2020-2021深圳市宝安区实验学校高二数学上期末试题(带答案)

合集下载

2020-2021学年广东省潮州市南春中学高二数学文期末试题含解析

2020-2021学年广东省潮州市南春中学高二数学文期末试题含解析

2020-2021学年广东省潮州市南春中学高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 命题:“存在”的否定是()A.不存在 B.存在C.对任意 D.对任意参考答案:C2. 等比数列中,,则数列的前8项和等于()A.6 B.5 C.4 D.3参考答案:C略3. 等差数列{a n}中,a7+a9=16,a4=1,则a12=()A.15 B.30 C.31 D.64参考答案:A【考点】8F:等差数列的性质.【分析】由a7+a9=16可得 2a1+14d=16,再由a4=1=a1+3d,解方程求得a1和公差d的值,或根据等差中项的定义,a p+a q=a m+a n,从而求得a12的值.【解答】解:方法一:设公差等于d,由a7+a9=16可得 2a1+14d=16,即 a1+7d=8.再由a4=1=a1+3d,可得 a1=﹣,d=.故 a12 =a1+11d=﹣+=15,方法二:∵数列{a n}是等差数列,∴a p+a q=a m+a n,即p+q=m+n∵a7+a9=a4+a12∴a12=15故选:A.【点评】本题主要考查等差数列的等差数列的通项公式的应用,求出首项和公差d的值,是解题的关键,属于基础题.4. 对于R上可导的任意函数f(x),若满足(x-1) f′(x)≥0,则必有A. f(0)+ f(2)<2 f(1)B. f(0)+ f(2)≤2 f(1)C. f(0)+ f(2)≥2 f(1)D. f(0)+ f(2)>2 f(1)参考答案:C5. 与直线关于x轴对称的直线方程为( )A. B.C. D.参考答案:B6. 有四个游戏盘,将它们水平放稳后,在上面扔一颗小玻璃球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( )参考答案:A7. 已知命题,函数的值大于.若是真命题,则命题可以是()A.,使得B.“”是“函数在区间上有零点”的必要不充分条件C.是曲线的一条对称轴D.若,则在曲线上任意一点处的切线的斜率不小于参考答案:C,函数在区间上单调递增,若函数在此区间上有零点,则,解得,所以“”是“函数在区间上有零点”的充分不必要条件,所以是假命题;C中,函数,当时,,所以是函数的一条对称轴,所以是真命题;D中,曲线,则,当时,,所以是假命题,故选C.考点:复合命题的真假及其应用.【方法点晴】本题主要考查了复合命题的真假判定及其应用、其中解答中涉及到三角函数的单调性及其三角函数的对称性、函数的零点的判定方法、函数的单调性、利用导数函数的单调性等知识的考查,其中准确把握命题的真假是解答问题的关键,着重考查了学生的推理与预算能力,属于中档试题.8. 函数的的单调递增区间是 ( )A. B. C. D.和参考答案:C略9. 对于线性回归方程,下列说法中不正确的是()A.直线必经过点B.增加一个单位时,平均增加个单位C.样本数据中时,可能有D.样本数据中时,一定有参考答案:D10. 设函数的图象上的点处的切线的斜率为k,若,则函数的图象大致为()参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11. 若关于x的不等式在上恒成立,则a的取值范围为______.参考答案:【分析】关于的不等式在上恒成立等价于在恒成立,进而转化为函数的图象恒在图象的上方,利用指数函数与对数函数的性质,即可求解. 【详解】由题意,关于的不等式在上恒成立等价于在恒成立,设,,因为在上恒成立,所以当时,函数的图象恒在图象的上方,由图象可知,当时,函数的图象在图象的上方,不符合题意,舍去;当时,函数的图象恒在图象的上方,则,即,解得,综上可知,实数的取值范围是.【点睛】本题主要考查了指数函数与对数函数的图象与性质的应用,以及不等式的恒成立问题的求解,其中解答中把不等式恒成立转化为两个函数的关系,借助指数函数与对数函数的图象与性质求解是解答的关键,着重考查了转化思想,以及推理与运算能力,属于中档试题.12. 如图甲,在△ABC中,AB⊥AC,AD⊥BC,D为.垂足,则AB2=BD?BC,该结论称为射影定理.如图乙,在三棱锥A﹣BCD中,AD⊥平面ABC,AO⊥平面BCD,O为垂足,且O在△BCD内,类比射影定理,探究S△ABC、S△BCO、S△BCD这三者之间满足的关是.参考答案:S△ABC2=S△BCO?S△BCD【考点】F3:类比推理.【分析】这是一个类比推理的题,在由平面图形到空间图形的类比推理中,一般是由点的性质类比推理到线的性质,由线的性质类比推理到面的性质,由已知在平面几何中,(如图所示)若△ABC中,AB⊥AC,AD⊥BC,D是垂足,则AB2=BD?BC,我们可以类比这一性质,推理出若三棱锥A﹣BCD中,AD⊥面ABC,AO⊥面BCD,O为垂足,则S△ABC2=S△BCO?S△BCD.【解答】解:由已知在平面几何中,若△ABC中,AB⊥AC,AD⊥BC,D是垂足,则AB2=BD?BC,我们可以类比这一性质,推理出:若三棱锥A﹣BCD中,AD⊥面ABC,AO⊥面BCD,O为垂足,则S△ABC2=S△BCO?S△BCD.故答案为S△ABC2=S△BCO?S△BCD.13. 下列是关于复数的类比推理:①复数的加减法运算可以类比多项式的加减法运算法则;②由实数绝对值的性质|x|2=x2类比得到复数z的性质|z|2=z2;③已知a,b∈R,若a-b>0,则a>b类比得已知z1,z2∈C,若z1-z2>0,则z1>z2;④由向量加法的几何意义可以类比得到复数加法的几何意义.其中推理结论正确的是__________.参考答案:①④14. (2014?马山县校级模拟)设等比数列{an}的前n项和为Sn,已知a2=6,6a1+a3=30,求an和Sn.参考答案:解:设{an}的公比为q,由题意得:,解得:或,当a1=3,q=2时:an=3×2n﹣1,Sn=3×(2n﹣1);当a1=2,q=3时:an=2×3n﹣1,Sn=3n﹣1.考点:等比数列的前n项和;等比数列的通项公式.专题:等差数列与等比数列.分析:设出等比数列的公比为q,然后根据等比数列的通项公式化简已知得两等式,得到关于首项与公比的二元一次方程组,求出方程组的解即可得到首项和公比的值,根据首项和公比写出相应的通项公式及前n项和的公式即可.解答:解:设{an}的公比为q,由题意得:,解得:或,当a1=3,q=2时:an=3×2n﹣1,Sn=3×(2n﹣1);当a1=2,q=3时:an=2×3n﹣1,Sn=3n﹣1.点评:此题考查学生灵活运用等比数列的通项公式及前n项和的公式化简求值,是一道基础题.15.参考答案:16. 已知函数是偶函数,是奇函数,正数数列满足,,求数列的通项公式为________________.参考答案:17. 函数在时有极值,那么的值分别为________。

辽宁省抚顺二中、沈阳二中等2020-2021学年高二上学期期末考试数学试题-解析版

辽宁省抚顺二中、沈阳二中等2020-2021学年高二上学期期末考试数学试题-解析版

辽宁省抚顺二中、沈阳二中等2020-2021学年高二上学期期末考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知X 的分布列为:设21Y X =+,则Y 的数学期望()E Y 的值是( ) A .16-B .23C .1D .2936【答案】B 【分析】根据分布列的性质,求得13a =,得到()16E X =-,再由21Y X =+,即可求得随机变量Y 的期望. 【详解】由题意,根据分布列的性质,可得11126a ++=,解得13a =,所以随机变量X 的期望为()11111012636E X =-⨯+⨯+⨯=-, 又由21Y X =+,所以随机变量Y 的期望为()()12212()163E Y E X =+=⨯-+= 故选:B. 【点睛】本题主要考查了离散型随机变量的分布列的性质,以及期望的计算及性质的应用,其中解答中熟记分布列的性质和期望的公式是解答的关键,着重考查运算与求解能力. 2.某批数量很大的产品的次品率为p ,从中任意取出4件,则其中恰好含有3件次品的概率是( ) A .3p B .()31p p -C .3341C p pD .334C p【答案】C 【分析】本题可通过n 次独立重复试验中恰好发生k 次的概率的求法得出结果. 【详解】因为次品率为p ,从中任意取出4件, 所以恰好含有3件次品的概率为3341C p p , 故选:C.3.若n 是正奇数,则112217777n n n n n n n C C C ---+++⋅⋅⋅+被9除的余数为( )A .2B .5C .7D .8【答案】C 【分析】由题意可得,此题求得是(91)1n--被9除的余数,利用二项式定理展开,可得结论【详解】解:因为n 是正奇数,则1122177771n n n n nn n n n C C C C ---+++⋅⋅⋅++-(71)1(91)1n n =+-=--1122199991n n n n nn n n n C C C C ---=-++⋅⋅⋅+--,所以它被9除的余数为12nn C --=-,即它被9除的余数为7,故选:C4.设随机变量()25,X N σ~,若()100.4P X a >-=,则()P X a >=A .0.6B .0.4C .0.3D .0.2【答案】A 【详解】因为随机变量()25,X N σ~,所以(5)(5)P X P X >=<,因为(10)0.4P X a >-=,所以()0.6P X a >=,故选A.5.已知A (1,0,0),B (0,-1,1),O (0,0,0),OA OB λ+与OB 的夹角为120°,则λ的值为( )A .BCD .【答案】C 【分析】首先求出向量OA OB λ+的坐标,及向量OA OB λ+的模,再利用空间向量的夹角余弦公式列方程求解即可. 【详解】因为()1,?00A ,,()0,1,1B -, 所以()1,?00(0OA OB ,λλ+=+,1-,1)(1=,λ-,)λ, 1OA OB λ+=+2OB =()2OA OB OB λλ+⋅=,所以cos 112022==-,所以0λ<, 且4λ= 解得λ=,故选C . 【点睛】本题考查的知识要点:空间向量的数量积,空间向量的模及夹角的运算,意在考查综合应用所学知识解答问题的能力,属于基础题.6.现有4名男生,2名女生.从中选出3人参加学校组织的社会实践活动,在男生甲被选中的情况下,女生乙也被选中的概率为( ) A .23B .35C .12D .25【答案】D 【分析】设男生甲被选中为事件A ,女生乙也被选中为事件B ,分别求得1()2P A =,1()5P AB =,再结合条件概率的计算公式,即可求解. 【详解】由题意,从现有4名男生,2名女生选出3人参加学校组织的社会实践活动,设男生甲被选中为事件A ,其概率为25361()2C P A C ==,设女生乙也被选中为事件B,其概率为14361 ()5CP ABC==,所以在男生甲被选中的情况下,女生乙也被选中的概率为()2 (|)1()5215P ABP B AP A===.故选:D.【点睛】本题主要考查了条件概率的求解,其中解答中正确理解题意,熟练应用条件概率的计算公式求解是解答的关键,着重考查推理与计算能力.7.要排出高三某班一天中,语文、数学、英语各2节,自习课1节的功课表,其中上午5节,下午2节,若要求2节语文课必须相邻且2节数学课也必须相邻(注意:上午第五节和下午第一节不算相邻),则不同的排法种数是()A.84B.54C.42D.18【答案】C【分析】根据题意,分两种情况进行讨论:①语文和数学都安排在上午;②语文和数学一个安排在上午,一个安排在下午.分别求出每一种情况的安排方法数目,由分类加法计数原理可得答案.【详解】根据题意,分两种情况进行讨论:①语文和数学都安排在上午,要求2节语文课必须相邻且2节数学课也必须相邻,将2节语文课和2节数学课分别捆绑,然后在剩余3节课中选1节到上午,由于2节英语课不加以区分,此时,排法种数为1233232218C A AA=种;②语文和数学都一个安排在上午,一个安排在下午.语文和数学一个安排在上午,一个安排在下午,但2节语文课不加以区分,2节数学课不加以区分,2节英语课也不加以区分,此时,排法种数为14242224C AA=种.综上所述,共有182442+=种不同的排法.故选:C.【点睛】本题考查排列、组合的应用,涉及分类计数原理的应用,属于中等题.8.已知双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别为1F 、2F ,圆2222+x y a b =+与双曲线在第一象限和第三象限的交点分别为A ,B ,四边形21AF BF的周长p 与面积S 满足p = )A B C .2D .3【答案】C 【分析】由双曲线的定义知122AF AF a -=,结合四边形的周长知122pAF AF +=,得到1AF ,2AF 的长度,从而得到矩形21AF BF 的面积,再利用p =助勾股定理2221212AF AF F F +=得到,a c 关系,即可求得离心率.【详解】由双曲线的定义可知122AF AF a -=,又OA OB =,12OF OF =,可知四边形21AF BF 是平行四边形,所以122pAF AF +=联立解得14p AF a =+,24pAF a =-, 又线段12F F 为圆的直径,由双曲线的对称性可知四边形21AF BF 为矩形,所以四边形21AF BF 的面积221216p S AF AF a =⋅=-,又p =232p S =,即2223216p p a ⎛⎫=- ⎪⎝⎭,解得2232p a =,由2221212AF AF F F +=,得222248p a c +=,即2232a c =,即2e =. 故选:C. 【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的等量关系,考查了学生的运算求解能力,逻辑推理能力,属于中档题.二、多选题9.在()821x -的展开式中,下列说法正确的有( ) A .展开式中所有项的系数和为82 B .展开式中所有奇数项的二项式系数和为128C .展开式中二项式系数的最大项为第五项D .展开式中含3x 项的系数为448- 【答案】BCD 【分析】由二项展开式的性质逐个判断即可. 【详解】对于A ,令1x =,可知展开式中所有项的系数和为1,错误;对于B ,展开式中奇数项的二项式系数和为821282=,B 正确;对于C ,易知展开式中二项式系数的最大项为第五项,C 正确;对于D ,展开式中含3x 的项为()()35538C 21448x x -=-,D 正确.故选:BCD . 【点睛】本题考查二项展开式的相关性质,属于基础题. 10.下列命题中,正确的命题是( )A .已知随机变量服从(),B n p ,若()()30,20E X D X ==,则23p = B .已知()()0.34,0.71P BA P B ==,则()0.37P BA =C .设随机变量ξ服从正态分布()0,1N ,若()1P p ξ>=,则()1102P p ξ-<<=- D .某人在10次射击中,击中目标的次数为()~10,0.8X X B ,,则当8X =时概率最大【答案】BCD 【分析】选项A :利用二项分布期望、方差公式计算判断; 选项B :由互斥事件概率的加法公式计算判断; 选项C :利用正态分布图象的对称性即可判断;选项D :由独立重复实验的概率计算公式和组合数公式,求出x k =,10k ≤,k ∈N 时的概率,通过解不等式求出k 的范围即可判断. 【详解】对于选项A :随机变量服从二项分布(),B n p ,()30E X =,()20D X =,可得30np =,()120np p -=,则13p =,选项A 错误; 对于选项B :A A +为必然事件,所以()B B A A BA B A =+=+,而BA 与B A 互斥,()()()()()()0.710.340.37P B P BA P BA P BA P B P BA ∴=+⇒=-=-=,选项B正确;对于选项C :随机变量ξ服从正态分布()0,1N ,则图象关于y 轴对称,若()1P p ξ>=,则()1012P p ξ<<=-,()()110012P P p ξξ-<<=<<=-,选项C 正确;对于选项D :因为在10次射击中,击中目标的次数为X ,()~10,0,8X B , 当x k =时,对应的概率()10100.2kkkP X k C -==⋅0.8⋅,所以当1k时,()()()10101110(1)104110.80.210.80.2kk kk k k P X k k C P X k C k-----=-⋅⋅===-⋅⋅,由()()()41111P X k k P X k k =-=≥=-得444k k -≥,即4415k ≤≤, 因为*k N ∈,所以18k ≤≤且*k N ∈,又()()01P X P X =<=, 即8k时,概率()8P X =最大,故选项D 正确.故选:BCD 【点睛】二项分布的概率公式()(1)(,)k k n kn P X k C p p k N k n -==⋅-∈≤,可用作商法确定其中的最大值或最小值.11.已知曲线C 的方程为221()26x y k R k k+=∈--,则下列结论正确的是( )A .当4k =时,曲线C 为圆B .当0k =时,曲线C为双曲线,其渐近线方程为y = C .“4k >”是“曲线C 为焦点在x 轴上的椭圆”的充分而不必要条件D .存在实数k 使得曲线C 【答案】AB 【分析】根据双曲线的标准方程及简单的几何性质,结合充分条件、必要条件的判定方法,逐项判定,即可求解. 【详解】由题意,曲线C 的方程为221()26x y k R k k+=∈--,对于A 总,当4k =时,曲线C 的方程为222x y +=,此时曲线C 表示圆心在原点,的圆,所以是正确的;对于B 中,当0k =时,曲线C 的方程为22162y x -=,可得a b ==曲线C 渐近线方程为y =,所以是正确的;对于C 中,当曲线C 的方程为221()26x y k R k k+=∈--表示焦点在x 轴上的双曲线时,则满足2060k k ->⎧⎨-<⎩,解得6k >,所以 “4k >”是“曲线C 为焦点在x 轴上的椭圆”的必要不充分条件,所以不正确;对于D 中,当曲线C 的方程为22126x y k k+=--时,此时双曲线的实半轴长等于虚半轴长,此时26k k -=-,解得4k =,此时方程表示圆,所以不正确. 故选:AB. 【点睛】本题主要考查了双曲线的标准方程及其应用,其中解答中熟记双曲线的标准方程,以及双曲线的几何性质是解答的关键,着重考查推理与论证能力.12.如图,正三棱柱11ABC A B C -中,11BC AB ⊥、点D 为AC 中点,点E 为四边形11BCC B 内(包含边界)的动点则以下结论正确的是A .()1112DA A A B A BC =-+B .若//DE 平面11ABB A ,则动点E 的轨迹的长度等于2ACC .异面直线AD 与1BCD .若点E 到平面11ACC A EB ,则动点E 的轨迹为抛物线的一部分 【答案】BCD 【分析】根据空间向量的加减法运算以及通过建立空间直角坐标系求解,逐项判断,进而可得到本题答案. 【详解】解析:对于选项A ,()1112AD A A B A BC =-+,选项A 错误; 对于选项B ,过点D 作1AA 的平行线交11A C 于点1D .以D 为坐标原点,1DA DB DD ,,分别为,,x y z 轴的正方向建立空间直角坐标系Oxyz .设棱柱底面边长为a ,侧棱长为b ,则002a A ⎛⎫⎪⎝⎭,,,002B a ⎛⎫ ⎪ ⎪⎝⎭,,,10B b ⎛⎫ ⎪ ⎪⎝⎭,,102a C b ⎛⎫- ⎪⎝⎭,,,所以122a BC a b ⎛⎫=-- ⎪ ⎪⎝⎭,,,122a AB a b ⎛⎫=- ⎪ ⎪⎝⎭,,. ∵11BC AB ⊥,∴110BC AB ⋅=,即22202a b ⎫⎛⎫--+=⎪ ⎪⎪⎝⎭⎝⎭,解得2b a =.因为//DE 平面11ABB A ,则动点E 的轨迹的长度等于1BB =.选项B 正确.对于选项C ,在选项A 的基础上,002a A ⎛⎫⎪⎝⎭,,,00B ⎛⎫ ⎪ ⎪⎝⎭,,()0,0,0D ,1022a C a ⎛⎫- ⎪ ⎪⎝⎭,,,所以002a DA ⎛⎫= ⎪⎝⎭,,,122a BC a ⎛⎫=- ⎪ ⎪⎝⎭,,因为2111cos ,6||||aBC DA BC DA BC DA a ⎛⎫- ⎪⋅<>===-,所以异面直线1,BC DA 所成C 正确. 对于选项D ,设点E 在底面ABC 的射影为1E ,作1EF 垂直于AC ,垂足为F ,若点E 到平面11ACC A EB ,即有12E F EB =,又因为在1CE F ∆中,112E F E C =,得1EB E C =,其中1E C 等于点E 到直线1CC 的距离,故点E 满足抛物线的定义,另外点E 为四边形11BCC B 内(包含边界)的动点,所以动点E 的轨迹为抛物线的一部分,故D 正确.故选:BCD 【点睛】本题主要考查立体几何与空间向量的综合应用问题,其中涉及到抛物线定义的应用.三、填空题13.第一届“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,为了保护各国国家元首的安全,某部门将5个安保小组安排到指定的三个区域内工作,且每个区域至少有一个安保小组,则这样的安排方法共有________. 【答案】150【分析】将5个安保小组再分成三组,每组的安保小组个数为:1,1,3或1,2,2,利用平均分堆方法计算分组个数,再将分好的安保小组安排到指定的三个区域内,利用排列知识及分步计算原理得解. 【详解】将5个安保小组再分成三组,每组的安保小组个数为:1,1,3或1,2,2.这种分组方法一共有231455252C N C C =+⨯=,再将分好的安保小组安排到指定的三个区域内共有336A =种不同的分法.所以某部门将5个安保小组安排到指定的三个区域内工作,且每个区域至少有一个安保小组的安排方法共有33256150M N A =⨯=⨯=种. 【点睛】本题主要考查了平均分堆方法,还考查了分类思想及排列计算,属于中档题. 14.将杨辉三角中的奇数换成1,偶数换成0,便可以得到如图的“01-三角”在“01-三角”中,从第1行起,设第()n n N +∈次出现全行为1时,1的个数为n a ,则3a 等于_______.【答案】8 【分析】分析第6、7行各数,将所有的奇数全部转化为1,确定第三次出现全为1的情形所出现的行数,进而可求得3a 的值. 【详解】第1行和第3行全是1,已经出现2次,依题意,第6行原来的数是()606,rC r r N ≤≤∈,166C =为偶数,不合题意;第7行原来的数是()707rC r ≤≤,即1、7、21、35、35、21、7、1,一共有8个,全部转化为1,这是第三次出现全为1的情形,所以,38a =. 故答案为:8. 【点睛】关键点点睛:求解有关杨辉三角型数阵的推理,一般要观察行之间数据的特点,进而利用归纳推理求解.15.将3名支教教师安排到2所学校任教,每校至多2人的分配的方法总数为a ,则二项式53x a⎛ ⎝的展开式中含x 项的系数为__________.(用数字作答)【答案】52- 【分析】根据排列、组合的定义,结合二项式的通项公式进行求解即可. 【详解】由题意可知:2123126a C C A =⋅⋅=,所以553=2x x a⎛⎛ ⎝⎝,二项式52x ⎛ ⎝的通项公式为:455531551()(()(1)22r r r r r r rr x T C C x ---+=⋅⋅=⋅⋅-⋅,令45133r r -=⇒=,所以x 项的系数为3533515()(1)22C -⋅⋅-=-, 故答案为:52-16.已知M ,N 为抛物线28y x =上两点,O 为坐标原点,且90MON ∠=︒,则MN的最小值为______. 【答案】16 【分析】先设出直线MN 的方程,联立抛物线方程,利用判别式大于0来确定,M N 的存在性,设()11,M x y ,()22,N x y ,将90MON ∠=︒转化为向量相乘为0,利用根与系数的关系建立关系式,即可求出.【详解】设直线:MN x ty m =+,代入28y x =, 得2880y ty m --=,264320t m ∴∆=+>,即220t m +>,设()11,M x y ,()22,N x y ,128y y m ∴=-,90MON ∠=︒,12120OM ON x x y y ∴⋅=+=,221212064y y y y ∴+=,280m m ∴-=,故8m =,12MN y y ∴=-==16≥,当且仅当20t =时等号成立,∴MN 的最小值为16.故答案为:16. 【点睛】本题主要考查直线与抛物线的综合应用,这类综合应用题的特点是:计算过程特别复杂、繁琐,所以对计算能力要求较高.四、解答题17.(1)某地区空气质量监测资料表明,某天的空气质量为优良的概率为0.8,连续两天为优良的概率为0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是多少?(2)有一批同一型号的产品,已知其中由一厂生产的占25%,二厂生产的占35%,三厂生产的占40%,又知这三个厂的产品次品率分别为5%,4%,2%,问从这批产品中任取一件是次品的概率是多少? 【答案】(1)0.75;(2)0.0345. 【分析】(1)利用条件概率的计算公式算出即可;(2)设事件B 为“任取一件为次品”,事件i A 为“任取一件为i 厂的产品”,1,2,3i =,任何利用()()()()()()()112233P B P A P B A P A P B A P A P B A =++算出即可. 【详解】()1设A 表示“某天的空气质量为优良”,设B 表示“随后一天的空气质量为优良”,由题意得()()()()()0.8,0.6,0.75P BA P A P BA P B A P A ====所以已知某天的空气质量为优良,随后一天的空气质量为优良的概率是0.75()2设事件B 为“任取一件为次品”,事件i A 为“任取一件为i 厂的产品”,1,2,3i =,123,,A A A 两两互斥,且123A A A =Ω,由全概率公式得()()()()()()()112233P B P A P B A P A P B A P A P B A =++因为()()()1230.25,0.35,0.4P A P A P A ===()()()1230.05,0.04,0.02P B A P B A P B A ===故()()()()()()()112233|||P B P A P B A P A P B A P A P B A =++0.250.050.350.040.40.02=⨯+⨯+⨯0.0345=所以从这批产品中任取一件是次品的概率是0.034518.(1)直线l 在两坐标轴上的截距相等,且点()2,1P 到直线l 的距离为2,求直线l 的方程.(2)圆心在直线4y x =-上,且与直线:10l x y +-=相切于点()3,2P -,求圆的方程.【答案】(1)0x =或34y x =-或3y x =-+±(2)()()22148x y -++=. 【分析】(1)根据点到直线的距离公式,结合斜率存在情况,进行分类讨论,求得直线方程. (2)两种方法,方法一:设圆的标准方程,分别满足题干中条件,求得参数即可;方法二:由过圆心及切点的直线与切线垂直,从而求得圆心坐标,两点间距离求得半径,从而求得圆的方程. 【详解】(1)①当所求直线经过坐标原点且斜率不存在时,方程为0x =,符合题意 ②当所求直线经过坐标原点且斜率存在时,设其方程为y kx =,由点到直线的距离公式可得2=解得34k =-故所求直线的方程为34y x =-当直线不经过坐标原点且斜率存在时,依题意设所求直线为y x b =-+ 即0x y b +-=2=解得3b =±故所求直线的方程为3y x =-+±综上可知,所求直线的方程0x =或34y x =-或3y x =-+±(2)法一:设圆的标准方程为()()222x a y b r -+-=则有()()222432b a a b r r ⎧⎪=-⎪⎪-+--=⎨=解得1,4,a b r ==-=所求圆的方程为()()22148x y -++=法二:过切点()3,2P -且与10x y +-=垂直的直线23y x +=-由423y x y x =-⎧⎨+=-⎩,得14x y =⎧⎨=-⎩所以圆心为()1,4-所以半径r ==所以所求圆的方程为()()22148x y -++= 【点睛】关键点点睛:(1)对斜率的存在情况分类讨论求解;(2)利用圆与切线的关系求得圆中参数.19.甲、乙去某公司应聘面试.该公司的面试方案为:应聘者从6道备选题中一次性随机抽取3道题,按照答对题目的个数为标准进行筛选.已知6道备选题中应聘者甲有4道题能正确完成,2道题不能完成;应聘者乙每题正确完成的概率都是23,且每题正确完成与否互不影响.(1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望; (2)请分析比较甲、乙两人谁的面试通过的可能性较大?【答案】(1) 甲、乙的分布列见解析;甲的数学期望2、乙的数学期望2; (2)甲通过面试的概率较大. 【分析】(1)设出甲、乙正确完成面试题的数量分别为X ,Y ,由于~(6,3,4)X H ,2~3,3Y B ⎛⎫⎪⎝⎭,分别写出分布列,再求期望值均为2;(2)由于均值相等,可通过比较各自的方差. 【详解】(1)设X 为甲正确完成面试题的数量,Y 为乙正确完成面试题的数量, 依题意可得:~(6,3,4)X H ,∴1223461(1)5C C P X C ⋅===,4212363(2)5C C P X C ⋅===,3042361(3)5C C P X C ⋅===, ∴X 的分布列为:∴1232555EX =⨯+⨯+⨯=.2~3,3Y B ⎛⎫ ⎪⎝⎭,∴0303211(0)3327P Y C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,12132162(1)C 33279P Y ⎛⎫⎛⎫==== ⎪⎪⎝⎭⎝⎭, 212321124(2)C 33279P Y ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭,333218(3)3327P Y C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ∴Y 的分布列为:∴01232279927EY =⨯+⨯+⨯+⨯=. (2)2221312(12)(22)(32)5555DX =⨯-+-⨯+-⨯=,2121333(3)DY np p =-=⨯⨯=,∵DX DY <,∴甲发挥的稳定性更强,则甲通过面试的概率较大. 【点睛】本题考查超几何分布和二项分布的应用、期望和方差的计算,考查数据处理能力,求解时注意概率计算的准确性.20.计算机考试分理论考试与实际操作两部分,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则计算机考试“合格”,并颁发合格证书甲、乙、丙三人在理论考试中“合格”的概率依次为45,34,23,在实际操作考试中“合格”的概率依次为12,23,56,所有考试是否合格相互之间没有影响. (1)假设甲、乙、丙三人同时进行理论与实际操作两项考试,谁获得合格证书的可能性最大?(2)这三人进行理论与实际操作两项考试后,求恰有两人获得合格证书的概率. 【答案】(1)丙;(2)1130【分析】(1)分别计算三者获得合格证书的概率,比较大小即可(2)根据互斥事件的和,列出三人考试后恰有两人获得合格证书事件,由概率公式计算即可求解. 【详解】(1)设“甲获得合格证书”为事件A ,“乙获得合格证书”为事件B ,“丙获得合格证书”为事件C ,则412()525P A =⨯=,321()432P B =⨯=,255()369P C =⨯=. 因为()()()P C P B P A >>,所以丙获得合格证书的可能性最大. (2)设“三人考试后恰有两人获得合格证书”为事件D ,则21421531511()()()()52952952930P D P ABC P ABC P ABC =++=⨯⨯+⨯⨯+⨯⨯=.【点睛】本题主要考查了相互独立事件,互斥事件,及其概率公式的应用,属于中档题. 21.如图,在四棱锥P ABCD -中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,AB AD ⊥,//AB CD ,222AB AD CD ===,E 是PB 上的中点.二面角P AC E--.(1)求直线PA 与平面EAC 所成角的正弦值; (2)求点D 到平面ACE 的距离.【答案】(1)3;(2)3. 【分析】(1)建立空间坐标系,根据二面角大小计算PC ,得出平面EAC 的法向量m ,计算PA 与m 的夹角得出线面角的正弦值;(2)计算CD 与平面ACE 的夹角正弦值,再计算D 到平面ACE 的距离. 【详解】(1)取AB 的中点F ,连接CF ,//CD AB ,12CD AB AF ==,AB AD ⊥,AD CD =, ∴四边形ADCF 是正方形,CF AB ∴⊥,CF CD ∴⊥,以C 为原点,以CD ,CF ,CP 所在直线为坐标轴建立空间直角坐标系C xyz -, 设PC h =,则()0,0,0C ,()1,1,0A ,11,,222h E ⎛⎫- ⎪⎝⎭,()0,0,P h ,∴()1,1,0CA =,11,,222h CE ⎛⎫=- ⎪⎝⎭, ()1,1,AP h =--,设平面ACE 的一个法向量为(),,m x y z =,则·0·0m CA m CE ⎧=⎨=⎩,即0110222x y hx y z +=⎧⎪⎨-++=⎪⎩, 令1x =可得21,1,m h ⎛⎫=- ⎪⎝⎭, 设平面PAC 的一个法向量为(),,n a b c =,则·0·0n CA n AP ⎧=⎨=⎩,即00a b a b hc +=⎧⎨--+=⎩,则0b ac =-⎧⎨=⎩,令1a =,则()1,1,0n =-,·cos ,2m n m n m n∴<>==⨯,二面角P AC E --的余弦值为3,∴3=,解得2h =,∴()1,1,2AP =--,()1,1,1m =-,·cos 36,AP m AP m AP m∴<>=== ∴直线PA 与平面EAC 所成角的正弦值为3;(2)由(1)可得()1,0,0CD =,则·1cos 1,CD m CD m CD m<>===⨯ 设直线CD 与平面EAC 所成角为α,则sin α=, D ∴到平面EAC 的距离为·sin CD α=.【点睛】本题主要考查求线面角的正弦值,考查求点到面的距离,利用空间向量的方法求解即可,属于常考题型.22.在平面直角坐标系xOy 中,设椭圆22221x y a b+=(0a b >>)的离心率是e ,定义直线eby =±为椭圆的“类准线”,已知椭圆C 的“类准线”方程为y =±,长轴长为8.(1)求椭圆C 的标准方程;(2)O 为坐标原点,A 为椭圆C 的右顶点,直线l 交椭圆C 于E ,F 两不同点(点E ,F 与点A 不重合),且满足AE AF ⊥,若点P 满足2OP OE OF =+,求直线AP 的斜率的取值范围.【答案】(1)2211612x y +=;(2)5656⎡-⎢⎣⎦. 【分析】(1)由题意列关于a ,b ,c 的方程,联立方程组求得216a =,212b =,24c =,则椭圆方程可求;(2)分直线l x ⊥轴与直线l 不垂直于x 轴两种情况讨论,当直线l 不垂直于x 轴时,设()11,E x y ,()22,F x y ,直线l :y kx t =+(4t k ≠-,0k ≠),联立直线方程与椭圆方程,消元由0∆>,得到2216120k t -+>,再列出韦达定理,由AE AF ⊥则0AE AF ⋅=,解得47k t =-,再由2OP OE OF =+,求出P 的坐标,则178AP k k k=+,再利用基本不等式求出取值范围;【详解】解:(1)由题意得:e b ab c==28a =,又222a b c =+, 联立以上可得:216a =,212b =,24c =,∴椭圆C 的方程为2211612x y +=. (2)由(1)得()4,0A ,当直线l x ⊥轴时,又AE AF ⊥,联立224,1,1612y x x y =-+⎧⎪⎨+=⎪⎩得2732160x x -+=, 解得47x =或4x =,所以47E F x x ==,此时4,07P ⎛⎫ ⎪⎝⎭,直线AP 的斜率为0. 当直线l 不垂直于x 轴时,设()11,E x y ,()22,F x y ,直线l :y kx t =+(4t k ≠-,0k ≠), 联立223448y kx t x y =+⎧⎨+=⎩,整理得()2223484480k x ktx t +++-=, 依题意()()2222644344480k t k t ∆=-+->,即2216120k t -+>(*)且122834kt x x k +=-+,212244834t x x k-⋅=+. 又AE AF ⊥,()()()()()()121212124444AE AF x x y y x x kx t kx t ∴⋅=-⋅-+⋅=-⋅-+++()()222212122732161(4)16034t kt k k x x kt x x t k ++=+⋅+-+++==+, 22732160t kt k ∴++=,即()()7440t k t k ++=,47k t ∴=-且t 满足(*), ()121222862,,3434kt t OP OE OF x x y y k k ⎛⎫∴=+=++=- ⎪++⎝⎭,2243,3434kt t P k k ⎛⎫∴- ⎪++⎝⎭, 故直线AP 的斜率2222331344716412874834AP t t k k k kt k kt k k k k+==-==+++--++, 当0k <时,7788k k k k ⎛⎫+=--+≤-=- ⎪-⎝⎭当且仅当78k k -=-,即4k =-时取等号,此时056AP k -≤<;当0k >时,78k k +≥=78k k =,即4k =时取等号,此时0AP k <≤;综上,直线AP 的斜率的取值范围为5656⎡-⎢⎣⎦. 【点睛】本题考查利用待定系数法求椭圆方程,直线与椭圆的综合应用,属于难题.。

广东省深圳高级中学2020-2021学年高二上学期期末考试化学试题(解析版)

广东省深圳高级中学2020-2021学年高二上学期期末考试化学试题(解析版)
A.a、c两种元素形成的化合物中可能存在离子键
B.元素对应形成的简单离子半径大小顺序为:d>c>a>b
C.b单质的电子式为:b××b
D.c、d两种元素气态氢化物的稳定性比较:d >c
【答案】D
【解析】
【分析】已知化合物中的b元素不存在正价,则b为F元素,则a为O元素,c为S元素,d为Cl元素。
【详解】A.a为O元素,c为S元素,二者可以形成化合物SO2、SO3,均为只含共价键的共价化合物,故A错误;
B.燃煤中加入生石灰可以有效降低二氧化碳的排放,减少温室效应
C.植物油的主要成分为不饱和高级脂肪酸甘油酯,长时间放置的植物油会因水解而变质
D.在杀灭新冠肺炎的战役中,世界卫生组织将二氧化氯列为A类高效安全灭菌消毒剂,二氧化氯能用于杀菌消毒是基于其强氧化性
【答案】D
【解析】
【详解】A.植物秸秆主要成分 纤维素,纤维素多步水解只能得到葡萄糖,葡萄糖再无氧发酵才能生成乙醇,故A错误;
A.分子式为C19H12O6,有可能用它制抗凝血药
B.属于酚类物质
C.可发生水解、加成、氧化反应
D.1mol双香豆素在碱性条件水解,消耗NaOH4 mol
【答案】B
【解析】
【详解】A.根据该物质的结构简式可知其分子式为C19H12O6,小母牛食用腐败草料后,血液不会凝固,而腐败草料中含有双香豆素,所以有可能用它制抗凝血药,故A正确;
A.23 g Na与O2完全反应生成Na2O和Na2O2时转移电子数为NA
B.13g13C中所含的中子数在标准状况下为6NA
C.在标准状况下,22.4L三氧化硫所含原子数为4NA
D.1mol乙酸和1mol乙醇加入浓硫酸并加热,充分反应后生成的乙酸乙酯的分子数为NA

2020-2021学年湖北省武汉外国语学校高二上学期期末数学试题(解析版)

2020-2021学年湖北省武汉外国语学校高二上学期期末数学试题(解析版)

2020-2021学年湖北省武汉外国语学校高二上学期期末数学试题一、单选题1.两个事件互斥是两个事件对立的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不充分又不必要条件【答案】B【分析】根据互斥事件和对立事件的定义及必要不充分条件定义可得答案.【详解】互斥事件是指事件A 和B 的交集为空,也叫互不相容事件,也可叙述为:不可能同时发生的事件,其含义是:事件A 与事件B 在任何一次试验中不会同时发生; 对立事件是指AB 为不可能事件,A B 为必然事件,那么称A 事件与事件B 互为对立事件,其含义是:事件A 和事件B 必有一个且仅有一个发生,不会同时发生. 所以对立一定互斥但互斥不一定对立. 故选:B.【点睛】结论点睛:本题考查必要不条件充分的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等; (4)p 是q 的既不充分又不必要条件,q 对的集合与p 对应集合互不包含.2.若抛物线22y px =的焦点与双曲线2213x y -=的右焦点重合,则p 的值为( )A .4B .2C D .【答案】A【分析】求出双曲线的右焦点坐标,根据抛物线22y px =的焦点(,0)2p与双曲线2213x y -=的右焦点重合可得4p =. 【详解】由双曲线2213x y -=得223,1a b ==,所以222314c a b =+=+=,2c =,所以双曲线的右焦点为(2,0),因为抛物线22y px =的焦点(,0)2p 与双曲线2213x y -=的右焦点重合,所以22p=,所以4p =. 故选:A 3.曲线cos x y x =在点(2π,0)处的切线的斜率为( ) A .2πB .2π-C .-2πD .24π【答案】B【分析】求出函数的导数,然后可得答案. 【详解】2sin cos =x x xy x --'所以曲线cos x y x =在点(2π,0)处的切线的斜率为2222πππ-=-⎛⎫ ⎪⎝⎭故选:B4.掷一枚均匀的硬币4次,出现正面的次数等于反面次数的概率为( ) A .38B .316C .516D .58【答案】A【分析】利用二项分布的知识求出答案即可.【详解】出现正面的次数等于反面次数的概率为2224113228C ⎛⎫⎛⎫⨯= ⎪ ⎪⎝⎭⎝⎭ 故选:A5.已知()()201f x x xf =-'-,则()2f 的值为( )A .1B .1-C .3D .3-【答案】C【分析】对函数()f x 求导,求出()0f '的值,可得出函数()f x 的解析式,进而可求得()2f 的值. 【详解】()()201f x x xf =-'-,()()20f x x f ''∴=-,()()00f f ''∴=-,可得()00f '=,()21f x x ∴=-,因此,()22213f =-=.故选:C.6.已知向量OA →=(1,0,1),OB →=(0,1,1),O 为坐标原点,则三角形OAB 的面积为( ) A .12B .3C .1D .3 【答案】D【分析】利用向量的夹角公式可得cos AOB ∠,进而可求出sin AOB ∠,最后由三角形面积公式可得结果.【详解】∵()1,0,1OA =,()0,1,1OB =, ∴2OA =,2OB =,1cos 2OA OB AOB OA OB⋅∠==⋅, 由于0AOB π<∠<,所以3AOB π∠=,所以三角形OAB 的面积为1133sin 2223222OA OB π⨯=⨯⨯⨯=, 故选:D.7.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为底面ABCD 内一点,若P 到棱CD ,A 1D 1距离相等的点,则点P 的轨迹是( ) A .直线 B .椭圆C .抛物线D .双曲线【答案】D【分析】以D 为坐标原点建立空间直角坐标系D xyz -,求出点P 的轨迹方程即可判断.【详解】如图示,过P 作PE ⊥AB 与E ,过P 作PF ⊥AD 于F ,过F 作FG ∥AA 1交A 1D 1于G ,连结PG ,由题意可知PE=PG以D 为坐标原点建立空间直角坐标系D xyz -,设(),,0P x y ,由PE=PG 得:1x -=,平方得:()2211x y --=即点P 的轨迹是双曲线. 故选:D.【点睛】立体几何中的动点轨迹问题一般有四种,即线段型,平面型,二次曲线型,球型,有两种处理方法:(1)很容易的看出动点符合什么样的轨迹(定义法); (2)要么通过计算(建系)求出具体的轨迹表达式. 8.过点P 32,4m m +⎛⎫ ⎪⎝⎭向圆C :224690x y x y +-++=作切线,切点分别为A ,B .则PA PB →→⋅的最小值为( )A .B .6C .D .92【答案】B【分析】将圆的方程配成标准式,画出草图,设APC θ∠=,则()()22212sin P C B P P ACA θ→→⋅=--,又sin AC PCθ=,所以223212P PB PA PC C →→+-⋅=,利用平面直角坐标系下任意两点的距离公式及二次函数的性质得到216PC ≥,再根据对勾函数的性质计算可得;【详解】解:圆C :224690x y x y +-++=,即圆C :()()22234x y -++=,圆心为()2,3C -,半径2r如图,设APC θ∠=,由对称性BPC θ∠=且PA PB =,所以()()()222222cos 2cos 2cos 212sin PA PA P P PB PB A A A PC C CCθθθθ→→→→→⋅=⋅==-=--因为sin AC PCθ=,所以()222222321212AC PB ACPC PA PC PC PC →→⎛⎫ ⎪⋅=--+ ⎪⎭-=⎝ 因为32,4m P m +⎛⎫ ⎪⎝⎭,所以()2222322522316164165m PC m m +⎛⎫⎛⎫=-++=++≥⎪ ⎪⎝⎭⎝⎭ 令2t PC =,则[)16,t ∈+∞,所以3212P t PB A t →→=+-⋅,因为函数()3212f x x x+=-在)82,⎡+∞⎣上单调递增,(0,82上单调递减,因为[)16,x ∈+∞,所以()()min 166f x f ==故选:B【点睛】本题解答的关键是将PA PB →→⋅进行转化,转化为223212PC PC+-,再根据对勾函数的性质计算可得;二、多选题9.下列说法不正确的是( ) A .曲线的切线和曲线有且只有一个交点B .曲线的切线和曲线可能有无数个交点C .已知ln 2y =,则12y '=D .函数3()f x x =在原点处的切线为x 轴 【答案】AC【分析】对选项A 、B ,根据切线的定义列举一个反例进行判断;对选项C ,这个错误很明显;对选项D ,利用导数的几何意义求切线即可.【详解】对选项A ,例如:cos y x =在(0,1)处的切线和cos y x =有无数个交点,故A 错误,从而也可知B 正确;对选项C ,2,0y ln y ='=,故C 错误;对选项D ,由3()f x x =,得2()3f x x '=,所以(0)0f '=.所以函数3()f x x =在原点处的切线方程是0y =,即为x 轴,故D 正确. 故选:AC.10.已知曲线22:1C mx ny +=,m 、n 为实数,则下列说法正确的是( ) A .曲线C 可能表示两条直线B .若0m n >>,则C 是椭圆,长轴长为C .若0m n =>,则CD .若0m n ⋅<,则C 是双曲线,渐近线方程为y = 【答案】AC【分析】取0m >,0n =可判断A 选项的正误;将曲线C 的方程化为标准方程,可判断B 选项的正误;将方程化为圆的标准方程,可判断C 选项的正误;分00m n >⎧⎨<⎩和0m n <⎧⎨>⎩两种情况讨论,将曲线C 的方程化为标准方程,求出双曲线的渐近线方程,可判断D 选项的正误.【详解】对于A 选项,若0m >,0n =,则曲线C 的方程为21mx =,即x=, 此时,曲线C 表示两条直线,A 选项正确;对于B 选项,若0m n >>,则110n m>>,曲线C 的标准方程为22111x y m n+=,此时,曲线C 表示焦点在y,B 选项错误; 对于C 选项,若0m n =>,曲线C 的方程为221x y m+=, 此时,曲线CC 选项正确; 对于D 选项,若0m >,0n <,则曲线C 的方程为22111x y m n-=-, 曲线C 表示焦点在x 轴上的双曲线,则21a m=,21b n =-,此时,双曲线C的渐近线方程为b y x a =±=; 当0m <,0n >时,则曲线C 的方程为22111y x n m-=-, 曲线C 表示焦点在y 轴上的双曲线,则21a n =,21b m=-, 所以,双曲线C的渐近线方程为a y x b =±=. 综上所述,D 选项错误. 故选:AC.【点睛】方法点睛:求双曲线的渐近线方程的方法:(1)定义法:直接利用a 、b 求得比值,则焦点在x 轴上时,渐近线方程为by x a=±,焦点在y 轴上时,渐近线方程为ay x b=±; (2)构造齐次式:利用已知条件结合222a b c =+,构建b a 的关系式(或先构建c a的关系式),再根据焦点位置写出渐近线方程即可. 11.下列不等式中恒成立的是( ) A .a b a b ⋅≤⋅B .2,,11a b R a b+∈≥+C .,0a b c c >>>,则b b ca a c+<+D.,a b R +∈≥【答案】ACD【分析】根据向量的数量积和基本不等式判断各选项.【详解】因为cos ,1a b <>≤,所以cos ,a b a b a b a b ⋅=<>≤,A 正确;0,0a b >>,11a b +≥211a b≤=+B 错;因为,0a b c c >>>,()0()b bc c b a a a c a a c +--=<++,C 正确; 22,,2a b R a b ab+∈+≥,222a b ab +≥≥D 正确.故选ACD .12.已知函数()sin(cos )f x x =,下列关于该函数结论正确的是( ) A .()f x 的一个周期是2π B .()f x的图象关于直线2x π=对称C .()f xD .()f x x =在区间(0,2π)内有唯一的根【答案】ACD【分析】计算出()(2)f x f x π+=,可判断A ,由()()f x f x π-=-可判断B ,max ()sin1sin3f x π=<,即可判断C ,令()()()sin cos ,0,2g x f x x x x x π⎛⎫=-=-∈ ⎪⎝⎭,利用单调性和零点存在定理可判断D.【详解】()()()()(2)sin cos 2sin cos f x x x f x ππ+=+==,故A 正确 因为()()()()()()sin cos sin cos sin cos fx x x x f x ππ-=-=-=-=-所以()f x 的图象关于点,02π⎛⎫⎪⎝⎭对称,故B 错误 因为[]cos 1,1x ∈-,所以max ()sin1sin3f x π=<=C 正确令()()()sin cos ,0,2g x f x x x x x π⎛⎫=-=-∈ ⎪⎝⎭()()sin cos cos 10g x x x '=--<所以()g x 在0,2π⎛⎫⎪⎝⎭上单调递减,因为()0sin10g =>,022g ππ⎛⎫=-<⎪⎝⎭所以()f x x =在区间(0,2π)内有唯一的根,故D 正确故选:ACD三、填空题13.一组数据2,4,x ,8,10的平均值是6,则此组数据的方差是_______. 【答案】8【分析】由条件求得6x =,然后算出答案即可. 【详解】因为2481065x ++++=,解得6x =所以此组数据的方差是()()()()()2222226466686+106=85-+-+-+--故答案为:814.已知球的体积V 是关于半径r 的函数,34()3r V r π=,则r =2时,球的体积的瞬时变化率为________ 【答案】16π【分析】利用瞬时变化率的概念求解即可.【详解】3324(2)424[126()](2)(2)333r r r r V V r V πππ+∆⋅∆+∆+∆∆=+∆-=-=, 24[126()]3V r r r π∆∴=+∆+∆∆, 当r ∆趋于0时,Vr∆∆趋于16π.故答案为:16π.15.已知梯形ABCD 中,//AB CD ,2AB CD =,32AE EC = ,若双曲线以A 、B 为焦点,且过C 、D 、E 三点,则双曲线的离心率为_______【分析】以线段AB 的中点O 为坐标原点,AB 所在直线为x 轴建立平面直角坐标系,设(),0A c -、(),0B c ,求出点C 的坐标,利用32AE EC =求出点E 的坐标,将点E 的坐标代入双曲线方程,可得出关于e 的方程,即可解得该双曲线的离心率的值. 【详解】2AB CD =,以线段AB 的中点O 为坐标原点,AB 所在直线为x 轴建立如下图所示的平面直角坐标系xOy ,设双曲线的方程为()222210,0x y a b a b-=>>,由于双曲线的焦点为A 、B ,可设(),0A c -、(),0B c , 由于双曲线过C 、D 两点,且//CD AB ,由双曲线的对称性可知,点C 、D 关于y 轴对称,则12CD AB c ==, 将12x c =代入双曲线方程可得222214c y a b -=,可得22214ey b ⎛⎫=- ⎪⎝⎭,则2,124c e C ⎛- ⎝, 设点(),E x y ,由()322AE EC AC AE ==-可得25AE AC =, 即()223,,1524c e x c y ⎛+=- ⎝,可得2352154c x c b e y ⎧+=⎪⎪⎨⎪=-⎪⎩2252154x c b e y ⎧=-⎪⎪⎨⎪=-⎪⎩ 所以,点2221554c b e E ⎛-- ⎝,将点E 的坐标代入双曲线方程可得22441125254c e ⎛⎫--= ⎪⎝⎭,即2225144e e ⎛⎫--= ⎪⎝⎭,可得27e =,1e >,解得e =..【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a 、c 的值,根据离心率的定义求解离心率e 的值;(2)齐次式法:由已知条件得出关于a 、c 的齐次方程,然后转化为关于e 的方程求解; (3)特殊值法:通过取特殊位置或特殊值,求得离心率.四、双空题16.平行六面体1111ABCD A B C D -中,以顶点A 为端点的三条棱彼此的夹角都为60,3AB AD ==,12AA =.则(1)对角线1AC =________;(2)三棱锥1A ABD -的外接球的体积为_________.【分析】(1)计算出()2211AC AB AD AA =++的值,即可求得对角线1AC 的长;(2)在射线1AA 上取点M ,使得3AM =,则三棱锥A BDM -为正四面体,可将正四面体A BDM -置于正方体APMQ EBFD -,以点A 为坐标原点,AP 、AQ 、AE 所在直线分别为x 、y 、z 轴建立空间直角坐标系。

广东省深圳实验学校2020-2021学年高二上学期第二阶段考试化学试题(wd无答案)

广东省深圳实验学校2020-2021学年高二上学期第二阶段考试化学试题(wd无答案)

广东省深圳实验学校2020-2021学年高二上学期第二阶段考试化学试题一、单选题(★★★) 1. 下列说法中正确的是A.储热材料是一类重要的能量储存物质,单位质量的储热材料在发生熔融或结晶时会吸收或释放较大的热量B.反应热的单位kJ·mol-1表示1mol物质参加反应时的能量变化C.Mg在CO2中燃烧生成MgO和C,反应中化学能全部转化成热能D.在可逆反应中,正反应焓变与逆反应焓变相等(★★★) 2. 下列关于能源的说法不正确的是A.生物质能、地热能、氢能、风能、潮汐能、天然气等为清洁能源B.化石燃料在燃烧过程中能产生污染环境的一氧化碳、二氧化硫等有害气体C.化石燃料的燃烧一定是放热反应,但并不是所有的化学反应都一定伴随着能量变化D.直接燃烧煤不如将煤进行深加工后燃烧效果好(★★★) 3. 25℃、101 kPa时,强酸与强碱的稀溶液发生中和反应的中和热△ H=-57.3kJ∙mol -1,,石墨的燃烧热△ H=-393.5kJ∙mol -1,乙醇的燃烧热△ H=-1366.6kJ∙mol -1。

下列热化学方程式书写正确的是A.B.C.D.(★★) 4. 下列事实不能用勒夏特列原理解释的是A.黄绿色的氯水光照后颜色变浅B.CaCO 3(s)CaO(s)+CO2(g),平衡时将容器的体积缩小至一半,新平衡的浓度与原平衡相同C.用浓氨水和氢氧化钠固体可快速制取氨气D.打开汽水瓶时,有大量气泡溢出(★★★★) 5. 对于在一个密闭容器中进行的反应C(s)+H 2O(g) CO(g)+H 2(g) ,下列条件的改变对反应速率几乎没有影响的是①增加C的量;②增加CO的量;③将容器的体积缩小一半;④保持体积不变,充入N 2以增大压强;⑤升高反应体系的温度;⑥保持压强不变,充入N 2以增大体积。

A.②③B.①④C.①⑥D.④⑥(★★★) 6. 在一定温度下,下列叙述不是可逆反应A(g)+3B(g) 2C(g)达到平衡状态标志的是()①C生成的速率与C分解的速率相等;②单位时间内生成a mol A,同时生成3a mol B;③A、B、C的浓度不再变化;④A、B、C的压强不再变化;⑤混合气体的总压强不再变化;⑥混合气体的物质的量不再变化;⑦单位时间内消耗a mol A,同时生成3a mol B;⑧A、B、C的分子数之比为1∶3∶2A.②⑧B.①⑥C.②④D.③⑧(★★★) 7. 下列有关平衡常数的说法正确的是A.改变条件,反应物的转化率增大,平衡常数也一定增大B.2NO 2(g)N2O4(g),开始时充入1molN2O4,平衡常数表达式为C.对于给定的可逆反应,温度一定时,其正、逆反应的平衡常数相等D.,若改变温度使平衡常数增大,则该反应一定是往正反应方向移动(★★) 8. 下列过程一定不能自发进行的是( )A.2N2O5(g)=4NO2(g)+O2(g) ΔH>0B.2H2(g)+O2(g)=2H2O(l) ΔH<0C.(NH4)2CO3(s)=NH4HCO3(s)+NH3(g) ΔH>0D.2CO(g)=2C(s)+O2(g) ΔH>0(★★★) 9. 在一定温度下,冰醋酸加水稀释过程中,溶液导电能力如图所示,下列说法不正确的是A.用湿润的pH试纸测量a处溶液的pH,测量结果可能偏小B.a、b、c三点,a点时醋酸溶液中H+浓度最小C.b点时,醋酸电离程度最大D.可通过微热的方法使c点溶液中c(CH3COO-)增大(★★★) 10. 氢碘酸(HI)可用“四室式电渗析法”制备,其工作原理如图所示(阳膜和阴膜分别只允许阳离子、阴离子通过)。

2020-2021学年湖南师范大学附属中学高二上学期期末考试数学(文)试题Word版含答案

2020-2021学年湖南师范大学附属中学高二上学期期末考试数学(文)试题Word版含答案

2020-2021学年湖南师范大学附属中学高二上学期期末考试数学(文)试题(内容: 必修3,选修1-1,选修1-2,选修4-4)时量:120分钟 满分:100 分(必考试卷Ⅰ),50分(必考试卷Ⅱ)必考试卷Ⅰ(满分100分)一、选择题:本大题共10个小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数-i +1i=A .-2iB .12i C .0 D .2i2.下列选项叙述错误的是A .命题“若x ≠1,则x 2-3x +2≠0”的逆否命题是“若x 2-3x +2=0,则x =1”B .若命题p :x ∈R ,x 2+x +1≠0,则綈p :x 0∈R ,x 20+x 0+1=0C .若p ∨q 为真命题,则p ,q 均为真命题D .“x >2”是“x 2-3x +2>0”的充分不必要条件3.若商品的年利润y (万元)与年产量x (百万件)的函数关系式:y =-x 3+27x +123(x >0),则获得最大利润时的年产量为A .1百万件B .2百万件C .3百万件D .4百万件4.“k >4”是“方程x 2k -4+y 210-k=1表示焦点在x 轴上的双曲线”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.若函数y =f (x )的导函数y =f ′(x )的图象如图所示,则y =f (x )的图象可能为6.在△ABC 的边AB 上随机取一点P ,记△CAP 和△CBP 的面积分别为S 1和S 2,则S 1>2S 2的概率是 A.12 B.13 C.14 D.157.执行如图所示的程序框图,会输出一列数,则这个数列的第3项是A .870B .30C .6D .38.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得的数据,则A ,B 两样本的下列数字特征对应相同的是A .众数B .平均数C .中位数D .标准差9.已知双曲线x 2a 2-y 2b2的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为A .5x 2-4y 25=1 B.x 25-y24=1C.y 25-x 24=1 D .5x 2-5y 24=1 10.设函数f (x )=13x 3-a 2x 2+2x +1,若f (x )在区间(-2,-1)内存在单调递减区间,则实数a 的取值范围是A .(22,+∞)B .[22,+∞)C .(-∞,-22)D .(-∞,-22] 答题卡题 号 1 2 3 4 5 6 7 8 9 10 得分 答 案11.用反证法证明命题:“三角形三个内角至少有一个不大于60°”时,应假设________________. 12.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2 500,3 000](元)月收入段应抽出________人.13.对于定义域为R 的函数f (x ),若函数f (x )在()-∞,x 0和()x 0,+∞上均有零点,则称x 0为函数f (x )的一个“给力点”.现给出下列四个函数:①f ()x =3||x -1+12;②f ()x =2+lg ||x -1;③f ()x =x 33-x -1;④f ()x =x 2+ax -1(a ∈R ).则存在“给力点”的函数是________.(填序号)三、解答题:本大题共3小题,共35分,解答应写出文字说明,证明过程或演算步骤. 14.(本小题满分11分)已知曲线C 的极坐标方程是ρ-6cos θ+2sin θ+1ρ=0,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴, 建立平面直角坐标系,在平面直角坐标系xOy 中, 直线l 经过点P(3,3),倾斜角α=π3.(1)写出曲线C 的直角坐标方程和直线l 的参数方程; (2)设l 与曲线C 相交于A ,B 两点,求|AB|的值.为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名小学生进行了问卷调查得到如下列联表:(平均每天喝500 ml已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为.15(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;(3)现从常喝碳酸饮料且肥胖的学生中(其中有2名女生),抽取2人参加竞技运动,则正好抽到一男一女的概率是多少?(参考公式:K2=,其中n=a+b+c+d)(a+b)(c+d)(a+c)(b+d)在直角坐标系xOy 中,直线l :y =t(t ≠0)交y 轴于点M ,交抛物线C :y 2=2px(p>0)于点P ,M 关于点P 的对称点为N ,连结ON 并延长交抛物线C 于点H.(1)求|OH||ON|;(2)除H 以外,直线MH 与抛物线C 是否有其他公共点?说明理由.必考试卷Ⅱ(满分50分)一、选择题:本大题共1个小题,每小题5分,共5分.在每小题给出的四个选项中,只有一项是符合题目要求的.17.已知函数f(x)=x 2+x sin x +cos x 的图象与直线y =b 有两个不同交点,则b 的取值范围是( ) A .(-∞,0) B .(0,+∞) C .(-∞,1) D .(1,+∞)二、填空题:本大题共2个小题,每小题5分,共10分.请把答案填在答题卷对应题号后的横线上.18.如图,已知F 1,F 2是椭圆C :x 2a 2+y2b2=1(a >b >0)的左、右焦点,点P 在椭圆C 上,线段PF 2与圆x 2+y 2=b 2相切于点Q ,且点Q 为线段PF 2的中点,则椭圆C 的离心率为________.19.把正整数排列成如图甲所示三角形数阵,然后擦去偶数行中的奇数和奇数行中的偶数,得到如图乙所示三角形数阵,设a i j 为图乙三角形数阵中第i 行第j 个数,若a mn =2 017,则实数对(m ,n)为____________.三、解答题:本大题共3小题,共35分,解答应写出文字说明,证明过程或演算步骤. 20.(本小题满分10分)设f(x)=a(x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6). (1)确定a 的值;(2)求函数f (x )的单调区间与极值.21.(本小题满分12分)已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,A 为短轴的一个端点且||OA =||OF =2(其中O 为坐标原点).(1)求椭圆的方程;(2)若C 、D 分别是椭圆长轴的左、右端点,动点M 满足MD ⊥CD ,连接CM ,交椭圆于点P ,试问x 轴上是否存在异于点C 的定点Q ,使得以MP 为直径的圆恒过直线DP 、MQ 的交点,若存在,求出点Q 的坐标;若不存在,说明理由.22.(本小题满分13分)已知函数f ()x =12x 2,g ()x =a ln x .(1)设h ()x =f ()x +g ()x ,若对任意两个不等的正数x 1,x 2,都有h (x 1)-h (x 2)x 1-x 2>0恒成立,求实数a 的取值范围;(2)若在[]1,e 上存在一点x 0,使得f ′()x 0+1f ′()x 0<g ()x 0-g ′()x 0成立,求实数a 的取值范围.2020-2021学年湖南师范大学附属中学高二上学期期末考试数学(文)试题参考答案必考试卷Ⅰ一、选择题:本大题共10个小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.5.C 【解析】根据f ′(x)的符号,f(x)图象应该是先下降后上升,最后下降,排除A 、D ;从适合f ′(x)=0的点可以排除B .10.C 【解析】f ′(x)=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x)=x 2-ax +2<0成立,即x ∈(-2,-1)时,a<⎝ ⎛⎭⎪⎫x +2x max =-22,当且仅当x =2x 即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22).二、填空题:本大题共3个小题,每小题5分,共15分.请把答案填在答题卷对应题号后的横线上. 11.三角形三个内角都大于60° 12.2513.②④ 【解析】对于①, f ()x =3||x -1+12>0,不存在“给力点”;对于②,取x 0=1,f ()x 在(-1,1)上有零点x =99100,在(1,+∞)上有零点x =101100,所以f ()x 存在“给力点”为1;对于③,f ′(x)=(x +1)(x -1),易知f(x)只有一个零点.对于④,f(x)=x 2+ax -1(a ∈R )定义域为R ,因为判别式a 2+4>0,则一定存在“给力点”.综上可得,②④正确.三、解答题:本大题共3小题,共35分,解答应写出文字说明,证明过程或演算步骤.14.【解析】(1)曲线C 化为:ρ2-6ρcos θ+2ρsin θ+1=0,再化为直角坐标方程为 x 2+y 2-6x +2y +1=0,化为标准方程是(x -3)2+(y +1)2=9,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cosπ3y =3+t sin π3.(t 为参数)(5分)(2)将l 的参数方程代入曲线C 的直角坐标方程,整理得:t 2+43t +7=0,Δ=(43)2-4×7=20>0,则t 1+t 2=-43,t 1·t 2=7,所以|AB|=|t 1-t 2|=(t 1+t 2)2-4t 1·t 2=48-28=2 5.(11分)15.【解析】(1)设常喝碳酸饮料中肥胖的学生有x 人,由x +230=415,即得x =6.(2分)补充列联表如下:(5分)(2)由已知数据可求得:K 2=30(6×18-2×4)210×20×8×22≈8.523>7.879,因此有99.5%的把握认为肥胖与常喝碳酸饮料有关.(8分)(3)设常喝碳酸饮料的肥胖者中男生为A 、B 、C 、D ,女生为E 、F ,则任取两人有AB ,AC ,AD ,AE ,AF ,BC ,BD ,BE ,BF ,CD ,CE ,CF ,DE ,DF ,EF ,共15种基本事件.设抽中一男一女为事件A ,事件A 含有AE ,AF ,BE ,BF ,CE ,CF, DE ,DF 这8个基本事件.故抽出一男一女的概率是p =815.(12分)16.【解析】(1)由已知得M(0,t),P ⎝ ⎛⎭⎪⎫t 22p ,t .(2分) 又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t ,(3分) 所以ON 的方程为y =ptx ,(4分)代入y 2=2px 整理得px 2-2t 2x =0,解得x 1=0,x 2=2t2p,(5分)因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t .(6分)所以N 为OH 的中点,即|OH||ON|=2.(8分)(2)直线MH 与抛物线C 除H 以外没有其他公共点.(9分) 直线MH 的方程为y -t =p2tx ,(10分)即x =2t p(y -t).代入y 2=2px 得:y 2-4ty +4t 2=0,解得y 1=y 2=2t ,(11分)即直线MH 与抛物线C 只有一个公共点,所以除H 以外直线MH 与抛物线C 没有其他公共点.(12分)必考试卷Ⅱ一、选择题:本大题共1个小题,每小题5分,共5分.在每小题给出的四个选项中,只有一项是符合题目要求的.17.D 【解析】f ′(x)=x(2+cos x),令f ′(x)=0,得x =0.∴当x>0时,f ′(x)>0,f(x)在(0,+∞)上递增.当x<0时,f ′(x)<0,f(x)在(-∞,0)上递减.∴f(x)的最小值为f(0)=1.∵函数f(x)在区间(-∞,0)和(0,+∞)上均单调,∴当b>1时,曲线y =f(x)与直线y =b 有且仅有两个不同交点.综上可知,b 的取值范围是(1,+∞).二、填空题:本大题共2个小题,每小题5分,共10分.请把答案填在答题卷对应题号后的横线上.18.53【解析】连接PF 1,QO ,显然|OF 1|=|OF 2|,由已知点Q 为线段PF 2的中点,则PF 1∥QO ,故|PF 1|=2b ,又根据椭圆的定义得:|PF 2|=2a -2b ,在直角三角形PF 2F 1中,(2c)2=(2b)2+(2a -2b)2b a =23e=53. 19.(45,41) 【解析】分析乙图,可得(1)第k 行有k 个数,则前k 行共有k (k +1)2个数;(2)第k行最后一个数为k 2;(3)每一行的第一个数字都比上一行的最后一个数字大1;(4)从第二行开始,以下每一行的数,从左到右都是公差为2的等差数列.又442=1 936,452=2 025,则442<2 017<452,则2 017出现在第45行,第45行第1个数是442+1=1 937,这行中第2 017-1 9372+1=41个数为2 017,前44行共有44×452=990个数,则2 017为第990+41=1 031个数,则实数对(m ,n)为(45,41).三、解答题:本大题共3小题,共35分,解答应写出文字说明,证明过程或演算步骤. 20.【解析】(1)因为f(x)=a(x -5)2+6ln x ,所以f ′(x)=2a(x -5)+6x .令x =1,得f(1)=16a ,f ′(1)=6-8a ,所以曲线y =f(x)在点(1,f(1))处的切线方程为y -16a =(6-8a)(x -1), 由点(0,6)在切线上,可得6-16a =8a -6,故a =12.(4分)(2)由(1)知,f(x)=12(x -5)2+6ln x(x>0),f ′(x)=x -5+6x =(x -2)(x -3)x .令f ′(x)=0,解得x =2或3.(6分)当0<x<2或x>3时,f ′(x)>0,故f(x)在(0,2),(3,+∞)上为增函数; 当2<x<3时,f ′(x)<0,故f(x)在(2,3)上为减函数.(8分)由此可知f(x)在x =2处取得极大值f(2)=92+6ln 2,在x =3处取得极小值f(3)=2+6ln 3.综上,f(x)的单调增区间为(0,2),(3,+∞),单调减区间为(2,3),f(x)的极大值为92+6ln 2,极小值为2+6ln 3.(10分)21.【解析】(1)由已知:b =c =2,∴a 2=4,故所求椭圆方程为x 24+y22=1.(4分)(2)由(1)知,C(-2,0),D(2,0),由题意可设CM :y =k(x +2),P(x 1,y 1),M(2,4k),由⎩⎪⎨⎪⎧x 24+y 22=1y =k (x +2),整理得(1+2k 2)x 2+8k 2x +8k 2-4=0.(6分)方程显然有两个解,由韦达定理:x 1x 2=8k 2-41+2k 2,得x 1=2-4k 21+2k 2,y 1=4k 1+2k2.所以P ⎝ ⎛⎭⎪⎫2-4k 21+2k 2,4k 1+2k 2,设Q(x 0,0),(8分)若存在满足题设的Q 点,则MQ ⊥DP ,由MQ →·DP →=0, 整理,可得8k 2x 01+2k 2=0恒成立,所以x 0=0.(12分)故存在定点Q(0,0)满足题设要求.22.【解析】(1)h ()x =f ()x +g ()x =12x 2+a ln x ,因为对任意两个不等的正数x 1,x 2,都有h (x 1)-h (x 2)x 1-x 2>0,设x 1>x 2,则h(x 1)-h(x 2)>0,问题等价于函数h ()x =f ()x +g ()x =12x 2+a ln x 在()0,+∞上为增函数.(2分)所以h ′(x)=x +a x ≥0在()0,+∞上恒成立,即a ≥-x 2在()0,+∞上恒成立.∵-x 2<0,所以a ≥0,即实数a 的取值范围是[0,+∞).(6分)(2)不等式f ′()x 0+1f ′()x 0<g ()x 0-g ′()x 0等价于x 0+1x 0<a ln x 0-a x 0,整理得x 0-a ln x 0+1+ax 0<0.设m ()x =x -a ln x +1+ax ,由题意知,在[]1,e 上存在一点x 0,使得m ()x 0<0.(7分)由m ′()x =1-a x -1+a x 2=x 2-ax -(1+a )x 2=(x -1-a )(x +1)x 2. 因为x>0,所以x +1>0,即令m ′()x =0,得x =1+a.①当1+a ≤1,即a ≤0时,m ()x 在[]1,e 上单调递增, 只需m ()1=2+a<0,解得a<-2.(9分)②当1<1+a<e ,即0<a<e -1时,m ()x 在x =1+a 处取最小值.令m ()1+a =1+a -a ln (1+a)+1<0,即a +1+1<a ln (a +1),可得a +1+1a<ln (a +1).考查式子t +1t -1<ln t , 因为1<t<e ,可得左端大于1,而右端小于1,所以不等式不能成立.(11分) ③ 当1+a ≥e ,即a ≥e -1时,m ()x 在[]1,e 上单调递减,只需m ()e =e -a +1+a e <0,解得a>e 2+1e -1. 综上所述,实数a 的取值范围是()-∞,-2∪⎝ ⎛⎭⎪⎫e 2+1e -1,+∞.(13分)。

2020-2021学年广东省深圳市宝安区八年级(上)期末数学试卷及参考答案

2020-2021学年广东省深圳市宝安区八年级(上)期末数学试卷及参考答案

图象上两点,若 y1>y2,则 x1
x2.(填“>”或“<”)
第 2页(共 5 页)
14.(3 分)实数 a、b 在数轴上所对应的点如图所示,则| ﹣b|+|a+ |+ 的值

15.(3 分)如图,已知点 D 为△ABC 内一点,AD 平分∠CAB,BD⊥AD,∠C=∠CBD.若
AC=10,AB=6,则 AD 的长为
第 3页(共 5 页)
(1)本次抽样调查的样本容量为

(2)扇形统计图中:m=
,n=
,将条形统计图补充完整;
(3)样本中,学生参加线上辅导时间的众数所在等级为

(4)八年级学生每周参加线上辅导时间在 1≤t<3 的范围内较为合理,若该校八年级共
有 900 名学生,请估计本校八年级参加线上辅导时间较为合理的学生有
其中正确的个数有( )
A.1
B.2
C.3
D.4
二、填空题(本题共 5 小题,每小题 3 分,共 15 分)
11.(3 分)﹣8 的立方根是

12.(3 分)某次检测中,一个 10 人小组,其中 6 人的平均成绩是 90 分,其余 4 人的平均
成绩是 80 分,那么这个 10 人小组的平均成绩是

13.(3 分)一次函数 y=kx+b(k≠0)的图象如图所示,点 A(x1,y1)和点 B(x2,y2)是

三、解答题(本题共 7 小题,其中第 16 题 8 分,第 17 题 5 分,第 18 题 8 分,第 19 题 7
分,第 20 题 8 分,第 21 题 9 分,第 22 题 10 分,共 55 分)
16.(8 分)计算.
(1)

2020-2021学年广东省深圳市宝安区高一(上)期末数学试卷

2020-2021学年广东省深圳市宝安区高一(上)期末数学试卷

2020-2021学年广东省深圳市宝安区高一(上)期末数学试卷1.(单选题,5分)设U为全集,A,B是集合,则“存在集合C,使得A⊆C,B⊆(∁U C)”是“A∩B=∅”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件−(x−3)0的定义域是()2.(单选题,5分)函数f(x)=√x−2A.[2,+∞)B.(2,+∞)C.(2,3)∪(3,+∞)D.[3,+∞)3.(单选题,5分)命题p:∀m∈R,一元二次方程x2+mx+1=0有实根,则()A.¬p:∀m∈R,一元二次方程x2+mx+1=0没有实根B.¬p:∃m∈R,一元二次方程x2+mx+1=0没有实根C.¬p:∃m∈R,一元二次方程x2+mx+1=0有实根D.¬p:∀m∈R,一元二次方程x2+mx+1=0有实根4.(单选题,5分)设当x=θ时,函数y=3sinx-cosx取得最大值,则sinθ=()A. −√1010B. √1010C. −3√1010D. 3√10105.(单选题,5分)中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:C=Wlog2(1+S).它表示:在受噪声干扰的信道中,最大信息传递速度C取决于信道带宽N叫做信噪比.当信W,信道内信号的平均功率S,信道内部的高斯噪声功率N的大小,其中SN噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W,而将信从1000提升至4000,则C大约增加了()附:lg2≈0.3010噪比SNA.10%B.20%C.50%D.100%6.(单选题,5分)将函数y=sin(2x- π6)图象向左平移π4个单位,所得函数图象的一条对称轴的方程是()A.x= π12B.x= π6C.x= π3D.x=- π127.(单选题,5分)已知tan(α+ π4)= 12,且- π2<α<0,则2sin2α+sin2αcos(α−π4)等于()A. −2√55B. −3√510C. −3√1010D. 2√558.(单选题,5分)已知f(x)= log2(x−1)+√x2−2x+4,若f(x2-x+1)-2<0,则x的取值范围为()A.(-∞,0)∪(1,+∞)B. (1−√52,1+√52)C. (1−√52,0)∪ (1,1+√52)D.(-1,0)∪(1,2)9.(单选题,5分)已知a>0,b>0,若不等式m3a+b - 3a- 1b≤0恒成立,则m的最大值为()A.13B.14C.15D.1610.(单选题,5分)函数y= axx2+1(a>0)的图象大致为()A.B.C.D.11.(多选题,5分)如表表示y是x的函数,则()x 0<x<5 5≤x<10 10≤x<15 15≤x≤20 y 2 3 4 5B.函数的值域是[2,5]C.函数的值域是{2,3,4,5}D.函数是增函数12.(多选题,5分)已知f(x)= {−x+2,x<1kx+k+2,x≥1,(常数k≠0),则()A.当k>0时,f(x)在R上单调递减B.当k>−12时,f(x)没有最小值C.当k=-1时,f(x)的值域为(0,+∞)D.当k=-3时,∀x1≥1,∃x2<1,有f(x1)+f(x2)=013.(填空题,5分)若m,n满足m2+5m-3=0,n2+5n-3=0,且m≠n,则1m +1n的值为___ .14.(填空题,5分)函数y=log a(2x-1)+2(a>0,且a≠1)的图象恒过定点的坐标为___ .15.(填空题,5分)若f(x)是定义在R上的奇函数,当x≥0时,f(x)=(12)x-2x+m(m为常数),则当x<0时,f(x)=___ .16.(填空题,5分)幂函数f(x)=x m2−5m+4(m∈Z)为偶函数且在区间(0,+∞)上单调递减,则m=___ ,f(12) =___ .17.(问答题,10分)已知函数f(x)满足f(x+1)=√x+a,且f(1)=1.(1)求a和函数f(x)的解析式;(2)判断f(x)在其定义域的单调性.18.(问答题,12分)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(- 35,- 45).(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)= 513,求cosβ的值.19.(问答题,12分)某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<π2)在某一个周期内的图象时,列表并填入了部分数据,如表:(2)将y=f(x)图象上所有点向左平移θ(θ>0)个单位长度,得到y=g(x)的图象.若y=g(x)图象的一个对称中心为(5π12,0),求θ的最小值.20.(问答题,12分)已知不等式log2(x+1)≤log2(7-2x).(1)求不等式的解集A;(2)若当x∈A时,不等式(14)x-1-4(12)x+2≥m总成立,求m的取值范围.21.(问答题,12分)已知函数f(x)= xax+b(a,b为常数,且a≠0)满足f(2)=1,方程f(x)=x有唯一解.(1)求函数f(x)的解析式;(2)若x<-2,求函数g(x)=xf(x)的最大值.22.(问答题,12分)已知定理:“若a,b为常数,g(x)满足g(a+x)+g(a-x)=2b,则函数y=g(x)的图象关于点(a,b)中心对称”.设函数f(x)=x 2+a−a2x−a,定义域为A={x|x≠a,x∈R}.(1)试求y=f(x)的图象对称中心,并用上述定理证明;(2)对于给定的x1∈A,设计构造过程:x2=f(x1),x3=f(x2),…,x n+1=f(x n).如果x i∈A(i=2,3,4…),构造过程将继续下去;如果x i∉A,构造过程将停止.若对任意x1∈A,构造过程可以无限进行下去,求a的取值范围.。

2020-2021宁波市高二数学上期末试卷(带答案)

2020-2021宁波市高二数学上期末试卷(带答案)

2020-2021宁波市高二数学上期末试卷(带答案)一、选择题1.在如图所示的算法框图中,若()321a x dx =-⎰,程序运行的结果S 为二项式()52x +的展开式中3x 的系数的9倍,那么判断框中应填入的关于k 的判断条件是( )A .3K <B .3K >C .2K <D .2K >2.某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100 名学生的数学成绩,发现都在[80,150]内现将这100名学生的成绩按照 [80,90),[90,100),[100,110),[110,120),[120,130),[130,140),[140,150]分组后,得到的频率 分布直方图如图所示则下列说法正确的是( )A .频率分布直方图中a 的值为 0.040B .样本数据低于130分的频率为 0.3C .总体的中位数(保留1位小数)估计为123.3分D .总体分布在[90,100)的频数一定与总体分布在[100,110)的频数不相等3.如图是把二进制的数11111化成十进制数的一个程序框图,则判断框内应填入的条件是( )A .4i >?B .5i >?C .4i ≤?D .5i ≤?4.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.小华同学利用刘徽的“割圆术”思想在半径为1的圆内作正n边形求其面积,如图是其设计的一个程序框图,则框图中应填入、输出n的值分别为()(参考数据:20sin200.3420,sin()0.11613≈≈)A.1180sin,242S nn=⨯⨯B.1180sin,182S nn=⨯⨯C.1360sin,542S nn=⨯⨯D.1360sin,182S nn=⨯⨯5.在长为10cm的线段AB上任取一点C,作一矩形,邻边长分別等于线段AC、CB的长,则该矩形面积小于216cm的概率为()A.23B.34C.25D.136.如图是某手机商城2018年华为、苹果、三星三种品牌的手机各季度销量的百分比堆积图(如:第三季度华为销量约占50%,苹果销量约占20%,三星销量约占30%).根据该图,以下结论中一定正确的是()A.华为的全年销量最大B.苹果第二季度的销量大于第三季度的销量C.华为销量最大的是第四季度D.三星销量最小的是第四季度7.按照程序框图(如图所示)执行,第3 个输出的数是( )A .6B .5C .4D .38.我国古代数学著作《九章算术》中,有这样一道题目:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?”下图是源于其思想的一个程序框图,若输出的3S =(单位:升),则输入的k =( )A .9B .10C .11D .129.甲、乙两人约定晚6点到晚7点之间在某处见面,并约定甲若早到应等乙半小时,而乙还有其他安排,若他早到则不需等待,则甲、乙两人能见面的概率( ) A .38B .34C .35D .4510.下表是某两个相关变量x ,y 的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程ˆ0.70.35yx =+,那么表中t 的值为( ) x 3 4 5 6 y2.5t44.5A .3B .3.15C .3.5D .4.511.执行如图的程序框图,若输出的4n =,则输入的整数p 的最小值是( )A .4B .5C .6D .1512.2路公共汽车每5分钟发车一次,小明到乘车点的时刻是随机的,则他候车时间不超过两分钟的概率是( ) A .25B .35C .23D .15二、填空题13.已知实数]9[1x ∈,,执行如图所示的流程图,则输出的x 不小于55的概率为________.14.我国传统的房屋建筑中,常会出现一些形状不同的窗棂,窗棂上雕刻有各种花纹,构成种类繁多的图案.如图所示的窗棂图案,是将半径为R 的圆六等分,分别以各等分点为圆心,以R 为半径画圆弧,在圆的内部构成的平面图形.现在向该圆形区域内的随机地投掷一枚飞镖,飞镖落在黑色部分(忽略图中的白线)的概率是__________.15.在[1,1]-上随机地取一个数k ,则事件“直线y kx =与圆22(5)9x y -+=相离”发生的概率为_______。

海南中学2020-2021学年高二上学期期中考试 数学试题(含答案)

海南中学2020-2021学年高二上学期期中考试 数学试题(含答案)

海南中学2020-2021学年高二上学期期中考试化学试题(本试卷总分150分,总时量120分钟)一、单项选择题:本题共8小题,每小题5分,共40分. 1. 椭圆22:416C x y +=的焦点坐标为( )A .(±B .(±C .(0,±D .(0,±2. 已知向量(2,4,5)a =,(3,,)b x y =分别是直线12,l l 的方向向量,若12l l ∥,则( )A .6,15x y ==B .3,15x y ==C .810,33x y ==D .156,2x y ==3. 设0,0a b k >>>且1k ≠,则椭圆22122:1x y C a b +=和椭圆22222:x y C k a b+=具有相同的( )A .顶点B .焦点C .离心率D .长轴和短轴4. 已知直线1l 的方向向量(2,4,)a x =,直线2l 的方向向量(2,,2)b y =,若||6a =,且a b ⊥,则x y +的值是( ) A .1-或3B .1或3-C .3-D .15. 若直线0x y k --=与圆22(1)2x y -+=有两个不同的交点,则( )A .03k <<B .13k -≤≤C .1k <-或3k >D .13k -<<6. 已知平行六面体''''ABCD A B C D -中,4AB =,3AD =,'5AA =,90BAD ∠=,''60BAA DAA ∠=∠=.则'AC 的长为( )A B . C .12 D .7. 光线从(3,4)A -点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点(1,6)D -,则BC 所在直线的方程是( ) A .5270x y -+= B .310x y +-= C .3240x y -+= D .230x y --=8. 四棱锥-P ABCD 中,底面ABCD 是一个平行四边形,PA ⊥底面ABCD ,(2,1,4)AB =--,(4,2,0)AD =,(1,2,1)AP =--.则四棱锥-P ABCD 的体积为( )A .8B .16C .32D .48二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9. 若,,a b c 是空间任意三个向量,R λ∈,下列关系中,不成立...的是( ) A .||||a b b a +=-B .()()a b c a b c +⋅=⋅+C .()a b a b λλλ+=+D .b a λ=10. 已知直线:10l y -+=,则下列结论正确的是( )A .直线l 的倾斜角是6πB .若直线:10m x -+=,则l m ⊥C .点0)到直线l 的距离是2D .过2)与直线l 40y --=11. 已知平面上一点(5,0)M ,若直线上存在点P ,使||4PM =,则称该直线为“点M 相关直线”,下列直线中是“点M 相关直线”的是( ) A .1y x =+B .2y =C .430x y -=D .210x y -+=12. 设椭圆22193x y +=的右焦点为F ,直线(0y m m =<<与椭圆交于,A B 两点,则( )A .||||AF BF +为定值B .ABF 的周长的取值范围是[6,12]C .当m =时,ABF 为直角三角形D .当1m =时,ABF三、填空题:本题共4小题,每小题5分,共20分.13. 若椭圆221(4)4x y m m+=<的离心率为12,则m = .14. 已知A ,B ,C 三点不共线,O 是平面ABC 外任一点,若1253OP OA OB OC λ=++,且P ∈平面ABC ,则λ= .15. 已知空间向量(3,0,4),(3,2,1)a b ==-,则向量b 在向量a 上的投影向量是 .16. 过点()3,0P -做直线()()21340m x m y m +-+--=的垂线,垂足为M ,已知点()2,3N ,则MN 的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17. (10分)已知三角形的三个顶点是(4,0)A ,(6,7)B -,(0,3)C -.(1)求BC 边上的中线所在直线的方程; (2)求BC 边上的高所在直线的方程.18. (12分)已知(1,0)A -,(2,0)B ,动点M 满足||1||2MA MB =,设动点M 的轨迹为C , (1)求动点M 的轨迹方程; (2)点(,)P x y 在轨迹C 上,求2yx -的最小值.19. (12分)如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ∥,22AD PD EA ===,,,F G H 分别为,,PB EB PC 的中点. (1)求证:FG ∥平面PED ;(2)求平面FGH 与平面PBC 夹角的大小.20. (12分)已知关于x ,y 的方程22:240C x y x y m +--+=.(1)若圆C 与圆22812360x y x y +--+=外切,求m 的值; (2)若圆C 与直线:240l x y +-=相交于M ,N 两点,且45||MN =,求m 的值.21. (12分)四棱锥P ABCD -中,底面ABCD 为矩形,=90PAB ∠,2PA PD AD ===,(1)求证:平面PAD⊥平面ABCD.(2)在下列①②③三个条件中任选一个,补充在下面问题处,若问题中的四棱锥存在,求AB的长度;若问题中的四棱锥不存在,说明理由.①CF与平面PCD所成角的正弦值等于15;②DA与平面PDF所成角的正弦值等于34;③P A与平面PDF所成角的正弦值等于3.问题:若点F是AB的中点,是否存在这样的四棱锥,满足?(注:如果选择多个条件分别解答,按第一个解答计分.)22.(12分)已知椭圆2222:1(0)x yM a ba b+=>>的离心率为223,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+42.(1)求椭圆M的方程;(2)设直线:l x ky m=+与椭圆M交于A,B两点,若以AB为直径的圆经过椭圆的右顶点C,求m的值.参考答案一、单项选择题:本题共8小题,每小题5分,共40分. 23. 椭圆22:416C x y +=的焦点坐标为( )CA .(±B .(±C .(0,±D .(0,±24. 已知向量(2,4,5)a =,(3,,)b x y =分别是直线12,l l 的方向向量,若12l l ∥,则( )DA .6,15x y ==B .3,15x y ==C .810,33x y ==D .156,2x y ==25. 设0,0a b k >>>且1k ≠,则椭圆22122:1x y C a b +=和椭圆22222:x y C k a b+=具有相同的( )CA .顶点B .焦点C .离心率D .长轴和短轴26. 已知直线1l 的方向向量(2,4,)a x =,直线2l 的方向向量(2,,2)b y =,若||6a =,且a b ⊥,则x y +的值是( )B A .1-或3B .1或3-C .3-D .127. 若直线0x y k --=与圆22(1)2x y -+=有两个不同的交点,则( )DA .03k <<B .13k -≤≤C .1k <-或3k >D .13k -<<28. 已知平行六面体''''ABCD A B C D -中,4AB =,3AD =,'5AA =,90BAD ∠=,''60BAA DAA ∠=∠=.则'AC 的长为( )AA B . C .12 D .29. 光线从(3,4)A -点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点(1,6)D -,则BC 所在直线的方程是( )A A .5270x y -+= B .310x y +-= C .3240x y -+= D .230x y --=30. 四棱锥-P ABCD 中,底面ABCD 是一个平行四边形,PA ⊥底面ABCD ,(2,1,4)AB =--,(4,2,0)AD =,(1,2,1)AP =--.则四棱锥-P ABCD 的体积为( )BA .8B .16C .32D .48二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 31. 若,,a b c 是空间任意三个向量,R λ∈,下列关系中,不成立...的是( )ABD A .||||a b b a +=-B .()()a b c a b c +⋅=⋅+C .()a b a b λλλ+=+D .b a λ=32. 已知直线:10l y -+=,则下列结论正确的是( )CDA .直线l 的倾斜角是6πB .若直线:10m x -+=,则l m ⊥C .点0)到直线l 的距离是2D .过点2)且与直线l 40y --=33. 已知平面上一点(5,0)M ,若直线上存在点P ,使||4PM =,则称该直线为“点M 相关直线”,下列直线中是“点M 相关直线”的是( )BC A .1y x =+B .2y =C .430x y -=D .210x y -+=34. 设椭圆22193x y +=的右焦点为F ,直线(0y m m =<<与椭圆交于,A B 两点,则( )ACDA .||||AF BF +为定值B .ABF 的周长的取值范围是[6,12]C .当2m =时,ABF 为直角三角形D .当1m =时,ABF【解析】设椭圆的左焦点为F ',则||||AF BF '=,所以||||||||AF BF AF AF '+=+为定值6,A 正确;ABF ∆的周长为||||||AB AF BF ++,因为||||AF BF +为定值6,易知||AB 的范围是(0,6),所以ABF ∆的周长的范围是(6,12),B 错误;将y 与椭圆方程联立,可解得(A ,B ,又易知F ,所以2(60AF BF =+=,所以ABF ∆为直角三角形,C 正确;将1y =与椭圆方程联立,解得(A ,B ,所以112ABF S ∆=⨯=D 正确.三、填空题:本题共4小题,每小题5分,共20分.35. 若椭圆221(4)4x y m m+=<的离心率为12,则m = .336. 已知A ,B ,C 三点不共线,O 是平面ABC 外任一点,若1253OP OA OB OC λ=++,且P ∈平面ABC ,则λ= .21537. 已知空间向量(3,0,4),(3,2,1)a b ==-,则向量b 在向量a 上的投影向量是 .34(,0,)55--38. 过点()3,0P -做直线()()21340m x m y m +-+--=的垂线,垂足为M ,已知点()2,3N ,则MN 的取值范围是 .【解析】直线()()21340m x m y m +-+--=化为 (3)240m x y x y --+--=,令30{ 240x y x y --=--=,解得1{2x y -=.=∴直线()()21340m x m y m +-+--=过定点12Q -(,). ∴点M 在以PQ 为直径的圆上,圆心为线段PQ 的中点11C --(,)线段MN 长度的最大值5CN r =+==线段MN 长度的最大值5CN r =-==故答案为5⎡+⎣.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 39. (10分)已知三角形的三个顶点是(4,0)A ,(6,7)B -,(0,3)C -.(1)求BC 边上的中线所在直线的方程; (2)求BC 边上的高所在直线的方程. 解:(1)设线段BC 的中点为D . 因为B(6,−7),C(0,−3), 所以BC 的中点D(3,−5),所以BC 边上的中线所在直线的方程为y−0−5−0=x−43−4, 即5x −y −20=0.(2)因为B(6,−7),C(0,−3), 所以BC 边所在直线的斜率k BC =−3−(−7)0−6=−23,所以BC 边上的高所在直线的斜率为32,所以BC 边上的高所在直线的方程为y =32(x −4), 即3x −2y −12=0.40. (12分)已知(1,0)A -,(2,0)B ,动点M 满足||1||2MA MB =,设动点M 的轨迹为C , (1)求动点M 的轨迹方程; (2)求2yx -的最小值. 解:(1)设动点M(x,y), 根据题意得,√(x+1)2+y 2√(x−2)2+y 2=12,化简得,(x +2)2+y 2=4,所以动点M 的轨迹方程为(x +2)2+y 2=4. (2)设过点(2,0)的直线方程为y =k(x −2), 圆心到直线的距离d =√k 2+1≤2,解得−√33≤k ≤√33, 所以yx−2的最小值为−√33.41. (12分)如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ∥,22AD PD EA ===,,,F G H 分别为,,PB EB PC 的中点. (1)求证:FG ∥平面PED ;(2)求平面FGH 与平面PBC 夹角的大小. (1)证明:∵F,G 分别为PB,EB 中点,∴FG PE ∥,,FG PED PE PED ⊄⊂平面平面,FG PED ∴平面∥. (2)解:EA ABCD EA PD ⊥平面,∥,PD ABCD ∴⊥平面. 又ABCD 四边形为矩形,,,DA DC DP ∴两两垂直.故以D 为坐标原点,DA,DC,DP 所在直线分别为x,y,z 轴建立空间直角坐标系,、则1(0,0,2),(2,2,0),(0,2,0),(2,0,1),(1,1,1),(2,1,),(0,1,1)2P B C E F G H ,(0,2,2),(2,0,0)PC CB =-=设平面PBC 的法向量为(,,)n x y z =,则0n PC n CB ⎧⋅=⎪⎨⋅=⎪⎩,即22020y z x -=⎧⎨=⎩,所以可取(0,1,1)n =,同理可取平面FGH 的法向量为(0,1,0)m =,设平面FGH 与平面PBC 的夹角为θ, 则||2cos ||||m n m n θ⋅==⋅,又[0,]2πθ∈,∴平面FGH 与平面PBC 夹角为4π.42. (12分)已知关于x ,y 的方程22:240C x y x y m +--+=.(1)若圆C 与圆22812360x y x y +--+=外切,求m 的值; (2)若圆C 与直线:240l x y +-=相交于M ,N 两点,且||MN =,求m 的值. 解:(1)把圆x 2+y 2−8x −12y +36=0, 化为标准方程得(x −4)2+(y −6)2=16, 所以圆心坐标为(4,6),半径为R =4,则两圆心间的距离d =√(42+(6−2)2=5, 因为两圆的位置关系是外切,所以d =R +r ,即4+√5−m =5,解得m =4, 故m 的值为4;(2)因为圆心C 的坐标为(1,2), 所以圆心C 到直线l 的距离d =√5=√55, 所以(√5−m)2=(12|MN|)2+d 2=(2√55)2+(√55)2,即5−m =1,解得m =4, 故m 的值为4.43. (12分)四棱锥P ABCD -中,底面ABCD 为矩形,=90PAB ∠,2PA PD AD ===,(1)求证:平面PAD ⊥平面ABCD .(2)在下列①②③三个条件中任选一个,补充在下面问题 处,若问题中的四棱锥存在,求AB 的长度;若问题中的四棱锥不存在,说明理由.①CF 与平面PCD 所成角的正弦值等于15; ②DA 与平面PDF 所成角的正弦值等于34; ③P A 与平面PDF 所成角的正弦值等于3. 问题:若点F 是AB 的中点,是否存在这样的四棱锥,满足 ? (注:如果选择多个条件分别解答,按第一个解答计分.) (1)证明:=90PAB ∠,AB PA ∴⊥, ∵底面ABCD 为矩形,∴AB AD ⊥, 又,PA AD PAD ⊂平面,且PAAD A =,AB PAD ∴⊥平面,又AB ABCD ⊂平面,故平面PAD ⊥平面ABCD.(2)解:取AD 中点为O ,∵4PA PD AD ===,∴OA ⊥OP ,以O 为原点,OA,OP 所在直线分别为x,z 轴建立空间直角坐标系,设2(0)AB a a =>, 则(1,0,0),(1,0,0),(0,0,3),(1,2,0),(1,2,0),(1,,0)A D P B a C a F a --, 选①:(2,,0),(0,2,0),(1,0,3)CF a DC a DP =-==,设平面PCD 的法向量为(,,)n x y z =,则00n DC n DP ⎧⋅=⎪⎨⋅=⎪⎩,即2030ay x z =⎧⎪⎨+=⎪⎩,∴可取(3,0,1)n =-,设CF 与平面PCD 所成角为θ,则2||315sin 5||||4CF n CF n aθ⋅===⋅+,解得1a =, ∴符合题意的四棱锥存在,此时22AB a ==. 选②:(2,0,0),(1,0,3)(2,,0)DA DP DF a ===,,设平面PDF 的法向量为(,,)n x y z =,则00n DP n DF ⎧⋅=⎪⎨⋅=⎪⎩,即3020x z x ay ⎧+=⎪⎨+=⎪⎩,∴可取(3,)n a a =--,设DA 与平面PDF 所成角为θ, 则||3sin 4||||2DA n DA n θ⋅===⋅,解得3a =, ∴符合题意的四棱锥存在,此时26AB a ==. 选③:易知P A 与平面PDF 所成角小于APD ∠,设P A 与平面PDF 所成角为θ,则sin sin sin32APD πθ<∠==,故不存在符合题意的四棱锥.44. (12分)已知椭圆2222:1(0)x y M a b a b +=>>的离心率为3,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为(1)求椭圆M 的方程;(2)设直线:l x ky m =+与椭圆M 交于A ,B 两点,若以AB 为直径的圆经过椭圆的 右顶点C ,求m 的值.解:(Ⅰ)因为椭圆M 上一点和它的两个焦点构成的三角形周长为6+4√2, 所以2a +2c =6+4√2,又椭圆的离心率为2√23, 即c a =2√23, 所以c =2√23a , 所以a =3,c =2√2.所以b =1, 椭圆M 的方程为x 29+y 2=1;(Ⅱ)由{x =ky +m x 29+y 2=1消去x 得(k 2+9)y 2+2kmy +m 2−9=0,设A(x 1,y 1),B(x 2,y 2),则有y 1+y 2=−2km k +9,y 1y 2=m 2−9k +9.①因为以AB 为直径的圆过点C ,所以CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =0.由CA ⃗⃗⃗⃗⃗ =(x 1−3,y 1),CB ⃗⃗⃗⃗⃗ =(x 2−3,y 2), 得(x 1−3)(x 2−3)+y 1y 2=0. 将x 1=ky 1+m ,x 2=ky 2+m 代入上式, 得(k 2+1)y 1y 2+k(m −3)(y 1+y 2)+(m −3)2=0. 将①代入上式,解得m =125或m =3.。

2020-2021学年北京市海淀区教师进修学校附属实验学校高二上学期期中考试数学试题(解析版)

2020-2021学年北京市海淀区教师进修学校附属实验学校高二上学期期中考试数学试题(解析版)

北京市海淀区教师进修学校附属实验学校2020-2021学年高二上学期期中考试数学试题一.选择题 1. 过点1,0A ,()0,1B 的直线的倾斜角α是( )A. 4πB. 3πC. 23πD. 34π『答 案』D『解 析』因为10101AB k -==--,所以tan 1α=-,tan [0,)απ∈,34απ∴=,故选:D.2. 如图所示,在复平面内,点A 对应的复数为z ,则复数2z 的虚部为( )A. 4-B. 1C. 3D. 4『答 案』A『解 析』由图可知2z i =-+,()22224434z i i i i=-+=-+=-,虚部为4-.故选:A3. 已知空间中三条不同的直线l ,m ,n 和两个不同的平面α,β,下列四个命题中正确的是( )A. 若//αβ,m α⊂,n β⊂,则//m nB. 若l α⊥,l β⊥,则//αβC. 若αβ⊥,m αβ=,l m ⊥,则l β⊥D. 若l m ⊥,m α⊥,则//l α『答 案』B『解 析』对于A ,若//αβ,m α⊂,n β⊂,则m 与n 平行或异面,故A 错误;对于B ,若l α⊥,l β⊥,则//αβ,故B 正确; 对于C ,如图,αβ⊥,m αβ=,l m ⊥,l β⊂,故C 错误;对于D ,如图,l m ⊥,m α⊥,l α⊂,故D 错误.故选:B. 4. 已知直线()1:210l ax a y +++=,22:0l x ay ++=,若12l l ⊥,则实数a 的值是( )A. 0B. 2或-1C. 0或-3D. -3『答 案』C 『解 析』由12l l ⊥知:(2)0a a a ++=,解得:0a =或3a =-.故选:C .5. 已知空间中两条不同的直线m ,n ,一个平面α,则“直线m ,n 与平面α所成角相等”是“直线m ,n 平行”的( ) A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要『答 案』B『解 析』直线m ,n 与平面α所成角相等,推不出直线m ,n 平行,例如平面内任意两直线与平面所成角都为0,但是直线可以相交; 当直线m ,n 平行时,直线与平面所成角相等成立,故“直线m ,n 与平面α所成角相等”是“直线m ,n 平行”的必要不充分条件. 故选:B. 6. 已知长方体1111ABCD A B C D -,下列向量的数量积一定不为0的是( ) A.1AD AB ⋅ B. 11AD B C ⋅C.1BD BC ⋅D. 1BD AC ⋅『答 案』C 『解 析』当长方体1111ABCD A B C D -为正方体时,根据正方体的性质可知:1111,,AB AD AD B C BD AC⊥⊥⊥,所以10AB AD ⋅=、110AD B C ⋅=、10BD AC ⋅=.根据长方体的性质可知:1BC CD ⊥,所以1BD 与BC 不垂直,即1BD BC ⋅一定不为0.故选:C.7. 如图在四面体PABC 中,PC ⊥平面ABC ,AB BC CA PC ===,那么直线AP 和CB 所成角的余弦值( )A.B. C. 12D.4- 『答 案』A『解 析』设2AB BC CA PC ====,分别取,,AB AC PC 的中点,,D E F ,连接,,,DE EF DF CD ,则//,//DE BC EF AP ,所以DEF ∠(或其补角)就是直线AP 和CB 所成的角, 又PC ⊥平面ABC ,DC ⊂平面ABC ,所以PC ⊥DC ,所以2DF ===,又112DE BC ==,12FE AP ==DEF 中,22222212cos 2DE EF DF DEF DE EF +-+-∠===⨯, 所以直线AP 和CB 所成角的余弦值为.8. 已知正方体1111ABCD A B C D -的棱长为1,P 为BC 中点,Q 为线段1CC (不含端点)上的动点.三棱锥1Q A AP -的体积记为1V ,三棱锥1C A AP -的体积记为2V ,则以下结论正确的是()A.12V V < B.12V V > C.12V V = D.12,V V 大小关系不确定『答 案』C 『解 析』由1111ABCD A B C D -为正方体,则11//CC AA ,1CC ⊄平面1AA P ,1AA ⊂平面1AA P,所以1//CC 平面1AA P,因为Q 为线段1CC 上的动点,所以Q 到平面1AA P的距离与C 到平面1AA P的距离相等,所以11Q A AP C A APV V --=,即12V V =.故选:C.9. 唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在位置为()4,4B --,若将军从点()2,0A -处出发,河岸线所在直线方程为2x y +=,则“将军饮马”的最短总路程为( )A.B. 5C.D. 10『答 案』D『解 析』如图,点A 关于直线的对称点为A ',则A B '即为“将军饮马”的最短总路程,设(),A a b ',则()2222112a bb a -⎧+=⎪⎪⎨⎪⨯-=-⎪+⎩,解得2,4a b ==,则10A B '==,故“将军饮马”的最短总路程为10.故选:D. 10. 如图,正方体1111ABCD A B C D -的棱长为2,点O 为底面ABCD 的中心,点P 在侧面11BB C C的边界及其内部运动,若1D O OP ⊥,则11D C P△面积的最小值为()A.B.C.D. 『答 案』B『解 析』如图所示:当点P 在C 处时,1D O OC⊥,当点P 在1B B的中点1P 时,(22222222211113,26,19OP D O D P =+==+==+=,所以222111OP D O D P +=,所以11D O OP ⊥,又1OP OC O ⋂=,所以1D O ⊥平面1OPC ,所以点P 的轨迹是线段1PC ,因为11D C ⊥平面11PC C,所以11D C P△面积最小时,11C P PC ⊥,此时111C C BCC PPC⨯===,11122D C PS=⨯=,故选:B.二、填空题(本大题共6小题,共30分)11. 写出直线:210l x y--=一个方向向量a =_________.『答案』()1,2.『解析』因为直线L:0ax by c,方向向量d为(,)b a-或(,)b a-,所以210x y--=的2,1a b==-,即一个方向向量(1,2)d =.故答案为:()1,212. 若复数2iiz-=,则复数z=________.『答案』12i-+『解析』因为2i1212i1iz i-+===---,所以12z i=-+,故答案为:12i-+.13. 在长方体1111ABCD A B C D-中,设11AD AA==,2AB=,则1AC CB⋅=_______.『答案』1-『解析』如图,由题意()()() 111 AC CB AB AD AA AD AB AD AD AD AA AD ⋅=++⋅-=-⋅+⋅+⋅21AD=-=-.故答案为-1.14. 已知直线1:10l ax y+-=,直线2:30--=l xy,12l l//,则两平行直线间的距离为______.『答案』『解 析』因为12l l //,所以111a =-,解得1a =-,故1:10l x y -+=由平行线间的距离公式知d ==,故答案为:15. 已知正四面体A BCD -的棱长为2,点E 是AD 的中点,点F 在线段BC 上,则下面四个命题中:①F BC ∃∈,//EF AC ②F BC ∀∈,EF ③F BC ∃∈,EF 与AD 不垂直④F BC ∀∈,直线EF 与平面BCD夹角正弦的最大值为3所有不正确的命题序号为_______.『答 案』①③ 『解 析』如图,对F BC ∀∈, EF 与AC 异面或相交, 故①错误; 当点F 为BC 中点时,EF 为异面直线AD 和 BC的公垂线段,此时EF 取得最小值,当F 与,B C 重合时,EF因为,AD BE AD CE ⊥⊥,BE CE E ⋂=,所以AD ⊥平面BEC ,故AD EF ⊥,故③错误;因为E 到平面BCD 的距离为定值d ,设直线EF 与平面BCD 夹角为θ,则sin ||d EF θ=,当F 为BC 中点时,易知EF 为异面直线AD 和 BC 的公垂线段,此时EF 取得最小值,sin ||dEF θ=有最大值,此时1DF DE ==,故EF ==,由直角三角形EFD 可知,EF DE DF d ⋅=⋅,解得d =,所以sin ||3d EF θ==,故④正确.故答案为:①③16. 定义空间中点到几何图形的距离为:这一点到这个几何图形上各点距离中最短距离. (1)在空间中到定点O 距离为1的点围成的几何体的表面积为________;(2)在空间,定义边长为2的正方形ABCD 区域(包括边界以及内部的点)为Ω,则到Ω距离等于1的点所围成的几何体的体积为________.『答 案』(1). 4π (2). 10+23π『解 析』(1)与定点O 距离等于1的点所围成的几何体是一个半径为1的球,所以其表面积为4π;(2)分析可知,到距离等于1的点所围成的几何体是一个棱长为1,1,2的长方体和4个高为1,底面半径为1的半圆柱以及四个半径为1的四分之一球所围成的几何体 ,所以其体积为:231144101124114122++224333πππππ⨯⨯+⨯⨯⨯⨯+⨯⨯⨯=+=. 故答案为:4π;10+23π.三.解答题17. 若复数22(6)(2)z m m m m i =+-+--,当实数m 为何值时, (1)z 是纯虚数;(2)z 对应的点在第二象限.解:(1)若z 是纯虚数,则226020m m m m ⎧+-=⎨--≠⎩,解得3m =-;(2)若z 对应的点在第二象限,则226020m m m m ⎧+-<⎨-->⎩,解得3<1m -<-, 即m 的取值范围为()3,1--.18. 如图,在四棱柱1111ABCD A B C D -中,1AA ⊥平面ABCD ,底面ABCD 满足//AD BC且12,AB AD AA BD DC =====(1)求证:AB ⊥平面11ADD A ;(2)求直线AB 与平面11B CD 所成角的正弦值;(3)求点1C 到平面11B CD 的距离.(1)证明:1AA ⊥平面ABCD ,AB平面ABCD ,故1AA AB⊥.2AB AD ==,BD =,故222AB AD BD +=,故AB AD ⊥. 1AD AA A⋂=,故AB ⊥平面11ADD A .(2) 解:如图所示:分别以1,,AB AD AA 为,,x y z 轴建立空间直角坐标系, 则()0,0,0A ,()2,0,0B ,()12,0,2B ,()2,4,0C ,()10,2,2D .设平面11B CD 的法向量(),,n x y z =,则11100n B C n B D ⎧⋅=⎪⎨⋅=⎪⎩,即420220y z x y -=⎧⎨-+=⎩, 取1x =得到()1,1,2n =,()2,0,0AB =,设直线AB 与平面11B CD 所成角为θ,故2sin cos ,26n AB n AB n ABθ⋅====⋅.所以直线AB 与平面11B CD所成角的正弦值6;(3)解:设点1C 到平面11BCD 的距离为h ,则111111C B CD C B C D V V --=,而1111111111823323C B CD BC D V SCC -=⨯⨯=⨯⨯⨯=,又1B C ===1D C ===11B D =2221111B D D CB C +=,所以111B D D C ⊥,所以111111122B CD SB D DC =⨯⨯=⨯=.所以11111118333C B CD B CD V Sh h -=⨯⨯=⨯⨯=,解得h =, 所以点1C到平面11B CD的距离为3.19. 已知平行四边形ABCD 的三个顶点坐标为(2,1),(4,1),(2,3).A B C -- (1)求平行四边形ABCD 的顶点D 的坐标;(2)求平行四边形ABCD 的面积; (3)在ABC 中,求外心M 的坐标. 解:(1)AC 中点为()0,1,该点也为BD 中点,设(),D x y ,根据中点坐标公式得到:+4+10,122x y ==,解得:4,1x y =-=,所以()4,1D -;(2)()()4,1,2,3B C 故得到斜率为:31124k -==--,代入点()4,1B 坐标可得到直线BC :+50x y -= ,∴A 到BC=,又根据两点间距离公式得到:BC=, ∴四边形ABCD 的面积为12=. (3) 设点(),M x y ,则MA MB MC ==,即()()()()()()222222+2+14123x y x y x y +=-+-=-+-,化简得:3+3010x y x y -=⎧⎨--=⎩ ,解得10x y =⎧⎨=⎩,所以外心M 的坐标为()1,0M .20. 如图1,矩形ABCD ,1,2,AB BC ==点E 为AD 的中点,将ABE △沿直线BE 折起至平面PBE ⊥平面BCDE (如图2),点M 在线段PD 上,//PB 平面CEM .(1)求证:2MP DM =;(2)求二面角B PE C --的大小;(3)若在棱,PB PE分别取中点,F G,试判断点M与平面CFG的关系,并说明理由.(1)证明:设BD EC O⋂=,连接MO,//PB平面CEM,PB⊂平面PBD,平面PBD平面CEM MO=,//PB MO∴,MD ODMP OB∴=,//ED BC,12OD EDOB BC∴==,12MDMP∴=,即2MP DM=;(2)解:取BE中点Q,连接PQ,PB PE=,PQ BE∴⊥,又平面PBE⊥平面BCDE,PQ∴⊥平面BCDE,EC⊂平面BCDE,PQ EC∴⊥,BE EC==,2BC=,满足222BE EC BC+=,EC BE∴⊥,PQ BE Q⋂=,EC∴⊥平面PBE,EC ⊂平面PEC,∴平面PBE⊥平面PEC,∴二面角B PE C--的大小为90;(3)解:延长ED到N,使ED DN=,连接,,CN PN GN,,F G 分别是,PB PE 的中点,//FG BE ∴,2BC ED =,BC EN ∴=,//BC EN ,∴四边形BCNE 是平行四边形,//BE CN ∴,//FG CN ∴,则,,,F C N G 确定平面FCNG ,PEN 中,PD 是EN 边中线,且:2:1PM MD =,M ∴是PEN △的重心,又GN 为PE 边的中线,则M 在GN 上,∴M ∈平面CFG .21. 已知直线,:120l kx y k -++=,k ∈R ,直线l 交x 轴于点A ,交y 轴于点B ,坐标原点为O .(1)证明:直线l 过定点;(2)若直线l 在x 轴上截距小于0,在y 轴上截距大于0.设AOB 的面积为S ,求S 的最小值及此时直线的方程;(3)直接写出AOB 的面积S (0S >)在不同取值范围下直线l 的条数. (1)证明:直线l 的方程可变形为()()210k x y ++-=,由2010x y +=⎧⎨-=⎩,可得21x y =-⎧⎨=⎩,∴直线l 过定点()2,1-; (2)解:当0x =时,12y k =+;当0y =时,12kx k +=-,()12,0,0,12k A B k k +⎛⎫∴-+ ⎪⎝⎭,由题120120kk k +⎧-<⎪⎨⎪+>⎩,解得0k >,则()11121111244442222k S OA OB k k k k ⎛⎫+⎛⎫=⨯⨯=⨯⨯+=++≥= ⎪ ⎪ ⎪⎝⎭⎝⎭,当且仅当14k k =,即12k =时等号成立,故S 的最小值为4,此时直线l 的方程为240x y -+=;(3)解:由(2)111211222222k S OA OB k k k k +=⨯⨯=⨯⨯+=++,令()1222f k k k =++,则直线l 的条数等价于()y f k =与()0y S S =>的交点个数,画出函数图象,由图可知,当04S <<时,直线l 有2条; 当4S =时,直线l 有3条;当4S>时,直线l 有4条.22. 已知集合12,,,)|{1,1}(1,2,,)}{(n n i A x x x x i n =⋅⋅⋅∈-=⋅⋅⋅,,n x y A ∈,12,,)(,n x x x x =⋅⋅⋅,12,,)(,n y y y y =⋅⋅⋅,其中,{1,1}(1,2,,)i i x y i n ∈-=⋅⋅⋅.定义1122n n xy x y x y x y =++⋅⋅⋅+,若0xy =,则称x 与y 正交.(1)若()1,1,1,1x =,写出nA 中与x 正交的所有元素;(2)令,}{|n B x y x y A =∈若m B ∈,证明:m n +为偶数;(3)若n A A ⊆且A 中任意两个元素均正交,分别求出8,14n =时,A 中最多可以有多少个元素. (1)解:4A 中与x 正交的所有元素为:(1,1,1,1)--,(1,1,1,1),(1,1,1,1),(1,1,1,1),(1,1,1,1)--------,(1,1,1,1).--(2)证明:对于m B ∈,存在{}12(,,,),1,1n i x x x x x =∈-,{}12(,,,),1,1n i y y y y y =∈-,使得=x y m ,令1,,0,i i i i ix y x y δ=⎧=⎨≠⎩,1nii k δ==∑,当=i ix y 时,1i i x y =,当≠i i x y 时,1=-i i x y , 那么xy1()2ni i i x y k n k k n===--=-∑,所以2m n k +=为偶数.(3)解:当8n =时,不妨设1(1,1,1,1,1,1,1,1)x =,2(1,1,1,1,1,1,1,1)x =----,在考虑4n =时,共有4种互相正交的情况即:1111111111111111------,分别与12,x x 搭配,可形成8种情况,所以8n =时,A 中最多可以有8个元素. 当14n =时,不妨设1(1,1,1)y =(有14个1),2(1,1,,1,1,1,1)y =---(有7个1-,7个1),则12,y y 正交,令1214(,,,)a a a a =,1214(,,,)b b b b =,1214(,,,)c c c c =,且它们之间互相正交,设,,a b c 相应位置数字都相同的共有k 个,除去这k 列外,,a b 相应位置数字都相同的共有m 个,,b c 相应位置数字都相同的共有n 个,则(14)22140ab m k m k m k =+---=+-=,所以7m k +=,7n k +=,所以n m =, 由于(142)0ac m m k k m =--++--=,所以*727,2==∉m m N ,所以任意三个元素都不正交,综上,14n =,A 中最多可以有2个元素.。

2020-2021深圳宝安区新城学校高二数学上期末模拟试卷(及答案)

2020-2021深圳宝安区新城学校高二数学上期末模拟试卷(及答案)

2020-2021深圳宝安区新城学校高二数学上期末模拟试卷(及答案)一、选择题1.如图,一个边长为2的正方形里有一个月牙形的图案,为了估算这个月牙形图案的面积,向这个正方形里随机投入500粒芝麻,经过统计,落在月牙形图案内的芝麻有150粒,则这个月牙图案的面积约为()A.35B.45C.1D.652.我国古代数学著作《九章算术》中,其意是:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?右图是源于其思想的一个程序框图,若输出的2S (单位:升),则输入k的值为A.6 B.7 C.8 D.93.如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于A.14B.13C .12D .234.2018年12月12日,某地食品公司对某副食品店某半月内每天的顾客人数进行统计得到样本数据的茎叶图如图所示,则该样本的中位数是( )A .45B .47C .48D .635.如果数据12,,,n x x x L 的平均数为x ,方差为28,则152x +,252x +,…,52n x +的平均数和方差分别为( )A .x ,28B .52x +,28C .52x +,2258⨯D .x ,2258⨯6.执行如图所示的程序框图,输出的S 值为( )A .1B .-1C .0D .-27.从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为A .4n mB .2n mC .4m nD .2m n8.在半径为2圆形纸板中间,有一个边长为2的正方形孔,现向纸板中随机投飞针,则飞针能从正方形孔中穿过的概率为( )A .4πB .3πC .2πD .1π9.在长为10cm 的线段AB 上任取一点C ,作一矩形,邻边长分別等于线段AC 、CB 的长,则该矩形面积小于216cm 的概率为( )A .23B .34C .25D .1310.某校从高一(1)班和(2)班的某次数学考试(试卷满分为100分)的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示.若分别从(1)班、(2)班的样本中各取一份,则(2)班成绩更好的概率为( )A .1636B .1736C .12D .193611.一位学生在计算20个数据的平均数时,错把68输成86,那么由此求出的平均数与实际平均数的差为A .B .C .D .12.执行如图所示的程序框图,则输出s 的值为( )A .10B .17C .19D .36二、填空题13.若正方体1111ABCD A B C D 的棱长为3,E 为正方体内任意一点,则AE 的长度大于3的概率等于_________.14.如图,在半径为1的圆上随机地取两点,B E ,连成一条弦BE ,则弦长超过圆内接正BCD ∆边长的概率是__________.15.为长方形,,,为的中点,在长方形内随机取一点,取到的点到的距离大于1的概率为________.16.利用计算机产生0~1之间的均匀随机数a ,则使关于x 的一元二次方程20x x a -+=无实根的概率为______.17.执行如图所示的程序框图,输出的值为__________.18.使用如图所示算法对下面一组数据进行统计处理,则输出的结果为__________.数据:19.3a =,29.6a =,39.3a =49.4a =,59.4a =,69.3a =79.3a =,89.7a =,99.2a =109.5a =,119.3a =,129.6a =19.向面积为20的ABC ∆内任投一点M ,则使MBC ∆的面积小于5的概率是__________.20.某种活性细胞的存活率(%)y 与存放温度()x C ︒之间具有线性相关关系,样本数据如下表所示: 存放温度()x C ︒ 104 -2 -8 存活率(%)y 20 44 56 80 经计算得回归直线的斜率为-3.2.若存放温度为6C ︒,则这种细胞存活率的预报值为__________%.三、解答题21.为了鼓励市民节约用电,某市实行“阶梯式”电价,将每户居民的月用电量分为二档,月用电量不超过200度的部分按0.5元/度收费,超过200度的部分按0.8元/度收费.某小区共有居民1000户,为了解居民的用电情况,通过抽样,获得了今年7月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图.(1)求a 的值;(2)试估计该小区今年7月份用电量用不超过260元的户数;(3)估计7月份该市居民用户的平均用电费用(同一组中的数据用该组区间的中点值作代表).22.在全国第五个“扶贫日”到来之前,某省开展“精准扶贫,携手同行”的主题活动,某贫困县调查基层干部走访贫困户数量.甲镇有基层干部60人,乙镇有基层干部60人,丙镇有基层干部80人,每人都走访了若干贫困户,按照分层抽样,从甲、乙、丙三镇共选20名基层干部,统计他们走访贫困户的数量,并将走访数量分成[)5,15,[)15,25,[)25,35,[)35,45,[]45,555组,绘制成如图所示的频率分布直方图.(1)求这20人中有多少人来自丙镇,并估计甲、乙、丙三镇的基层干部走访贫困户户数的中位数(精确到整数位);(2)如果把走访贫困户达到或超过35户视为工作出色,求选出的20名基层干部中工作出色的人数,并从中选2人做交流发言,求这2人中至少有一人走访的贫困户在[]45,55的概率.23.某中学随机选取了40名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图.观察图中数据,完成下列问题.(Ⅰ)求a 的值及样本中男生身高在[]185,195(单位:cm )的人数;(Ⅱ)假设同一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高;(Ⅲ)在样本中,从身高在[)145,155和[]185,195(单位:cm )内的男生中任选两人,求这两人的身高都不低于185cm 的概率.24.某校命制了一套调查问卷(试卷满分均为100分),并对整个学校的学生进行了测试,先从这些学生的成绩中随机抽取了50名学生的成绩,按照[)[)[]50,60,60,70,...,90,100分成5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分)(1)求频率分布直方图中的x 的值,并估计50名学生的成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表)(2)用样本估计总体,若该校共有2000名学生,试估计该校这次成绩不低于70分的人数.25.某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100)作为样本(样本容量为n )进行统计,按照[)50,60,[)60,70,[)70,80,[)80,90,[]90,100的分组作出频率分布直方图,已知得分在[)50,60,[]90,100的频数分别为8,2.(1)求样本容量n 和频率分布直方图中的,x y 的值;(2)估计本次竞赛学生成绩的中位数;(3)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中至少有一人得分在[]90,100内的概率.26.为庆祝新中国成立70周年,某市工会组织部分事业单位职工举行“迎国庆,广播操比赛”活动.现有200名职工参与了此项活动,将这200人按照年龄(单位:岁)分组:第一组[15,25),第二组[25,35),第三组[35,45),第四组[45,55),第五组[55,65],得到的频率分布直方图如图所示.记事件A 为“从这200人中随机抽取一人,其年龄不低于35岁”,已知P (A )=0.75.(1)求,a b 的值;(2)在第二组、第四组中用分层抽样的方法抽取6人,再从这6人中随机抽取2人作为活动的负责人,求这2人恰好都在第四组中的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】利用与面积有关的几何概型概率计算公式求解即可.【详解】由题可知,正方形的面积为=22=4S ⨯正,设这个月牙图案的面积为S ,由与面积有关的几何概型概率计算公式可得,向这个正方形里随机投入芝麻,落在月牙形图案内的概率为 150=4500S S P S ==正,解得65S =. 故选:D【点睛】本题考查与面积有关的几何概型概率计算公式;属于基础题、常考题型.2.C解析:C【解析】分析:执行程序框图,得到输出值4k S =,令24k =,可得8k =. 详解:阅读程序框图,初始化数值1,n S k ==, 循环结果执行如下:第一次:14n =<成立,2,22k k n S k ==-=; 第二次:24n =<成立,3,263k k k n S ==-=; 第三次:34n =<成立,4,3124k k k n S ==-=; 第四次:44n =<不成立,输出24k S ==,解得8k =. 故选C.点睛:解决循环结构程序框图问题的核心在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.3.C解析:C【解析】【分析】利用几何概型的计算概率的方法解决本题,关键要弄准所求的随机事件发生的区域的面积和事件总体的区域面积,通过相除的方法完成本题的解答.【详解】解:由几何概型的计算方法,可以得出所求事件的概率为P=.故选C .【点评】本题考查概率的计算,考查几何概型的辨别,考查学生通过比例的方法计算概率的问题,考查学生分析问题解决问题的能力,考查学生几何图形面积的计算方法,属于基本题型. 4.A解析:A【解析】【分析】由茎叶图确定所给的所有数据,然后确定中位数即可.【详解】各数据为:12 20 31 32 34 45 45 45 47 47 48 50 50 61 63, 最中间的数为:45,所以,中位数为45.本题选择A 选项.【点睛】本题主要考查茎叶图的阅读,中位数的定义与计算等知识,意在考查学生的转化能力和计算求解能力.5.C解析:C【解析】 根据平均数的概念,其平均数为52x +,方差为2258⨯,故选C.6.B解析:B【解析】【分析】由题意结合流程图运行程序,考查5i >是否成立来决定输出的数值即可.【详解】结合流程图可知程序运行过程如下:首先初始化数据:1,2i S ==,此时不满足5i >,执行循环:111,122S i i S =-==+=; 此时不满足5i >,执行循环:111,13S i i S =-=-=+=; 此时不满足5i >,执行循环:112,14S i i S =-==+=; 此时不满足5i >,执行循环:111,152S i i S =-==+=; 此时不满足5i >,执行循环:111,16S i i S=-=-=+=; 此时满足5i >,输出1S =-.本题选择B 选项.【点睛】本题主要考查循环结构流程图的识别与运行过程,属于中等题. 7.C解析:C【解析】此题为几何概型.数对(,)i i x y 落在边长为1的正方形内,其中两数的平方和小于1的数落在四分之一圆内,概型为41m P n π==,所以4m n π=.故选C . 8.D解析:D【解析】【分析】根据面积比的几何概型,即可求解飞针能从正方形孔中穿过的概率,得到答案.【详解】由题意,边长为2的正方形的孔的面积为1224S =⨯=,又由半径为2的圆形纸板的面积为224S ππ=⨯=, 根据面积比的几何概型,可得飞针能从正方形孔中穿过的概率为1414S P S ππ===, 故选D.【点睛】本题主要考查了面积比的几何概型的概率的计算,以及正方形的面积和圆的面积公式的应用,着重考查了推理与运算能力,属于基础题. 9.C解析:C【解析】【分析】根据几何概型的概率公式,设AC =x ,则BC =10﹣x ,由矩形的面积S =x (10﹣x )<16可求x 的范围,利用几何概率的求解公式求解.【详解】设线段AC 的长为xcm ,则线段CB 长为(10)cm x -,那么矩形面积为(10)16x x -<,2x <或8x >,又010x <<,所以该矩形面积小于216cm 的概率为42105=. 故选:C【点睛】本题考查几何概型,考查了一元二次不等式的解法,明确测度比为长度比是关键,是中档题. 10.C解析:C【解析】【分析】由题意从(1)班、(2)班的样本中各取一份,(2)班成绩更好即(2)班成绩比(1)班成绩高,用列举法列出所有可能结果,由此计算出概率。

2021-2022学年广东省深圳第二高级中学、第七高级中学高二(上)期末数学试卷

2021-2022学年广东省深圳第二高级中学、第七高级中学高二(上)期末数学试卷

2021-2022学年广东省深圳第二高级中学、第七高级中学高二(上)期末数学试卷试题数:22,总分:1501.(单选题,5分)在空间直角坐标系下,点M(-3,6,2)关于y轴对称的点的坐标为()A.(3,-6,2)B.(-3,-6,-2)C.(3,6,-2)D.(3,-6,-2)2.(单选题,5分)若椭圆x2p +y24=1的一个焦点为(0,-1),则p的值为()A.5B.4C.3D.23.(单选题,5分)双曲线x2m2+12−y24−m2=1的焦距是()A.4B. 2√2C.8D.与m有关4.(单选题,5分)在数列{a n}中,a1=- 14,a n=1−1a n−1(n>1),则a2020的值为()A. −14B.5C. 45D.以上都不对5.(单选题,5分)若抛物线y2=4x上一点P到x轴的距离为2 √3,则点P到抛物线的焦点F的距离为()A.4B.5C.6D.76.(单选题,5分)中国明代商人程大位对文学和数学也颇感兴趣,他于60岁时完成杰作《直指算法统宗》,这是一本风行东亚的数学名著,该书第五卷有问题云:“今有白米一百八十石,令三人从上及和减率分之,只云甲多丙米三十六石,问:各该若干?”翻译成现代文就是:“今有百米一百八十石,甲乙丙三个人来分,他们分得的米数构成等差数列,只知道甲比丙多分三十六石,那么三人各分得多少米?”请你计算甲应该分得()A.78石B.76石C.75石D.74石7.(单选题,5分)数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线.已知△ABC的顶点A(2,0),B(1,2),且AC=BC,则△ABC的欧拉线的方程为()A.x-2y-4=0B.2x+y-4=0C.4x+2y+1=0D.2x-4y+1=08.(单选题,5分)已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,点A是椭圆短轴的一个顶点,且cos∠F1AF2= 34,则椭圆的离心率e=()A. 12B. √22C. 14D. √249.(多选题,5分)已知递减的等差数列{a n}的前n项和为S n,若S7=S11,则()A.a10>0B.当n=9时,S n最大C.S17>0D.S19>010.(多选题,5分)已知双曲线C过点(3,√2)且渐近线方程为y=±√3x,则下列结论正3确的是()A.C的方程为x2−y2=13B.C的离心率为√3C.曲线y=e x-2-1经过C的一个焦点D.直线x−√3y−1=0与C有两个公共点11.(多选题,5分)已知直线l:(a+1)x+ay+a=0(a∈R)与圆C:x2+y2-4x-5=0,则下列结论正确的是()A.存在a,使得l的倾斜角为90°B.存在a,使得l的倾斜角为135°C.存在a,使直线l与圆C相离D.对任意的a直线l与圆C相交,且a=1时相交弦最短12.(多选题,5分)如图,点E是正方体ABCD-A1B1C1D1的棱DD1的中点,点M在线段BD1上运动,则下列结论正确的是()A.直线AD与直线C1M始终是异面直线B.存在点M,使得B1M⊥AEC.四面体EMAC的体积为定值D.当D1M=2MB时,平面EAC⊥平面MAC13.(填空题,5分)等轴双曲线的离心率为___ .14.(填空题,5分)若a n=(-1)n•(2n-1),则数列{a n}的前21项和S21=___ .15.(填空题,5分)将数列{n}按“第n组有n个数”的规则分组如下:(1),(2,3),(4,5,6),⋯,则第22组中的第一个数是 ___ .16.(填空题,5分)数列{a n}中,a1=1,a n+a n+1=(1)n,S n=a1+4a2+42a3+…+4n-1a n,类比4课本中推导等比数列前n项和公式的方法,可求得5S n-4n a n=___ .17.(问答题,10分)已知各项均为正数的等差数列{a n}中,a1+a2+a3=15,且a1+2,a2+5,a3+13构成等比数列{b n}的前三项.(1)求数列{a n},{b n}的通项公式;(2)求数列{a n+b n}的前n项和T n.18.(问答题,12分)如图所示,在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,AC⊥BC,AC=BC=2,CC1=3,点D,E分别在棱AA1和棱CC1上,且AD=1,CE=2,点M为棱A1B1的中点.(1)求证:C1M || 平面DB1E;(2)求直线AB与平面DB1E所成角的正弦值.19.(问答题,12分)已知点P(1,m)是抛物线C:y2=2px上的点,F为抛物线的焦点,且|PF|=2,直线l:y=k(x-1)与抛物线C相交于不同的两点A,B.(1)求抛物线C的方程;(2)若|AB|=8,求k的值.20.(问答题,12分)已知数列{a n}的前n项和为S n,已知a2=3a1=3,且当n≥2,n∈N*时,a n+1+2a n-1+3S n-1=3S n.(1)证明:数列{a n+1-a n}是等比数列;,求数列{b n}的前n项和T n.(2)设b n=a n+1a n+1a n21.(问答题,12分)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD || BC,AD⊥CD,且AD=CD=1,BC=2,PA=1.(1)求证:AB⊥PC;,求三棱锥M-ACP体积.(2)点M在线段PD上,二面角M-AC-D的余弦值为√3322.(问答题,12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?(2)若l过点(m3若能,求此时l的斜率;若不能,说明理由.2021-2022学年广东省深圳第二高级中学、第七高级中学高二(上)期末数学试卷参考答案与试题解析试题数:22,总分:1501.(单选题,5分)在空间直角坐标系下,点M(-3,6,2)关于y轴对称的点的坐标为()A.(3,-6,2)B.(-3,-6,-2)C.(3,6,-2)D.(3,-6,-2)【正确答案】:C【解析】:直接利用点的对称的应用求出结果.【解答】:解:点M(-3,6,2)关于y轴对称的点的坐标为N(3,6,-2);故选:C.【点评】:本题考查的知识要点:点的对称,主要考查学生的运算能力和数学思维能力,属于基础题.2.(单选题,5分)若椭圆x2p +y24=1的一个焦点为(0,-1),则p的值为()A.5B.4C.3D.2【正确答案】:C【解析】:由题意得到关于p的方程,解方程即可确定p的值.【解答】:解:由题意可知椭圆的焦点在y轴上,则a2=4,b2=p,c2=1,从而4=p+1,p=3.故选:C.【点评】:本题主要考查椭圆的标准方程,椭圆的简单性质的应用,属于基础题.3.(单选题,5分)双曲线x2m2+12−y24−m2=1的焦距是()A.4B. 2√2C.8D.与m有关【正确答案】:C【解析】:由双曲线的方程可先根据公式c2=a2+b2求出c的值,进而可求焦距2c【解答】:解:由题意可得,c2=a2+b2=m2+12+4-m2=16∴c=4 焦距2c=8故选:C.【点评】:本题主要考查了双曲线的定义的应用,解题的关键熟练掌握基本结论:c2=a2+b2,属于基础试题4.(单选题,5分)在数列{a n}中,a1=- 14,a n=1−1a n−1(n>1),则a2020的值为()A. −14B.5C. 45D.以上都不对【正确答案】:A【解析】:求出数列的前几项,得到数列的周期,然后求解即可.【解答】:解:数列{a n}中,a1=- 14,a n=1−1a n−1(n>1),a2=1+4=5,a3=1- 15 = 45,a4=1- 54=- 14,•••,所以数列的周期为3,a2020=a673×3+1=a1= −14.故选:A.【点评】:本题考查数列的递推关系式的应用,数列项的求法,是基础题.5.(单选题,5分)若抛物线y2=4x上一点P到x轴的距离为2 √3,则点P到抛物线的焦点F的距离为()A.4B.5C.6D.7【正确答案】:A【解析】:求得抛物线的准线方程,利用抛物线的定义,可得点P到抛物线的焦点F的距离.【解答】:解:抛物线y2=4x的准线方程为x=-1∵抛物线y2=4x上一点P到x轴的距离为2 √3,则P(3,±2√3),∴P到抛物线的准线的距离为:4,∴点P到抛物线的焦点F的距离为4.故选:A.【点评】:本题考查抛物线的性质,考查抛物线的定义,属于基础题.6.(单选题,5分)中国明代商人程大位对文学和数学也颇感兴趣,他于60岁时完成杰作《直指算法统宗》,这是一本风行东亚的数学名著,该书第五卷有问题云:“今有白米一百八十石,令三人从上及和减率分之,只云甲多丙米三十六石,问:各该若干?”翻译成现代文就是:“今有百米一百八十石,甲乙丙三个人来分,他们分得的米数构成等差数列,只知道甲比丙多分三十六石,那么三人各分得多少米?”请你计算甲应该分得()A.78石B.76石C.75石D.74石【正确答案】:A【解析】:由只知道甲比丙多分三十六石,求出公差d=a3−a13−1 = −362=-18,再由S3=3a1+3×22×(−18) =180,能求出甲应该分得78石.【解答】:解:今有百米一百八十石,甲乙丙三个人来分,他们分得的米数构成等差数列,只知道甲比丙多分三十六石,∴ d=a3−a13−1 = −362=-18,S3=3a1+3×22×(−18) =180,解得a1=78(石).∴甲应该分得78石.故选:A.【点评】:本题考查等差数列的首项的求法,考等差数列的性质等基础知识,考查运算求解能力,是基础题.7.(单选题,5分)数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线.已知△ABC的顶点A(2,0),B(1,2),且AC=BC,则△ABC的欧拉线的方程为()A.x-2y-4=0B.2x+y-4=0C.4x+2y+1=0D.2x-4y+1=0【正确答案】:D【解析】:由三角形的重心、垂心和外心的定义与性质,推出△ABC的欧拉线就是线段AB的中垂线,再求得中垂线的斜率和线段AB的中点,即可得解.【解答】:解:因为AC=BC,所以点C在线段AB的中垂线上,设该中垂线为直线l,取BC的中点D,连接AD,则AD与直线l的交点在直线l上,该交点即为△ABC的重心,过点A作AE⊥BC于E,则AE与直线l的交点在直线l上,该交点即为△ABC的垂心,因为外心到△ABC的三个顶点的距离相等,所以外心也在直线l上,故△ABC的欧拉线就是直线l,由A(2,0),B(1,2),知AB的中点坐标为(32,1),直线AB的斜率为2−01−2=-2,所以直线l的斜率为12,其方程为y-1= 12(x- 32),即2x-4y+1=0.故选:D.【点评】:本题考查直线方程的求法,两条直线的垂直关系,理解三角形的重心、垂心和外心的定义与性质是解题的关键,考查逻辑推理能力和运算能力,属于中档题.8.(单选题,5分)已知椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1、F2,点A是椭圆短轴的一个顶点,且cos∠F1AF2= 34,则椭圆的离心率e=()A. 12B. √22C. 14D. √24【正确答案】:D【解析】:由题意可得|AF1|=|AF2|=a,|F1F2|=2c,在三角形中由余弦定理可得a,c之间的关系,进而求出离心率.【解答】:解:由题意可得|AF1|=|AF2|=a,|F1F2|=2c,在△PF1F2中,由余弦定理可得:cos∠F1AF2= |PF1|2+|PF2|2−|F1F2|22|PF1|•|PF2| = a2+a2−4c22a2= 34,可得a2=8c2,即离心率e= ca = √24(0<e<1),故选:D.【点评】:本题考查椭圆的几何性质,考查余弦定理的应用,是基础题.9.(多选题,5分)已知递减的等差数列{a n}的前n项和为S n,若S7=S11,则()A.a10>0B.当n=9时,S n最大C.S17>0D.S19>0【正确答案】:BC【解析】:由递减的等差数列{a n}的前n项和为S n,S7=S11,列出方程,求出a1=−172d>0,再逐一判断各选项.【解答】:解:∵递减的等差数列{a n }的前n 项和为S n ,S 7=S 11,∴ {d <07a 1+7×62d =11a 1+11×102d,解得 a 1=−172d >0, ∴a 10=a 1+9d=- 172d +9d = 12d <0,故A 错误;S n =na 1+ n (n−1)2d =- 17d 2n + d 2n 2 - d 2n = d 2 (n-9)2- 812d . ∴当n=9时,S n 最大,故B 正确;S 17=17a 1+17×162d =17×(- 172 d )+136d=-8.5d >0,故C 正确; S 19=19a 1+ 19×182 d=19×(- 172d )+171d=9.5d <0,故D 错误.故选:BC .【点评】:本题考查命题真假的判断,等差数列的性质,考查运算求解能力,是基础题.10.(多选题,5分)已知双曲线C 过点 (3,√2) 且渐近线方程为 y =±√33x ,则下列结论正确的是( )A.C 的方程为 x 23−y 2=1B.C 的离心率为 √3C.曲线y=e x-2-1经过C 的一个焦点D.直线 x −√3y −1=0 与C 有两个公共点【正确答案】:AC【解析】:由双曲线的渐近线为 y =±√33x ,设出双曲线方程,代入已知点的坐标,求出双曲线方程判断A ;再求出双曲线的焦点坐标判断B ,C ;直线与双曲线的渐近线的关系判断D .【解答】:解:由双曲线的渐近线方程为 y =±√33x ,可设双曲线方程为 x 23−y 2=λ , 把点 (3,√2) 代入,得 93 -2=λ,即λ=1.∴双曲线C 的方程为 x 23−y 2=1 ,故A 正确;由a 2=3,b 2=1,得c= √a 2+b 2 =2,∴双曲线C √3 = 2√33 ,故B 错误;取x-2=0,得x=2,y=0,曲线y=e x-2-1过定点(2,0),故C 正确; 双曲线的渐近线 x ±√3y =0,直线 x −√3y −1=0 与双曲线的渐近线平行,直线 x −√3y −1=0 与C 有1个公共点故D 不正确.故选:AC.【点评】:本题考查命题的真假判断与应用,考查双曲线方程的求法,考查双曲线的简单性质,是中档题11.(多选题,5分)已知直线l:(a+1)x+ay+a=0(a∈R)与圆C:x2+y2-4x-5=0,则下列结论正确的是()A.存在a,使得l的倾斜角为90°B.存在a,使得l的倾斜角为135°C.存在a,使直线l与圆C相离D.对任意的a直线l与圆C相交,且a=1时相交弦最短【正确答案】:AD【解析】:对于AB选项,根据倾斜角可判断直线的位置以及斜率,进而可以求出a的值,而C选项根据直线与圆相离满足的条件可求出a的值是否存在,而D选项,先求出直线过的定点,可判断直线与圆的位置,且定点与圆心连线与直线垂直时弦长最短可求出a的值.【解答】:解:选项A:当a=0时,直线方程为x=0,此时倾斜角为90°,A正确,选项B:当倾斜角为135°时,直线斜率为-1,即- a+1a=-1,解得a为空集,B错误,选项C:圆C的圆心为C(2,0),半径r=3,若直线与圆相离,则圆心到直线的距离为|(a+1)×2+a|√(a+1)2+a2>3,整理得:9a2+6a+5<0,不等式无解,C错误,选项D:经分析直线过定点M(0,-1),此点在圆内,所以直线与圆恒相交,当直线CM与直线l垂直时,直线CM和直线l的斜率之积等于-1,即:−a+1a ×0−(−1)2−0=-1解得a=1,此时弦长最短,D正确,故选:AD.【点评】:本题考查了直线与圆的位置关系以及直线倾斜角和直线过定点的问题,考查了学生的运算能力,推理能力,属于基础题.12.(多选题,5分)如图,点E是正方体ABCD-A1B1C1D1的棱DD1的中点,点M在线段BD1上运动,则下列结论正确的是()A.直线AD与直线C1M始终是异面直线B.存在点M,使得B1M⊥AEC.四面体EMAC 的体积为定值D.当D 1M=2MB 时,平面EAC⊥平面MAC【正确答案】:BCD【解析】:当M 为BD 1的中点时可知A 错误,证明BD 1 || 平面EAC 可知C 正确;建立空间坐标系,利用向量判断BD 即可.【解答】:解:(1)当M 为BD 1的中点时,直线AD 与直线C 1M 是相交直线,交点为A ,故A 错误;(2)以D 为原点,以DA ,DC ,DD 1为坐标轴建立空间坐标系D-xyz ,设正方体棱长为1,则A (1,0,0),E (0,0, 12 ),B (1,1,0),D 1(0,0,1),B 1(1,1,1),∴ AE ⃗⃗⃗⃗⃗ =(-1,0, 12), B 1B ⃗⃗⃗⃗⃗⃗⃗ =(0,0,-1), BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,-1,1). BM ⃗⃗⃗⃗⃗⃗ =λ BD 1⃗⃗⃗⃗⃗⃗⃗⃗ (0≤λ≤1),则 B 1M ⃗⃗⃗⃗⃗⃗⃗⃗ = B 1B ⃗⃗⃗⃗⃗⃗⃗ + BM ⃗⃗⃗⃗⃗⃗ =(-λ,-λ,λ-1),若B 1M⊥AE ,则 B 1M ⃗⃗⃗⃗⃗⃗⃗⃗ • AE ⃗⃗⃗⃗⃗ =0,即λ+ 12 (λ-1)=0,解得λ= 13, ∴当M 为线段BD 1的靠近B 的三等分点时,B 1M⊥AE ,故B 正确;(3)连接BD ,取BD 的中点O ,连接EO ,则O 也是AC 的中点,由中位线定理可知BD 1 || EO ,∴BD 1 || 平面ACE ,故V E-MAC =V M-ACE =V B-ACE ,故C 正确;(4)∵AC⊥BD ,AC⊥DD 1,BD∩DD 1=D ,∴AC⊥平面BDD 1,∴AC⊥OE ,AC⊥OM ,故∠EOM 为二面角E-AC-M 的平面角,当D 1M=2BM 时,M ( 23 , 23 , 13 ),又O ( 12 , 12 ,0),∴ OM ⃗⃗⃗⃗⃗⃗ =( 16 , 16 , 13 ), OE ⃗⃗⃗⃗⃗ =(- 12 ,- 12 , 12), ∴ OE ⃗⃗⃗⃗⃗ •OM ⃗⃗⃗⃗⃗⃗ =- 112 - 112 + 16 =0,∴OE⊥MO , 故平面EAC⊥平面MAC ,故D 正确.故选:BCD .【点评】:本题考查了空间线面位置关系的判断与性质,可适当选用平面向量法解决几何问题,属于中档题.13.(填空题,5分)等轴双曲线的离心率为___ .【正确答案】:[1] √2【解析】:根据等轴双曲线的定义,可得a=b,从而可得离心率.【解答】:解:∵等轴双曲线中a=b∴c= √a2+b2 = √2 a= √2∴e= ca故答案为:√2【点评】:本题考查双曲线的几何性质,考查学生的计算能力,属于基础题.14.(填空题,5分)若a n=(-1)n•(2n-1),则数列{a n}的前21项和S21=___ .【正确答案】:[1]-21【解析】:直接利用数列的通项公式和组合法的应用求出结果.【解答】:解:由于a n=(-1)n•(2n-1),则S21=(-1+3)+(-5+7)+(-9+11)+…+(-41)=2×10-4=-21.故答案为:-21.【点评】:本题考查的知识要点:数列的通项公式,组合法的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.15.(填空题,5分)将数列{n}按“第n组有n个数”的规则分组如下:(1),(2,3),(4,5,6),⋯,则第22组中的第一个数是 ___ .【正确答案】:[1]232【解析】:根据已知可得,第n组中最后一个数即为前n组数的个数和,由此可求得第21组的最后一个数,进而求得第22组中的第3个数【解答】:解:由条件,可得第21组的最后一个数为1+2+3+4+5+6+⋯⋯+21= 21(1+21)2=231,所以第22组的第1个数为232.【点评】:本题考查了归纳推理,等差数列前n项和公式的应用,找到数字的规律是解题的关键,属于中档题.16.(填空题,5分)数列{a n}中,a1=1,a n+a n+1=(14)n,S n=a1+4a2+42a3+…+4n-1a n,类比课本中推导等比数列前n项和公式的方法,可求得5S n-4n a n=___ .【正确答案】:[1]n【解析】:先对S n=a1+a2•4+a3•42+…+a n•4n-1两边同乘以4,再相加,求出其和的表达式,整理即可求出5S n-4n a n的表达式.【解答】:解:由S n=a1+a2•4+a3•42+…+a n•4n-1①得4•s n=4•a1+a2•42+a3•43+…+a n-1•4n-1+a n•4n②① + ② 得:5s n=a1+4(a1+a2)+42•(a2+a3)+…+4n-1•(a n-1+a n)+a n•4n=a1+4× 14 +42•(14)2+…+4n-1•(14)n-1+4n•a n=1+1+1+…+1+4n•a n=n+4n•a n.所以5s n-4n•a n=n,故答案为:n.【点评】:本题主要考查数列的求和,用到了类比法,关键点在于对课本中推导等比数列前n 项和公式的方法的理解和掌握.17.(问答题,10分)已知各项均为正数的等差数列{a n}中,a1+a2+a3=15,且a1+2,a2+5,a3+13构成等比数列{b n}的前三项.(1)求数列{a n},{b n}的通项公式;(2)求数列{a n+b n}的前n项和T n.【正确答案】:【解析】:(1)通过等数列中项的性质求出a2=5,等比数列中项性质求出d=2,然后分别求出数列{a n},{b n}的通项公式;(2)分组求和即可.【解答】:解:(1)设等差数列的公差为d,则由已知得,a1+a2+a3=3a2=15,即a2=5,又(5-d+2)(5+d+13)=(a 2+5)2=100,解得d=2或d=-13(舍去),所以a 1=a 2-d=3,∴a n =a 1+(n-1)×d=2n+1,又b 1=a 1+2=5,b 2=a 2+5=10,∴q=2,∴ b n =5⋅2n−1 .(2)由(1)知,a n +b n =2n+1+5×2n-1,所以T n = n (3+2n+1)2 + 5−5×2n 1−2=5×2n +n 2+2n-5.【点评】:本题考查了等差数列等比数列的综合,分组求和,属于基础题.18.(问答题,12分)如图所示,在三棱柱ABC-A 1B 1C 1中,CC 1⊥平面ABC ,AC⊥BC ,AC=BC=2,CC 1=3,点D ,E 分别在棱AA 1和棱CC 1上,且AD=1,CE=2,点M 为棱A 1B 1的中点.(1)求证:C 1M || 平面DB 1E ;(2)求直线AB 与平面DB 1E 所成角的正弦值.【正确答案】:【解析】:(1)只要证明C 1M 与平面DB 1E 的法向量数量积为零即可;(2)用向量数量积计算直线与平面成角正弦值.【解答】:(1)证明:建系如图,C (0,0,0),A (2,0,0),B (0,2,0),C 1(0,0,3),A 1(2,0,3),B 1(0,2,3),D (2,0,1),E (0,0,2),M (1,1,3),C 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =(1,1,0),B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(2,−2,−2) , ED ⃗⃗⃗⃗⃗ =(2,0,-1),令 n ⃗ =(1,−1,2) ,因为 B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ •n⃗ =0, ED ⃗⃗⃗⃗⃗ •n ⃗ =0 , 所以 n ⃗ =(1,−1,2) 为平面DB 1E 的法向量,因为 C 1M ⃗⃗⃗⃗⃗⃗⃗⃗ •n ⃗ =0,C 1M⊄平面DB 1E ,所以C 1M || 平面DB 1E .(2)解:由(1)知 AB ⃗⃗⃗⃗⃗ =(−2,2,0) , n ⃗ =(1,−1,2) 为平面DB 1E 的一个法向量, 设AB 与平面DB 1E 所成角为θ,所以 sinθ=|cos <AB ⃗⃗⃗⃗⃗ ,n ⃗ >|=|AB ⃗⃗⃗⃗⃗ •n ⃗ ||AB ⃗⃗⃗⃗⃗ |•|n ⃗ |=√33, 所以直线AB 与平面DB 1E 所成角的正弦值为 √33 .【点评】:本题考查了直线与平面的位置关系,考查了直线与平面成角问题,属于中档题.19.(问答题,12分)已知点P (1,m )是抛物线C :y 2=2px 上的点,F 为抛物线的焦点,且|PF|=2,直线l :y=k (x-1)与抛物线C 相交于不同的两点A ,B .(1)求抛物线C 的方程;(2)若|AB|=8,求k 的值.【正确答案】:【解析】:(1)利用已知条件求出p,即可得到抛物线方程.(2)设出AB坐标,联立直线与抛物线方程,利用韦达定理以及弦长公式求解即可.【解答】:解:(1)抛物线C:y2=2px的准线为x=p2,由|PF|=2得:1+p2=2,得p=2.所以抛物线的方程为y2=4x.(2)设A(x1,y1),B(x2,y2),由{y=k(x−1)y2=4x,可得k2x2-(2k2+4)x+k2=0,Δ=16k2+16>0,∴ x1+x2=2k2+4k2,∵直线l经过抛物线C的焦点F,∴ |AB|=x1+x2+p=2k2+4k2+2=8,解得:k=±1,所以k的值为1或-1.【点评】:本题考查抛物线的简单性质的应用,直线与抛物线的位置关系的应用,是基本知识的考查,中档题.20.(问答题,12分)已知数列{a n}的前n项和为S n,已知a2=3a1=3,且当n≥2,n∈N*时,a n+1+2a n-1+3S n-1=3S n.(1)证明:数列{a n+1-a n}是等比数列;(2)设b n=a n+1a n+1a n,求数列{b n}的前n项和T n.【正确答案】:【解析】:(1)将条件中的递推式整理为a n+1-a n=2a n-2a n-1=2(a n-a n-1),从而可证数列{a n+1-a n}是等比数列;(2)化简数列{b n}的通项公式,利用裂项相消法求和.【解答】:(1)证明:因为当n≥2,n∈N*时,a n+1+2a n-1+3S n-1=3S n,所以a n+1+2a n-1=3S n-3S n-1=3a n,所以a n+1-a n=2a n-2a n-1=2(a n-a n-1),即a n+1−a na n−a n−1=2,(n≥2,n∈N*),又a2-a1=3-1=2,所以数列{a n+1-a n}是首项为2,公比为2的等比数列;解:(2)由(1)知,a n+1−a n=2⋅2n−1=2n,则a1=1,a2−a1=21,a3−a2=22,…… a n−a n−1=2n−1,各项相加,可得a n=1+21+22+⋯+2n−1=1−2n1−2=2n-1,所以b n=a n+1a n+1a n =2n(2n+1−1)(2n−1)= 12n−1−12n+1−1,故 T n=b1+b2+…+b n= 121−1−122−1+122−1−123−1+…+12n−1−12n+1−1= 121−1−12n+1−1= 1−12n+1−1.【点评】:本题考查了等比数列的证明以及数列的求和问题,属于中档题.21.(问答题,12分)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD || BC,AD⊥CD,且AD=CD=1,BC=2,PA=1.(1)求证:AB⊥PC;(2)点M在线段PD上,二面角M-AC-D的余弦值为√33,求三棱锥M-ACP体积.【正确答案】:【解析】:(1)可证△ABC是等腰直角三角形,即AB⊥AC,可得PA⊥AB,进而AB⊥平面PAC,可证结论;(2)过点M作MN⊥AD于N,则MN || PA,过点M作MG⊥AC于G,连接NG,则AC⊥NG,cos∠MGN= √33,则√2 NG=MN,又AN= √2 NG=MN,设MN=x,△MND是等腰直角三角形,可解得x,从而可求体积.【解答】:(1)证明:∵四边形ABCD是直角梯形,AD=CD=1,BC=2,∴AC= √2,AB= √(BC−AD)2+CD2 = √2,∴△ABC是等腰直角三角形,即AB⊥AC,∵PA⊥平面ABCD,AB⊂平面ABCD,∴PA⊥AB,又PA∩AC=A,∴AB⊥平面PAC,又PC⊂平面PAC,∴AB⊥PC,(2)解:过点M作MN⊥AD于N,则MN || PA,∴MN⊥平面ABCD,∴MN⊥AC,过点M作MG⊥AC于G,连接NG,则AC⊥NG,∴∠MGN是二面角M-AC-D的平面角,若cos∠MGN= √33,则√2 NG=MN,又AN= √2 NG=MN,设MN=x,则AN=x,ND=1-x,∵△MND是等腰直角三角形,解得x=1-x,所以MN= 12,所以M是PD的中点,所以V P-ACM= 12 V P-ACD= 12× 13× 12×1×1×1= 112.【点评】:本题考查线线垂直的证明,以及空间几何体的体积,属中档题.22.(问答题,12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点(m3,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.【正确答案】:【解析】:(1)联立直线方程和椭圆方程,求出对应的直线斜率即可得到结论.(2)四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M,建立方程关系即可得到结论.【解答】:解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M (x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2-m2=0,则判别式△=4k2b2-4(k2+9)(b2-m2)>0,则x1+x2= −2kb9+k2,则x M= x1+x22= −kb9+k2,y M=kx M+b= 9b9+k2,于是直线OM的斜率k OM= y Mx M = −9k,即k OM•k=-9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(m3,m),∴由判别式△=4k2b2-4(k2+9)(b2-m2)>0,即k2m2>9b2-9m2,∵b=m- k3m,∴k2m2>9(m- k3m)2-9m2,即k2>k2-6k,即6k>0,则k>0,∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM的方程为y= −9kx,设P的横坐标为x P,由{y=−9kx9x2+y2=m2得x P2=k2m29k2+81,即x P=3√9+k2,将点(m3,m)的坐标代入l的方程得b= m(3−k)3,即l的方程为y=kx+ m(3−k)3,将y= −9k x,代入y=kx+ m(3−k)3,得kx+ m (3−k )3 = −9kx 解得x M =k (k−3)m 3(9+k 2) , 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M ,于是 3√9+k 2 =2× k (k−3)m 3(9+k 2) , 解得k 1=4- √7 或k 2=4+ √7 ,∵k i >0,k i ≠3,i=1,2,∴当l 的斜率为4- √7 或4+ √7 时,四边形OAPB 能为平行四边形.【点评】:本题主要考查直线和圆锥曲线的相交问题,联立方程组转化为一元二次方程,利用根与系数之间的关系是解决本题的关键.综合性较强,难度较大.。

2020-2021学年广东省深圳市龙岗区高二(上)期末数学试卷

2020-2021学年广东省深圳市龙岗区高二(上)期末数学试卷

2020-2021学年广东省深圳市龙岗区高二(上)期末数学试卷1.(单选题,5分)命题“∀x∈R ,|x|+x 2≥0”的否定是( )A.∀x∈R ,|x|+x 2<0B.∀x∈R ,|x|+x 2≤0C.∃x 0∈R ,|x 0|+x 02<0D.∃x 0∈R ,|x 0|+x 02≥02.(单选题,5分)复数z 满足(1+i )•z=-1+i ,其中i 为虚数单位,则复数z=( )A.1+iB.1-iC.iD.-i3.(单选题,5分)已知1,a 1,a 2,3成等差数列,1,b 1,b 2,b 3,4成等比数列,则 a 1+a 2b 2 的值为( )A.2B.-2C.±2D. 544.(单选题,5分)设实数x 、y 满足 {y ≤xx +y ≤4y ≥−2,则z=2x+y 的最小值为( ) A.-8B.-6C.6D.105.(单选题,5分)已知双曲线 x 2a 2−y 2b 2=1 (a >0,b >0)右顶点与抛物线y 2=8x 焦点重合且离心率e= 32 ,则该双曲线方程为( )A. x 24−y 25=1 B. x 25−y 24=1 C. y 24−x 25=1 D. y 25−x 24=16.(单选题,5分)已知函数f (x )= 12 x 3+ax+4,则“a >0”是“f (x )在R 上单调递增”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(单选题,5分)《周髀算经》是中国最古老的天文学和数学著作,它揭示日月星辰的运行规律.其记载“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁”.现恰有30人,他们的年龄(都为正整数)之和恰好为一遂(即1520),其中年长者年龄介于90至100,其余29人的年龄依次相差一岁,则最年轻者的年龄为()A.32B.33C.34D.358.(单选题,5分)双曲线x2a2 - y2b2=1(a>0,b>0)的左焦点F(-c,0)关于直线y=- bax的对称点Q在该双曲线上,则双曲线的离心率为()A. √52B. √5C. √3D. √329.(多选题,5分)下列选项中正确的是()A.不等式a+b≥2√ab恒成立B.存在实数a,使得不等式a+1a≤2成立C.若a、b为正实数,则ba +ab≥2D.若正实数x,y满足x+2y=1,则2x +1y≥810.(多选题,5分)如图,正方体ABCD-A1B1C1D1的棱长是1,下列结论正确的有()A.直线BC与平面ABC1D1所成的角为π4B.C到平面ABC1D1距离为长√22C.两条异面直线CD1和BC1所成的角为π4D.三棱锥D1-DAB中三个侧面与底面均为直角三角形11.(多选题,5分)已知数列{a nn+2n}是首项为1,公差为d的等差数列,则下列判断正确的是()A.a1=3B.若d=1,则a n=n2+2nC.a2可能为6D.a1,a2,a3可能成等差数列12.(多选题,5分)已知P是左、右焦点分别为F1,F2的椭圆x24+y22=1上的动点,M(0,2),下列说法正确的有()A.|PF1|+|PF2|=4B.|PF1|-|PF2|的最大值为2 √2C.存在点P,使∠F1PF2=120°D.|MP|的最大值为2+ √213.(填空题,5分)函数f(x)=lnx在点(1,0)处的切线方程为___ .14.(填空题,5分)复数z=(12+4a-a2)-(8a-16)i在复平面上对应的点在第四象限,则实数a的取值范围为___ .15.(填空题,5分)在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和,若S n=126,则n=___ .16.(填空题,5分)已知双曲线x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,A是双曲线上一点,且AF2⊥x轴,若△AF1F2的内切圆半径为(√3−1)a,则其渐近线方程是___ .17.(问答题,10分)在① S3=12,② 2a2-a1=6,③ a8=16,这三个条件中任选一个,补充在下面试题的空格处中并作答.已知{a n}是公差不为0的等差数列,其前n项和为S n,若____,且a1、a2、a4成等比数列.(1)求数列{a n}的通项公式;(2)设数列{b n}是各项均为正数的等比数列,且b2=a1,b4=a4,求数列{a n+b n}的前n项和T n.18.(问答题,12分)已知抛物线y2=2px(p>0)的顶点为O,准线方程为x=−12.(1)求抛物线方程;(2)若过点D(1,1)的直线1交抛物线于A,B两点,且D为AB的中点求直线l的方程;(3)过点(1,0)且斜率为1的直线与抛物线交于P,Q两点,求△OPQ的面积.19.(问答题,12分)如图,在梯形ABCD中,AB || DC,∠ABC=60°,FC⊥平面ABCD,四边形ACFE为矩形,点M为线段EF的中点,且AD=CD=BC=1,CF=√32.(1)求证:平面BCM⊥平面AMC;(2)求平面MAB与平面FCB所成锐二面角的余弦值.20.(问答题,12分)设数列{a n}的前n项和为S n,已知a1=1,S n+1-2S n=1,n∈N*.(Ⅰ)证明:{S n+1}为等比数列,求出{a n}的通项公式;(Ⅱ)若b n= na n,求{b n}的前n项和T n,并判断是否存在正整数n使得T n•2n-1=n+50成立?若存在求出所有n值;若不存在说明理由.21.(问答题,12分)已知椭圆C:x2a2+y2b2=1(a>b>0)的一个焦点为F(√3,0),且该椭圆经过点P(√3,12).(1)求椭圆C的方程;(2)过点F作直线l与椭圆C交于不同的两点A、B,试问在x轴上是否存在定点Q使得直线QA与直线QB恰关于x轴对称?若存在,求出点Q的坐标:若不存在,说明理由.22.(问答题,12分)已知函数f(x)=xlnx-ax2(a∈R)在定义域内有两个不同的极值点.(Ⅰ)求实数a的取值范围;(Ⅱ)记两个极值点为x1,x2,且x1<x2,求证:x1•x2>1.。

2020-2021学年广东省梅州市高二上学期期末考试数学试题 解析版

2020-2021学年广东省梅州市高二上学期期末考试数学试题 解析版

2020-2021学年广东省梅州市高二(上)期末数学试卷一、单项选择题(共8小题).1.命题“∃x0∈(0,+∞),x02+1≤2x0”的否定为()A.∀x∈(0,+∞),x2+1≤2x B.∀x∈(0,+∞),x2+1>2xC.∀x∈(﹣∞,0],x2+1≤2x D.∀x∈(﹣∞,0],x2+1>2x2.已知直线l1:mx﹣2y+1=0,l2:x﹣(m﹣1)y﹣1=0,则“m=2”是“l1∥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.若向量,,且,则实数λ的值是()A.0B.1C.﹣2D.﹣14.已知圆C的圆心是直线x+y+1=0与直线x﹣y﹣1=0的交点,直线3x+4y﹣11=0与圆C 交于A,B两点,且|AB|=6,则圆C的方程为()A.x2+(y+1)2=18B.C.(x+y)2+y2=18D.5.已知双曲线的一个焦点与抛物线y2=﹣12x的焦点重合,则此双曲线的离心率为()A.6B.C.D.6.若函数f(x)=2x+在区间[0,+∞)上单调递增,则实数a的取值范围是()A.a≥0B.a≥2C.a<2D.a≤27.一个矩形铁皮的长为16cm,宽为10cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,若记小正方形的边长为x(cm),小盒子的容积为V(cm3),则()A.当x=2时,V有极小值B.当x=2时,V有极大值C.当时,V有极小值D.当时,V有极大值8.设函数f(x)是定义在R上的函数,其导函数为f'(x)若f(x)+f'(x)>1,f(0)=2020,则不等式e x f(x)>e x+2019的解集为()A.(﹣∞,0)B.(﹣∞,0)∪(2019,+∞)C.(2019,+∞)D.(0,+∞)二、多项选择题(共4小题).9.设f(x),g(x)都是单调函数,其导函数分别为f'(x),g'(x),h(x)=f(x)﹣g (x),下列命题中正确的是()A.若f'(x)>0,g'(x)>0,则h(x)单调递增B.若f'(x)>0,g'(x)<0,则h(x)单调递增C.f'(x)<0,g'(x)>0,则h(x)单调递减D.若f'(x)<0,g'(x)<0,则h(x)单调递减10.下列关于圆锥曲线的命题中,正确的是()A.设A,B为两个定点,k为非零常数,,则动点P的轨迹为双曲线B.设定C上一定点A作圆的动弦AB,O为坐标原点,若,则动点P 的轨迹为椭圆C.方程2x2﹣5x+2=0的两根可分别作为椭圆和双曲线的离心率D.双曲线与椭圆有相同的焦点11.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P点第三次变轨进入以F为圆心的圆形轨道Ⅲ绕月飞行,若用2c1和2c2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a1和2a2分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,下列式子中正确的是()A.a1+c1=a2+c2B.a1﹣c1=a2﹣c2C.c1a2>a1c2D.12.关于函数,下列说法正确的是()A.x0=2是f(x)的极小值点B.函数y=f(x)﹣x有且只有1个零点C.存在正整数k,使得f(x)>kx恒成立D.对任意两个正实数x1,x2,且x1≠x2,若f(x1)=f(x2),则x1+x2>4三、填空题:本大题共4小题,每小题5分.13.直线l过坐标原点且与线y=e x相切,则l的方程为.14.已知过点的椭圆C的焦点分别为F1(﹣1,0),F2(1,0),则椭圆C的标准方程是.15.如图,桥的桥洞呈抛物线形,桥下水面宽16米,当水面上涨2米后达到警戒水位,水面宽变为12米,此时桥洞顶部距水面的高度约为米(精确到0.1米).16.如图,四棱锥P﹣ABCD中,所有棱长均为2,O是底面正方形ABCD中心,E为PC 中点,则直线OE与直线PD所成角的余弦值为.四、解答题:解答应写出文字说明。

2020-2021学年广东省深圳高级中学高一(上)期中数学试卷(附答案详解)

2020-2021学年广东省深圳高级中学高一(上)期中数学试卷(附答案详解)

2020-2021学年广东省深圳高级中学高一(上)期中数学试卷一、单选题(本大题共8小题,共40.0分)1. 已知集合A ={x ∈R|3x +2>0},B ={x ∈R|(x +1)(x −3)>0},则A ∩B =( )A. (−∞,−1)B. (−1,−23)C. ﹙−23,3﹚D. (3,+∞)2. 如果a <b <0,那么下列各式一定成立的是( )A. |a|<|b|B. a 2<b 2C. a 3<b 3D. 1a <1b3. 德国数学家秋利克在1837年时提出“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,则y 是x 的函数,“这个定义较清楚地说明了函数的内涵,只要有一个法则,使得取值范围中的每一个值,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象、表格还是其它形式.已知函数f(x)由如表给出,则f(f(2020))的值为( )A. 1B. 2C. 3D. 20184. 若命题“∃x 0∈R ,使得x 02+mx 0+2m −3<0”为假命题,则实数m 的取值范围是( )A. [2,6]B. [−6,−2]C. (2,6)D. (−6,−2)5. 设a =0.60.3,b =0.30.6,c =0.30.3,则a ,b ,c 的大小关系为( )A. b <a <cB. a <c <bC. b <c <aD. c <b <a6. 若实数a ,b 满足1a +4b =√ab ,则ab 的最小值为( )A. √2B. 2C. 2√2D. 47. 已知函数f(x)={2x ,x ≥2(x −1)2,x <2,若关于x 的方程f(x)=k 有三个不同的实根,则数k 的取值范围是( )A. (0,1)B. (1,2)C. (0,2)D. (1,3)8. 已知函数f(x)=2+x2+|x|,x ∈R ,则不等式f(x 2−2x)<f(2x −3)的解集为( )A. (1,2)B. (1,3)C. (0,2)D. (1,32]二、多选题(本大题共4小题,共20.0分)9.下列函数中,最小值是2的是()A. y=a2−2a+2a−1(a>1) B. y=√x2+2+1√x2+2C. y=x2+1x2D. y=x2+2x10.下列四个结论中正确的是()A. 命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”B. 命题“至少有一个整数n,n2+1是4的倍数”是真命题C. “a>5且b>−5”是“a+b>0”的充要条件D. 当α<0时,幂函数y=xα在区间(0,+∞)上单调递减11.如图1是某条公共汽车线路收支差额y与乘客量x的图象(收支差额=车票收入−支出费用).由于目前本条线路亏损,公司有关人员将图1变为图2与图3,从而提出了扭亏为盈的两种建议.下面有4种说法中正确的是()A. 图2的建议是:减少支出,提高票价B. 图2的建议是:减少支出,票价不变C. 图3的建议是:减少支出,提高票价D. 图3的建议是:支出不变,提高票价12.对∀x∈R,[x]表示不超过x的最大整数.十八世纪,y=[x]被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”,则下列命题中的真命题是()A. ∃x∈R,x≥[x]+1B. ∀x,y∈R,[x]+[y]≤[x+y]C. 函数y=x−[x](x∈R)的值域为[0,1)D. 若∃t∈R,使得[t3]=1,[t4]=2,[t5]=3…,[t n]=n−2同时成立,则正整数n的最大值是5三、单空题(本大题共4小题,共20.0分)13.已知函数f(x)=a x−2−4(a>0,a≠1)的图象恒过定点A,则A的坐标为.14.若函数f(x)=ax2+2ax+1在[1,2]上有最大值4,则a的值为.15.y=f(x)是定义域R上的单调递增函数,则y=f(3−x2)的单调递减区间为.16.对于函数f(x),若在定义域存在实数x,满足f(−x)=−f(x),则称f(x)为“局部奇函数”.若函数f(x)=4x−m⋅2x−3是定义在R上的“局部奇函数”,则实数m 的取值范围为.四、解答题(本大题共6小题,共70.0分)17.化简求值:(1)0.064−13−(−18)0+1634+0.2512(2)12lg25+lg2+(13)log32−log29×log32.18.设函数y=√−x2+7x−12的定义域为集合A,不等式1x−2≥1的解集为集合B.(1)求集合A∩B;(2)设p:x∈A,q:x>a,且p是q的充分不必要条件,求实数a的取值范围.19.已知函数f(x)=a x(a>0且a≠1)在区间[1,2]上的最大值与最小值的和为6.(1)求函数f(x)解析式;(2)求函数g(x)=f(2x)−8f(x)在[1,m](m>1)上的最小值.20.已知函数f(x)是R上的偶函数,当x≥0时,f(x)=x3.(1)求x<0时f(x)的解析式;(2)解关于x的不等式f(x+1)≥8f(x).21.为了研究某种药物,用小白鼠进行试验,发现药物在血液内的浓度与时间的关系因使用方式的不同而不同.若使用注射方式给药,则在注射后的3小时内,药物在白鼠血液内的浓度y1与时间t满足关系式:y1=4−at(0<a<43,a为常数),若使用口服方式给药,则药物在白鼠血液内的浓度y2与时间t满足关系式:y2={√t,0<t<13−2t,1≤t≤3,现对小白鼠同时进行注射和口服该种药物,且注射药物和口服药物的吸收与代谢互不干扰.(1)若a=1,求3小时内,该小白鼠何时血液中药物的浓度最高,并求出最大值?(2)若使小白鼠在用药后3小时内血液中的药物浓度不低于4,求正数a的取值范围.22. 定义在R 上的函数g(x)和二次函数ℎ(x)满足:g(x)+2g(−x)=e x +2e x −9,ℎ(−2)=ℎ(0)=1,ℎ(−3)=−2. (1)求g(x)和ℎ(x)的解析式;(2)若对于x 1,x 2∈[−1,1],均有ℎ(x 1)+ax 1+5≥g(x 2)+3−e 成立,求a 的取值范围;(3)设f(x)={g(x),x >0ℎ(x),x ≤0,在(2)的条件下,讨论方程f[f(x)]=a +5的解的个数.答案和解析1.【答案】D【解析】【分析】本题考查一元二次不等式的解法,交集及其运算,考查计算能力,属于基础题.先求出集合B和A,然后利用交集运算求解A∩B.【解答】解:因为B={x∈R|(x+1)(x−3)>0}={x|x<−1或x>3},},又集合A={x∈R|3x+2>0}={x|x>−23}∩{x|x<−1或x>3}={x|x>3},所以A∩B={x|x>−23故选:D.2.【答案】C【解析】【分析】本题考查了不等式的基本性质,属基础题.根据条件取特殊值a=−2,b=−1,即可排除ABD;由不等式的基本性质,即可判断C.【解答】解:由a<b<0,取a=−2,b=−1,则可排除ABD;由a<b<0,根据不等式的基本性质可知C成立.故选:C.3.【答案】C【解析】【分析】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.先求出f(2020)=2018,从而f(f(2020))=f(2018),由此能求出结果.【解答】解:由题意知:f(2020)=2018,f(f(2020))=f(2018)=3.故选:C.4.【答案】A【解析】【分析】本题考查存在量词命题的真假,二次不等式恒成立,考查转化思想.先写出原命题的否定,再根据原命题为假,其否定一定为真,利用不等式对应的是二次函数,结合二次函数的图象与性质建立不等关系,即可求出实数m的取值范围.【解答】解:命题“∃x0∈R,使得x02+mx0+2m−3<0”的否定为:“∀x∈R,都有x2+mx+2m−3≥0”,由于命题“∃x0∈R,使得x02+mx0+2m−3<0”为假命题,则其否定为真命题,∴Δ=m2−4(2m−3)≤0,解得2≤m≤6.则实数m的取值范围是[2,6].故选:A.5.【答案】C【解析】【分析】本题主要考查了幂函数和指数函数的性质,是基础题.利用幂函数y=x0.3在(0,+∞)上单调递增,比较出a,c的大小,再利用指数函数y=0.3x 在R上单调递减,比较出b,c的大小,从而得到a,b,c的大小关系.【解答】解:∵幂函数y=x0.3在(0,+∞)上单调递增,且0.6>0.3,∴0.60.3>0.30.3,即a>c,∵指数函数y=0.3x在R上单调递减,且0.6>0.3,∴0.30.6<0.30.3,即b<c,∴b<c<a,故选:C.6.【答案】D【解析】【分析】本题考查了利用基本不等式求最值,属于基础题.由已知得a,b>0,利用√ab=1a +4b≥2√1a⋅4b即可得出ab≥4,验证等号成立的条件.【解答】解:实数a,b满足1a +4b=√ab,则a,b>0.∴√ab=1a +4b≥2√1a⋅4b,可得ab≥4,当且仅当1a =4b,a=1,b=4时取等号.则ab的最小值为4.故选:D.7.【答案】A【解析】【分析】本题考查函数零点与方程根的关系,考查数形结合思想,属于中档题.题目等价于函数y=f(x)的图象与直线y=k有3个交点,作出图象,数形结合即可【解答】解:作出函数f(x)的图象如图:若关于x 的方程f(x)=k 有三个不同的实根,即函数y =f(x)的图象与直线y =k 有三个交点,根据图象可知,k ∈(0,1). 故选:A .8.【答案】A【解析】 【分析】本题考查分段函数的性质以及应用,注意将函数解析式写出分段函数的形式,属于中档题.根据题意,将函数的解析式写出分段函数的形式,据此作出函数的大致图象,据此可得原不等式等价于{x 2−2x <0x 2−2x <2x −3,解可得x 的取值范围,即可得答案.【解答】解:根据题意,函数f(x)=2+x2+|x|={−4x−2−1,x <01,x ≥0,其图象大致为:若f(x 2−2x)<f(2x −3),则有{x 2−2x <0x 2−2x <2x −3,解可得:1<x <2,即不等式的解集为(1,2);故选:A.9.【答案】AC【解析】【分析】本题考查了基本不等式的应用,关键掌握应用基本不等式的基本条件,一正二定三相等,属于基础题.根据应用基本不等式的基本条件,分别判断即可求出.【解答】解:对于A:a−1>0,y=a2−2a+2a−1=(a−1)2+1a−1=(a−1)+1a+1≥2√(a−1)⋅1a−1=2,当且仅当a−1=1a−1,即a=2时取等号,故A正确;对于B:y=√x2+2√x2+2≥2,当且仅当√x2+2=√x2+2,即x2=−1时取等号,显然不成立,故B错误;对于C:y=x2+1x2≥2√x2⋅1x2=2,当且仅当x=±1时取等号,故C正确;对于D:当x<0时,无最小值,故D错误.故选:AC.10.【答案】AD【解析】【分析】本题考查命题的真假的判断,考查充要条件,命题的否定,幂函数的性质等知识的应用,是基本知识的考查.利用命题的否定判断A;令n=2k和n=2k+1,k∈Z分析n2+1是不是4的倍数判断B;根据充要条件判断C;由幂函数的性质判断D即可.【解答】解:命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”,满足命题的否定形式,所以A正确;令n=2k,k∈Z,则n2+1=4k2+1不是4的倍数,令n=2k+1,k∈Z,则n2+1=4k2+4k+2不是4的倍数,所以“至少有一个整数n,n2+1是4的倍数”是假命题,所以B不正确;“a>5且b>−5”推出“a+b>0”成立,反之不成立,如a=5,b=−4,满足a+ b>0,但是不满足a>5且b>−5,所以“a>5且b>−5”是“a+b>0”的充要条件不成立,所以C不正确.当α<0时,幂函数y=xα在区间(0,+∞)上单调递减,满足幂函数的性质,所以D正确;故选:AD.11.【答案】BD【解析】【分析】本题考查了用函数图象说明两个量之间的变化情况,主要根据实际意义进行判断,考查了读图能力和数形结合思想.根据题意知图象反应了收支差额y与乘客量x的变化情况,即直线的斜率说明票价问题;当x=0的点说明公司的支出情况,再结合图象进行说明.【解答】解:根据题意和图(2)知,两直线平行即票价不变,直线向上平移说明当乘客量为0时,收入是0但是支出的变少了,即说明了此建议是减少支出而保持票价不变;由图(3)看出,当乘客量为0时,支出不变,但是直线的倾斜角变大,即相同的乘客量时收入变大,即票价提高了,即说明了此建议是提高票价而保持支出不变,故选:BD.12.【答案】BCD【解析】【分析】本题考查函数新定义,正确理解新定义是解题基础,由新定义把问题转化不等关系是解题关键.由新定义得[x]≤x <[x]+1,可得函数f(x)=x −[x]值域判断C ;根据题意,若n ≥6,则不存在t 同时满足1≤t <√23,√46≤t <√56,n ≤5时,存在t ∈[√35,√23)满足题意,判断D . 【解答】解:∀x ∈R ,x <[x]+1,故A 错误;由“取整函数”定义可得,∀x ,y ∈R ,[x]≤x ,[y]≤y ,由不等式的性质可得[x]+[y]≤x +y ,所以[x]+[y]≤[x +y],B 正确;由定义得[x]≤x <[x]+1,所以0≤x −[x]<1,所以函数f(x)=x −[x]的值域是[0,1),C 正确;若∃t ∈R ,使得[t 3]=1,[t 4]=2,[t 5]=3,…[t n ]=n −2同时成立,则1≤t <√23,√24≤t <√34,√35≤t <√45,√46≤t <√56,…√n −2n ≤t <√n −1n ,因为√46=√23,若n ≥6,则不存在t 同时满足1≤t <√23,√46≤t <√56,只有n ≤5时,存在t ∈[√35,√23)满足题意,故选:BCD .13.【答案】(2,−3)【解析】 【分析】本题主要考查指数函数的性质,利用a 0=1的性质是解决本题的关键.比较基础. 根据指数函数的性质,令指数为0进行求解即可求出定点坐标. 【解答】解:由x −2=0得x =2,此时f(2)=a 0−4=1−4=−3, 即函数f(x)的图象过定点A(2,−3), 故答案为:(2,−3)14.【答案】38【解析】 【分析】口向上和向下两种情况判定函数值在何时取最大值,并根据最大值为4,即可求出对应的实数a的值【解答】解:当a=0时,f(x)=1,不符合题意,舍去.当a≠0时,f(x)的对称轴方程为x=−1,(1)若a<0,则函数图象开口向下,函数在[1,2]递减,当x=1时,函数取得最大值4,即f(1)=a+2a+1=4,解得a=1(舍).(2)若a>0,函数图象开口向上,函数在[1,2]递增,当x=2时,函数取得最大值4,即f(2)=4a+4a+1=4,解得a=3,8,综上可知,a=38.故答案为:3815.【答案】[0,+∞)【解析】【分析】本题考查了复合函数的单调性问题,考查二次函数的性质,属于中档题.根据复合函数单调性“同增异减”的原则,问题转化为求y=3−x2的单调递减区间,求出即可.【解答】解:根据复合函数单调性“同增异减”的原则,因为y=f(x)是定义域R上的单调递增函数,要求y=f(3−x2)的单调递减区间,即求y=3−x2的单调递减区间,而函数y=3−x2在[0,+∞)单调递减,故y=f(3−x2)的单调递减区间是[0,+∞),故答案为:[0,+∞).16.【答案】[−2,+∞)【分析】本题考查函数与方程的关系,关键是理解“局部奇函数”的定义,属于拔高题.根据“局部奇函数“的定义便知,若函数f(x)是定义在R上的“局部奇函数”,只需方程(2x+2−x)2−m(2x+2−x)−8=0有解.可设2x+2−x=t(t≥2),从而得出需方程t2−mt−8=0在t≥2时有解,从而设g(t)=t2−mt−8,由二次函数的性质分析可得答案.【解答】解:根据题意,由“局部奇函数”的定义可知:若函数f(x)=4x−m⋅2x−3是定义在R上的“局部奇函数”,则方程f(−x)=−f(x)有解;即4−x−m⋅2−x−3=−(4x−m⋅2x−3)有解;变形可得4x+4−x−m(2x+2−x)−6=0,即(2x+2−x)2−m(2x+2−x)−8=0有解即可;设2x+2−x=t(t≥2),则方程等价为t2−mt−8=0在t≥2时有解;设g(t)=t2−mt−8=0,必有g(2)=4−2m−8=−2m−4≤0,解可得:m≥−2,即m的取值范围为[−2,+∞);故答案为:[−2,+∞).17.【答案】解:(1)0.064−13−(−18)0+1634+0.2512=0.43×(−13)−1+24×34+0.52×12=2.5−1+8+0.5=10;(2)12lg25+lg2+(13)log32−log29×log32=lg5+lg2+3−log32−2(log23×log32)=1+12−2=−12.【解析】本题考查了指数幂和对数的运算的性质,属于基础题.(1)根据指数幂的运算性质计算即可;(2)根据对数的运算性质计算即可.18.【答案】解:由题意得:−x2+7x−12≥0,解得:3≤x≤4,故A=[3,4],∵1x−2≥1,∴x−3x−2≤0,解得:2<x≤3,故B=(2,3],(1)A∩B={3};(2)设p:x∈A,q:x>a,且p是q的充分不必要条件,即[3,4]⫋(a,+∞),故a<3,故a的取值范围是(−∞,3).【解析】本题考查了一元二次不等式的求解,集合的交集运算,考查了充分必要条件,考查了推理能力与计算能力,属于基础题.(1)分别求出集合A,B,求出A∩B即可;(2)根据集合的包含关系求出a的范围即可.19.【答案】解:(1)函数f(x)=a x(a>0且a≠1)在区间[1,2]上的最大值与最小值之和为6,则a+a2=6,即a2+a−6=0,解得a=2或a=−3(舍),故a=2,∴f(x)=2x;(2)g(x)=f(2x)−8f(x)=22x−8⋅2x,令2x=t,则原函数化为ℎ(t)=t2−8t,t∈[2,2m],其对称轴方程为t=4,当2m≤4,即1<m≤2时,函数最小值为(2m)2−8⋅2m=4m−8⋅2m;当2m>4,即m>2时,函数的最小值为42−8×4=−16.∴g(x)=f(2x)−8f(x)在[1,m](m>1)上的最小值为g(x)min={4m−8⋅2m,1<m≤2−16,m>2.【解析】本题考查指数函数的解析式、单调性与最值,二次函数的性质,是中档题.(1)根据指数函数的性质建立方程a+a2=6,即可求a的值,进一步得到函数解析式;(2)求出函数g(x)=f(2x)−8f(x)的解析式,换元后对m分类,利用二次函数的性质求最值.20.【答案】解:(1)根据题意,设x <0,则−x >0,则f(−x)=(−x)3=−x 3,又由f(x)为偶函数,则f(x)=f(−x)=−x 3, 故x <0时f(x)的解析式为f(x)=−x 3; (2)根据题意,f(x)为偶函数,则f(x)=f(|x|), 所以8f(x)=8f(|x|)=8×|x|3=(2|x|)3=f(2|x|), 又由当x ≥0时,f(x)=x 3,在[0,+∞)上为增函数;则f(x +1)≥8f(x)⇔f(|x +1|)≥f(|2x|)⇒|x +1|≥|2x|, 变形可得:3x 2−2x −1≤0,解可得:−13≤x ≤1,即不等式的解集为[−13,1].【解析】本题考查函数的奇偶性的性质以及应用,涉及绝对值不等式的解法,属于中档题.(1)根据题意,设x <0,则−x >0,由函数的解析式可得f(−x)=(−x)3=−x 3,结合函数的奇偶性分析可得答案;(2)根据题意,由函数的奇偶性以及解析式分析可得原不等式等价于|x +1|≥|2x|,解可得x 的取值范围,即可得答案.21.【答案】解:(1)当a =1时,药物在白鼠血液内的浓度y 与时间t 的关系为:y =y 1+y 2={−t +√t +4,0<t <17−(t +2t),1≤t ≤3; ①当0<t <1时,y =−t +√t +4=−(√t −12)2+174,所以当t =14时,y max =174;②当1≤t ≤3时,∵t +2t ≥2√2,当且仅当t =√2时取等号, 所以y max =7−2√2(当且仅当t =√2时取到),因为174>7−2√2, 故当t =14时,y max =174.(2)由题意y ={−at +√t +4(0<t <1)7−(at +2t )(1≤t ≤3) ① −at +√t +4≥4 ⇒ −at +√t ≥0 ⇒ a ≤√t ,又0<t <1,得出a ≤1;令u =1t ,则a ≤−2u 2+3u,u ∈[13,1],可得(−2u 2+3u )min =79 所以a ≤79, 综上可得0<a ≤79, 故a 的取值范围为(0,79].【解析】本题考查学生的函数思想,考查学生分段函数的基本思路,用好分类讨论思想,注意二次函数最值问题,基本不等式在求解该题中作用.恒成立问题的处理方法.用好分离变量法.(1)建立血液中药物的浓度与时间t 的函数关系是解决本题的关键,要根据得出的函数关系式采取合适的办法解决该浓度的最值问题;二次函数要注意对称轴和区间的关系、还要注意基本不等式的运用;(2)分段求解关于实数a 的范围问题,注意分离变量法的应用.22.【答案】解:(1)∵g(x)+2g(−x)=e x +2e x −9,∴g(−x)+2g(x)=e −x +2e x −9, 由以上两式联立可解得,g(x)=e x −3; ∵ℎ(−2)=ℎ(0)=1,∴二次函数的对称轴为x =−1,故设二次函数ℎ(x)=a(x +1)2+k , 则{a +k =14a +k =−2,解得{a =−1k =2,∴ℎ(x)=−(x +1)2+2=−x 2−2x +1;(2)由(1)知,g(x)=e x −3,其在[−1,1]上为增函数,故g(x)max =g(1)=e −3,∴ℎ(x 1)+ax 1+5≥e −3+3−e =0对任意x 1∈[−1,1]都成立,即x 12+(2−a)x 1−6≤0对任意x ∈[−1,1]都成立,∴{1−(2−a)−6≤01+(2−a)−6≤0,解得−3≤a ≤7, 故实数的a 的取值范围为[−3,7];(3)f(x)={e x −3,x >0−x 2−2x +1,x ≤0,作函数f(x)的图象如下,令t=f(x),a∈[−3,7],则f(t)=a+5∈[2,12],①当a=−3时,f(t)=2,由图象可知,此时方程f(t)=2有两个解,设为t1=−1,t2=ln5∈(1,2),则f(x)=−1有2个解,f(x)=ln5有3个解,故共5个解;②当−3<a<e2−8时,f(t)=a+5∈(2,e2−3),由图象可知,此时方程f(t)=a+5有一个正实数解,设为t3=ln(a+8)∈(ln5,2),则f(x)=t3=ln(a+8)有3个解,故共3个解;③当a=e2−8时,f(t)=a+5=e2−3,由图象可知,此时方程f(t)=a+5有一个解t4=2,则f(x)=t4=2有2个解,故共2个解;④当e2−8<a≤7时,f(t)=a+5∈(e2−3,12],由图象可知,此时方程f(t)=a+5有一个解t5=ln(a+8)∈(2,ln15],则f(x)=t5有1个解,故共1个解.【解析】本题考查函数解析式的求法,考查不等式的恒成立问题及函数零点与方程解的关系,旨在考查数形结合及分类讨论思想,属于中档题.(1)运用构造方程组法可求g(x),运用待定系数法可求ℎ(x);(2)原问题等价于x12+(2−a)x1−6≤0对任意x1∈[−1,1]都成立,进而求得实数a的取值范围;(3)作出函数f(x)的图象,结合图象讨论即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021深圳市宝安区实验学校高二数学上期末试题(带答案)一、选择题1.在区间[]0,1上随机取两个数x ,y ,记P 为事件“23x y +≤”的概率,则(P = ) A .23B .12C .49 D .292.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于A .14B .13 C .12D .233.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的观众称为“阅读霸”,则下列命题正确的是( ) A .抽样表明,该校有一半学生为阅读霸 B .该校只有50名学生不喜欢阅读 C .该校只有50名学生喜欢阅读 D .抽样表明,该校有50名学生为阅读霸4.执行如图的程序框图,那么输出的S 的值是( )A.﹣1 B.12C.2 D.15.某工厂对一批新产品的长度(单位:mm)进行检测,如下图是检测结果的频率分布直方图,据此估计这批产品的中位数与平均数分别为( )A.20,22.5B.22.5,25C.22.5,22.75D.22.75,22.75 6.在某地的奥运火炬传递活动中,有编号为1,2,3,L,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为().A.151B.168C.1306D.14087.执行如图的程序框图,如果输出的是a=341,那么判断框()A.4kB .5k <C .6k <D .7k <8.我国古代数学著作《九章算术》中,有这样一道题目:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?”下图是源于其思想的一个程序框图,若输出的3S =(单位:升),则输入的k =( )A .9B .10C .11D .129.从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为( ) A .13B .512C .12D .71210.在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机取一个数x ,cos x 的值介于0到12之间的概率为( )A .13B .2πC .12D .2311.甲、乙两位同学在高一年级的5次考试中,数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是12,x x ,则下列叙述正确的是( )A .12x x >,乙比甲成绩稳定B .12x x >,甲比乙成绩稳定C .12x x <,乙比甲成绩稳定D .12x x <,甲比乙成绩稳定12.执行如图所示的程序框图,若输入x =9,则循环体执行的次数为( )A .1次B .2次C .3次D .4次二、填空题13.已知样本数据为40,42,40,a ,43,44,且这个样本的平均数为43,则该样本的标准差为_________.14.已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束,则恰好检测四次停止的概率为_____(用数字作答).15.已知某人连续5次投掷飞镖的环数分别是8,9,10,10,8,则该组数据的方差为______.16.运行如图所示的程序框图,则输出的所有y 值之和为___________.17.利用计算机产生0~1之间的均匀随机数a ,则使关于x 的一元二次方程20x x a -+=无实根的概率为______.18.某班60名学生参加普法知识竞赛,成绩都在区间[40100],上,其频率分布直方图如图所示,则成绩不低于60分的人数为___.19.执行如图所示的程序框图,输出的S 值为__________.20.已知下列命题:①ˆ856yx =+意味着每增加一个单位,y 平均增加8个单位 ②投掷一颗骰子实验,有掷出的点数为奇数和掷出的点数为偶数两个基本事件 ③互斥事件不一定是对立事件,但对立事件一定是互斥事件④在适宜的条件下种下一颗种子,观察它是否发芽,这个实验为古典概型 其中正确的命题有__________________.三、解答题21.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入i x (单位:千元)与月储蓄i y ,(单位:千元)的数据资料,算出101010102111180,20184,720ii i i i i i i i xy x y x ========∑∑∑∑,,附:线性回归方程1221ˆˆˆˆˆˆ,,ni ii nii x y nxyybx a b ay bx xnx ==-=+==--∑∑,其中,x y 为样本平均值. (1)求家庭的月储蓄y 对月收入x 的线性回归方程ˆˆˆybx a =+ ; (2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.22.为了了解某省各景区在大众中的熟知度,随机从本省1565:岁的人群中抽取了n人,得到各年龄段人数的频率分布直方图如图所示,现让他们回答问题“该省有哪几个国家AAAAA 级旅游景区?”,统计结果如下表所示: 组号 分组回答正确的人数回答正确的人数占本组的频率第1组 [)1525, a0.5第2组 [)2535, 18x第3组 [)3545, b 0.9 第4组 [)4555, 9 0.36第5组[)5565,3y(1)分别求出,,,a b x y 的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组抽取的人数;(3)在(2)中抽取的6人中随机抽取2人,求所抽取的人中恰好没有年龄段在[)3545,的概率23.某县一中学的同学为了解本县成年人的交通安全意识情况,利用假期进行了一次全县成年人安全知识抽样调查.已知该县成年人中40%的拥有驾驶证,先根据是否拥有驾驶证,用分层抽样的方法抽取了100名成年人,然后对这100人进行问卷调查,所得分数的频率分布直方图如下图所示.规定分数在80以上(含80)的为“安全意识优秀”.拥有驾驶证 没有驾驶证 合计得分优秀得分不优秀25合计100(1)补全上面22⨯的列联表,并判断能否有超过99%的把握认为“安全意识优秀与是否拥有驾驶证”有关?(2)若规定参加调查的100人中分数在70以上(含70)的为“安全意识优良”,从参加调查的100人中根据安全意识是否优良,按分层抽样的方法抽出5人,再从5人中随机抽取3人,试求抽取的3人中恰有一人为“安全意识优良”的概率.附表及公式:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.()2P K k≥0.150.100.050.0250.0100.0050.001k 2.072 2.706 3.841 5.024 6.6357.87910.82824.为了解贵州省某州2020届高三理科生的化学成绩的情况,该州教育局组织高三理科生进行了摸底考试,现从参加考试的学生中随机抽取了100名理科生,,将他们的化学成绩(满分为100分)分为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]6组,得到如图所示的频率分布直方图.(1)求a的值;(2)记A表示事件“从参加考试的所有理科生中随机抽取一名学生,该学生的化学成绩不低于70分”,试估计事件A发生的概率;(3)在抽取的100名理科生中,采用分层抽样的方法从成绩在[60,80)内的学生中抽取10名,再从这10名学生中随机抽取4名,记这4名理科生成绩在[60,70)内的人数为X,求X 的分布列与数学期望.25.我国是世界上严重缺水的国家之一,某市为了制定合理的节水方案,对家庭用水情况进行了调查,通过抽样,获得了某年100个家庭的月均用水量(单位:t ),将数据按照[0,2),[2,4),[4,6),[6,8),[8,10]分成5组,制成了如图所示的频率分布直方图.(1)记事件A :“全市家庭月均用水量不低于6t ”,求()P A 的估计值;(2)假设同组中的每个数据都用该组区间的中点值代替,求全市家庭月均用水量平均数的估计值(精确到0.01);(3)求全市家庭月均用水量的25%分位数的估计值(精确到0.01).26.随着互联网经济不断发展,网上开店销售农产品的人群越来越多,网上交易额也逐年增加,某一农户农产品连续五年的网银交易额统计表,如下所示: 年份x 20122013201420152016网上交易额y (万元)5 6 7 8 10经研究发现,年份与网银交易额之间呈线性相关关系,为了计算的方便,农户将上表的数据进行了处理,2011,5t x z y =-=-,得到如表: 时间代号t 1 2 3 4 5 z1235(1)求z 关于t 的线性回归方程;(2)通过(1)中的方程.求出y 关于x 的回归方程;并用所求回归方程预测到2020年年底,该农户网店网银交易额可达多少?(附:在线性回归方程ˆˆˆybx a =+中,()()()1122211ˆ()nni iiii i nniii i x y nx y x x y y b xn x x x ====---==--∑∑∑∑,ˆˆay bx =-)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】由题意结合几何概型计算公式求解满足题意的概率值即可. 【详解】如图所示,01,01x y ≤≤≤≤表示的平面区域为ABCD , 平面区域内满足23x y +≤的部分为阴影部分的区域APQ ,其中2,03P ⎛⎫ ⎪⎝⎭,20,3Q ⎛⎫ ⎪⎝⎭, 结合几何概型计算公式可得满足题意的概率值为1222233119p ⨯⨯==⨯. 本题选择D 选项.【点睛】数形结合为几何概型问题的解决提供了简捷直观的解法.用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A 满足的不等式,在图形中画出事件A 发生的区域,据此求解几何概型即可.2.C解析:C 【解析】 【分析】利用几何概型的计算概率的方法解决本题,关键要弄准所求的随机事件发生的区域的面积和事件总体的区域面积,通过相除的方法完成本题的解答. 【详解】解:由几何概型的计算方法,可以得出所求事件的概率为P=.故选C.【点评】本题考查概率的计算,考查几何概型的辨别,考查学生通过比例的方法计算概率的问题,考查学生分析问题解决问题的能力,考查学生几何图形面积的计算方法,属于基本题型.3.A解析:A【解析】【分析】根据频率分布直方图得到各个时间段的人数,进而得到结果.【详解】根据频率分布直方图可列下表:阅读时间(分)[0,10)[10,20)[20,30)[30,40)[40,50)[50,60]抽样人数(名)10182225205故选A.【点睛】这个题目考查了频率分布直方图的实际应用,以及样本体现整体的特征的应用,属于基础题.4.B解析:B【解析】由题意可得:初如值S=2,k=2015,S=-1,k=2016<2018S=12,k=2017<2018 2,2018S k==输出2,选C.5.C解析:C【解析】【分析】根据平均数的定义即可求出.根据频率分布直方图中,中位数的左右两边频率相等,列出等式,求出中位数即可.6.B解析:B 【解析】 【分析】 【详解】分析:利用组合数列总事件数,根据等差数列通项公式确定所求事件数,最后根据古典概型概率公式求结果.详解:共有318C 17163=⨯⨯种事件数,选出火炬手编号为13(1)n a a n =+-, 由1、4、7、10、13、16,可得4种, 由2、5、8、11、14、17,可得4种, 由3、6、9、12、15、18,可得4种,4311716368p ⨯==⨯⨯.选B . 点睛:古典概型中基本事件数的探求方法 (1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.7.C解析:C 【解析】由程序框图可知a=4a+1=1,k=k+1=2; a=4a+1=5,k=k+1=3; a=4a+1=21,k=k+1=4; a=4a+1=85,k=k+1=5; a=4a+1=341;k=k+1=6.要使得输出的结果是a=341,判断框中应是“k<6?”.8.D解析:D 【解析】 【分析】计算出每次循环时各变量的值并与3S =比较后可得对应的k 的值. 【详解】1n =,S k =;2n =,22k k S k =-=; 3n =,263k k k S =-=; 4n =,33124k k kS =-==,所以12k =. 故选:D. 【点睛】本题以数学文化为背景考虑流程图,此类问题应该根据流程图计算每次循环时各变量的值,从而可得程序终止的条件、输出的结果等,本题属于中档题.9.A解析:A 【解析】设2名男生记为A 1,A 2,2名女生记为B 1,B 2,任意选择两人在星期六、星期日参加某公益活动,共有(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(B 1,B 2),(A 2,A 1),(B 1,A 1),(B 2,A 1),(B 1,A 2),(B 2,A 2),(B 2,B 1)12种情况,而星期六安排一名男生、星期日安排一名女生共有(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2)4种情况,则发生的概率为P=41123=, 故选:A .10.A解析:A 【解析】 因为[,]22x ππ∈-,若1cos [0,]2x ∈,则[,][,]2332x ππππ∈--⋃, ()21233()22P ππππ-⨯∴==--,故选A.11.C解析:C 【解析】 甲的平均成绩11(7378798793)825x =++++=,甲的成绩的方差22222211[(7382)(7882)(7982)(8782)(9382)]50.45s =-+-+-+-+-=;乙的平均成绩21(7989899291)885x =++++=,乙的成绩的方差22222221[(7988)(8988)(8988)(9288)(9188)]21.65s =-+-+-+-+-=.∴12x x <,乙比甲成绩稳定. 故选C .12.C解析:C 【解析】 【分析】根据程序框图依次计算得到答案. 【详解】9,5x y ==,41y x -=>;115,3x y ==,413y x -=>; 1129,39x y ==,419y x -=<;结束. 故选:C . 【点睛】本题考查了程序框图的循环次数,意在考查学生的理解能力和计算能力.二、填空题13.【解析】【分析】由平均数的公式求得再利用方差的计算公式求得即可求解【详解】由平均数的公式可得解得所以方差为所以样本的标准差为【点睛】本题主要考查了样本的平均数与方差标准差的计算着重考查了运算与求解能解析:3【解析】 【分析】由平均数的公式,求得49a =,再利用方差的计算公式,求得2283s =,即可求解. 【详解】由平均数的公式,可得1(4042404344)436a +++++=,解得49a =, 所以方差为2222222128[(4043)(4243)(4043)(4343)(4343)(4443)]63s =-+-+-+-+-+-=,所以样本的标准差为3s =. 【点睛】本题主要考查了样本的平均数与方差、标准差的计算,着重考查了运算与求解能力,属于基础题.14.【解析】由题意可知2次检测结束的概率为3次检测结束的概率为则恰好检测四次停止的概率为解析:35【解析】由题意可知,2次检测结束的概率为22225110A p A ==,3次检测结束的概率为31123232335310A C C A p A +==, 则恰好检测四次停止的概率为231331110105p p p =--=--=. 15.【解析】16.【解析】【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件即可得到所有输出的的值然后求和即可【详解】输入第一次循环;第二次循环;第三次循环;第四次循环;退出循环可得所有值 解析:10【解析】 【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到所有输出的y 的值,然后求和即可. 【详解】 输入2n =-,第一次循环,8,1y n ==-; 第二次循环,3,0y n ==; 第三次循环,0,1y n ==; 第四次循环,1,2y n =-=; 退出循环,可得所有y 值之和为830110++-=,故答案为10. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.17.【解析】∵方程无实根∴Δ=1-4a<0∴即所求概率为故填:解析:34【解析】∵方程无实根,∴Δ=1-4a <0,∴14a >,即所求概率为34.故填:3418.30【解析】由题意可得:则成绩不低于分的人数为人解析:30 【解析】 由题意可得:()400.0150.0300.0250.0051030⨯+++⨯=则成绩不低于60分的人数为30人19.37【解析】根据图得到:n=18S=19n=12S=31n=6S=37n=0判断得到n>0不成立此时退出循环输出结果37故答案为:37解析:37 【解析】根据图得到:n=18,S=19,n=12 S=31,n=6,S=37,n=0,判断得到n>0不成立,此时退出循环,输出结果37. 故答案为:37.20.①③【解析】【分析】由回归直线的方程的意义可判断①;由基本事件的定义可判断②;由互斥事件与对立事件的定义可判断③;由古典概型的定义可判断④【详解】①由回归直线的方程的意义可知意味着每增加一个单位平均解析:①③. 【解析】 【分析】由回归直线的方程的意义可判断①;由基本事件的定义可判断②;由互斥事件与对立事件的定义可判断③;由古典概型的定义可判断④. 【详解】①,由回归直线的方程的意义可知ˆ856yx =+意味着x 每增加一个单位,y 平均增加8个单位,正确;②,由于基本事件是每一个出现的基本实验结果,是不能再分的,而投掷一颗骰子实验,有掷出的点数为奇数还有1,3,5三个基本事件,故掷出的点数为奇数不是基本事件,同理掷出的点数为偶数也不是基本事件,故②是错误的;③,互斥事件不一定是对立事件,但对立事件一定是互斥事件,正确;④,古典概型要求每个基本事件出现的可能性相等,故在适宜的条件下种下一颗种子,观察它是否发芽,不是古典概型.故正确答案为:①③ 【点睛】本题主要考查回归直线的方程的意义、基本事件的定义、互斥事件与对立事件的定义、古典概型的定义,意在考查对基本定义掌握的熟练程度,属于中档题..三、解答题21.(1)0.30.4y x =-;(2)1.7 【解析】 【分析】(1)根据数据,利用最小二乘法,即可求得y 对月收入x 的线性回归方程回归方程ˆˆyb =x ˆa +; (2)将x =7代入即可预测该家庭的月储蓄. 【详解】(1)由题意知,10101110,80,20ii i i n xy =====∑∑ ,80208,21010x y ∴==== ∴21082160,1064640n x y n x ⋅⋅=⨯⨯=⋅=⨯=1010211184,720i i ii i x y x ====∑∑ 由1221184160ˆ0.3720640ni ii nii x y nxybxnx ==--===--∑∑.ˆˆ20.380.4ay bx =-=-⨯=- 故所求回归方程为0.30.4y x =- (2)将7x =代入回归方程可以预测该家庭的月储蓄为0.370.4 1.7y =⨯-=(千元). 【点睛】本题考查线性回归方程的应用,考查最小二乘法求线性回归方程,考查转化思想,属于中档题.22.(1)5a =,27b =,0.9x =,0.2y =;(2)分边抽取2,3,1人;(3)15. 【解析】 【分析】(1)根据数据表和频率分布直方图可计算得到第4组的人数和频率,从而可得总人数;根据总数、频率和频数的关系,可分别计算得到所求结果;(2)首先确定第2,3,4组的总人数,根据分层抽样原则计算即可得到结果;(3)首先计算得到基本事件总数;再计算出恰好没有年龄段在[)3545,包含的基本事件个数,根据古典概型概率公式可求得结果. 【详解】(1)第4组的人数为:9250.36=人,第4组的频率为:0.025100.25⨯=251000.25n ∴== Q 第一组的频率为0.010100.1⨯= ∴第一组的人数为:0.110010⨯=100.55a ∴=⨯=Q 第二组的频率为0.020100.2⨯= ∴第二组的人数为:0.210020⨯=180.920x ∴== Q 第三组的频率为0.030100.3⨯= ∴第三组的人数为:0.310030⨯=300.927b ∴=⨯=Q 第五组的频率为0.015100.15⨯= ∴第五组的人数为:0.1510015⨯=30.215y ∴== (2)第2,3,4组的总人数为:1827954++=人∴第2组抽取的人数为:186254⨯=人;第3组抽取的人数为:276354⨯=人;第4组抽取的人数为:96154⨯=人 (3)在(2)中抽取的6人中随机抽取2人,基本事件总数为:2615n C ==所抽取的人中恰好没有年龄段在[)3545,包含的基本事件个数为:233m C == ∴所抽取的人中恰好没有年龄段在[)3545,的概率:31155m p n === 【点睛】本题考查利用频率分布直方图计算总数、频数和频率、分层抽样基本方法的应用、古典概型计算概率问题;关键是熟练掌握频率分布直方图的相关知识,能够通过频率分布直方图准确计算出各组数据对应的频率.23.(1)列联表见解析;有超过99%的把握认为“安全意识优秀与是否拥有驾驶证”有关;(2)35P = 【解析】 【分析】(1)根据频率分布直方图计算可补全列联表中的数据,根据公式计算可求得2 6.635K >,从而可得结论;(2)根据频率分布直方图计算出“安全意识优良”的人数,根据分层抽样原则可知“安全意识优良”的人中抽取2人;采用列举法列出所有基本事件,找到符合题意的基本事件个数,利用古典概型求得结果. 【详解】(1)由题意可知拥有驾驶证的人数为:10040%40⨯=人 则拥有驾驶证且得分为优秀的人数为:402515-=人由频率分布直方图知得分优秀的人数为:()100100.0150.00520⨯⨯+=人∴没有驾驶证且得分优秀的人数为:20155-=人则没有驾驶证且得分不优秀的人数为:10040555--=人 可得列联表如下:()221001555255122512 6.6354060208096K ⨯⨯-⨯∴==>>⨯⨯⨯∴有超过99%的把握认为“安全意识优秀与是否拥有驾驶证”有关 (2)由频率分布直方图可求得70以上(含70)的人数为:()1000.0200.0150.0051040⨯++⨯=∴按分层抽样的方法抽出5人时,“安全意识优良”的有2人,记为1,2;其余的3人记为,,a b c从中随机抽取3人,基本事件有:()1,2,a ,()1,2,b ,()1,2,c ,()1,,a b ,()1,,a c ,()1,,b c ,()2,,a b ,()2,,a c ,()2,,b c ,(),,a b c 共10个恰有一人为“安全意识优良”的事件有6个∴恰有一人为“安全意识优良”的概率为:63105P == 【点睛】本题考查利用频率分布直方图计算频率和频数、独立性检验的应用、分层抽样的基本原理、古典概型的概率求解,属于中档题. 24.(1)0.025a =(2)0.65(3)详见解析 【解析】 【分析】(1)根据所有的小矩形的面积之和为1得到方程,解得. (2)根据频率分布直方图,计算概率.(3)按分层抽样的规则分别计算出成绩在[60,70),[70,80)内的人数,在列出分布列,计算出数学期望. 【详解】解:(1)(0.0050.0100.0200.0300.010)101a +++++⨯=Q ,0.025a ∴=,(2)Q 成绩不低于70分的频率为(0.0300.0250.010)100.65++⨯=,∴事件A 发生的概率约为0.65.(3)抽取的100名理科生中,成绩在[60,70)内的有1000.0201020⨯⨯=人,成绩在[70,80)内的有1000.0301030⨯⨯=人,故采用分层抽样抽取的10名理科生中, 成绩在[60,70)内的有4人,在[70,80)内的有6人, 由题可知,X 的可能取值为0,1,2,3,4,46410151(0),21014C P X C ====6441031C C 8(1)C 2101802P X ====,2264410903(2),2107C C P X C ====6441013C C (3)C 21244350P X ====,444101(4)210C P X C ===X ∴的分布列为0123414217352105EX ∴=⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查频率分布直方图的数据的处理,分层抽样,离散型随机变量的分布列及数学期望的计算,属于中档题.25.(1)0.3;(2)4.92 t .;(3)3.18t 【解析】 【分析】(1)通过频率分布直方图求得[]6,10的频率,由此求得()P A 的估计值.(2)根据由频率分布直方图计算平均数的方法,计算出全市家庭月均用水量平均数的估计值.(3)通过频率分布直方图,计算出累计频率为0.25的位置,从而求得全市家庭月均用水量的25%分位数的估计值. 【详解】(1)由直方图可知()P A 的估计值为()(0.090.06)20.3P A =+⨯=.(2)因为0.06210.11230.18250.09270.0629 4.92⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=. 因此全市家庭月均用水量的平均数估计值为4.92 t .(3)频率分布直方图中,用水量低于2 t 的频率为0.0620.12⨯=. 用水量低于4 t 的频率为0.0620.1120.34⨯+⨯=. 故全市家庭月均用水量的25%分位数的估计值为0.250.1222 3.18()0.22t -+⨯≈.【点睛】本小题主要考查根据频率分布直方图计算频率、平均数、百分位数,属于基础题.26.(1) 1.2 1.4=-z t (2)ˆ 1.22409.6yx =-,14.4万元 【解析】 【分析】(1)利用回归直线方程计算公式,计算出回归直线方程.(2)由(1)求得y 关于x 的回归方程,令2020x =,求得农户网店网银交易额的预测值. 【详解】(1)3t =, 2.2z =,5145i ii t z==∑,52155i i t ==∑,4553 2.2ˆ 1.25559b -⨯⨯==-⨯,ˆˆ 2.2 1.23 1.4a z bt=-=-⨯=- ∴ 1.2 1.4=-z t .(2)2011,5t x z y =-=-,代入 1.2 1.4=-z t , 得到:5 1.2(2011) 1.4y x -=--,即ˆ 1.22409.6yx =-. 于是,当2020x =时,ˆ 1.220202409.614.4y=⨯-=, 所以预测到2020年年底,该农户网店网银交易额可达14.4万元. 【点睛】本小题主要考查回归直线方程的计算,考查利用回归直线方程进行预测,属于中档题.。

相关文档
最新文档