在⊙O中,AB̂=AĈ,BC=8,AC=4√5,I是△ABC的内心,则线段OI的值为()A.1B.5−√10C.2√5−3D.5−2√5 27.(2022秋•石家庄期末)如图,点I为△ABC的内心,AB=5,AC=4,BC =3,将∠ACB平移使其顶点与I重合,则图中阴影部分的面积为()A.1B.2524C.2625D.3228.(2022秋•安徽期末)如图,在△ABC中,AB=BC,过点B作BD⊥AC于点D,P是△ABC内一点,且∠BPC=108°,连接CP交BD于点E,若点P 恰好为△ABE内心,则∠PEB的度数为()A.36°B.48°C.60°D.72°29.(2022秋•邹城市校级期末)如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=8,BC=17,CA=15,则阴影部分(即四边形CEOF)的面积是()A.4B.6.25C.7.5D.9 30.(2022秋•南开区校级期末)如图,⊙O是△ABC的内切圆,切点分别为D,E,F,且∠A=90°,BC=10,CA=8,则⊙O的半径是()A.1B.√3C.2D.2√3二、填空题31.(2022秋•阳西县期末)如图,在Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB=∠PBC,则线段CP长的最小值为.32.(2022秋•西城区期末)已知⊙O的半径为5,点P到圆心O的距离为8,则点P在⊙O(填“内”“上”或“外”).33.(2022秋•白云区校级期末)如图,AB为⊙O的直径,C为⊙O上一点,其中AB=4,∠AOC=120°,P为⊙O上的动点,连AP,取AP中点Q,连接CQ,则线段CQ的最大值为.34.(2022秋•通州区期末)如图,在平面直角坐标系中,点A(3,4)为⊙O上一点,B为⊙O内一点,请写出一个符合条件要求的点B的坐标.35.(2022秋•西城区期末)如图,AB是⊙O的直径,C为⊙O上一点,且AB ⊥OC,P为圆上一动点,M为AP的中点,连接CM.若⊙O的半径为2,则CM长的最大值是.36.(2021秋•椒江区校级期中)如图所示,正三角形ABC的边长为4,AE=2AD,AD=BE,BD交CE于点F,则△DEF的外接圆半径长为.37.(2022秋•丰台区期末)如图,在平面直角坐标系xOy中,点A(4,0),B (3,3),点P是△OAB的外接圆的圆心,则点P的坐标为.38.(2022秋•万全区期末)如图,一次函数y=−√33x+1的图象与x轴交于点A,与y轴交于点B,作△ABO的外接圆⊙C,则图中阴影部分的面积为.(结果保留π)39.(2021秋•润州区期中)如图,AD为△ABC的外接圆⊙O的直径,若∠BAD =58°,则∠ACB=.40.(2022秋•蕉城区校级期末)如图,△ABC内接于⊙O,连接AO并延长交BC于点D,交⊙O于点E,若DE=1,AD=5,∠ADC=30°,则BC的长为.41.(2022秋•海淀区校级月考)已知如图,M(m,0)是x轴上动点,⊙M半径r=2√2,若⊙M与直线y=x+2相交,则m的取值范围是.42.(2022秋•鼓楼区期中)已知⊙O的半径为10cm,圆心O到直线l的距离为12cm,则直线l与⊙O的位置关系是.43.(2022•顺城区模拟)已知⊙O的半径为3cm,圆心O到直线l的距离是2cm,则直线l与⊙O的位置关系是.44.(2021秋•重庆期末)已知Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,以C为圆心,4.8cm长度为半径画圆,则直线AB与⊙O的位置关系是.45.(2022春•龙华区校级月考)已知⊙O的半径为3,直线m上有一动点P,OP=3,则直线与⊙O的位置关系是.46.(2022秋•河西区校级期末)如图,⊙I是直角△ABC的内切圆,切点为D、E、F,若AF=10,BE=3,则△ABC的面积为.47.(2022秋•南关区校级期末)如图,点O为△ABC的内心,∠A=70°,则∠BOC的度数为.48.(2022秋•金华期末)如图,⊙O是△ABC的内切圆,切点分别为D,E,F,,CA=2,则⊙O的半径是.且∠A=90°,BC=5249.如图,设边长为6的等边三角形内切圆的半径、外接圆的半径分别为r,R,则R﹣r的值为.50.(2022秋•海港区期末)如图,点O是△PMN的内心,PO的延长线和△PMN 的外接圆相交于点Q,连接NQ、MO、NO,若∠MNQ=15°,则∠MON的度数为.三、解答题51.(2022秋•江阴市校级月考)平面直角坐标系中,点A(2,9)、B(2,3)、C(3,2)、D(9,2)在⊙P上.(1)在图中清晰标出点P的位置;(2)点P的坐标是,⊙P的半径是.52.(2022秋•江阴市校级月考)如图,点A在⊙O内,点B,C在⊙O上,若OA=8,AB=12,∠A=∠B=60°,求BC的长.53.(2021秋•利川市期末)如图,△ABC内接于⊙O,若⊙O的半径为6,∠B =60°,求AC的长.54.(2022秋•广饶县校级期末)如图,AB是⊙O的直径,点D在AB的延长线上,点C在⊙O上,CA=CD,∠D=30°.(1)试判断直线与⊙O的位置关系,并说明理由;(2)若⊙O的半径为5,求点A到CD所在直线的距离.55.(2021秋•昆明期末)如图,点O是△ABC的内心,AO的延长线和△ABC 的外接圆相交于点D,连结CD.求证:OD=CD.。

高中数学 4.2.2圆与圆的位置关系练习 新人教A版必修2-新人教A版高一必修2数学试题

高中数学 4.2.2圆与圆的位置关系练习 新人教A版必修2-新人教A版高一必修2数学试题

【成才之路】2015-2016学年高中数学圆与圆的位置关系练习新人教A版必修2基础巩固一、选择题1.圆C1:x2+y2+4x-4y+7=0和圆C2:x2+y2-4x-10y+13=0的公切线有( ) A.1条B.3条C.4条D.以上均错[答案] B[分析] 先判断出两圆的位置关系,然后根据位置关系确定公切线条数.[解析] ∵C1(-2,2),r1=1,C2(2,5),r2=4,∴|C1C2|=5=r1+r2,∴两圆相外切,因此公切线有3条,因此选B.规律总结:如何判断两圆公切线的条数首先判断两圆的位置关系,然后判断公切线的条数:(1)两圆相离,有四条公切线;(2)两圆外切,有三条公切线,其中一条是内公切线,两条是外公切线;(3)两圆相交,有两条外公切线,没有内公切线;(4)两圆内切,有一条公切线;(5)两圆内含,没有公切线.2.已知圆C1:(x+1)2+(y-3)2=25,圆C2与圆C1关于点(2,1)对称,则圆C2的方程是( )A.(x-3)2+(y-5)2=25B.(x-5)2+(y+1)2=25C.(x-1)2+(y-4)2=25D.(x-3)2+(y+2)2=25[答案] B[解析] 设⊙C2上任一点P(x,y),它关于(2,1)的对称点(4-x,2-y)在⊙C1上,∴(x -5)2+(y+1)2=25.3.若圆(x-a)2+(y-b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周长,则a、b应满足的关系式是( )A.a2-2a-2b-3=0B.a2+2a+2b+5=0C.a2+2b2+2a+2b+1=0D.3a2+2b2+2a+2b+1=0[答案] B[解析] 利用公共弦始终经过圆(x+1)2+(y+1)2=4的圆心即可求得.两圆的公共弦所在直线方程为:(2a+2)x+(2b+2)y-a2-1=0,它过圆心(-1,-1),代入得a2+2a+2b+5=0.4.两圆x2+y2=16与(x-4)2+(y+3)2=r2(r>0)在交点处的切线互相垂直,则r=( )A.5 B.4C.3 D.2 2[答案] C[解析] 设一个交点P(x0,y0),则x20+y20=16,(x0-4)2+(y0+3)2=r2,∴r2=41-8x0+6y0,∵两切线互相垂直,∴y0x0·y0+3x0-4=-1,∴3y0-4x0=-16.∴r2=41+2(3y0-4x0)=9,∴r=3.5.已知两圆相交于两点A(1,3),B(m,-1),两圆圆心都在直线x-y+c=0上,则m +c的值是( )A.-1 B.2C.3 D.0[答案] C[解析] 两点A,B关于直线x-y+c=0对称,k AB=-4m-1=-1.∴m=5,线段AB的中点(3,1)在直线x-y+c=0上,∴c=-2,∴m+c=3.6.半径长为6的圆与y轴相切,且与圆(x-3)2+y2=1内切,则此圆的方程为( ) A.(x-6)2+(y-4)2=6B.(x-6)2+(y±4)2=6C.(x-6)2+(y-4)2=36D.(x-6)2+(y±4)2=36[答案] D[解析] 半径长为6的圆与x轴相切,设圆心坐标为(a,b),则a=6,再由b2+32=5可以解得b=±4,故所求圆的方程为(x-6)2+(y±4)2=36.二、填空题7.若点A(a,b)在圆x2+y2=4上,则圆(x-a)2+y2=1与圆x2+(y-b)2=1的位置关系是_________.[答案] 外切[解析] ∵点A(a,b)在圆x2+y2=4上,∴a2+b2=4.又圆x2+(y-b)2=1的圆心C1(0,b),半径r1=1,圆(x-a)2+y2=1的圆心C2(a,0),半径r2=1,则d =|C 1C 2|=a 2+b 2=4=2, ∴d =r 1+r 2.∴两圆外切.8.与直线x +y -2=0和圆x 2+y 2-12x -12y +54=0都相切的半径最小的圆的标准方程是_________.[答案] (x -2)2+(y -2)2=2[解析] 已知圆的标准方程为(x -6)2+(y -6)2=18,则过圆心(6,6)且与直线x +y -2=0垂直的方程为x -y =0.方程x -y =0分别与直线x +y -2=0和已知圆联立得交点坐标分别为(1,1)和(3,3)或(-3,-3).由题意知所求圆在已知直线和已知圆之间,故所求圆的圆心为(2,2),半径为2,即圆的标准方程为(x -2)2+(y -2)2=2.三、解答题9.求以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦为直径的圆C 的方程.[解析] 方法1:联立两圆方程⎩⎪⎨⎪⎧x 2+y 2-12x -2y -13=0,x 2+y 2+12x +16y -25=0,相减得公共弦所在直线方程为4x +3y -2=0.再由⎩⎪⎨⎪⎧4x +3y -2=0,x 2+y 2-12x -2y -13=0,联立得两圆交点坐标(-1,2),(5,-6). ∵所求圆以公共弦为直径,∴圆心C 是公共弦的中点(2,-2),半径为 125+12+-6-22=5.∴圆C 的方程为(x -2)2+(y +2)2=25.方法2:由方法1可知公共弦所在直线方程为4x +3y -2=0.设所求圆的方程为x 2+y 2-12x -2y -13+λ(x 2+y 2+12x +16y -25)=0(λ为参数).可求得圆心C (-12λ-1221+λ,-16λ-221+λ).∵圆心C 在公共弦所在直线上, ∴4·-12λ-1221+λ+3·-16λ-221+λ-2=0,解得λ=12.∴圆C 的方程为x 2+y 2-4x +4y -17=0. 10.(2015·某某天一中学模拟)已知半径为5的动圆C 的圆心在直线l :x -y +10=0上. (1)若动圆C 过点(-5,0),求圆C 的方程;(2)是否存在正实数r ,使得动圆C 满足与圆O :x 2+y 2=r 2相外切的圆有且仅有一个?若存在,请求出r ;若不存在,请说明理由.[解析] (1)依题意可设动圆C 的方程为(x -a )2+(y -b )2=25,其中(a ,b )满足a -b +10=0.又因为动圆C 过点(-5,0), 故(-5-a )2+(0-b )2=25.解方程组⎩⎪⎨⎪⎧a -b +10=0,-5-a 2+0-b2=25,得⎩⎪⎨⎪⎧a =-10,b =0或⎩⎪⎨⎪⎧a =-5,b =5,故所求圆C 的方程为(x +10)2+y 2=25或(x +5)2+(y -5)2=25. (2)圆O 的圆心(0,0)到直线l 的距离d =|10|1+1=5 2.当r 满足r +5<d 时,动圆C 中不存在与圆O :x 2+y 2=r 2相切的圆;当r 满足r +5=d ,即r =52-5时,动圆C 中有且仅有1个圆与圆O :x 2+y 2=r 2相外切;当r 满足r +5>d ,即r >52-5时,与圆O :x 2+y 2=r 2相外切的圆有两个. 综上,当r =52-5时,动圆C 中满足与圆O :x 2+y 2=r 2相外切的圆有且仅有一个.能力提升一、选择题1.已知M 是圆C :(x -1)2+y 2=1上的点,N 是圆C ′:(x -4)2+(y -4)2=82上的点,则|MN |的最小值为( )A .4B .42-1C .22-2D .2[答案] D[解析] ∵|CC ′|=5<R -r =7,∴圆C 内含于圆C ′,则|MN |的最小值为R -|CC ′|-r =2.2.过圆x 2+y 2=4外一点M (4,-1)引圆的两条切线,则经过两切点的直线方程为( ) A .4x -y -4=0 B .4x +y -4=0 C .4x +y +4=0 D .4x -y +4=0[答案] A[解析] 以线段OM 为直径的圆的方程为x 2+y 2-4x +y =0,经过两切点的直线就是两圆的公共弦所在的直线,将两圆的方程相减得4x -y -4=0,这就是经过两切点的直线方程.3.若集合A ={(x ,y )|x 2+y 2≤16|,B ={(x ,y )|x 2+(y -2)2≤a -1},且A ∩B =B ,则a 的取值X 围是( )A .a ≤1B .a ≥5C .1≤a ≤5D .a ≤5[答案] D[解析] A ∩B =B 等价于B ⊆A .当a >1时,集合A 和B 分别代表圆x 2+y 2=16和圆x2+(y -2)2=a -1上及内部的点,容易得出当B 对应的圆的半径长小于等于2时符合题意.由0<a -1≤4,得1<a ≤5;当a =1时,集合B 中只有一个元素(0,2),满足B ⊆A ;当a <1时,集合B 为空集,也满足B ⊆A .综上可知,当a ≤5时符合题意.4.(2015·某某某某模拟)若圆(x -a )2+(y -a )2=4上,总存在不同的两点到原点的距离等于1,则实数a 的取值X 围是( )A .⎝⎛⎭⎪⎫22,322B .⎝ ⎛⎭⎪⎫-322,-22C .⎝ ⎛⎭⎪⎫-322,-22∪⎝ ⎛⎭⎪⎫22,322D .⎝ ⎛⎭⎪⎫-22,22[答案] C[解析] 圆(x -a )2+(y -a )2=4的圆心C (a ,a ),半径r =2,到原点的距离等于1的点的集合构成一个圆,这个圆的圆心是原点O ,半径R =1,则这两个圆相交,圆心距d =a 2+a 2=2|a |,则|r -R |<d <r +R ,则1<2|a |<3,所以22<|a |<322, 所以-322<a <-22或22<a <322.二、填空题5.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦长为23,则a =_________. [答案] 1[解析] 两个圆的方程作差,可以得到公共弦的直线方程为y =1a,圆心(0,0)到直线y=1a 的距离d =|1a |,于是由(232)2+|1a|2=22,解得a =1. 6.(2015·某某某某月考)已知两点M (1,0),N (-3,0)到直线的距离分别为1和3,则满足条件的直线的条数是_________.[答案] 3[解析] ∵已知M (1,0),N (-3,0),∴|MN |=4,分别以M ,N 为圆心,1,3为半径作两个圆,则两圆外切,故有三条公切线.即符合条件的直线有3条.三、解答题7.已知圆A :x 2+y 2+2x +2y -2=0,若圆B 平分圆A 的周长,且圆B 的圆心在直线l :y =2x 上,求满足上述条件的半径最小的圆B 的方程.[解析] 解法一:考虑到圆B 的圆心在直线l 上移动,可先写出动圆B 的方程,再设法建立圆B 的半径r 的目标函数.设圆B 的半径为r .∵圆B 的圆心在直线l :y =2x 上,∴圆B 的圆心可设为(t,2t ),则圆B 的方程是(x -t )2+(y -2t )2=r 2, 即x 2+y 2-2tx -4ty +5t 2-r 2=0.① ∵圆A 的方程是x 2+y 2+2x +2y -2=0,② ∴②-①,得两圆的公共弦方程为 (2+2t )x +(2+4t )y -5t 2+r 2-2=0.③ ∵圆B 平分圆A 的周长,∴圆A 的圆心(-1,-1)必在公共弦上,于是,将x =-1,y =-1代入方程③并整理,得r 2=5t 2+6t +6=5(t +35)2+215≥215.∴当t =-35时,r min =215. 此时,圆B 的方程是 (x +35)2+(y +65)2=215.解法二:也可以从图形的几何性质来考虑,用综合法来解. 如图,设圆A ,圆B 的圆心分别为A ,B ,则A (-1,-1),B 在直线l :y =2x 上,连接AB ,过A 作MN ⊥AB ,且MN 交圆于M ,N 两点.∴MN 为圆A 的直径.∵圆B 平分圆A ,∴只需圆B 经过M ,N 两点. ∵圆A 的半径是2,设圆B 的半径为r , ∴r =|MB |=|AB |2+|AM |2=|AB |2+4.欲求r 的最小值,只需求|AB |的最小值. ∵A 是定点,B 是l 上的动点, ∴当AB ⊥l ,即MN ∥l 时,|AB |最小. 于是,可求得直线AB 方程为y +1=-12(x +1),即y =-12x -32,与直线l :y =2x 联立可求得B (-35,-65),r min =215. ∴圆B 的方程是 (x +35)2+(y +65)2=215.8.在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=4(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为23,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和圆C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,试求所有满足条件的点P 的坐标.[解析] (1)由于直线x =4与圆C 1不相交,所以直线l 的斜率存在,设直线l 的方程为y =k (x -4),圆C 1的圆心C 1(-3,1)到直线l 的距离为d =|1-k -3-4|1+k2, 因为直线l 被圆C 1截得的弦长为23, ∴4=(3)2+d 2,∴k (24k +7)=0, 即k =0或k =-724,所以直线l 的方程为y =0或7x +24y -28=0(2)设点P (a ,b )满足条件,不妨设直线l 1的方程为y -b =k (x -a ),k ≠0,则直线l 2的方程为y -b =-1k(x -a ),因为C 1和C 2的半径相等,及直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,所以圆C 1的圆心到直线l 1的距离和圆C 2的圆心到直线l 2的距离相等,即|1-k -3-a -b |1+k2=⎪⎪⎪⎪⎪⎪5+1k 4-a -b 1+1k 2整理得:|1+3k +ak -b |=|5k +4-a -bk |,∴1+3k +ak -b =5k +4-a -bk 或1+3k +ak -b =-5k -4+a +bk ,即(a +b -2)k =b -a +3或(a -b +8)k =a +b -5. 因为k 的取值有无穷多个,所以⎩⎪⎨⎪⎧a +b -2=0b -a +3=0,或⎩⎪⎨⎪⎧a -b +8=0a +b -5=0,解得⎩⎪⎨⎪⎧ a =52b =-12或⎩⎪⎨⎪⎧a =-32b =132这样点P 只可能是点P 1⎝ ⎛⎭⎪⎫52,-12或点P 2⎝ ⎛⎭⎪⎫-32,132.经检验点P 1和P 2满足题目条件.。

高三数学圆与圆的位置关系试题答案及解析

高三数学圆与圆的位置关系试题答案及解析

高三数学圆与圆的位置关系试题答案及解析1.在平面直角坐标xoy中,设圆M的半径为1,圆心在直线上,若圆M上不存在点N,使,其中A(0,3),则圆心M横坐标的取值范围 .【答案】【解析】设,由得:化简得:,表示为以为圆心,2为半径的圆,由题意得圆B与圆无交点,即或,解得圆心M横坐标的取值范围为:【考点】动点轨迹,圆与圆位置关系2.设m,n∈R,若直线l:mx+ny-1=0与x轴相交于点A,与y轴相交于点B,且l与圆x2+y2=4相交所得弦的长为2,O为坐标原点,则△AOB面积的最小值为________.【答案】3【解析】∵l与圆相交所得弦的长为2,=,∴m2+n2=≥2|mn|,∴|mn|≤.l与x轴交点A(,0),与y轴交点B(0,),∴S=·|△AOB |||=·≥×6=3.3.已知圆和两点,,若圆上存在点,使得,则的最大值为()A.B.C.D.【答案】B【解析】由题意知,点P在以原点(0,0)为圆心,以m为半径的圆上,又因为点P在已知圆上,所以只要两圆有交点即可,所以,故选B.【考点】本小题主要考查两圆的位置关系,考查数形结合思想,考查分析问题与解决问题的能力. 4.已知圆C的方程为,若以直线上任意一点为圆心,以l为半径的圆与圆C没有公共点,则k的整数值是()A.l B.0C.1D.2【答案】【解析】由题意知,直线过定点,圆与圆相离.圆心到直线大于,所以,,解得,故的整数值为,选.【考点】圆与圆的位置关系,点到直线的距离公式.5.圆:与圆:的公共弦长等于.【答案】【解析】将的方程化为标准方程得:.将两圆方程相减得公共弦所在直线的方程为:.圆心到弦的距离为,所以弦长.【考点】两圆的位置关系及弦长.6.如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M、N均在直线x=5上.圆弧C1的圆心是坐标原点O,半径为r1=13;圆弧C2过点A(29,0).(1)求圆弧C2所在圆的方程;(2)曲线C上是否存在点P,满足PA=PO?若存在,指出有几个这样的点;若不存在,请说明理由;(3)已知直线l:x-my-14=0与曲线C交于E、F两点,当EF=33时,求坐标原点O到直线l 的距离.【答案】(1)x2+y2-28x-29=0.(2)P不存在(3)【解析】(1)由题意得,圆弧C1所在圆的方程为x2+y2=169.令x=5,解得M(5,12),N(5,-12),又C2过点A(29,0),设圆弧C2所在圆方程为x2+y2+Dx+Ey+F=0,则,解得所以圆弧C2所在圆的方程为x2+y2-28x-29=0.(2)假设存在这样的点P(x,y),则由PA=PO,得(x-29)2+y2=30(x2+y2),即x2+y2+2x-29=0.由解得x=-70(舍去);由解得x=0(舍去).所以这样的点P不存在.(3)因为圆弧C1、C2所在圆的半径分别为r1=13,r2=15,因为EF>2r1,EF>2r2,所以E、F两点分别在两个圆弧上.设点O到直线l的距离为d,因为直线l恒过圆弧C2所在圆的圆心(14,0),所以EF=15+,即=18,解得d2=,所以点O到直线l的距离为.7.已知圆C1:x2+y2-2y=0,圆C2:x2+(y+1)2=4的圆心分别为C1,C2,P为一个动点,且直线PC1,PC2的斜率之积为-.(1)求动点P的轨迹M的方程;(2)是否存在过点A(2,0)的直线l与轨迹M交于不同的两点C,D,使得|C1C|=|C1D|?若存在,求直线l的方程;若不存在,请说明理由.【答案】(1)+y2=1(x≠0)(2)不存在【解析】(1)两圆的圆心坐标分别为C1(0,1),和C2(0,-1),设动点P的坐标为(x,y),则直线PC1,PC2的斜率分别为(x≠0)和 (x≠0).由已知条件得=-(x≠0),即+y2=1(x≠0).所以动点P的轨迹M的方程为+y2=1(x≠0).(2)假设存在满足条件的直线l,易知点A(2,0)在椭圆M的外部,当直线l的斜率不存在时,直线l与椭圆M无交点,此时不符合题意,所以直线l斜率存在,设为k,则直线l的方程为y=k(x-2).联立方程组得(2k2+1)x2-8k2x+8k2-2=0,①依题意Δ=-8(2k2-1)>0,解得-<k<.当-<k<时,设交点分别为C(x1,y1),D(x2,y2),CD的中点为N(x,y),则x1+x2=,则x==,所以y0=k(x-2)=k=.要使|C1C|=|C1D|,必须C1N⊥l,即k·kC1N=-1,所以k·=-1,即k2-k+=0,因为Δ1=1-4×=-1<0,∴k2-k+=0无解,所以不存在直线,使得|C1C|=|C1D|,综上所述,不存在直线l,使得|C1C|=|C1D|.8.若圆x2+y2=4与圆x2+y2+2ax-6=0(a>0)的公共弦的长为2,则a=________.【答案】1【解析】x2+y2+2ax-6=0(a>0)可知圆心为(-a,0),半径为,两圆公共弦所在方程为(x2+y2+2ax-6)-(x2+y2)=-4,即x=,所以有2-2=2解得a=1或-1(舍去).9.设集合,,若存在实数,使得,则实数的取值范围是___________.【答案】【解析】首先集合实际上是圆上的点的集合,即表示两个圆,说明这两个圆相交或相切(有公共点),由于两圆半径都是1,因此两圆圆心距不大于半径这和2,即,整理成关于的不等式:,据题意此不等式有实解,因此其判别式不大于零,即,解得.【考点】两圆位置关系及不等式有解问题.10.若点和点到直线的距离依次为和,则这样的直线有()A.条B.条C.条D.条【答案】C【解析】以点为圆心,以为半径长的圆的方程为,以点为圆心,且以为半径的圆的方程为,则直线为两圆的公切线,,即圆与圆外切,因此两圆的公切线有条,即直线有三条,故选C.【考点】1.两圆的位置关系;2.两圆的公切线11.圆与圆的位置关系为( )A.内切B.相交C.外切 D相离【答案】B【解析】两圆圆心间的距离,两圆半径的差为和为,因为,故两圆相交,选B.【考点】圆与圆的位置关系.12.若直线y=kx与圆-4x+3=0的两个交点关于直线x+y+b=0对称,则()A.k=1,b=-2B.k=1,b=2C.k=-1,b=2D.k=-1,b=-2【答案】A【解析】:若直线与圆的两个交点关于直线对称,则直线与直线垂直,故斜率互为负倒数,可知,而过弦的中点,且与弦垂直的直线必过圆心,而圆心的坐标为,代入直线得,.【考点】直线与圆的位置关系,考查学生数形结合能力.13.两圆和的位置关系是()A.相交B.外切C.内切D.外离【答案】C【解析】圆的圆心为,半径;圆的方程可以变形为,其圆心为,半径.圆心距,所以圆内切于圆.【考点】平面内两圆的位置关系.14.已知圆,直线.(Ⅰ)若与相切,求的值;(Ⅱ)是否存在值,使得与相交于两点,且(其中为坐标原点),若存在,求出,若不存在,请说明理由.【答案】(Ⅰ)(Ⅱ)m=9±2【解析】(Ⅰ)由圆方程配方得(x+1)2+(y-3)2=9,圆心为C(-1,3),半径为 r = 3, 2分若l与C相切,则得=3,∴(3m-4)2=9(1+m2),∴m =. 5分(Ⅱ)假设存在m满足题意。

2.5 直线与圆、圆与圆的位置关系(精练)(原卷版)

2.5 直线与圆、圆与圆的位置关系(精练)(原卷版)

2.5 直线与圆、圆与圆的位置关系(精练)【题组一 直线与圆的位置关系】1.(2021·江西南昌市)直线4320x y --=与圆+-+-=2224110x y x y 的位置关系是( )A .相交B .相切C .相离D .以上都不对2.(2021·全国)直线1x y +=和圆221x y +=的位置关系是( ) A .相交B .相切C .相离D .不确定3.(2021·白银市第十中学)直线l :10mx y m -+-=与圆C :22(1)5x y +-=的位置关系是( ) A .相交B .相切C .相离D .不确定4.(2021·北京高二期末)已知直线10l kx y k -+-=:和圆C :2240x y x +-=,则直线l 与圆C 的位置关系为( ) A .相交B .相切C .相离D .不能确定5.(2021·北京高二期末)直线34x y b +=与圆22(1)(1)1x y -+-=相切,则b 的值是( ) A .-2或12B .2或-12C .-2或-12D .2或126.(2021·全国高二课时练习)若直线0x y +=与圆()()2212x m y -+-=相切,则m =( ) A .1B .1-C .1-或3D .3-或17.(2021·浙江高二期末)已知直线y x b =+与曲线3y =b 的取值范围是( )A .[1,1-+B .(1-+C .(1-D .(11]--8.(2021·浙江高二期末)直线()20ax y a a R --=∈与圆229x y +=的位置关系是( ) A .相离B .相交C .相切D .不确定9.(2021·全国)(多选)直线l 与圆C 有公共点,则直线l 与圆C 的位置关系可能是( ) A .相交 B .相切 C .相离 D .不能确定10.(2021·全国)(多选)已知圆x 2+y 2-2x +4y +3=0与直线x -y =1,则( )A .圆心坐标为(1,-2)B .圆心到直线的距离为2C .直线与圆相交 D11.(2021·内蒙古包头市·高二月考(理))已知(),P a b 是圆221x y +=内一点,则直线1ax by +=与圆221x y +=公共点的个数为( )A .0B .1C .2D .以上都有可能【题组二 直线与圆的弦长】1.(2021·陕西安康市·高二期末(理))设直线1y x =+与圆22(1)4x y ++=交于A ,B 两点,则||AB = 。

中考数学专题5 圆与圆的位置关系

中考数学专题5      圆与圆的位置关系

中考信息速递之五——圆与圆的位置关系知识要点:1.圆和圆的位置关系(设两圆半径分别为R 和r ,同心距为d ) (1)两圆外离⇔d >R+r ; (2)两圆外切⇔d=R+r ; (3)两圆相交⇔R -r <d <R+r ; (4)两圆内切⇔d=R -r ;(5)两圆内含d <R-r 。

(同心圆(6)是一种内含的特例)2.有关性质:(1)连心线:通过两圆圆心的直线。

如果两个圆相切,那么切点一定在连心线上。

(2)公共弦:相交两圆的连心线垂直平分两圆的公共弦。

(3)公切线:和两个圆都相切的直线,叫做两圆的公切线。

两个圆在公切线同旁两个圆在公切线两旁3.公切线定义:和两个圆都相切的直线叫做两圆的公切线。

当两圆在公切线同旁时,这样的公切线叫做外公切线;当两圆在公切线两旁时,这样的公切线叫做内公切线。

公切线长:公切线上的两个切点间的距离叫做公切线的长。

定理:两圆的两条外分切线长相等,两圆的两条内公切线长也相等。

外公切线的长为(1)(2)(3)(4) (5)(6)外公切线4.相交两圆的性质定理:相交两圆的连心线垂直平分两圆的公共弦。

5.相切两圆的性质定理:相切两圆的连心线经过切点6圆与圆的位置关系总结如下设两圆半径为R和r,圆心距为d,则两圆的位置关系如下:【典型例题】例1.已知如图,⊙O1和⊙O2相交于点E、F,直径AE的延长线交⊙O2于点B,延长AF交⊙O2于点C,⊙O1的切线ED交AC于点D,求证:AE/EB=AD/DC。

B例2.如图,已知AB是⊙O的直径,以B为圆心的圆交⊙O于E、F两点;直线AB与⊙B 交于点C、D,EC的延长线与⊙O交于点G,连结AE、DE、BG。

求AE·BC=DE·CG。

例3. 设两圆半径为R和r,圆心距为d,请将下表填写完整:DA中考考点基础练习:1.如果两圆有且只有两条公切线,那么这两圆的位置关系是()A.外离 B.外切 C.相交 D.内含2.如果两圆半径分别为3㎝和5㎝,圆心距为2㎝,则两个圆的位置关系为()。

圆与圆的位置关系专题

圆与圆的位置关系专题

圆与圆的位置关系专题讲义一、基本概念圆与圆的位置关系有外离、外切、相交、内切、内含五种情形,判定两圆的位置关系有如下三种方法:1.通过两圆交点的个数确定;2.通过两圆的半径与圆心距的大小量化确定;3.通过两圆的公切线的条数确定.为了沟通两圆,常常添加与两圆都有联系的一些线段,如公共弦、共切线、连心线,以及两圆公共部分相关的角和线段,这是解圆与圆位置关系问题的常用辅助线.熟悉以下基本图形、基本结论:二、典型例题例1 如图,⊙O l与半径为4的⊙O2内切于点A,⊙O l经过圆心O2,作⊙O2的直径BC交⊙O l于点D,EF为过点A的公切线,若O2D=22,那么∠BAF= 度.例1图例2图例2 如图,⊙O l与⊙O2外切于点A,两圆的一条外公切线与⊙O1相切于点B,若AB与两圆的另一条外公切线平行,则⊙O l 与⊙O2的半径之比为( ) .A.2∶5 B.1:2 C.1:3 D.2∶3例3 如图,已知⊙O l与⊙O2相交于A、B两点,P是⊙O l上一点,PB的延长线交⊙O2于点C,PA交⊙O2于点D,CD的延长线交⊙O l于点N.(1)过点A作AE∥CN交⊙O l l于点E,求证:PA=PE;(2)连结PN,若PB=4,BC=2,求PN的长.例4 如图,两个同心圆的圆心是O,AB是大圆的直径,大圆的弦与小圆相切于点D,连结OD 并延长交大圆于点E,连结BE交AC于点F,已知AC=24,大、小两圆半径差为2.(1)求大圆半径长;(2)求线段BF的长;(3)求证:EC与过B、F、C三点的圆相切.例5 已知:如图,⊙O 与⊙P 相交于A ,B 两点,点P 在⊙O 上,⊙O 的弦AC 切⊙P 于点A ,CP 及其延长线交⊙P 于点D ,E ,过点E 作EF ⊥CE 交CB 的延长线于F . (1)求证:BC 是⊙P 的切线;(2)若CD=2,CB=22,求EF 的长;(3)若k=PE :CE ,是否存在实数k ,使△PBD 恰好是等边三角形?若存在,求出是的值;若不存在,请说明理由.三、同步练习(一)填空题1.已知:⊙O l 和⊙O 2交于A 、B 两点,且⊙O l 经过点O 2,若∠AO l B=90°,则∠A O 2B 的度数是 .2.矩形ABCD 中,AB=5,BC=12,如果分别以A 、C 为圆心的两圆相切,点D 在圆C 内,点B 在圆C 外,那么圆A 的半径r 的取值范围 .3.如图,半圆O 的直径AB=4,与半圆O 内切的动圆O l 与AB 切于点M ,设⊙O l 的半径为y ,AM 的长为x ,则y 与x 的函数关系是 ,自变量x 的取值范围是 .(二)选择题4.如图,施工工地的水平地面上,有三根外径都是1米的水泥管两两相切摞在一起,则其最高点到地面的距离是( ) .题图第3题图第4A .2B .221+C .231+D .231+5.如图,已知⊙O l 、⊙O 2相交于A 、B两点,且点O l 在⊙O 2上,过A 作⊙O l 的切线AC交B O l 的延长线于点P ,交⊙O 2于点C ,BP 交⊙O l 于点D ,若PD=1,PA=5,则AC 的长为( ) .A .5B .52C .52+D .536.如图,⊙O l 和⊙O 2外切于A ,PA 是内公切线,BC 是外公切线,B 、C 是切点①PB=AB ;②∠PBA=∠PAB ;③△PAB ∽△O l AB ;④PB ·PC=O l A ·O 2A . 上述结论,正确结论的个数是( ) .A .1B .2C .3D .4 (三)解答题7.如图,⊙O l 和⊙O 2内切于点P ,过点P 的直线交⊙O l 于点D ,交⊙O 2于点E ,DA 与⊙O 2相切,切点为C .(1)求证:PC 平分∠APD ;(2)求证:PD ·PA=PC 2+AC ·DC ; (3)若PE=3,PA=6,求PC 的长.8.如图,已知⊙O l 和⊙O 2外切于A ,BC 是⊙O l 和⊙O 2的公切线,切点为B 、C ,连结BA 并延长交⊙O l 于D ,过D 点作CB 的平行线交⊙O 2于E 、F .求证: (1)CD 是⊙O l 的直径;(2)试判断线段BC 、BE 、BF 的大小关系,并证明你的结论.题图第5题图第69.如图,已知A是⊙O l、⊙O2的一个交点,点M是O l O2的中点,过点A的直线BC垂直于MA,分别交⊙O l、⊙O2于B、C.(1)求证:AB=AC;(2)若O l A切⊙O2于点A,弦AB、AC的弦心距分别为d l、d2,求证:d l+d2=O1O2;(3)在(2)的条件下,若d l d2=1,设⊙O l、⊙O2的半径分别为R、r,求证:R2+r2= R2r2.10.如图,AOB是半径为1的单位圆的四分之一,半圆O1的圆心O1在OA上,并与弧AB 内切于点A,半圆O2的圆心O2在OB上,并与弧AB内切于点B,半圆O1与半圆O2相切,设两半圆的半径之和为x,面积之和为y.(1)试建立以x为自变量的函数y的解析式;(2)求函数y的最小值.参考答案:例1例2例3例4 例5当堂巩固和课后练习:1.2.3.4.5.6.7.8.9.10.。

圆与圆的位置关系及其判定高考真题教师版

圆与圆的位置关系及其判定高考真题教师版

一.选择题(共6小题)1.(2016•山东)已知圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是,则圆M 与圆22:(1)(1)1N x y -+-=的位置关系是( )A .内切B .相交C .外切D .相离2.(2014•湖南)若圆221:1C x y +=与圆222:680C x y x y m +--+=外切,则(m = )A .21B .19C .9D .11-3.(2013•重庆)已知圆221:(2)(3)1C x y -+-=,圆222:(3)(4)9C x y -+-=,M ,N 分别是圆1C ,2C 上的动点,P 为x 轴上的动点,则||||PM PN +的最小值为( )A 1B .4C .6-D 4.(2012•山东)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )A .内切B .相交C .外切D .相离5.(2011•安徽)若直线30x y a ++=过圆22240x y x y ++-=的圆心,则a 的值为( )A .1-B .1C .3D .3-6.(2011•江西)如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M 和N 是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M ,N 在大圆内所绘出的图形大致是( )A .B .C .D .二.填空题(共1小题)7.(2012•江苏)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 .参考答案与试题解析一.选择题(共6小题)1.(2016•山东)已知圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是,则圆M 与圆22:(1)(1)1N x y -+-=的位置关系是( )A .内切B .相交C .外切D .相离【解答】解:圆的标准方程为222:()(0)M x y a a a +-=>,则圆心为(0,)a ,半径R a =,圆心到直线0x y +=的距离d =,圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是∴=24a =,2a =, 则圆心为(0,2)M ,半径2R =,圆22:(1)(1)1N x y -+-=的圆心为(1,1)N ,半径1r =,则MN =,3R r +=,1R r -=,R r MN R r ∴-<<+,即两个圆相交.故选:B .2.(2014•湖南)若圆221:1C x y +=与圆222:680C x y x y m +--+=外切,则(m = )A .21B .19C .9D .11-【解答】解:由221:1C x y +=,得圆心1(0,0)C ,半径为1,由圆222:680C x y x y m +--+=,得22(3)(4)25x y m -+-=-,∴圆心2(3,4)C .圆1C 与圆2C 外切,∴1,解得:9m =.故选:C .3.(2013•重庆)已知圆221:(2)(3)1C x y -+-=,圆222:(3)(4)9C x y -+-=,M ,N 分别是圆1C ,2C 上的动点,P 为x 轴上的动点,则||||PM PN +的最小值为( )A 1B .4C .6-D 【解答】解:如图圆1C 关于x 轴的对称圆的圆心坐标(2,3)A -,半径为1,圆2C 的圆心坐标(3,4),半径为3,由图象可知当P ,M ,N ,三点共线时,||||PM PN +取得最小值,||||PM PN +的最小值为圆3C 与圆2C 的圆心距减去两个圆的半径和,即:2||31444AC --=.故选:B .4.(2012•山东)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )A .内切B .相交C .外切D .相离【解答】解:圆22(2)4x y ++=的圆心1(2,0)C -,半径2r =.圆22(2)(1)9x y -+-=的圆心2(2,1)C ,半径3R =,两圆的圆心距d5R r +=,1R r -=,R r d R r +>>-,所以两圆相交,故选:B .5.(2011•安徽)若直线30x y a ++=过圆22240x y x y ++-=的圆心,则a 的值为( )A .1-B .1C .3D .3-【解答】解:圆22240x y x y ++-=的圆心为(1,2)-,代入直线30x y a ++=得:320a -++=,1a ∴=,故选:B .6.(2011•江西)如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M 和N 是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M ,N 在大圆内所绘出的图形大致是( )A .B .C .D .【解答】解:如图,由题意可知,小圆1O 总与大圆O 相内切,且小圆1O 总经过大圆的圆心O . 设某时刻两圆相切于点A ,此时动点M 所处位置为点M ',则大圆圆弧MA 与小圆点M 转过的圆弧相等. 以切点A 在如图上运动为例,记直线OM 与此时小圆1O 的交点为1M ,记AOM θ∠=,则1111OM O M OO θ∠=∠=,故1111112M O A M OO OM O θ∠=∠+∠=.大圆圆弧MA 的长为11l θθ=⨯=,小圆圆弧1AM 的长为1222l θθ=⨯=,即12l l =, ∴小圆的两段圆弧1AM 与圆弧AM '长相等,故点1M 与点M '重合,即动点M 在线段MO 上运动,同理可知,此时点N 在线段OB 上运动. 点A 在其他象限类似可得,M 、N 的轨迹为相互垂直的线段. 观察各选项,只有选项A 符合.故选A .二.填空题(共1小题)7.(2012•江苏)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 43. 【解答】解:圆C 的方程为228150x y x +-+=,整理得:22(4)1x y -+=,即圆C 是以(4,0)为圆心,1为半径的圆;又直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点, ∴只需圆22:(4)4C x y '-+=与直线2y kx =-有公共点即可.设圆心(4,0)C 到直线2y kx =-的距离为d , 则2d =,即2340k k -, 403k ∴. k ∴的最大值是43. 故答案为:43.。

圆和圆的位置关系经典例题+练习

圆和圆的位置关系经典例题+练习

例1. 已知⊙O 1、⊙O 2半径分别为15cm 和13cm ,它们相交于A 、B 两点,且AB 长24cm ,求O 1O 2长。

分析:该题没有给出图形,两圆相交有两种可能性: 1. 两圆心在公共弦的两侧; 2. 两圆心在公共弦的同侧;因此,我们必须分两种情况来解。

解:(1)连结O 1O 2交AB 于C (2)连结O 1O 2并延长交AB 于C ∵⊙O 1 ⊙O 2交于A 、B 两点 ∴⊥,且O O AB AC AB cm 121212== 在Rt △AO 1C 中,由勾股定理: O C O A AC cm 11222215129=-=-=() 在Rt △AO 2C 中,由勾股定理: O C O A AC cm 22222213125=-=-=∴如图(1) O 1O 2=O 1C+O 2C=14cm如图(2) O 1O 2=O 1C -O 2C=4cm例1是两圆相交时的一题两解问题,希望引起同学们的重视。

例2. 如图,⊙O 1与⊙O 2外切于点P ,AC 切⊙O 2于C 交⊙O 1于B ,AP 交⊙O 2于D ,求证:(1)PC 平分∠BPD(2)若两圆内切,结论还成立吗?证明你的结论。

证明:(1)过P 点作公切线PM 交AC 于M 点 ∵AC 切⊙O 2于C∴MP=MC ∴∠MCP=∠MPC在⊙O1中,由弦切角定理:∠BPM=∠A∵∠CPD为△APC的外角∴∠CPD=∠A+∠MCP=∠BPM+∠MPC=∠BPC∴PC平分∠BPD。

(2)两圆内切时仍有这样的结论。

证明:过P点作公切线PM交AB延长线于M∵AM切⊙O2于C,∴MC=MP∴∠MPC=∠MCP∴∠MPB=∠A∵∠MCP为△CPA的外角∠MCP=∠CPA+∠A又∠MPC=∠MPB+∠BPC∴∠BPC=∠CPA即PC平分∠BPD。

在解决有关两圆相切的问题时,过切点作两圆的公切线是常见的一条辅助线,利用弦切角及圆周角的性质或切线长定理,可使问题迎刃而解。

高二数学圆与圆的位置关系试题答案及解析

高二数学圆与圆的位置关系试题答案及解析

高二数学圆与圆的位置关系试题答案及解析1.已知动圆与圆和圆都外切,则动圆圆心的轨迹是()A.圆B.椭圆C.双曲线D.双曲线的一支【答案】D【解析】设动圆的圆心坐标为(x,y),半径为,由于动圆与圆和圆都外切,所以,所以,根据双曲线的定义可知动圆的轨迹为双曲线的一支.【考点】1.圆与圆的位置关系;2.双曲线的定义.2.在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=9.(1)判断两圆的位置关系;(2)求直线m的方程,使直线m被圆C1截得的弦长为4,与圆C截得的弦长是6.【答案】(1) 两圆相离 (2) 4x-7y+19=0【解析】(1)先由圆方程确定圆心坐标和半径,然后根据两圆心之间的距离与两圆半径和差的关系,判断两圆的位置关系;(2)由条件可知两弦长分别是两圆的直径,故所求直线过两圆圆心,故求连心线的直线方程即可.试题解析:(1)圆C1的圆心C1(-3,1),半径r1=2;圆C2的圆心C2(4,5),半径r2=2.∴C1C2==>r1+r2,∴两圆相离.(2)由题意得,所求的直线过两圆的圆心,即为连心线所在直线,易得连心线所在直线方程为:4x-7y+19=0.【考点】1.两圆位置关系的判断;2.直线方程.3.已知一个动圆与圆C:相内切,且过点A(4,0),则这个动圆圆心的轨迹方程是_______________.【答案】【解析】设动圆的圆心为P(x,y),半径为r,由题意,,∴,∴动圆圆心P的轨迹是以A、C为焦点的椭圆,所以a=5,c=4,∴,∴动圆圆心的轨迹方程是【考点】本题考查了轨迹方程的求法点评:熟练掌握椭圆的定义是解决此类问题的关键,属基础题4.如图,已知圆,圆.(1)若过点的直线被圆截得的弦长为,求直线的方程;(2)设动圆同时平分圆、圆的周长.①求证:动圆圆心在一条定直线上运动;②动圆是否过定点?若过,求出定点的坐标;若不过,请说明理由.【答案】(1)或(2)①求出圆心的轨迹方程为直线即可;②动圆过定点和【解析】(1)由题意可知,,,由图知直线的斜率一定存在,设直线的方程为,即因为直线被圆截得的弦长为,所以圆心到直线的距离为……3分解得或,所以直线的方程为或.……6分(2)①证明:设动圆圆心,由题可知则化简得,所以动圆圆心在定直线上运动.……10分②动圆过定点设,则动圆的半径为动圆的方程为整理得……14分,解得或所以动圆过定点和.……16分【考点】本小题主要考查直线与圆的位置关系.点评:求解直线与圆的位置关系,主要看圆心到直线的距离与半径的关系,设直线方程时要注意直线的适用条件.5.圆与圆的位置关系为()A.内切B.相交C.外切D.相离【答案】B【解析】两个圆的圆心距等于所以两个圆相交.【考点】本小题主要考查两个圆的位置关系.点评:判断两个圆的位置关系,主要是根据两个圆的圆心距与半径的和或差的关系.6.已知两圆x2+y2="1" 和 (x+1)2+(y-3)2=10相交于A、B两点, 则直线AB的方程是________.【答案】【解析】两圆方程作差可得直线AB的方程是.【考点】本小题主要考查两圆的公共点所在直线的方程.点评:两个圆相交时,两个圆的方程相减即可得到直线AB的方程.7.两圆相交于点,两圆的圆心均在直线上,则的值为()A.B.C.D.【答案】A【解析】因为两圆的相交弦所在的直线与圆心连线的直线垂直,且被其平分,因此可知AB的中点坐标在直线上,代入可知为将m的值代入上式解得c=2,因此可知m+c=-1,选A.【考点】本试题考查了圆与圆的位置关系,以及直线与圆的位置关系的综合运用。

高中数学必修二 圆与圆的位置关系 附答案解析版

高中数学必修二 圆与圆的位置关系 附答案解析版

4.2.2圆与圆的位置关系基础巩固1.圆C 1:(x+2)2+(y-2)2=1与圆C 2:(x-2)2+(y-5)2=16的位置关系是()A.外离B.相交C.内切D.外切2.圆C 1:x 2+y 2+4x+8y-5=0与圆C 2:x 2+y 2+4x+4y-1=0的位置关系为()A.相交B.外切C.内切D.外离3.已知圆A 与圆B 相切,圆心距为10cm,其中圆A 的半径为4cm,则圆B 的半径为()A .6cm 或14cmB .10cmC .14cmD .无解4.已知圆O 1的方程为x 2+y 2=4,圆O 2的方程为(x-a )2+y 2=1,如果这两个圆有且只有一个公共点,那么a 的所有取值构成的集合是()A.{1,-1}B.{3,-3}C.{1,-1,3,-3}D.{5,-5,3,-3}5.圆x 2+y 2+4x-4y+7=0与圆x 2+y 2-4x+10y+13=0的公切线的条数是()A.1B.2C.3D.46.已知以C (4,-3)为圆心的圆与圆O :x 2+y 2=1相切,则圆C 的方程为()A .(x-4)2+(y+3)2=16B .(x+4)2+(y-3)2=36C .(x-4)2+(y+3)2=16或(x-4)2+(y+3)2=36D .(x+4)2+(y-3)2=16或(x+4)2+(y-3)2=367.圆C 1:x 2+y 2-12x-2y-13=0和圆C 2:x 2+y 2+12x+16y-25=0的公共弦所在的直线方程是.8.若圆C 1:(x-3)2+(y-4)2=16与圆C 2:x 2+y 2=m (m>0)内切,则实数m=.9.已知圆O :x 2+y 2=25和圆C :x 2+y 2-4x-2y-20=0相交于A ,B 两点,则公共弦AB 的长为.10.求与圆O :x 2+y 2=1外切,切点为1,22P ⎛-- ⎝⎭,半径为2的圆的方程.能力提升1.圆C 1:(x+1)2+(y+2)2=4与圆C 2:(x+2)2+(y+3)2=1的位置关系是()A.外离B.外切C.相交D.内切2.若圆x 2+y 2=4与圆x 2+y 2+ay-2=0的公共弦的长度为,则常数a 的值为()A .2±B .2C .-2D .4±3.已知圆C :(x-3)2+(y-4)2=1和两点A (-m ,0),B (m ,0)(m>0).若圆C 上存在点P ,使得90APB ∠=︒,则m的最大值为()A .7B .6C .5D .4★4.若圆(x-a )2+(y-a )2=4上,总存在不同的两点到原点的距离等于1,则实数a 的取值范围是()A.22⎛ ⎝⎭B.22⎛-- ⎝⎭C.,2222⎛⎛-- ⎝⎭⎝⎭D.22⎛⎫⎪ ⎪⎝⎭5.若点A (a ,b )在圆x 2+y 2=4上,则圆(x-a )2+y 2=1与圆x 2+(y-b )2=1的位置关系是.6.求和圆(x-2)2+(y+1)2=4相切于点(4,-1)且半径为1的圆的方程.7.一动圆与圆C 1:x 2+y 2+6x+8=0外切,与圆C 2:x 2+y 2-6x+8=0内切,求动圆圆心的轨迹方程.★8.圆O 1的方程为x 2+(y+1)2=4,圆O 2的圆心O 2(2,1).(1)若圆O 2与圆O 1外切,求圆O 2的方程;(2)若圆O 2与圆O 1交于A ,B 两点,且AB =求圆O 2的方程.参考答案基础巩固1.【解析】圆C 1的圆心是C 1(-2,2),半径r 1=1,圆C 2的圆心是C 2(2,5),半径r 2=4,则圆心距|C 1C 2|=5.因为|C 1C 2|=r 1+r 2,所以两圆外切.【答案】D2.【解析】由已知,得C 1(-2,-4),r 1=5,C 2(-2,-2),r 2=3,则d=|C 1C 2|=2,所以d=|r 1-r 2|.故两圆内切.【答案】C3.【解析】令圆A 、圆B 的半径分别为r 1,r 2,当两圆外切时,r 1+r 2=10,所以r 2=10-r 1=10-4=6;当两圆内切时,|r 1-r 2|=10,即|4-r 2|=10,r 2=14或r 2=-6(舍),即圆B 的半径为6cm 或14cm .【答案】A4.【解析】因为两个圆有且只有一个公共点,所以两个圆内切或外切.当两圆内切时,|a|=1;当两圆外切时,|a|=3,即实数a 的取值集合是{1,-1,3,-3}.故选C .【答案】C5.【解析】两圆的圆心分别为C 1(-2,2),C 2(2,-5),则两圆的圆心距d =又半径分别为r 1=1,r 2=4,则d>r 1+r 2,即两圆外离,因此它们有4条公切线.【答案】D6.【解析】设所求圆的方程为(x-4)2+(y+3)2=r 2(r>0).因为圆C 与圆O 相切,所以|r-1|=5或r+1=5,解得r=6或r=4(负值舍去).故所求圆的方程为(x-4)2+(y+3)2=16或(x-4)2+(y+3)2=36.【答案】C7.【解析】两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.【答案】4x+3y-2=08.【解析】圆心距5d =,由题意得两圆半径差的绝对值45-=,解得m=81.【答案】819.【解析】两圆方程相减得弦AB 所在的直线方程为4x+2y-5=0.圆x 2+y 2=25的圆心到直线AB 的距离d ==故公共弦AB 的长为AB =10.【解析】设所求圆的圆心为C (a ,b ),则所求圆的方程为(x-a )2+(y-b )2=4.因为两圆外切,切点为1,22P ⎛-- ⎝⎭,所以|OC|=r 1+r 2=1+2=3,|CP|=2.所以2222913422a b a b ⎧+=⎪⎪⎛⎨⎛⎫+++= ⎪ ⎪ ⎝⎭⎪⎝⎭⎩,解得322a b ⎧=-⎪⎪⎨⎪=-⎪⎩.所以圆心C 的坐标为333,22⎛-- ⎝⎭,所求圆的方程为223422x y ⎛⎫⎛⎫+++= ⎪ ⎪ ⎪⎝⎭⎝⎭.能力提升1.【解析】圆心距d =,两圆半径的和为2+1=3,两圆半径之差的绝对值为1,1212r r d r r -<<+,所以两圆的位置关系是相交.【答案】C2.【解析】两圆方程左右两边分别相减得公共弦所在直线的方程为ay+2=0.由题意知0a ≠.圆x 2+y 2=4的圆心到直线ay+2=0的距离为2a,又公共弦长为,所以=解得2a =±.【答案】A3.【解析】因为A (-m ,0),B (m ,0)(m>0),所以使90APB ∠=︒的点P 在以线段AB 为直径的圆上,该圆的圆心为O (0,0),半径为m.而圆C 的圆心为C (3,4),半径为1.由题意知点P 在圆C 上,故两圆有公共点.所以两圆的位置关系为外切、相交或内切,故11m CO m -≤≤+,即151m m -≤≤+,解得46m ≤≤.所以m 的最大值为6.故选B .【答案】B4.【解析】圆(x-a )2+(y-a )2=4的圆心C (a ,a ),半径r=2,到原点的距离等于1的点的集合构成一个圆,这个圆的圆心是原点O ,半径R=1,则这两个圆相交,圆心距d =,则|r-R|<d<r+R ,则13<<,所以22a<<,所以22a-<<或22a <<.【答案】C5.【解析】因为点A (a ,b )在圆x 2+y 2=4上,所以a 2+b 2=4.又圆x 2+(y-b )2=1的圆心C 1(0,b ),半径r 1=1,圆(x-a )2+y 2=1的圆心C 2(a ,0),半径r 2=1,则122d C C ===,所以d=r 1+r 2.所以两圆外切.【答案】外切6.【解析】设所求圆的圆心为(a ,b ),1=.①若两圆外切,则有123+=.②由①②,解得5,1a b ==-,所以所求圆的方程为(x-5)2+(y+1)2=1.若两圆内切,则有211-=.③由①③,解得3,1a b ==-,所以所求圆的方程为(x-3)2+(y+1)2=1.综上,可知所求圆的方程为(x-5)2+(y+1)2=1或(x-3)2+(y+1)2=1.7.【解析】圆C 1:(x+3)2+y 2=1,所以圆心为(-3,0),半径r 1=1;圆C 2:(x-3)2+y 2=1,所以圆心为(3,0),半径r 2=1.设动圆圆心为(x ,y ),半径为r ,由题意得1r =+1r =-,2,化简并整理,得8x 2-y 2=8(1x ≥).所以动圆圆心的轨迹方程是8x 2-y 2=8(1x ≥).8.【解析】(1)设圆O 1的半径为r 1,圆O 2的半径为r 2.因为两圆外切,所以|O 1O 2|=r 1+r 2,r 2=|O 1O 2|-r 1=1-),故圆O 2的方程是(x-2)2+(y-1)2=1-)2.(2)设圆O 2的方程为(x-2)2+(y-1)2=22r .因为圆O 1的方程为x 2+(y+1)2=4,将两圆的方程相减,即得两圆公共弦AB 所在直线的方程224480x y r ++-=,①作O 1H ⊥AB ,则|AH|=12,O 1,由圆心O 1(0,-1)到直线①的距离得=,得224r =或2220r =,故圆O 2的方程为(x-2)2+(y-1)2=4或(x-2)2+(y-1)2=20.。

专题20 与圆有关的位置关系(5大考点)(学生版)

专题20 与圆有关的位置关系(5大考点)(学生版)

第五部分圆专题20与圆有关的位置关系(5大考点)核心考点核心考点一点与圆、直线与圆、圆与圆的位置关系核心考点二圆的切线的判定核心考点三圆的切线的性质核心考点四与切线的判定和性质有关的问题核心考点五三角形的内切圆新题速递核心考点一点与圆、直线与圆、圆与圆的位置关系(2021·湖南娄底·统考中考真题)如图,直角坐标系中,以5为半径的动圆的圆心A沿x 轴移动,当⊙A 与直线5:12l y x =只有一个公共点时,点A 的坐标为()A .(12,0)-B .(13,0)-C .(12,0)±D .(13,0)±(2020·上海·统考中考真题)在矩形ABCD 中,AB =6,BC =8,点O 在对角线AC 上,圆O 的半径为2,如果圆O 与矩形ABCD 的各边都没有公共点,那么线段AO 长的取值范围是____.(2022·四川凉山·统考中考真题)如图,已知半径为5的⊙M 经过x 轴上一点C ,与y 轴交于A 、B 两点,连接AM 、AC ,AC 平分∠OAM ,AO +CO=6(1)判断⊙M 与x 轴的位置关系,并说明理由;(2)求AB 的长;(3)连接BM 并延长交圆M 于点D ,连接CD ,求直线CD 的解析式.1、点和圆的位置关系点和圆的位置关系点到圆心的距离与半径的关系图示文字语言符号语言点在圆内圆内各点到圆心的距离都小于半径,到圆心的距离小于半径的点都在圆内点P 在圆内<d r⇔点在圆上圆内各点到圆心的距离都等于半径,到圆心的距离等于半径的点都在圆上点P 在圆上=d r⇔点在圆外圆内各点到圆心的距离都大于半径,到圆心的距离大于半径的点都在圆外点P 在圆外>d r⇔2、直线和圆的位置关系1.设O ⊙的半径为r ,圆心O 到直线l 的距离为d ,则直线和圆的位置关系如下表:位置关系图形定义性质及判定相离l O d r直线与圆没有公共点d r >⇔直线l 与O ⊙相离相切l O d r直线与圆有唯一公共点,直线叫做圆的切线,公共点叫做切点d r =⇔直线l 与O ⊙相切相交l O d r直线与圆有两个公共点,直线叫做圆的割线d r <⇔直线l 与O ⊙相交从另一个角度,直线和圆的位置关系还可以如下表示:3、圆和圆的位置关系的定义、性质及判定直线和圆的位置关系相交相切相离公共点个数210圆心到直线的距离d 与半径r 的关系d r <d r =d r >公共点名称交点切点—直线名称割线切线—设12O O 、⊙⊙的半径分别为R r 、(其中R r >),两圆圆心距为d ,则两圆位置关系如下表:RrO 2O 1Rr O 2O 1R O 2O 1R r O 2O 1R r O 2O 1与内含两种情况;相切两圆只有一个公共点,它包括内切与外切两种情况.【变式1】(2022·上海松江·校考三模)已知10cm 6cm ABC AB BC == ,,,以点B 为圆心,以BC 为半径画圆B ,以点A 为圆心,半径为r ,画圆A .已知A 与B 外离,则r 的取值范围为()A .04r <≤B .04r ≤≤C .04r <<D .04r ≤<【变式2】(2022·江苏无锡·统考一模)如图,已知直线y =34x -3,与x 轴、y 轴分别交于A 、B 两点,P 是以C (0,1)为圆心,1为半径的圆上一动点,连接PA 、PB ,则△PAB 面积的最小值是()A .6B .112C .5D .92【变式3】(2022·上海青浦·统考二模)如图,在直角梯形ABCD 中,,90AD BC A ∠=︒∥,E 是AD 上一定点,3,6,8,2AB BC AD AE ====.点P 是BC 上一个动点,以P 为圆心,PC 为半径作⊙P .若⊙P 与以E 为圆心,1为半径的⊙E 有公共点,且⊙P 与线段AD 只有一个交点,则PC 长度的取值范围是__.【变式4】(2022·上海浦东新·统考二模)如图,在Rt ABC 中,490,cos ,5∠=︒=ACB A CD 为AB 边上的中线,5CD =,以点B 为圆心,r 为半径作B .如果B 与中线CD 有且只有一个公共点,那么B 的半径r 的取值范围为_______.【变式5】(2022·辽宁鞍山·模拟预测)如图,正方形ABCD 中,点E ,F ,G 分别为边AB ,BC ,AD 上的点,且AE BF DG ==,连接EF ,GE ,GF .(1)BEF △可以看成是AGE 绕点M 逆时针旋转α角所得,请在图中画出点M ,并直接写出α角的度数;(2)当点E 位于何处时,EFG 的面积取得最小值?请说明你的理由;(3)试判断直线CD 与EFG 外接圆的位置关系,并说明你的理由.核心考点二圆的切线的判定(2020·浙江·统考中考真题)如图,已知OT 是Rt △ABO 斜边AB 上的高线,AO =BO .以O 为圆心,OT 为半径的圆交OA 于点C ,过点C 作⊙O 的切线CD ,交AB 于点D .则下列结论中错误的是()A .DC =DTB .AD DTC .BD =BO D .2OC =5AC(2022·广西桂林·统考中考真题)如图,某雕塑MN 位于河段OA 上,游客P 在步道上由点O 出发沿OB 方向行走.已知∠AOB =30°,MN =2OM =40m ,当观景视角∠MPN 最大时,游客P 行走的距离OP 是_____米.(2022·江苏淮安·统考中考真题)如图,ABC 是O 的内接三角形,60ACB ∠=︒,AD 经过圆心O 交O 于点E ,连接BD ,30ADB ∠=︒.(1)判断直线BD 与O 的位置关系,并说明理由;(2)若AB =1.切线的判定(1)判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

36圆与圆的位置关系
一、选择题
1. 如图,在Rt △ ABC中,/ C=90°, AC=8 BC=6 DE// BQ 且AD=2CD 则以
D为圆心DC为半径的O D和以E为圆心EB为半径的O E的位置关系是
( )
(A)外离;(B)外切;
(第1题图) (C)相交;(D)不能确定.
A. 1cm
B. 3cm
C. 10cm
D. 15cm
2. 已知
半径分别为5cm和8cm的两圆相交,则它们的圆心距可能是( )
3. 已知两圆的半径分别为3和4,圆心距
为1,则两圆的位置关系是( )
A•相交 E.内切 C.外切 D.内含
4.已知半径分别是3和5的两个圆没有公共点,那么这两个圆的圆心距 d 的取值范围是(
A. d>8 B . d>2 C . 0Edc2 D . d >8 或 0Edc2
5.已知两圆半径分别为 4和7,圆心距为3,那么这两个圆的位置关系是( )
A.内含
B.内切
C.相交
D.外切
6.如图,已知O 01与O 02关于y 轴对称,点01的坐标为(-4 , 0).两圆相交于 A B ,且01A 丄02A ,则图中阴影部分的面积是 ( ) A.4 n - 8 B.8 n - 16 C. 16 n - 16 D.16
n - 32
、填空题
1.如图,O 01和O O2的半径为2和3,连接 0102交O O2于点P ,
0102=7若将O 01绕点
01与O 02相切时的旋转时间为
的位置关系是
3.已知O 01和O °
2的半径分别为3cm 和5cm,且它们内切,则 °1。

2等于 ▲ cm .
4.已知O 01的半径为 3,O 02的半径为 5, 010 2 =乙则O 01、O 0 2的位置关系是
P 按顺时针方向以
30° /秒的速度旋转一周,请写出
O
O1、O 0 2
5. 如图,在厶ABC中,/ A=90 ,分别以B、C为圆心的两个等圆外切,两圆的半径都为2cm,则图中阴影部分的面积为
6. 已知△ABC的三边分别是a, b, c,两圆的半径ri a, ° =b,圆心距d二c,则这两个圆的位置关系是
7. 如果半径为3cm的O O1与半径为4cm的O O2内切,那么两圆的圆心距0102= cm .
【原创】
8. 要在一个矩形纸片上画出半径分别是4cm和1cm的两个外切圆,该矩形纸片面积的最小值

答案: 选择题 1、 C 2、 C 3、 B 5、 B 6、 B
填: 空题
1、 【答案】3或6或9
2、 答案: 相交
3、 答案: 2
4、
答案: 相交:
2
5、 答案 ncm 6

答案 相交 7、 答案: 1 8 答案: 72.。

相关文档
最新文档