平行线与拐点问题(经典)
专题 平行线间的拐点问题(解析版)--七年级数学下册
专题01平行线间的拐点问题类型一:“猪蹄”模型类型二:“铅笔”模型类型三:“鹰嘴”模型平行线间的拐点问题均过拐点作平行线的平行线,有多少个拐点就作多少条平行线。
一.选择题1.(2023•新城区校级一模)如图,直线m∥n,含有45°角的三角板的直角顶点O在直线m上,点A在直线n上,若∠1=20°,则∠2的度数为()A.15°B.25°C.35°D.45°【分析】过B作BK∥m,推出BK∥n,由平行线的性质得到∠OBK=∠1=20°,∠2=∠ABK,求出∠ABK=∠ABO﹣∠OBK=25°,即可得到∠2=25°.【解答】解:过B作BK∥m,∵m∥n,∴BK∥n,∴∠OBK=∠1=20°,∠2=∠ABK,∵∠ABO=45°,∴∠ABK=∠ABO﹣∠OBK=45°﹣20°=25°,∴∠2=∠ABK=25°.故选:B.2.(2023•海南)如图,直线m∥n,△ABC是直角三角形,∠B=90°,点C在直线n上.若∠1=50°,则∠2的度数是()A.60°B.50°C.45°D.40°【分析】根据平行线的性质可以得到∠1=∠BDC,然后直角三角形的性质,即可求得∠2的度数.【解答】解:延长AB交直线n于点D,∵m∥n,∠1=50°,∴∠1=∠BDC=50°,∵∠ABC=90°,∴∠CBD=90°,∴∠2=90°﹣∠BDC=90°﹣50°=40°,故选:D.3.(2023秋•渝中区校级期中)如图,直线AB∥CD,GE⊥EF于点E.若∠EFD=32°,则∠BGE的度数是()A.62°B.58°C.52°D.48°【分析】过点E作AB的平行线HI,利用平行线的性质即可求解.【解答】解:过点E作直线HI∥AB.∵AB∥CD,AB∥HI,∠EFD=32°,∴CD∥HI,∴∠HEF=∠EFD=32°,∵GE⊥EF于点E,∴∠GEF=90°,∴∠GEH=∠GEF﹣∠HEF=90°﹣32°=58°,∵AB∥HI,∴∠BGE=∠GEH=58°.故选:B.4.(2022秋•杜尔伯特县期末)如图,已知AB∥CD,BE,DE分别平分∠ABF和∠CDF,且交于点E,则()A.∠E=∠F B.∠E+∠F=180°C.2∠E+∠F=360°D.2∠E﹣∠F=180°【分析】过点E作EM∥AB,利用平行线的性质可证得∠BED=(∠ABF+∠CDF),可以得到∠BED 与∠BFD的关系.【解答】解:过点E作EM∥AB,如图:∵AB∥CD,EM∥AB∴CD∥EM,∴∠ABE=∠BEM,∠CDE=∠DEM,∵∠ABF的平分线与∠CDF的平分线相交于点E,∴∠ABE=∠ABF,∠CDE=∠CDF,∴∠BED=∠BEM+∠DEM=(∠ABF+∠CDF),∵∠ABF+∠BFD+∠CDF=360°,∴∠ABF+∠CDF=360°﹣∠BFD,∴∠BED=(360°﹣∠BFD),整理得:2∠BED+∠BFD=360°.故选:C.5.(2022秋•榆树市期末)如图,AB∥CD,则图中∠1、∠2、∠3关系一定成立的是()A.∠1+∠2+∠3=180°B.∠1+∠2+∠3=360°C.∠1+∠3=2∠2D.∠1+∠3=∠2【分析】首先过点E作EF∥AB,由AB∥CD,可得EF∥AB∥CD,然后根据两直线平行,内错角相等,即可求得∠AEF=∠1,∠CEF=∠3,继而可得∠1+∠3=∠2.【解答】解:过点E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠AEF=∠1,∠CEF=∠3,∵∠2=∠AEF+∠CEF=∠1+∠3.故选:D.6.(2023秋•湖北月考)将含有30°角的直角三角板在两条平行线中按如图所示摆放.若∠1=120°,则∠2为()A.120°B.130°C.140°D.150°【分析】过A作AB∥l1,得到AB∥l2,推出∠3=∠1=120°,∠2=∠BAC,即可求出∠2=∠3+∠4=30°+120°=150°.【解答】解:过A作AB∥l1,∵l1∥l2,∴AB∥l2,∴∠3=∠1=120°,∠2=∠BAC,∴∠2=∠3+∠4=30°+120°=150°.故选:D.二.填空题7.(2023•江油市开学)如图,AB∥CD,P为AB,CD之间的一点,已知∠2=28°,∠BPC=58°,则∠1=30°.【分析】过P作PQ∥AB,得到PQ∥CD,推出∠CPQ=∠2=28°,∠BPQ=∠1,求出∠BPQ=∠BPC ﹣∠CPQ=30°,即可得到∠1的度数..【解答】解:过P作PQ∥AB,∵AB∥CD,∴PQ∥CD,∴∠CPQ=∠2=28°,∠BPQ=∠1,∵∠BPQ=∠BPC﹣∠CPQ=58°﹣28°=30°,∴∠1=30°.故答案为:30°.8.(2023秋•南岗区校级期中)如图,已知DE∥BC,∠ABC=105°,点F在射线BA上,且∠EDF=125°,则∠DFB的度数为20°.【分析】过F作FM∥DE,推出FM∥BC,得到∠ABC+∠MFB=180°,∠D+∠MFD=180°,求出∠MFB=75°,∠MFD=55°,即可得到∠DFB=∠MFB﹣∠MFD=20°.【解答】解:过F作FM∥DE,∵DE∥BC,∴FM∥BC,∴∠ABC+∠MFB=180°,∠D+∠MFD=180°,∵∠ABC=105°,∠EDF=125°,∴∠MFB=75°,∠MFD=55°,∴∠DFB=∠MFB﹣∠MFD=20°.故答案为:20°.9.(2023秋•道里区校级期中)为增强学生体质,望一观音湖学校将“跳绳”引入阳光体育一小时活动.图1是一位同学跳绳时的一个瞬间.数学老师把它抽象成图2的数学问题:已知AB∥CD,∠EAB=70°,∠ECD=105°,则∠AEC=35°.【分析】过E作EF∥AB,则EF∥AB∥CD,利用平行线的性质求得∠FEA=110°,∠FEC=75°,进而可求解.【解答】解:过E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠EAB+∠FEA=180°,∠ECD+∠FEC=180°,∵∠EAB=70°,∠ECD=105°,∴∠FEA=110°,∠FEC=75°,∴∠AEC=∠FEA﹣∠FEC=35°,故答案为:35°.10.(2022秋•雅安期末)如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=60°,则∠E=100°.【分析】过F作FH∥AB,依据平行线的性质,可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,根据四边形内角和以及∠E﹣∠F=60°,即可得到∠E的度数.【解答】解:如图,过F作FH∥AB,∵AB∥CD,∴FH∥AB∥CD,∵∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∴可设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,∴∠ECF=180°﹣β,∠BFC=∠BFH﹣∠CFH=α﹣β,∴四边形BFCE中,∠E+∠BFC=360°﹣α﹣(180°﹣β)=180°﹣(α﹣β)=180°﹣∠BFC,即∠E+2∠BFC=180°,①又∵∠E﹣∠BFC=60°,∴∠BFC=∠E﹣60°,②∴由①②可得,∠E+2(∠E﹣60°)=180°,解得∠E=100°,故答案为:100°.11.(2023秋•南岗区校级期中)已知:如图,AB∥CD,∠ABG的平分线与∠CDE的平分线交于点M,∠M=45°,∠F=64°,∠E=66°,则∠G=88°°.【分析】过点G,F、E、M分别作GH∥AB,FQ∥AB,EP∥AB,MN∥AB,根据平行线的传递性得出AB∥CD∥GH∥FQ∥EP∥MN,再根据两直线平行内错角相等以及角平分线的定义即可求解;【解答】解:过点G、F、E、M分别作GH∥AB,FQ∥AB,EP∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥GH∥FQ∥EP∥MN,∴∠BNN=∠1,∠NMD=∠4,∵BM平分∠ABG,MD平分∠CDE,∴,∵∠BMD=45°,∴2∠1+2∠3=90°,∴∠5=2∠1,∠10=2∠3,∠6=∠7,∠8=∠9,∴∠GFE=∠7+∠8=∠6+∠9=64°,∠FED=∠9+∠D=∠9+2∠3=66°,∴2∠3﹣∠6=2°,∴2∠1+∠6=90°﹣2°=88°,∴∠BGF=∠5+∠6=2∠1+∠6=88°.故答案为:88°.三.解答题12.(2022秋•宝丰县期末)已知直线MN、PQ,点A、B为分别在直线MN、PQ上,点C为平面内一点,连接AC、BC,且∠C=∠NAC+∠CBQ.(1)求证:MN∥PQ;(2)如图2,射线AE、BD分别平分∠MAC和∠CBQ,AE交直线PQ于点E,BD与∠NAC内部的一条射线AD交于点D,若∠C=2∠D,求∠EAD的度数.【分析】(1)过C作CS∥MN,由已知可以得到PQ∥CS,从而得到MN∥PQ;(2)连接DC并延长交AE于点F,由已知可以得到∠DAC=∠NAC,再由∠EAD=∠EAC+∠CAD及平角的意义可以得到解答.【解答】(1)证明:过C作CS∥MN,如图,∵CS∥MN,∴∠NAC=∠ACS,∵∠ACB=∠ACS+∠BCS=∠NAC+∠CBQ,∴∠BCS=∠CBQ,∴PQ∥CS,∴MN∥PQ;(2)解:如图,连接DC并延长交AE于点F,则:∠ACF=∠DAC+∠ADC,∠BCF=∠DBC+∠BDC,∴∠ACB=∠DAC+∠DBC+∠ADB=2∠ADB,∴∠ADB=∠DAC+∠DBC,∴2∠ADB=2∠DAC+2∠DBC=2∠DAC+∠QBC,又∠ACB=∠NAC+∠CBQ=2∠ADB.∴∠NAC+∠CBQ=2∠DAC+∠QBC,即∠NAC=2∠DAC,∴∠DAC=∠NAC,∴∠EAD=∠EAC+∠CAD=∠MAC+∠NAC=(∠MAC+∠NAC)=90°.13.(2022秋•莘县期末)综合与实践如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD 于点F.(1)当所放位置如图①所示时,∠PFD与∠AEM的数量关系是∠PFD+∠AEM=90°;(2)当所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=15°,∠PEB=30°,求∠N的度数.【分析】(1)作PH∥AB,根据平行线的性质得到∠AEM=∠HPM,∠PFD=∠HPN,根据∠MPN=90°解答;(2)根据平行线的性质得到∠PFD+∠BHN=180°,根据∠P=90°解答;(3)根据平行线的性质、对顶角相等计算.【解答】解:(1)如图①,作PH∥AB,则∠AEM=∠HPM,∵AB∥CD,PH∥AB,∴PH∥CD,∴∠PFD=∠HPN,∵∠MPN=90°,∴∠PFD+∠AEM=90°,故答案为:∠PFD+∠AEM=90°;(2)猜想:∠PFD−∠AEM=90°;理由如下:如图②,∵AB∥CD,∴∠PFD+∠BHN=180°,∵∠BHN=∠PHE,∴∠PFD+∠PHE=180°,∵∠P=90°,∴∠PHE+∠PEB=90°,∵∠PEB=∠AEM,∴∠PHE+∠AEM=90°,∴∠PFD−∠AEM=90°;(3)如图②,∵∠P=90°,∠PEB=15°,∴∠PHE=∠P−∠PEB=90°−15°=75°,∴∠BHF=∠PHE=75°,∵AB∥CD,∴∠DFH+∠BHF=180°,∴∠DFH=180°−∠BHF=105°,∴∠OFN=∠DFH=105°,∵∠DON=20°,∴∠N=180°−∠DON−∠OFN=55°.14.(2022秋•洛宁县期末)问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP =∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【解答】(1)解:∠CPD=∠α+∠β,理由是:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(2)当P在BA延长线时,∠CPD=∠β﹣∠α;当P在AB延长线时,∠CPD=∠α﹣∠β.15.(2023春•鼎城区期末)已知直线AB∥CD,点P为直线AB,CD所确定的平面内的一点.问题提出:(1)如图1,∠A=120°,∠C=130°,求∠APC的度数;问题迁移:(2)如图2,写出∠APC,∠A,∠C之间的数量关系,并说明理由;问题应用:(3)如图3,点E在射线BA上,过点E作EF∥PC,作∠PEG=∠PEF,点G在直线CD上,作∠BEG的平分线EH交PC于点H,若∠APC=20°,∠PAB=150°,求∠PEH的度数.【分析】(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可求得∠APQ=60°,∠CPQ=50°,最后可以求出∠APC=110°;(2)作PQ∥AB,易得AB∥PQ∥CD,根据两直线平行,内错角相等,即可证得∠APC=∠A﹣∠C;(3)由(2)知,∠APC=∠PAB﹣∠PCD,先证∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根据∠PEH=∠PEG﹣∠GEH可得答案.【解答】解:(1)∠A+∠C+∠APC=360°如图1所示,过点P作PQ∥AB,∴∠A+∠APQ=180°,∵∠A=120°,∴∠APQ=180°﹣∠A=180°﹣120°=60°,∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∵∠C=130°,∴∠CPQ=180°﹣∠C=180°﹣130°=50°,∴∠APC=∠APQ+∠CPQ=60°+50°=110°;(2)∠APC=∠A﹣∠C,理由如下:如图2,作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ﹣∠CPQ,∴∠APC=∠A﹣∠C;(3)由(2)知,∠APC=∠PAB﹣∠PCD,∵∠APC=20°,∠PAB=150°,∴∠PCD=130°,∵AB∥CD,∴∠PQB=∠PCD=130°,∵EF∥PC,∴∠BEF=∠PQB=130°,∵∠PEG=∠PEF,∴∠PEG=∠FEG,∵EH平分∠BEG,∴∠GEH=∠BEG,∴∠PEH=∠PEG﹣∠GEH=∠FEG﹣∠BEG=∠BEF=65°.16.(2023秋•南岗区校级期中)已知:如图,AB∥CD,直线EF分别交AB,CD于点G,H,点P为直线EF上的点,连接AP,CP.(1)如图1,点P在线段GH上时,请你直接写出∠BAP,∠DCP,∠APC的数量关系;(2)如图2,点P在HG的延长线上时,连接CP交AB于点Q,连接HQ,AC,若∠ACP+∠PHQ=∠CQH,求证:AC∥EF;(3)在(2)的条件下,如图3,CK平分∠ACP,GK平分∠AGP,GK与CK交点K,连接AK,若∠PQH=4∠PCK+2∠PHQ,∠CKG=∠CHQ,∠AKC+∠KAC=159°,求∠BAC的大小.【分析】(1)过P作PN∥AB,根据平行线的传递性得出PN∥CD,再根据两直线平行,内错角相等即可解答;(2)过点Q作QN∥AC,证出∠PHQ=∠2,根据平行线的传递性即可证明;(3)根据三角形内角和即可算出∠1=21°,再根据角平分线定义以及已知条件即可得出∠PQH=4∠2+2∠5=84°+2∠5,结合(2)即可解出∠5=18°,过K作KM∥AC,证出∠CKG=∠1+∠3=21°+∠3,根据平行线性质得出∠EGA=∠EHC,即可得∠3=∠5°+21°=18°+21°=39°,即可求解;【解答】解:(1)过P作PN∥AB,∴∠BAP=∠1,∵AB∥CD,∴PN∥CD,∴∠DCP=∠2,∴∠APC=∠1+∠2=∠BAP+∠DCP;(2)过点Q作QN∥AC,∴∠ACP=∠1,∵∠ACP+∠PHQ=∠CQH,∠1+∠2=∠CQH,∴∠PHQ=∠2,∴QN∥EF,∴AC∥EF;(3)∵CK平分∠ACP,GK平分∠AGP,∴∠1=∠2,∠3=∠4,∵∠AKC+∠KAC=159°,∵∠1=180°﹣159°=21°,∴∠PQH=4∠PCK+2∠PHQ=4∠2+2∠5=84°+2∠5,由(2)知∠ACP+∠PHQ=∠CQH,即42°+∠5=180°﹣∠PQH,∴180°﹣42°﹣∠5=84°+2∠5,∴∠5=18°,过K作KM∥AC,∵AC∥EF,∴KM∥AC∥EF,∴∠CKM=∠1,∠GKM=∠3.∴∠CKG=∠1+∠3=21°+∠3.∵AB∥CD,∠CKG=∠CHQ,∴∠EGA=∠EHC,即2∠3=∠5+∠CHQ=∠5+∠CKG=∠5+∠3+21°,∴∠3=∠5°+21°=18°+21°=39°,∵AC∥EF,∴∠BAC=∠EGA=2∠3=78°.17.(2023秋•道里区校级期中)已知:直线AB与直线CD内部有一个点P,连接BP.(1)如图1,当点E在直线CD上,连接PE,若∠B+∠PEC=∠P,求证:AB∥CD;(2)如图2,当点E在直线AB与直线CD的内部,点H在直线CD上,连接EH,若∠ABP+∠PEH=∠P+∠EHD,求证:AB∥CD;(3)如图3,在(2)的条件下,BG、EF分别是∠ABP、∠PEH的角平分线,BG和EF相交于点G,EF和直线AB相交于点F,当BP⊥PE时,若∠BFG=∠EHD+10°,∠BGE=36°,求∠EHD的度数.【分析】(1)过点P作PF∥AB,推出∠PEC=∠EPF,进而得PF∥CD,根据平行公理的推论即可得证;(2)分别过点P和点E作PF∥AB,EM∥CD,推出∠PEM=∠FPE,进而得PF∥EM,根据平行公理的推论即可得证;(3)过点E作EN∥AB,根据(1)(2)的思路证∠FEN+∠NEH=∠BFE+∠EHD,设∠EHD=α,∠PBG =β,PEG=γ,则∠BFG=α+10°,结合角平分线的定义及(2)的条件得2β+2γ=90°+α,接着分别用含α的式子代替β和γ,代入2β+2γ=90°+α求出α的值即可.【解答】解:(1)证明:过点P作PF∥AB,∴∠B=∠BPF,∵∠B+∠PEC=∠BPE=∠BPF+∠EPF,∴∠PEC=∠EPF,∴PF∥CD,∴AB∥CD;(2)证明:如图2,分别过点P和点E作PF∥AB,EM∥CD,∴∠ABP=∠BPF,∠MEH=∠EHD,∵∠ABP+∠PEH=∠P+∠EHD,即∠ABP+∠PEM+∠MEH=∠BPF+∠FPE+∠EHD,∴∠PEM=∠FPE,∴PF∥EM,∴EM∥AB,∴AB∥CD;(3)如图3,过点E作EN∥AB,由(2)得AB∥CD,∴EN∥CD,∠BFE=∠FEN,∠NEH=∠EHD,∴∠FEH=∠FEN+∠NEH=∠BFE+∠EHD,设∠EHD=α,∠PBG=β,PEG=γ,则∠BFG=α+10°,∵BG、EF分别是∠ABP、∠PEH的角平分线,∴∠ABP=2β,∠PEH=2γ,∵BP⊥PE,∴∠P=90°,由(2)得∠ABP+∠PEH=∠P+∠EHD,∴2β+2γ=90°+α,∵∠FEH=∠FEN+∠NEH=∠BFE+∠EHD,∴γ=α+10°+α=2α+10°,∵∠BGE=36°,∠FGB=180°﹣(∠BFG+∠FBG),∠FGB=180°﹣∠BGE,∴∠BFG+∠FBG=∠BGE=36°,∴α+10°+β=36°,∴β=26°﹣α,∴2(26°﹣α)+2(2α+10°)=90°+α,∴α=18°.18.(2023秋•南岗区校级期中)已知,过∠ECF内一点A作AD∥/EC交CF于点D,作AB∥/CF交CE于点B.(1)如图1,求证:∠ABE=∠ADF;(2)如图2,射线BM,射线DN分别平分∠ABE和∠ADF,求证:BM∥DN;(3)如图3,在(2)的条件下,点G,Q在线段DF上,连接AG,AQ,AC,AQ与DN交于点H,反向延长AQ交BM于点P,如果∠GAC=∠GCA,AQ平分∠GAD,∠QAC=50°,求∠MPA+∠PQF的度数.【分析】(1)由平行线的性质得出∠A=∠ABE,∠A=∠ADF,即可得出结论;(2)过点A作AG平分∠BAD,由角平分线定义得出∠DAG=∠BAG=∠BAD,∠ABM=∠ABE,∠ADN=∠ADF,证出∠ABM=∠DAG=∠BAG=∠ADN,得出BM∥AG,DN∥AG,即可得出结论;(3)设∠GAQ=∠QAD=x,则∠DAC=50°﹣x,∠GAC=50°+x=∠GCA,得出∠BAD=100°,∠BAQ=100°+x,由平行线的性质得出∠BAC=∠GCA=50°+x,求出∠BAP=180°﹣∠BAQ=80°﹣x,过点P作PH∥AB,过点Q作QI∥AC,由平行线的性质得出∠MPH=∠ABM=50°,∠HPA=∠PAB =80°﹣x,∠QAC=∠IQA=50°,∠FQI=∠FCA=50°+x,求出∠MPA=∠MPH+∠HPA=50°+8°﹣x=130°﹣x,∠PQF=∠IQA+∠FQI=50°+50°+x=100°+x,即可得出答案.【解答】(1)证明:∵AD∥EC,AB∥CF,∴∠A=∠ABE,∠A=∠ADF,∴∠ABE=∠ADF;(2)证明:过点A作AG平分∠BAD,如图2所示:则∠DAG=∠BAG=∠BAD,∵射线BM,射线DN分别平分∠ABE和∠ADF,∴∠ABM=∠ABE,∠ADN=∠ADF,∵∠ABE=∠ADF=∠BAD,∴∠ABM=∠DAG=∠BAG=∠ADN,∴BM∥AG,DN∥AG,∴BM∥DN;(3)解:∵AQ平分∠GAD,∴∠GAQ=∠QAD,设∠GAQ=∠QAD=x,则∠DAC=50°﹣x,∠GAC=50°+x=∠GCA,∴∠BAD=100°,∴∠BAQ=100°+x,∵AB∥CF,∴∠BAC=∠GCA=50°+x,∵∠BAP+∠BAQ=180°,∴∠BAP=180°﹣∠BAQ=80°﹣x,过点P作PH∥AB,过点Q作QI∥AC,如图3所示:∵AD∥EC,∴∠BAD=∠ABE=100°,∠ABM=∠ABE=50°,∴∠MPH=∠ABM=50°,∠HPA=∠PAB=80°﹣x,∠QAC=∠IQA=50°,∠FQI=∠FCA=50°+x,∴∠MPA=∠MPH+∠HPA=50°+80°﹣x=130°﹣x,∠PQF=∠IQA+∠FQI=50°+50°+x=100°+x,∴∠MPA+∠PQF=130°﹣x+100°+x=230°.19.(2023秋•南岗区校级期中)已知,射线FG分别交射线AB、DC于点F、G,点E为射线FG上一点.(1)如图1,若∠A+∠D=∠AED,求证:AB∥CD.(2)如图2,若AB∥CD,求证:∠A﹣∠D=∠AED.(3)如图3,在(2)的条件下,DI交AI于点Ⅰ,交AE于点K,∠EDI=∠CDE,∠BAI=∠EAI,∠I=∠AED=25°,求∠EKD的度数.【分析】(1)过点E作EH∥AB,证明∠A=∠AEF,再根据已知条件证明∠D=∠DEF,从而证明EF ∥CD,最后根据平行公理的推论证明结论即可;(2)先根据平行线的性质证明∠A=∠EHG,再根据外角性质证明∠A=∠D+∠AED,通过变换得出结论即可;(3)设AE与CD交于点H,∠EAI=x,把∠BAI和∠EAB都用x表示出来,然后根据已知条件,找出角与角之间的关系,最后得出∠CHE=∠CDE+∠AED,列出关于x的方程,求出x,最后根据∠EKD=∠AKI=180°﹣∠EAI﹣∠I,求出答案即可.【解答】(1)证明:如图所示:过点E作EH∥AB,∴∠A=∠AEF,∵∠A+∠D=∠AED,∠AED=∠AEF+∠DEF,∴∠D=∠DEF,∴EF∥CD,∴AB∥CD;(2)证明:∵AB∥CD,∴∠A=∠EHG,∵∠EHG=∠D+∠AED,∴∠A=∠D+∠AED,∴∠A﹣∠D=∠AED;(3)解:设AE与CD交于点H,∠EAI=x,则∠BAI=,,∵AB∥CD,∴∠EHC=∠EAB=,∵∠I=∠AED=25°,∠EKI=∠EAI+∠I=∠EDI+∠AED,∴x+25°=∠EDI+25°,∴∠EDI=x,∵∠EDI=∠CDE,∴∠CDI=,∵∠CHE=∠CDE+∠AED,∴,解得:x=60°,∴∠EKD=∠AKI=180°﹣∠EAI﹣∠I=180°﹣60°﹣25°=95°.20.(2023春•栾城区校级期中)【问题解决】:如图①,AB∥CD,点E是AB,CD内部一点,连接BE,DE.若∠ABE=40°,∠CDE=60°,求∠BED 的度数;嘉琪想到了如图②所示的方法,请你帮她将完整的求解过程补充完整;解:过点E作EF∥AB∴∠ABE=∠BEF(两直线平行,内错角相等);∵EF∥AB,AB∥CD(已知);∴EF∥CD(平行于同一条直线的两直线平行);∴∠CDE=(∠DEF)(两直线平行,内错角相等);又∵∠BED=∠BEF+∠DEF(角的和与差);∴∠BED=∠ABE+∠CDE(等量代换);∵∠ABE=40°,∠CDE=60°(已知);∴∠BED=∠ABE+∠CDE=100°(等量代换);【问题迁移】:请参考嘉琪的解题思路,解答下面的问题:如图③,AB∥CD,射线OM与直线AB,CD分别交于点A,C,射线ON与直线AB,CD分别交于点B,D,点P在射线ON上运动,连接AP,CP,设∠BAP=α,∠DCP=β.(1)如图③,当点P在B,D两点之间运动时(点P不与点B,D重合),写出α,和∠APC之间满足的数量关系,并说明理由;(2)当点P在B,D两点外侧运动时(点P不与点B,D重合),请画出图形,并直接写出α,β和∠APC 之间满足的数量关系.【分析】问题解决:两直线平行,内错角相等;平行于同一条直线的两直线平行;∠DEF;两直线平行,内错角相等;角的和与差;等量代换;问题迁移:(1)∠APC=a+β,理由见解析;(2)∠APC=α﹣β或∠APC=β﹣α【分析】问题解决:根据过程填写依据即可;问题迁移:(1)过点P作PQ∥AB,可证∠APQ=∠BAP,∠CPQ=∠DCP,由∠APC=∠APQ+∠CPQ 即可求解;(2)①当P在BN上时,过点P作PQ∥AB,同理可证:∠APQ=∠BAP,∠CPQ=∠DCP,由∠APC =∠CPQ﹣∠APQ,即可求解;②当P在OD上时,过点P作PQ∥CD,同理可证:∠APQ=∠BAP,∠CPQ=∠DCP,由∠APC=∠APQ﹣∠CPQ,即可求解.【解答】问题解决:解:过点E作EF∥AB,∴∠ABE=∠BEF(两直线平行,内错角相等),∵AB∥CD(已知),∴EF∥CD(平行于同一条直线的两直线平行),∴∠CDE=∠DEF(两直线平行,内错角相等),又∵∠BED=∠BEF+∠DEF(角的和与差),∴∠BED=∠ABE+∠CDE(等量代换),∵∠ABE=40°,∠CDE=60°(已知),∴∠BED=∠ABE+∠CDE=100°(等量代换),问题迁移:(1)解:∠APC=a+β,理由:过点P作PQ∥AB,∴∠APQ=∠BAP(两直线平行,内错角相等),∵AB∥CD(已知),∴PQ∥CD(平行于同一直线的两直线平行),∴∠CPQ=∠DCP(两直线平行,内错角相等),又∵∠APC=∠APQ+∠CPQ(角的和与差),∴∠APC=∠BAP+∠DCP(等量代换),∵∠BAP=α,∠DCP=β(已知),∴∠APC=α+β(等量代换),(2)如图所示:解:①如图,当P在BN上时,∠APC=β﹣α,理由:过点P作PQ∥AB,由(1)同理可证:∠APQ=∠BAP,∠CPQ=∠DCP,∵∠APC=∠CPQ﹣∠APQ,∴∠APC=∠DCP﹣∠BAP,∵∠BAP=α,∠DCP=β,∴∠APC=β﹣α;②如图,当P在OD上时,∠APC=α﹣β,理由:过点P作PQ∥CD,由(1)同理可证:∠APQ=∠BAP,∠CPQ=∠DCP,∵∠APC=∠APQ﹣∠CPQ,∴∠APC=∠BAP﹣∠DCP,∵∠BAP=α,∠DCP=β,∴∠APC=α﹣β.。
平行线中的拐点(拐角)问题专题
证明: 过点E作EF,使得EF∥AB
B
A
∵AB∥CD
1
F
E
∴EF∥CD
2
∴∠A+∠1=180°,∠C+∠2=180°
D
C
∵∠1+∠2=∠AEC ∴∠A+∠C+∠AEC=∠A+∠1+∠C+∠2=360°
②已知:∠AEC+∠A+∠C=360°,结论:AB∥CD
B
A 证明: 过点E作EF,使得EF∥AB
∴∠A=∠1
E1
F
2
∵∠AEC=∠1+∠2 ,且∠AEC=∠A+∠C ∴∠2=∠C
D
C
∴EF∥CD
∴AB∥CD
模型1:平行线间的“M”模型(猪手)
模型1:平行线间的“M”模型(猪手)
模型1:平行线间的“M”模型(猪手)
模型2:平行线间的“铅笔”模型(子弹头)
B
A
证明: 过点E作EF,使得EF∥AB
∵AB∥CD
D
C
∴EF∥CD
E
F ∴∠A=∠AEF,∠C=∠CEF ∵∠AEC=∠CEF-∠AEF
∴∠AEC=∠C-∠A
模型3:平行线间的“枝丫”模型(锄头型和犀牛角型)
模型3:平行线间的“枝丫”模型(锄头型和犀牛角型)
模型3:平行线间的“枝丫”模型(锄头型和犀牛角型)
第二章 相交线与平行线
平行线中的拐点问题
模型1:平行线间的“M”模型(猪手)
①已知:AB∥CD,结论:∠AEC=∠A+∠C
B
A 证明: 过点E作EF,使得EF∥AB
平行线之拐点问题
我们一起来合作:
如图:AB// CD,猜想∠B, ∠C, ∠E 三者有ቤተ መጻሕፍቲ ባይዱ数量关系?并加以证明。
∠ B+ ∠ BED+ ∠ D =360 °
∠ B+ ∠ D=∠ BED
∠ B+ ∠ BEC- ∠ C=180°
我们一起来总结:
转化思想:
有些数学题目,初看觉得无从下手,但若能转化解题思 路,问题便能得到顺利解决。
对于两条平行线间“折线”与“拐点”问题,一般都 是在拐点处作平行线,使问题转化,从而构造出一些相等 的角或互补的角,使已知与未知一目了然,达到解题的目
的即。: 1,作辅助线(过拐点处作平行线)。 2,找特殊角(找相等的角或互补的角)。 3,解决问题(找到数量关系)。
课后继续来挑战:
如图:AB// CD,则∠B, ∠C, ∠E三 者有何数量关系?并加以证明。
学以致用:
.如图1, ∠1=120°,∠2=100°,则∠3的度数 是——。
如图2, ∠A=25 ° ,且∠E=60 ° ,则∠C 的度数 是——。
如图3,a∥b, ∠1=105°,∠2=140°, 求 ∠3=_______.
A
B
E
C
D
图1
图2
图3
对于两条平行线间折线与拐点问题一般都是在拐点处作平行线使问题转化从而构造出一些相等的角或互补的角使已知与未知一目了然达到解题的目1作辅助线过拐点处作平行线
专题课
平行线之拐点问题
例题剖析:
如图:AB// CD,猜想∠B, ∠D, ∠E
三者有何数量关系?并加以证明。
例题剖析:
如图:AB// CD,猜想∠B, ∠D, ∠E
专题01平行线间的拐点问题(原卷版)
专题01 平行线间的拐点问题类型一:“猪蹄”模型类型二:“铅笔”模型类型三:“鹰嘴”模型平行线间的拐点问题均过拐点作平行线的平行线,有多少个拐点就作多少条平行线。
一.选择题1.(2023•新城区校级一模)如图,直线m∥n,含有45°角的三角板的直角顶点O在直线m上,点A在直线n上,若∠1=20°,则∠2的度数为()A.15°B.25°C.35°D.45°2.(2023•海南)如图,直线m∥n,△ABC是直角三角形,∠B=90°,点C在直线n上.若∠1=50°,则∠2的度数是()A.60°B.50°C.45°D.40°3.(2023秋•渝中区校级期中)如图,直线AB∥CD,GE⊥EF于点E.若∠EFD=32°,则∠BGE的度数是()A.62°B.58°C.52°D.48°4.(2022秋•杜尔伯特县期末)如图,已知AB∥CD,BE,DE分别平分∠ABF和∠CDF,且交于点E,则()A.∠E=∠F B.∠E+∠F=180°C.2∠E+∠F=360°D.2∠E﹣∠F=180°5.(2022秋•榆树市期末)如图,AB∥CD,则图中∠1、∠2、∠3关系一定成立的是()A.∠1+∠2+∠3=180°B.∠1+∠2+∠3=360°C.∠1+∠3=2∠2D.∠1+∠3=∠26.(2023秋•湖北月考)将含有30°角的直角三角板在两条平行线中按如图所示摆放.若∠1=120°,则∠2为()A.120°B.130°C.140°D.150°二.填空题7.(2023•江油市开学)如图,AB∥CD,P为AB,CD之间的一点,已知∠2=28°,∠BPC=58°,则∠1=.8.(2023秋•南岗区校级期中)如图,已知DE∥BC,∠ABC=105°,点F在射线BA上,且∠EDF=125°,则∠DFB的度数为.9.(2023秋•道里区校级期中)为增强学生体质,望一观音湖学校将“跳绳”引入阳光体育一小时活动.图1是一位同学跳绳时的一个瞬间.数学老师把它抽象成图2的数学问题:已知AB∥CD,∠EAB=70°,∠ECD=105°,则∠AEC=.10.(2022秋•雅安期末)如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=60°,则∠E=.11.(2023秋•南岗区校级期中)已知:如图,AB∥CD,∠ABG的平分线与∠CDE的平分线交于点M,∠M=45°,∠F=64°,∠E=66°,则∠G=°.三.解答题12.(2022秋•宝丰县期末)已知直线MN、PQ,点A、B为分别在直线MN、PQ上,点C为平面内一点,连接AC、BC,且∠C=∠NAC+∠CBQ.(1)求证:MN∥PQ;(2)如图2,射线AE、BD分别平分∠MAC和∠CBQ,AE交直线PQ于点E,BD与∠NAC内部的一条射线AD交于点D,若∠C=2∠D,求∠EAD的度数.13.(2022秋•莘县期末)综合与实践如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD 于点F.(1)当所放位置如图①所示时,∠PFD与∠AEM的数量关系是∠PFD+∠AEM=90°;(2)当所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=15°,∠PEB=30°,求∠N的度数.14.(2022秋•洛宁县期末)问题情境:如图1,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP =∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.15.(2023春•鼎城区期末)已知直线AB∥CD,点P为直线AB,CD所确定的平面内的一点.问题提出:(1)如图1,∠A=120°,∠C=130°,求∠APC的度数;问题迁移:(2)如图2,写出∠APC,∠A,∠C之间的数量关系,并说明理由;问题应用:(3)如图3,点E在射线BA上,过点E作EF∥PC,作∠PEG=∠PEF,点G在直线CD上,作∠BEG的平分线EH交PC于点H,若∠APC=20°,∠P AB=150°,求∠PEH的度数.16.(2023秋•南岗区校级期中)已知:如图,AB∥CD,直线EF分别交AB,CD于点G,H,点P为直线EF上的点,连接AP,CP.(1)如图1,点P在线段GH上时,请你直接写出∠BAP,∠DCP,∠APC的数量关系;(2)如图2,点P在HG的延长线上时,连接CP交AB于点Q,连接HQ,AC,若∠ACP+∠PHQ=∠CQH,求证:AC∥EF;(3)在(2)的条件下,如图3,CK平分∠ACP,GK平分∠AGP,GK与CK交点K,连接AK,若∠PQH=4∠PCK+2∠PHQ,∠CKG=∠CHQ,∠AKC+∠KAC=159°,求∠BAC的大小.17.(2023秋•道里区校级期中)已知:直线AB与直线CD内部有一个点P,连接BP.(1)如图1,当点E在直线CD上,连接PE,若∠B+∠PEC=∠P,求证:AB∥CD;(2)如图2,当点E在直线AB与直线CD的内部,点H在直线CD上,连接EH,若∠ABP+∠PEH=∠P+∠EHD,求证:AB∥CD;(3)如图3,在(2)的条件下,BG、EF分别是∠ABP、∠PEH的角平分线,BG和EF相交于点G,EF和直线AB相交于点F,当BP⊥PE时,若∠BFG=∠EHD+10°,∠BGE=36°,求∠EHD的度数.18.(2023秋•南岗区校级期中)已知,过∠ECF内一点A作AD∥/EC交CF于点D,作AB∥/CF交CE于点B.(1)如图1,求证:∠ABE=∠ADF;(2)如图2,射线BM,射线DN分别平分∠ABE和∠ADF,求证:BM∥DN;(3)如图3,在(2)的条件下,点G,Q在线段DF上,连接AG,AQ,AC,AQ与DN交于点H,反向延长AQ交BM于点P,如果∠GAC=∠GCA,AQ平分∠GAD,∠QAC=50°,求∠MP A+∠PQF的度数.19.(2023秋•南岗区校级期中)已知,射线FG分别交射线AB、DC于点F、G,点E为射线FG上一点.(1)如图1,若∠A+∠D=∠AED,求证:AB∥CD.(2)如图2,若AB∥CD,求证:∠A﹣∠D=∠AED.(3)如图3,在(2)的条件下,DI交AI于点Ⅰ,交AE于点K,∠EDI=∠CDE,∠BAI=∠EAI,∠I=∠AED=25°,求∠EKD的度数.20.(2023春•栾城区校级期中)【问题解决】:如图①,AB∥CD,点E是AB,CD内部一点,连接BE,DE.若∠ABE=40°,∠CDE=60°,求∠BED的度数;嘉琪想到了如图②所示的方法,请你帮她将完整的求解过程补充完整;解:过点E作EF∥AB∴∠ABE=∠BEF();∵EF∥AB,AB∥CD(已知);∴EF∥CD();∴∠CDE=()();又∵∠BED=∠BEF+∠DEF();∴∠BED=∠ABE+∠CDE();∵∠ABE=40°,∠CDE=60°(已知);∴∠BED=∠ABE+∠CDE=100°(等量代换);【问题迁移】:请参考嘉琪的解题思路,解答下面的问题:如图③,AB∥CD,射线OM与直线AB,CD分别交于点A,C,射线ON与直线AB,CD分别交于点B,D,点P在射线ON上运动,连接AP,CP,设∠BAP=α,∠DCP=β.(1)如图③,当点P在B,D两点之间运动时(点P不与点B,D重合),写出α,和∠APC之间满足的数量关系,并说明理由;(2)当点P在B,D两点外侧运动时(点P不与点B,D重合),请画出图形,并直接写出α,β和∠APC之间满足的数量关系.。
平行线中的拐点拐角问题专题 ppt课件
B
A
∵AB∥CD
1
F
E
∴EF∥CD
2
∴∠A+∠1=180°,∠C+∠2=180°
D
C
∵∠1+∠2=∠AEC ∴∠A+∠C+∠AEC=∠A+∠1+∠C+∠2=360°
②已知:∠AEC+∠A+∠C=360°,结论:AB∥CD
B
A
证明: 过点E作EF,使得EF∥AB
1
F
E
2
∵AB∥EF ∴∠A+∠1=180°
①已知:AB∥CD,结论:∠AEC=∠A-∠C
B
A
证明: 过点E作EF,使得EF∥AB
∵AB∥CD
D
C
∴EF∥CD
∴∠A=∠AEF,∠C=∠CEF
E
F
∵∠AEC=∠AEF-∠CEF
∴∠AEC=∠A-∠C
②已知:AB∥CD,结论:∠AEC=∠C-∠A
B
A
证明: 过点E作EF,使得EF∥AB
∵AB∥CD
D
C
∵∠AEC=∠1+∠2 ∴∠A+∠C+∠AEC=∠A+∠1+∠C+∠2=360°
∴∠C+∠2=180° ∴EF∥CD
∴AB∥CD
模型2:平行线间的“铅笔”模型(子弹头)
模型2:平行线间的“铅笔”模型(子弹头)
模型2:平行线间的“铅笔”模型(子弹头)
模型3:平行线间的“枝丫”模型(锄头型和犀牛角型)
第二章 相交线与平行线
平行线中的拐点问题
模型1:平行线间的“M”模型(猪手)
①已知:AB∥CD,结论:∠AEC=∠A+∠C
七年级压轴题24题,平行线的探索拐角问题
七年级压轴题24题,平行线的探索拐角问题拐角问题——基本图形及辅助线方法技巧方法技巧1.过折线的拐点作平行线,用平行公理推论得到多条平行线,再转化角.2.涉及到角平分线问题,往往设未知数导角或列方程求解.题型一平行线+单拐点(+角平分线等)模型【例1】如图1,点A,C,B不在同一条直线上,AD∥BE.(1)求证:∠B+∠ACB-∠A=180°;(2)如图2,HQ,BQ分别为∠DAC,∠EBC的平分线所在的直线,试探究∠C与∠AQB 的数量关系;题型二平行线+双拐点(+角平分线等)模型【例2】如图1,AB∥CD,∠B=20°,∠D=110°.(1)若∠E=50°,求∠F的度数;【解答】分别过点E,F作EM∥AB,FN∥AB.∴EM∥AB∥FN.∴∠B=∠BEM=20°,∠MEF=∠EFN.又∵AB∥CD,AB∥FN.∴CD∥FN.∴∠D+∠DFN=180°,又∵∠D=110°,∴∠DFN ==70°,易得∠EFN=∠MEF=∠BEF-∠BEM =50°-20°=30°.∴∠EFD=∠EFN+∠NIFD=30°+70°=100°.(2)如图2,探索∠E与∠F之间满足的数量关系,并说明理由;.【解答】分别过点E,F作EM∥AB,FN∥A B.∴EM∥AB∥FN.∴∠B=∠BEM=20°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN.∴∠D+∠DFN=180°,又∵∠D=110°,∴∠DFN=70°,∴∠BEF=∠MEF+20°,∠EFD=∠EFN+70°,∴∠EFD=∠MEF+70°,∴∠EFD=∠BEF+50°.(3)如图3,EP平分∠BEF,FG平分∠EFD,FG的反向延长线交EP于点P,求∠P的度数.【分析】过点F作FH∥EP,结合(2)中结论,运用模型求解.【解答】过点F作FH∥EP,由(2)知,∠EFD=∠BEF+50°,设∠BEF=2x°,则∠EFD=(2x+50)°,∵EP平分∠BEF,GF平分∠EFD,∴∠PEF =21∠BEF =x °,∠EFG =21∠EFD =(x +25)°,∵FH ∥EP ,∴∠PEF =∠EFH =x °,∠P =∠HFG ,∵∠HFG =∠EFG -∠EFH =25°,∴∠P =25°.针对练习51.如图,CD ∥BE ,则∠2+∠3-∠1的度数等于()A .90°B .120°C .150°D .180°2.如图,AB ∥DE ,∠C :∠D :∠B =2:3:4,则∠B =.3.如图,直线l 3,l 4与l 1,l 2分别相交于点A ,B ,C ,D ,且∠1+∠2=180°.(1)直线l 1与l 2平行吗?为什么?(2)点E 在线段AD 上,若∠ABE =30°,∠BEC =62°,求∠DCE 的度数.【解答】(1)直线l 1与l 2平行.理由如下:∵∠1+∠BAE =180°,∠1+∠2=180°,∴∠2=∠BAE .∴l 1∥l 2.(2)过点E作EF∥AB交BC于点F,可得∠BEF=∠ABE=30°.∴∠FEC=62°-30°=32°.∵l1∥l2,∴EF∥CD,∴∠DCE=∠FEC=32°.5.将北斗七星分别标为A,B,C,D,E,F,G,如图,将A,B,C,D,E,F顺次首尾连结,若AF恰好经过点G,且AF∥DE,∠B =∠BCD+10°,∠CDE=∠E=105°.(1)求∠F的度数;(2)计算∠B-∠CGF的度数是;(直接写出结果)(3)连接AD,∠ADE与∠CGF满足怎样数量关系时,BC∥AD?并说明理由.【解答】(1)∵AF∥DE,∴∠F+∠E=180°.∴∠F=180°-105°=75°.(2)作MC∥AF.∵AF∥DE,∴AF∥CM∥DE,∴∠BCM=∠FGC,∠MCD=∠CDE,∴∠BCD=∠BCM+∠MCD=∠CGF+∠CDE,∠B-∠CGF=∠BCD+10°-∠CGF=∠CGF+∠CDE+10°-∠CGF=∠CDE+10°=115°.(3)当∠ADE+∠CGF=180°时,BC∥A D.理由如下:∵AF∥DE,∴∠GAD+∠ADE=180°,∠ADE+∠CGF=180".∴∠GAD=∠CGF.∴BC∥A D.整体思想求角题型一设单个未知数求定角方法技巧巧设题目未知数,用该未知数表示其它未知角,然后运用角的和或差计算出定角【例1】如图1,直线MN 与直线AB ,CD 分别交于点E ,F ,AB ∥CD ,∠BEF 与∠EFD 的角平分线交于点P ,EP 的延长线与CD 交于点G ,点H 是MN 上一点,且CH ⊥EC .(1)求证:PF ∥GH ;(2)如图2,连接PH ,K 是GH 上一点,∠PHK =∠HPK ,作PQ 平分∠EPK ,问∠HPQ 的大小是否发生变化?若不变,请求出其值;若变化,请说明理由图1图2【分析】(1)过点P 作AB 的平行线交MN 于点T ,运用平行线+拐点模型求∠EPF ,再根据∠ECH 的大小关系求解;(2)设∠PHK =∠HPK =x ,用x 表示未知角,运用整体思想求解。
初中数学平行线拐点问题(1)
二 例题讲解
如图,已知直线m∥n,∠1=105°,∠2=140°,求∠3的大小.
二 例题讲解
如图,已知直线m∥n,∠1=105°,∠2=140°,求∠3的大小.
解:如答图所示,作直线l∥m,则l∥n,
∴∠1+∠4=180°,∠2+∠5=180°, ∵∠1=105°,∠2=140°,∴∠4=75°,∠5=40°, ∵∠3为∠4+∠5的邻补角, ∴∠3=180°-75°-40°=65°.
数量关系会发生变化吗?
E
A
B
A
B
C
D
C
图3
D
(3)犀牛角型
∠BED=∠B-∠D
图4 E
(4)锄头型 ∠BED=∠B-∠D
五 类题演练
1.如图,若AD∥BE,且∠ACB=90°,∠CBE=30°, 则∠CAD=________.
2.如图9,已知AB∥DE,BF,EF分别平分∠ABC与 ∠CED,若∠BCE=140°,求∠BFE的度数.
3.如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,
P为直线l3上一点,A、B分别是直线l1、l2上的不动点.其
中PA与l1相交为∠1,PA、PB相交为∠2,PB与l2相交为
∠3.
(1)若P点在线段CD(C、D两点除外)
上运动,问∠1、∠2、∠3之间的关系是什么?这种关系
是否变化?
(2)若P点在线段CD之外时,∠1、∠2、∠3之间的关系
一 模型归纳
(2)燕尾型(猪手图) 如图2,已知:AB∥CD,点E是平面内一点,那么
∠BED与∠B、∠D之间的数量关系是什么呢?
A
B
E
C
图2
D
一
模型归纳 A
平行线间的拐点问题
平行线中的拐点问题
学习目标:
1.能正确解决常有的拐点问题。
2.灵巧应用平行线的性质与判断解决有关问题。
复习回首: B 、 270 C、 360 D、 540
A、180
1. 如图( 1), AB 0 0 0 0
2. 如图( 2), AB∥CD,则 x, y, z 之间的关系是()
A、x+y+z=360°
B、x-y+z=180 °
C、x+y-z=180 °
D、y+z-x=180 °
A B
E
C D
方法指导:解决平行线中的拐点问题,常用方法为:依据题目中已知的平行线
和“拐点“的状况,在“拐点”处作已知平行线的平行线,而后依据平行线的
性质获得相应的结论。
合作研究一:
(1)已知:如图 1,AB∥CD,求证:∠ B+∠ D=∠BED;
(2)已知:如图 2, AB∥CD,尝试究∠ B、∠ D 与∠ E 之间的数目关系,并说明原因.
(3)已知:如图 3, AB∥CD,尝试究∠ B、∠ D 与∠ E 之间的数目关系,并说明原因.
合作研究二:
已知:如图, AB
图,已知A.30°AC∥BD,∠ CAE=30°,∠ DBE=35°,则∠ AEB等于(
B.45°C.65°D.75°
)
拓展提高:如图,已知 AB∥DE, BF,EF分别均分∠
ABC 与∠ CED,若∠ BCE=140°,求∠ BFE 的度数.。
专题:巧解平行线中的拐点问题(解析版)
七年级下册数学《第五章 相交线与平行线》专题 巧解平行线中的拐点问题【例题1】(2022春•内乡县期末)如图,AB ∥CD ,∠1=45°,∠2=30°,则∠3的度数为( )A .55°B .75°C .80°D .105°【分析】过点E作EM∥AB,利用平行线的性质得出∠3=∠1+∠2=75°.【解答】解:过点E作EM∥AB,如图所示,∵AB∥EM.∴∠HEM=∠1=45°.∵AB∥CD.∴EM∥CD.∴∠GEM=∠2=30°.∴∠3=∠HEM+∠GEM=75°.故选:B.【点评】本题主要考查了平行线的性质,熟练运用平行线的性质是解题的关键.【变式1-1】(2022春•香洲区校级期中)如图,已知AB∥DE,∠B=150°,∠D=145°,则∠C= 度.【分析】过点C作CF平行于AB,再根据平行线的性质解答即可.【解答】解:过点C作CF平行于AB,如图:∵AB∥DE,∴AB∥CF∥ED.AB∥CF⇒∠1=180°﹣∠B=30°,CF∥ED⇒∠2=180°﹣∠D=35°,∴∠BCD=∠1+∠2=65°.故填65°.【点评】结合题意和图形作出正确的辅助线是解决本题的关键.【变式1-2】(2022•博山区一模)如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于( )A.360°B.300°C.270°D.180°【分析】先过点P作PA∥a,构造三条平行线,然后利用两直线平行,同旁内角互补,即可得出结论.【解答】解:如图,过点P作PA∥a,则a∥b∥PA,∴∠3+∠NPA=180°,∠1+∠MPA=180°,∴∠1+∠2+∠3=180°+180°=360°.故选:A.【点评】此题主要考查了平行线的性质,作出PA∥a,根据平行线的性质得出相等(或互补)的角是解决问题的关键.【变式1-3】(2022春•信都区期末)为增强学生体质,某学校将“抖空竹”引入阳光体育一小时活动.图1是一位同学抖空竹时的一个瞬间,数学老师把它抽象成图2的数学问题:已知AB∥CD,∠EAB=80°,∠ECD=110°.求∠AEC的度数.小明在解决过程中,过E点作EF∥CD,则可以得到EF∥AB,其理由是 ,根据这个思路可得∠AEC= .【分析】根据平行公理推论得到EF∥AB,再根据平行线的x性质求解即可.【解答】解:过E点作EF∥CD,∵AB∥CD,∴EF∥AB(平行于同一直线的两直线平行),∴∠EAB+∠AEF=180°,∵EF∥CD,∴∠CEF+∠ECD=180°,∵∠EAB=80°,∠ECD=110°,∴∠AEF=100°,∠CEF=70°,∴∠AEC=∠AEF﹣∠CEF=30°.故答案为:平行于同一直线的两直线平行;30°.【点评】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.【变式1-4】如图,已知AB∥DE,∠1=120°,∠2=110°,求∠3的度数.【分析】过C作CF∥AB,得到AB∥DE∥CF,根据平行线的性质推出∠1+∠ACF=180°,∠2+∠DCF=180°,求出∠ACF、∠DCF的度数,根据∠3=180°﹣∠ACF﹣∠DCF,即可求出答案.【解答】解:过C作CF∥AB,∴AB∥DE∥CF,∴∠1+∠ACF=180°,∠2+∠DCF=180°,∵∠1=120°,∠2=110°,∴∠ACF=60°,∠DCF=70°,∴∠3=180°﹣∠ACF﹣∠DCF,=180°﹣60°﹣70°=50°,答:∠3的度数是50°.【点评】本题主要考查对平行线的性质平行公理及推论,邻补角的定义等知识点的理解和掌握,能灵活运用性质进行推理是解此题的关键.【变式1-5】如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.【分析】过点C作CF∥AB,由平行公理的推论得出CF∥DE,再由平行线的性质求得∠4的度数为70°,再根据CF∥AB得∠3=∠1=25°,最后由角的和差求出∠BCD的度数即可.【解答】解:如图:过点C作CF∥AB,∵CF∥AB∴∠3=∠1=25°∴DF∥CE,∵∠4+∠2=180°,又∵∠2=110°,∴∠4=180°﹣∠2=180°﹣110°=70°,∴∠BCD=∠3+∠4=25°+70°=95°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.【变式1-6】(2021秋•南召县期末)课堂上老师呈现一个问题:下面提供三种思路:思路一:过点F作MN∥CD(如图(1));思路二:过点P作PN∥EF,交AB于点N;思路三:过点O作ON∥FG,交CD于点N.解答下列问题:(1)根据思路一(图(1)),可求得∠EFG的度数为 ;(2)根据思路二、思路三分别在图(2)和图(3)中作出符合要求的辅助线;(3)请你从思路二、思路三中任选其中一种,试写出求∠EFG的度数的解答过程.【分析】(1)过F作MN∥CD,根据平行线的性质以及垂线的定义,即可得到∠EFG的度数;(2)由图可得,思路二辅助线的做法为过P作PN∥EF;思路三辅助线的做法为过O作ON∥FG;(3)若选择思路二,过P作PN∥EF,根据平行线的性质,可得∠NPD的度数,再根据∠1的度数以及平行线的性质,即可得到∠EFG的度数;若选择思路三,过O作ON∥FG,先根据平行线的性质,得到∠BON的度数,再根据平行线的性质以及垂线的定义,即可得到∠EFG的度数.【解答】解:(1)如图(1),过F作MN∥CD,∵MN∥CD,∠1=30°,∴∠2=∠1=30°,∵AB∥CD,∴AB∥MN,∵AB⊥EF,∴∠3=∠4=90°,∴∠EFG=∠3+∠2=90°+30°=120°.故答案为:120°;(2)由图可得,思路二辅助线的做法为过P作PN∥EF;思路三辅助线的做法为过O作ON∥FG;(3)若选择思路二,理由如下:如图(2),过P作PN∥EF,∵PN∥EF,EF⊥AB,∴∠ONP=∠EOB=90°,∵AB∥CD,∴∠NPD=∠ONP=90°,又∵∠1=30°,∴∠NPG=90°+30°=120°,∵PN∥EF,∴∠EFG=∠NPG=120°;若选择思路三,理由如下:如图(3),过O 作ON ∥FG ,∵ON ∥FG ,∠1=30°,∴∠PNO =∠1=30°,∵AB ∥CD ,∴∠BON =∠PNO =30°,又∵EF ⊥AB ,∴∠EON =∠EOB +∠BON =90°+30°=120°,∵ON ∥FG ,∴∠EFG =∠EON =120°.【点评】本题考查平行线的性质,熟练掌握平行线的性质并正确作出辅助线是解题关键.【例题2】如图,直线l 1∥l 2,∠A =125°,∠B =85°,则∠1+∠2等于( )A .40°B .35°C .36°D .30°【分析】过点A 作l 1的平行线,过点B 作l 2的平行线,根据两直线平行,内错角相等可得∠3=∠1,∠4=∠2,再根据两直线平行,同旁内角互补求出∠CAB +∠ABD =180°,然后计算即可得解.【解答】解:如图,过点A 作l 1的平行线AC ,过点B 作l 2的平行线BD ,则∠3=∠1,∠4=∠2,∵l 1∥l 2,∴AC ∥BD ,∴∠CAB +∠ABD =180°,∴∠3+∠4=125°+85°﹣180°=30°,∴∠1+∠2=30°.故选:D.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.熟记性质并作辅助线是解题的关键.【变式2-1】(2022春•新洲区期末)如图,AB∥EF,则∠A,∠C,∠D,∠E满足的数量关系是( )A.∠A+∠C+∠D+∠E=360°B.∠A+∠D=∠C+∠EC.∠A﹣∠C+∠D+∠E=180°D.∠E﹣∠C+∠D﹣∠A=90°【分析】过点C作CG∥AB,过点D作DH∥EF,根据两直线平行,内错角相等可得∠A=∠ACG,∠CDH=∠DCG,两直线平行,同旁内角互补可得∠EDH=180°﹣∠E,然后表示出∠C整理即可得解.【解答】解:如图,过点C作CG∥AB,过点D作DH∥EF,则∠A=∠ACG,∠EDH=180°﹣∠E,∵AB∥EF,∴CG∥DH,∴∠CDH=∠DCG,∴∠C=∠ACG+∠CDH=∠A+∠D﹣(180°﹣∠E),∴∠A﹣∠C+∠D+∠E=180°.故选:C.【点评】本题考查了平行线的性质,此类题目难点在于过拐点作平行线.【变式2-2】如图所示,若AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数是 .【分析】过E作EQ∥CD,过F作FW∥CD,过G作GR∥CD,过H作HY∥CD,根据平行线的判定得出EQ∥FW∥GR∥HY∥AB∥CD,根据平行线的性质得出即可.【解答】解:如图1,过E作EQ∥CD,过F作FW∥CD,过G作GR∥CD,过H作HY∥CD,∵CD∥AB,∴EQ∥FW∥GR∥HY∥AB∥CD,∴∠1+∠MEQ=180°,∠QEF+∠EFW=180°,∠WFG+∠FGR=180°,∠RGH+∠GHY=180°,∠YHN+∠6=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=5×180°=900°.故答案为:900°.【点评】本题考查了平行线的性质,能灵活运用平行线的性质进行推理是解此题的关键.【变式2-3】(2022春•金湖县期末)如图,AB∥CD,E、F分别是AB、CD上的点,EH、FH分别是∠AEG 和∠CFG的角平分线.若∠G=110°,则∠H= °.【分析】过点G作GM∥AB,根据平行线的性质可得∠AEG+∠EGM=180°,再结合已知可得CD∥GM,然后利用平行线的性质可得∠CFG+∠MGF=180°,从而可得∠AEG+∠CFG=250°,再利用角平分线的定义可得∠HEG+∠GFH=125°,最后利用四边形的内角和定理进行计算即可解答.【解答】解:过点G作GM∥AB,∴∠AEG+∠EGM=180°,∵AB∥CD,∴CD∥GM,∴∠CFG+∠MGF=180°,∴∠AEG+∠EGM+∠CFG+∠MGF=360°,∵∠EGF=∠EGM+∠MGF=110°,∴∠AEG+∠CFG=360°﹣∠EGF=250°,∵EH、FH分别是∠AEG和∠CFG的角平分线,∴∠HEG=12∠AEG,∠GFH=12∠CFG,∴∠HEG+∠GFH=12∠AEG+12∠CFG=125°,∴∠H=360°﹣∠HEG﹣∠HFG﹣∠EGF=125°,故答案为:125.【点评】本题考查了平行线的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.【变式2-4】(2022春•潜山市月考)如图,AB∥CD,点E,F分别是AB,CD上的点,点M位于AB与CD之间且在EF的右侧.(1)若∠M=90°,则∠AEM+∠CFM= ;(2)若∠M=n°,∠BEM与∠DFM的角平分线交于点N,则∠N的度数为 .(用含n的式子表示)【分析】(1)过点M作MP∥AB,则AB∥CD∥MP,根据两直线平行,内错角相等可得答案;(2)过点N作NQ∥AB,则AB∥CD∥NQ,根据两直线平行内错角相等和角平分线的定义可得答案.【解答】解:(1)过点M作MP∥AB,∵AB∥CD,∴AB∥CD∥MP,∴∠1=∠MEB,∠2=∠MFD,∵∠M=∠1+∠2=90°,∴∠MEB+∠MFD=90°,∵∠AEM+∠MEB+∠CFM+∠MFD=180°+180°=360°,∴∠AEM+∠CFM=360°﹣90°=270°.故答案为:270°;(2)过点N作NQ∥AB,∵AB∥CD,∴AB∥CD∥NQ,∴∠3=∠NEB,∠4=∠NFD,∴∠NEB+∠NFD=∠3+∠4=∠ENF,∵∠BEM与∠DFM的角平分找交于点N,∵∠NEB=12∠MEB,∠DFN=12∠MFD,∴∠3+∠4=∠BEN+∠DFN=12(∠MEB+∠MFD),由(1)得,∠MEB+∠MFD=∠EMF,∴∠ENF=12∠EMF=12n°.故答案为:12 n°.【点评】本题考查平行线的性质,熟练掌握平行线的性质定理和角平分线的定义是解题关键.【变式2-5】(1)填空:如图1,MA1∥NA2,则∠A1+∠A2= °.如图2,MA1∥NA3,则∠A1+∠A2+∠A3= °.如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4= °.如图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5= °.(2)归纳:如图5,MA1∥NA n,则∠A1+∠A2+∠A3+…+∠A n= °.(3)应用:如图6,已知AB∥CD,∠ABE和∠CDE的平分线相交于F,∠E=80°,求∠BFD的度数.【分析】(1)①根据平行线的性质:两直线平行,同旁内角互补,可得结论;②根据平行于同一条直线的两条直线平行,把此问题转化为上题形式,可得结论;③在上题的基础上,多加一个180°,思路不变,可得结论;④在③的基础上,多加一个180°,思路不变,可得结论;(2)通过观察图形,寻找规律:两个A点时,结论是1×180°,三个A点时,结论是2×180°,四个A点时,结论是3×180°,所以n个A点时,即可得结论.(3)运用上述结论和角平分线定义可得结论.【解答】解:(1)如图1,∵MA1∥NA2,∴∠A1+∠A2=180°.如图2,过点A2作A2C1∥A1M,∵MA1∥NA3,∴A2C1∥A1M∥NA3,∴∠A1+∠A1A2C1=180°,∠C1A2A3+∠A3=180°,∴∠A1+∠A2+∠A3=360°.如图3,过点A2作A2C1∥A1M,过点A3作A3C2∥A1M,∵MA1∥NA4,∴A2C1∥A3C2∥A1M∥NA4,∴∠A1+∠A1A2C1=180°,∠C1A2A3+∠A2A3C2=180°,∠C2A3A4+∠A4=180°,∴∠A1+∠A2+∠A3+∠A4=540°.如图4,过点A2作A2C1∥A1M,过点A3作A3C2∥A1M,过点A4作A4C3∥A1M,∵MA1∥NA5,∴A2C1∥A3C2∥A4C3∥NA5,∴∠A1+∠A1A2C1=180°,∠C1A2A3+∠A2A3C2=180°,∠C2A3A4+∠A3A4C3=180°∠C3A4A5+∠A5=180°,∴∠A1+∠A2+∠A3+∠A4+∠A5=720°.故答案为:180;360;540;720;(2)∵∠A1+∠A2=180°=1×180°∠A1+∠A2+∠A3=360°=2×180°∠A1+∠A2+∠A3+∠A4=540°=3×180°∴∠A1+∠A2+∠A3+…+∠A n=180(n﹣1)°.故答案为:180(n﹣1);(3)根据上述结论得:∠BFD=∠ABF+∠CDF,∠ABE+∠E+∠CDE=360°,又∵∠ABE和∠CDE的平分线相交于F,∴2∠ABF+∠E+2∠CDF=360°,即2(∠ABF+∠CDF)+∠E=360°,∴2(∠ABF+∠CDF)=360°﹣∠E=360°﹣80°=280°,∴∠ABF+∠CDF=12×280°=140°,即∠BFD=140°.【点评】本题考查了平行线的性质和判定,解题时注意:平行线的性质是由平行关系来寻找角的数量关系.平行线的判定是由角的数量关系判断两直线的位置关系;还要注意规律性问题的探究过程.【例题3】小华在学习“平行线的性质”后,对图中∠B,∠D和∠BOD的关系进行了探究:(1)如图1,AB∥CD,点O在AB,CD之间,试探究∠B,∠D和∠BOD之间有什么关系?并说明理由;小华添加了过点O的辅助线OM,并且OM∥CD请帮助他写出解答过程;(2)如图2,若点O在CD的上侧,试探究∠B,∠D和∠BOD之间有什么关系?并说明理由;(3)如图3,若点O在AB的下侧,试探究∠B,∠D和∠BOD之间有什么关系?请直接写出它们的关系式.【分析】(1)求出AB∥CD∥OM,根据平行线的性质得出∠D=∠DOM,∠B=∠BOM,再得出答案即可;(2)求出AB∥CD∥OM,根据平行线的性质得出∠D=∠DOM,∠B=∠BOM,再得出答案即可;(3)求出AB∥CD∥OM,根据平行线的性质得出∠D=∠DOM,∠B=∠BOM,再得出答案即可.【解答】解:(1)∠BOD=∠D+∠B,理由是:∵AB∥CD,OM∥CD,∴AB∥CD∥OM,∴∠D=∠DOM,∠B=∠BOM,∴∠DOB=∠DOM+∠BOM=∠B+∠D;(2)∠B=∠BOD+∠D,理由是:如图:过O作OM∥CD,∵AB∥CD,OM∥CD,∴AB∥CD∥OM,∴∠D=∠DOM,∠B=∠BOM,∴∠B=∠BOM=∠DOM+∠DOB=∠D+∠DOB;(3)∠D=∠DOB+∠B,理由是:如图:过O作OM∥CD,∵AB∥CD,OM∥CD,∴AB∥CD∥OM,∴∠D=∠DOM,∠B=∠BOM,∴∠D=∠DOM=∠BOM+∠DOB=∠B+∠DOB.【点评】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键,证明过程类似.【变式3-1】如图,已知∠1=70°,∠2=30°, EF平分∠BEC,∠BEF=50°,求证:AB∥CD.【分析】先过点E在∠BEC的内部作EM∥AB,求出∠BME的度数,根据角平分线求出∠BEC的度数,从而求出∠CEM的度数,然后根据∠CEM=∠2,利用内错角相等,两直线平行得出EM∥AB.【解答】证明:如图,过点E在∠BEC的内部作EM∥AB,∵EF平分∠BEC,∠BEF=50°,∴∠BEC=2∠BEF=2×50°=100°,∵EM//AB,∴∠BEM=∠1=70°,∴∠CEM=∠BEC﹣∠BEM=100°﹣70°=30°,∵∠2=30°,∴∠CEM=∠2,.∴EM∥CD,又∵EM∥AB∴AB∥CD.【点评】本题考查平行线的性质,角平分线等知识,解题的关键是过点E在∠BEC的内部作EM//AB.【变式3-2】如图,点E在线段AC上,AB∥CD,∠1=∠B,∠2=∠D.求证:BE⊥DE.【分析】过点E在∠BED的内部作EM∥AB,先根据平行线的性质得出∠1=∠BEM,∠DEM=∠2然后根据∠AEC=180°得出∠1+∠BEM+∠DEM+∠2=180°,从而得到∠BEM+∠DEM=90°,即可证明BE⊥DE.【解答】证明:过点E在∠BED的内部作EM∥AB,则∠B=∠BEM,∵∠1=∠B,∴∠1=∠BEM,又∵AB∥CD,EM∥CD,∴∠D=∠DEM,∵∠2=∠D,∠DEM=∠2,∴∠1+∠BEM+∠DEM+∠2=180°,∴∠BEM+∠DEM=90°,即∠BED=90,∴BE⊥DE.【点评】本题考查平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式3-3】(2022春•阳江期末)如图1,AB∥CD,EOF是直线AB、CD间的一条折线.(1)试证明:∠O=∠BEO+∠DFO.(2)如果将折一次改为折二次,如图2,则∠BEO、∠O、∠P、∠PFC之间会满足怎样的数量关系,证明你的结论.【分析】(1)作OM∥AB,根据平行线的性质得∠1=∠BEO,由于AB∥CD,根据平行线的传递性得OM∥CD,根据平行线的性质得∠2=∠DFO,所以∠1+∠2=∠BEO+∠DFO;(2)作OM∥AB,PN∥CD,由AB∥CD得到OM∥PN∥AB∥CD,根据平行线的性质得∠1=∠BEO,∠2=∠3,∠4=∠PFC,所以∠1+∠2+∠PFC=∠BEO+∠3+∠4,即∠O+∠PFC=∠BEO+∠P.【解答】(1)证明:作OM∥AB,如图1,∴∠1=∠BEO,∵AB∥CD,∴OM∥CD,∴∠2=∠DFO,∴∠1+∠2=∠BEO+∠DFO,即:∠O=∠BEO+∠DFO.(2)解:∠O+∠PFC=∠BEO+∠P.理由如下:作OM∥AB,PN∥CD,如图2,∵AB∥CD,∴OM∥PN∥AB∥CD,∴∠1=∠BEO,∠2=∠3,∠4=∠PFC,∴∠1+∠2+∠PFC=∠BEO+∠3+∠4,∴∠O+∠PFC=∠BEO+∠P.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.【变式3-4】(2022秋•驿城区校级期末)问题情境:如图1,AB∥CD,∠PAB=135°,∠PCD=125°.求∠APC 度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可求得∠APC的度数.请写出具体求解过程.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.【分析】过P作PE∥AB,构造同旁内角,通过平行线性质,可得∠APC=45°+55°=100°.(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.【解答】解:过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=180°﹣∠A=45°,∠CPE=180°﹣∠C=55°,∴∠APC=45°+55°=100°;(1)∠CPD=∠α+∠β,理由如下:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(2)当点P在A、M两点之间时,∠CPD=∠β﹣∠α;理由:如图4,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE﹣∠DPE=∠β﹣∠α;当点P在B、O两点之间时,∠CPD=∠α﹣∠β.理由:如图5,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE﹣∠CPE=∠α﹣∠β.【点评】本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.【变式3-5】阅读下面内容,并解答问题在学习了平行线的性质后,老师请同学们证明命题:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.小颖根据命题画出图形并写出如下的已知条件.已知:如图1,AB∥CD,直线EF分别交AB,C于点E,F.∠BEF的平分线与∠DFE的平分线交于点G.(1)直线EG,FG有何关系?请补充结论:求证:“ ”,并写出证明过程;(2)请从下列A、B两题中任选一题作答,我选择 题,并写出解答过程.A.在图1的基础上,分别作∠BEG的平分线与∠DFG的平分线交于点M,得到图2,求∠EMF的度数.B.如图3,AB∥CD,直线EF分别交AB,CD于点E,F.点O在直线AB,CD之间,且在直线EF右侧,∠BEO的平分线与∠DFO的平分线交于点P,请猜想∠EOF与∠EPF满足的数量关系,并证明它.【分析】(1)利用平行线的性质以及三角形的内角和定理解决问题即可.(2)A、利用基本结论,∠M=∠BEM+∠DFM求解即可.B、利用基本结论∠EOF=∠BEO+∠DFO,∠EPF=∠BEP+∠DFP求解即可.【解答】解:(1)结论:EG⊥FG;理由:如图1中,∵AB∥CD,∴∠BEF+∠DFE=180°,∵EG平分∠BEF,FG平分∠DFE,∴∠GEF=12∠BEF,∠GFE=12∠DFE,∴∠GEF+∠GFE=12∠BEF+12∠DFE=12(∠BEF+∠DFE)=12×180°=90°,在△EFG中,∠GEF+∠GFE+∠G=180°,∴∠G=180°﹣(∠GEF+∠GFE)=180°﹣90°=90°,∴EG⊥FG.故答案为:EG⊥GF;(2)A.如图2中,由题意,∠BEG+∠DFG=90°,∵EM平分∠BEG,MF平分∠DFG,∴∠BEM+∠MFD=12(∠BEG+∠DFG)=45°,∴∠EMF=∠BEM+∠MFD=45°,B.结论:∠EOF=2∠EPF.理由:如图3中,由题意,∠EOF=∠BEO+∠DFO,∠EPF=∠BEP+∠DFP,∵PE平分∠BEO,PF平分∠DFO,∴∠BEO=2∠BEP,∠DFO=2∠DFP,∴∠EOF=2∠EPF,故答案为:A或B.【点评】本题考查平行线的性质,命题与定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【例题4】(2022秋•小店区校级期末)(1)问题背景:如图1,已知AB ∥CD ,点P 的位置如图所示,连结PA ,PC ,试探究∠APC 与∠A 、∠C 之间的数量关系,以下是小明同学的探索过程,请你结合图形仔细阅读,并完成填空(理由或数学式):解:过点P 作PE ∥AB∵AB ∥CD (已知),∴PE ∥CD ( ),∴∠A =∠APE ,∠C =∠CPE ( ),∴∠A +∠C = + (等式的性质).即∠APC ,∠A ,∠C 之间的数量关系是 .(2)类比探究:如图2,已知AB ∥CD ,线段AD 与BC 相交于点E ,点B 在点A 右侧.若∠ABC =41°,∠ADC =78°,则∠AEC = .(3)拓展延伸:如图3,若∠ABC 与∠ADC 的角平分线相交于点F ,请直接写出∠BFD 与∠AEC 之间的数量关系 .【分析】(1)利用题干中的思路,依据两条直线平行的判定,平行线的性质和等式的性质解答即可;(2)利用类比的方法,依据(1)的思路与方法解答即可;(3)利用类比的方法,依据(1)的思路与方法分别计算∠BFD 与∠AEC ,观察结论即可得出结论.【解答】解:(1)过点P 作PE ∥AB ,∵AB ∥CD (已知),∴PE ∥CD(平行于同一直线的两直线平行),∴∠A=∠APE,∠C=∠CPE(两直线平行,内错角相等),∴∠A+∠C=∠APE+∠CPE(等式的性质).即∠APC,∠A,∠C之间的数量关系是:∠APC=∠A+∠C.故答案为:平行于同一直线的两直线平行;两直线平行,内错角相等;∠APE;∠CPE;∠APC=∠A+∠C;(2)过点E作EP∥AB,如图,∵AB∥CD(已知),∴∠ADC=∠BAD=78°,∴PE∥CD,∴∠BAD=∠AEP=78°,∠ABC=∠PEC=41°,∴∠AEC=∠AEP+∠PEC=78°+41°=119°,故答案为:119°;(3)由(2)知:∠AEC=∠ABC+∠ADC,∵DF,BF分别是∠ABC,∠ADC的平分线,∴∠ABC=2∠ABF,∠ADC=2∠FDC,∴∠AEC=2(∠ABF+∠FDC).过点F作FP∥AB,如图,则∠ABF=∠BFP,∵AB∥CD,∴FP∥CD,∴∠PFD=∠FDC,∴∠BFD=∠BFP+∠PFD=∠ABF+∠FDC,∴2∠BFD=∠AEC,故答案为:2∠BFD=∠AEC.【点评】本题主要考查了平行线的判定与性质,利用类比的方法解答是解题的关键.【变式4-1】(2021秋•长春期末)小明同学遇到这样一个问题:如图①,已知:AB∥CD,E为AB、CD之间一点,连接BE,ED,得到∠BED.求证:∠BED=∠B+∠D.小亮帮助小明给出了该问的证明.证明:过点E作EF∥AB,则有∠BEF=∠B.∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D.请你参考小亮的思考问题的方法,解决问题:直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图②,若点P在线段CD上,∠PAC=15°,∠PBD=40°,求∠APB的度数.拓展:如图③,若点P在直线EF上,连接PA、PB(BD<AC),直接写出∠PAC、∠APB、∠PBD之间的数量关系.【分析】猜想:过点P作PH∥AC,然后得到BD∥PH,从而得到∠PAC=∠APH,∠PBD=∠BPH,然后得到∠APB的度数;拓展:分情况讨论,当点P在线段CD上时,当点P在射线DF上时,当点P在射线CE上时,然后过点P 作PH∥AC,再利用平行线的性质进行探究角之间的数量关系.【解答】解:猜想:如图1,过点P作PH∥AC,则∠PAC=∠APH,∵l1∥l2,∴BD∥PH,∴∠PBD=∠BPH,∴∠APB=∠APH+∠BPH=∠PAC+∠PBD,∵∠PAC=15°,∠PBD=40°,∴∠APB=15°+40°=55°.拓展:①如图1,当点P在线段CD上时,由猜想可知,∠APB=∠PAC+∠PBD;②如图2,当点P在射线DP上时,过点P作PH∥AC,则∠PAC=∠APH,∵l1∥l2,∴BD∥PH,∴∠PBD=∠BPH,∴∠APB=∠APH﹣∠BPH=∠PAC﹣∠PBD;③如图3,当点P在射线CE上时,过点P作PH∥AC,则∠PAC=∠APH,∵l1∥l2,∴BD∥PH,∴∠PBD=∠BPH,∴∠APB=∠BPH﹣∠APH=∠PBD﹣∠PAC;综上所述,∠PAC、∠APB、∠PBD之间的数量关系为∠APB=∠PAC+∠PBD或∠APB=∠PAC﹣∠PBD或∠APB =∠PBD﹣∠PAC.【点评】本题考查了平行线的性质,解题的关键是熟练作出辅助线构造平行线,然后通过平行线的性质得到内错角相等.【变式4-2】(2022春•龙亭区校级期末)如图,已知AB∥CD,E、F分别在AB、CD上,点G在AB、CD 之间,连接GE、GF.(1)当∠BEG=40°,EP平分∠BEG,FP平分∠DFG时:①如图1,若EG⊥FG,则∠P的度数为 ;②如图2,在CD的下方有一点Q,EG平分∠BEQ,FD平分∠GFQ,求∠Q+2∠P的度数;(2)如图3,在AB的上方有一点O,若FO平分∠GFC.线段GE的延长线平分∠OEA,则当∠EOF+∠EGF =100°时,请直接写出∠OEA与∠OFC的数量关系.【分析】(1)①②根据平行线的性质,以及角平分线的定义即可求解;(2)过点O作OT∥AB,则OT∥CD,设∠OFC=∠OFG=β,∠OEH=∠HEA=α,∠G=∠BEG+∠GFD=α+180°﹣2β,根据平行线的性质求得α+β=80°,进而根据3∠OEA﹣∠OFC=3β﹣(β﹣2a)=2β+2α﹣160°即可求解.【解答】解:(1)①如图,分别过点G,P作GN∥AB,PM∥AB,∴∠BEG=∠EGN,∵AB∥CD,∴∠NGF=∠GFD,∴∠EGF=∠BEG+∠GFD,同理可得∠EPF=∠BEP+∠PFD,∵EG⊥FG,∴∠EGF=90°,∵EP平分∠BEG,FP平分∠DFG;∴∠BEP=12∠BEG,∠PFD=12∠GFD,∴∠EPF=12(∠BEG+∠GFD)=12∠EGF=45°,故答案为:45°;②如图,过点Q作QR∥CD,∵∠BEG=40°,∵EG恰好平分∠BEQ,FD恰好平分∠GFQ,∠GEQ=∠BEG=40°,∠GFD=∠QFD,设∠GFD=∠QFD=α,∵QR∥CD,AB∥CD,∴∠EQR=180°﹣∠QEB=180°﹣2∠QEG=100°,∵CD∥QR,∴∠DFQ+∠FQR=180°,∴α+∠FQR=180°,∴α+∠FQE=80°,∴∠FQE=80°﹣α,由①可知∠G=2∠P=∠BEG+∠GFD=40°+α,∴∠FQE+2∠P=80°﹣α+40°+α=120°;(2)结论:∠OEA+2∠PFC=160°.理由:∵在AB的上方有一点O,若FO平分∠GFC,线段GE的延长线平分∠OEA,设H为线段GE的延长线上一点,∴∠OFC=∠OFG,∠OEH=∠HEA,设∠OFC=∠OFG=β,∠OEH=∠HEA=α,如图,过点O作OT∥AB,则OT∥CD,∴∠TOF=∠OFC=β,∠TOE=∠OEA=2α,∴∠EOF=β﹣2α,∵∠HEA=∠BEG=a,∠GFD=180°﹣2β,由(1)可知∠G=∠BEG+∠GFD=α+180°﹣2β,∵∠EOF+∠EGF=100°,∴β﹣2α+α+180°﹣2β=100°,∴α+β=80°,∴12∠OEA+∠OFC=80°,∴∠OEA+2∠PFC=160°.【点评】本题考查了平行线的性质,以及角平分线的定义,掌握平行线的性质是解题的关键.【变式4-3】(2021春•安徽月考)(1)如图1,直线AB∥CD.点P在直线AB,CD之间,试说明:∠BAP+∠APC+∠PCD=360°.小明说明的过程是这样的:“过点P作PE∥AB,…”请按照小明的思路写出完整的解答说明过程.(2)①直线AB∥CD,点P,Q在直线AB,CD之间,且点P,Q在直线AC的同侧,如图2,试探究∠BAP,∠APQ,∠PQC,∠QCD之间的数量关系,并说明理由;②直线AB∥CD,点P,Q在直线AB,CD之间,且点P,Q在直线AC的两侧.如图3,试探究∠BAP,∠APQ,∠PQC,∠QCD之间的数量关系,并说明理由.请在①②任选一个问题进行解答.(3)如图4,若a∥b,直接写出图中x的度数(不用说理).【分析】(1)过点P作PE∥AB,根据平行线的性质,两直线平行,同旁内角互补,可得∠BAP+∠APE=180°,∠DCP+CPE=180°,根据等式的性质可得∠BAP+∠APE+∠DCP+CPE=360°,即可得出答案;(2)①过点P作PE∥AB,过点Q作QF∥CD,如图5,根据平行线的性质,两直线平行,同旁内角互补,∠BAP+∠APE=180°,∠EPQ+∠PQF=180°,∠FQC+∠QCD=180°,根据等式的性质可得∠BAP+∠APE+∠EPQ+∠PQF+∠FQC+∠QCD=180°+180°+180°,即可得出答案;(3)如图4,根据平行线模型﹣锯齿模型定理,朝向左边的角的和=朝向右边的角的和,根据邻补角的定义,120°角的邻补角为60°,所以可列x+48°=60°+30°+30°,求出x即可得出答案.【解答】解:(1)过点P作PE∥AB,∵AB∥PE,∴∠BAP+∠APE=180°,∵CD∥PE,∴∠DCP+CPE=180°,∴∠BAP+∠APE+∠DCP+CPE=360°,∴∠BAP+∠APC+∠PCD=360°;(2)①过点P作PE∥AB,过点Q作QF∥CD,如图5,∵PE∥AB,∴∠BAP+∠APE=180°,∵AB∥CD,∴PE∥QF,∴∠EPQ+∠PQF=180°,∵QF∥CD,∴∠FQC+∠QCD=180°,∵∠BAP+∠APE+∠EPQ+∠PQF+∠FQC+∠QCD=180°+180°+180°,∴∠BAP+∠APQ+∠PQC+∠QCD=540°;(3)x=72°.【点评】本题主要考查了平行线的性质,熟练掌握平行线的性质进行求解是解决本题的关键.【变式4-4】(2022春•兴国县期末)【感知】(1)如图①,AB∥CD,∠AEP=40°,∠PFD=130°,求∠EPF 的度数.小乐想到了以下方法,请帮忙完成推理过程.解:如图①,过点P作PM∥AB,【探究】(2)如图②,AB∥CD,∠AEP=50°,∠PFC=120°,求∠EPF的度数;【应用】(3)如图③,在以上【探究】条件下,∠PEA的平分线和∠PFC的平分线交于点G,求∠G的度数.(4)已知直线a∥b,点A,B在直线a上,点C,D在直线b上(点C在点D的左侧),连接AD,BC,∠ABC的平分线与∠ADC的平分线所在的直线交于点E,设∠ABC=α,∠ADC=β(α≠β),请画出图形并求出∠BED的度数(用含α,β的式子表示).【分析】(1)根据平行线的性质与判定可求解;(2)过点P作PM∥AB,根据AB∥CD,PM∥CD,进而根据平行线的性质即可求∠EPF的度数;(3)如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数;(4)画出图形,分点A在点B左侧和点A在点B右侧,两种情况,分别求解.【解答】解:(1)如图①,过点P作PM∥AB,∴∠1=∠AEP=40°(两直线平行,内错角相等),∵AB∥CD,∴PM∥CD(平行于同一直线的两条直线平行),∴∠2+∠PFD=180°(两直线平行,同旁内角互补),∵∠PFD=130°,∴∠2=180°﹣130°=50°,∴∠1+∠2=40°+50°=90°,即∠EPF=90°;(2)如图②,过点P作PM∥AB,∴∠MPE=∠AEP=50°(两直线平行,内错角相等)∵AB∥CD(已知),∴PM∥CD(平行于同一条直线的两直线平行),∴∠PFC=∠MPF=120°(两直线平行,内错角相等).∴∠EPF=∠MPF﹣∠MPE=120°﹣50°=70°(等式的性质).(3)如图③所示,∵EG是∠PEA的平分线,FG是∠PFC的平分线,∴∠AEG=12∠AEP=25°,∠GFC=12∠PFC=60°,过点G作GM∥AB,∴∠MGE=∠AEG=25°(两直线平行,内错角相等)∵AB∥CD(已知),∴GM∥CD(平行于同一条直线的两直线平行),∴∠GFC=∠MGF=60°(两直线平行,内错角相等),∠G=∠MGF﹣∠MGE=60°﹣25°=35°;(4)当点A在B左侧时,如图,过点E作EF∥AB,则EF∥CD,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=α,∠ADC=β,∴∠ABE=∠BEF=12α,∠CDE=∠DEF=12β,∴∠BED=∠BEF+∠DEF=αβ2,当点A在B右侧时,点E在AB和CD外时,点E在AB上方时,如图,过点E作EF∥AB,则EF∥CD,∴∠DEF=∠CDE,∠ABG=∠BEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=α,∠ADC=β,∴∠DEF=∠CDE=12β,∠ABG=∠BEF=12α,∴∠BED=∠BEF﹣∠DEF=α−β2,当点A在B右侧时,点E在AB和CD外时,点E在AB下方时,同理可求∠BED=β−α2,当点A在B右侧时,点E在AB和CD内时,过点E作EF∥AB,则EF∥CD,∴∠DEF+∠CDE=180°,∠ABE=∠BEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=α,∠ADC=β,∴∠CDE=12β,∠ABE=∠BEF=12α,∴∠DEF=180°−12β,∴∠BED=∠DEF+∠BEF=180°−12β+12α,或∠BED=360°﹣(∠DEF+∠BEF)=180°+12β−12α,综上,∠BED的度数为αβ2或α−β2或180°−12β+12α或180°+12β−12α.【点评】本题考查了平行线的判定与性质、平行公理及推论,角平分线的性质,解决本题的关键是掌握平行线的判定与性质.。
七年级数学下册-解题技巧专题:平行线中有关拐点的模型专题问题(4类热点题型讲练)(解析版)
第03讲解题技巧专题:平行线中有关拐点的模型专题问题(4类热点题型讲练)目录【考点一平行线中含一个拐点问题】 (1)【考点二平行线中含两个拐点问题】 (11)【考点三平行线中含多个拐点问题】 (21)【考点四平行线中在生活上含拐点问题】 (27)【考点一平行线中含一个拐点问题】例题:(2023上·广东揭阳·八年级统考期末)如图,直线【答案】134︒/134度【分析】本题主要考查利用平行线的性质求解相关角度,两直线平行内错角相等,直接过点∠进行分割转移,最后利用邻补角的概念,直接求出线把E【详解】见试题解答内容∴C FEC ∠=∠,BAE FEA ∠=∠,∵44C ∠=︒,90AEC ∠=︒;∴44FEC ∠=︒,904446BAE AEF ∠=∠=︒-︒=︒,∴118018046134BAE ∠=︒-∠=︒-︒=︒;故答案为:134︒.【变式训练】【答案】180APD A ∠=︒+∠-【分析】过点P 作PM AB ∥,从而可得PM CD ∥,然后利用平行线的性质可得A APM ∴∠=∠,AB CD ∥ ,PM CD ∴∥,【答案】25︒/25度【分析】本题主要考查等边三角形的性质,平行线的判定与性质,过点平行线的性质可得结论.【详解】解:过点B 作BF ∴35,ABF α∠=∠=︒∵ABC 是等边三角形,∴60,ABC ∠=︒∴FBC ABC ABF ∠=∠-∠∵12l l ∥,【答案】(1)见解析;(2)F BMF DNF ∠=∠-∠;(3)20【分析】本题主要考查平行线的判定和性质,作辅助线是解题的关键.(1)过点E作EF AB∥,根据平行线的性质可求解;∥,根据平行线的性质即可得到结论;(2)如图②,过F作FH AB∥,根据平行线的性质即可得到结论.(3)如图③,过C作CG AB【详解】(1)证明:如图①,过点E作EF AB∥,则MEF BME∠=∠,∥,又∵AB CD∥,∴EF CD∴∠=∠,NEF DNE∴∠=∠+∠,MEN MEF NEF∠=∠+∠;即MEN BME DNE(2)解:BMF MFN FND∠=∠+∠.,证明:如图②,过F作FK AB∴∠=∠,BMF MFK∥,∵AB CD,∴FK CD∴∠=∠,FND KFN∴∠=∠-∠=∠-∠,MFN MFK KFN BMF FND即:BMF MFN FND∠=∠+∠.故答案为:BMF MFN FND∠=∠+∠;∥,(3)如图③,过C作CG AB18060∴∠=︒-∠=︒,GCA BAC∥,∵AB DE∥,∴CG DEGCD CDE∴∠=∠=︒,80∴∠=︒,20ACD故答案为:20.4.(2023上·七年级课时练习)已知AB CD ,点E 为,AB CD 之外任意一点.(1)如图1,探究BED ∠与,B D ∠∠之间的数量关系,并说明理由;(2)如图2,探究CDE ∠与,B BED ∠∠之间的数量关系,并说明理由.【拓展变式】如图,“抖空竹”是国家级非物质文化遗产.在“抖空竹”的一个瞬间如图1所示,将图1抽象成一个数学问题:如图2,若,70,110AB CD EAB ECD ︒∠=∠=︒∥,则E ∠=_______________.【答案】(1)B BED D ∠=∠+∠,理由见解析;(2)CDE B BED ∠=∠+∠,理由见解析;[拓展变式]40︒.【分析】(1)过点E 作EF AB ∥,则AB CD EF ∥∥,根据平行线的性质可得,BEF B D DEF ∠=∠∠=∠,进而得出结论;(2)理由如下:过点E 作EF AB ∥,则AB CD EF ∥∥,根据平行线的性质可得B BEF ∠=∠,CDE DEF ∠=∠,进而得出结论;(3)过点E 作EF AB ∥,则AB CD EF ∥∥,根据平行线的性质得出180110AEF EAB ∠=︒-∠=︒,18070CEF ECD ∠=︒-∠=︒,进而即可求解.【详解】解:(1)B BED D ∠=∠+∠.理由如下:过点E 作EF AB ∥,则AB CD EF ∥∥.,BEF B D DEF ∴∠=∠∠=∠.BEF BED DEF ∠=∠+∠ ,B BED D ∴∠=∠+∠.(2)CDE B BED ∠=∠+∠.理由如下:过点E 作EF AB ∥,则AB CD EF ∥∥.B BEF ∴∠=∠,CDE DEF ∠=∠.DEF BEF BED ∠=∠+∠ ,CDE B BED ∴∠=∠+∠.【拓展变式】过点E 作EF AB ∥,则AB CD EF ∥∥.70,110EAB ECD ︒︒∠=∠= 180110AEF EAB ∠=︒-∠=︒,18070CEF ECD ∠=︒-∠=︒11070AEC AEF CEF ∴∠=∠-∠=︒-︒=40︒,故答案为:40︒.【点睛】本题考查了平行线的性质与判定,熟练掌握平行线的性质与判定是解题的关键.5.(2023上·吉林长春·七年级统考期末)如图,AB CD ∥,点E 、F 分别在直线AB 、CD 上,点P 是AB 、CD 之间的一个动点.【感知】如图①,当点P 在线段EF 左侧时,若50AEP ∠=︒,70PFC ∠=︒,求EPF ∠的度数.分析:从图形上看,由于没有一条直线截AB 与CD ,所以无法直接运用平行线的性质,这时需要构造出“两条直线被第三条直线所截”的基本图形,过点P 作PG AB ∥,根据两条直线都和第三条直线平行,那么这两条直线也互相平行,可知PG CD ∥,进而求出EPF ∠的度数.【探究】如图②,当点P 在线段EF 右侧时,AEP ∠、EPF ∠、PFC ∠之间的数量关系为______.【答案】感知:120︒探究:360AEP EPF PFC ∠+∠+∠=︒【分析】本题考查了平行线的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.感知:过点P 作PG AB ∥,根据猪脚模型,即可解答;探究:过点P 作PG AB ∥,根据铅笔模型,即可解答.【详解】感知:解:过点P 作PG AB ∥,50EPG AEP ∴∠=∠=︒,AB CD ∥ ,PG CD ∴∥,70GPF PFC ∴∠=∠=︒,5070120EPF EPG GPF ∴∠=∠+∠=︒+︒=︒,EPF ∠∴的度数为120︒;探究:解:过点P 作PG AB ∥,180EPG AEP ∴∠+∠=︒,AB CD ∥ ,PG CD ∴∥,180GPF PFC ∴∠+∠=︒,360AEP EPG FPG PFC ∴∠+∠+∠+∠=︒,360AEP EPF PFC ∴∠+∠+∠=︒,【答案】(1)90;(2)①56︒②见解析;(3)12290∠+∠=︒,理由见解析.【分析】(1)利用角平分线的定义可得,112PAC BAC ∠=∠=∠,122PCA ∠=∠=性质,求解即可;(2)①根据垂直可得90ACP ∠=︒,从而得到ACD ∠的度数,利用平行线的性质得到求解;②利用角平分线的定义和平行线的性质,求解即可;(3)根据角平分线的定义可得22ACD ∠=∠,再根据平行线的性质可得ACD ∠+∠∠=∠+∠.(完成下面的填空部分)(1)【基础问题】如图1,试说明:AGD A D证明:过点G作直线MN AB∥,∵72∠=︒AFC ,∴18072108GAB ∠=︒-︒=∵AH 平分GAB ∠,∴1122HAB GAB ∠=∠=【考点二平行线中含两个拐点问题】例题:如图所示,AB CD ∥、BEFD 是AB 、CD 之间的一条折线,则∠1+∠2+∠3+∠4=_____.【答案】540︒【分析】连接BD ,根据平行线的性质由AB ∥CD 得到∠ABD +∠CDB =180°,根据四边形的内角和得到∠2+∠3+∠EBD +∠FBD =360°,于是得到结论.【详解】解:连接BD ,如图,∵AB ∥CD ,∴∠ABD +∠CDB =180°,∵∠2+∠3+∠EBD +∠FBD =360°,∴∠2+∠3+∠EBD +∠FDB +∠ABD +∠CDB =540°,即∠1+∠2+∠3+∠4=540°.故答案为:540°.【点睛】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.【变式训练】【答案】34︒/34度【分析】过E 作EG AB ∥BED BEG DEG ∠=∠+∠AB CD ∥ ,AB EG FH CD ∴∥∥∥ABE BEG ∴∠=∠,DEG ∠DFH CDF ∠=∠,BFH ∠【答案】②③④【分析】①过点E作EF∥AB,由平行线的性质即可得出结论;②过点点E作EF∥AB,由平行线的性质即可得出结论;③如图3,过点C作CD∥AB,延长AB到G,由平行线的性质可得出180④过点P作PF∥AB,由平行线的性质可得出∠A=∠CPF+∠APC=∠C+②如图2,过点E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥EF ∥CD ,∴∠A =∠AEF ,∠C =∠CEF ,∴∠A +∠C =∠CEF +∠AEF =∠AEC ,则②正确;③如图3,过点C 作CD ∥AB ,延长AB 到G ,∵AB ∥EF ,∴AB ∥EF ∥CD ,∴∠DCF =∠EFC ,由②的结论可知∠GBH +∠HCD =∠BHC ,又∵180GBH ABH =︒-∠∠,∠HCD =∠HCF -∠DCF∴180°-∠ABH +∠HCF -∠DCF =∠BHC ,∴180°-∠ABH +∠HCF -∠EFC =∠BHC ,∴180x αβγ︒-+-=∠∠∠∠,故③正确;④如图4,过点P 作PF ∥AB ,∵AB ∥CD ,∴AB ∥PF ∥CD ,∴∠A =∠APF ,∠C =∠CPF ,∴∠A =∠CPF +∠APC =∠C +∠APC ,则④正确;故答案为:②③④.【点睛】本题考查的是平行线的性质,根据题意作出辅助线是解答此题的关键.3.(23·24八年级上·广东江门·阶段练习)(1)如图①,如果AB CD ∥,求证:APC A C ∠=∠+∠.(2)如图②,AB CD ∥,根据上面的推理方法,直接写出A P Q C ∠+∠+∠+∠=___________.(3)如图③,AB CD ∥,若ABP x BPQ y PQC z QCD m ∠=∠=∠=∠=,,,,则m =___________(用x 、y 、z 表示).【答案】(1)见解析;(2)540︒;(3)x z y+-【分析】(1)过P 作PM AB ∥,利用平行线的判定与性质证明即可;(2)过点P 作PE AB ∥,过点Q 作QF AB ∥,根据平行线的性质即可求解;(3)过点P 作PN AB ∥,过点Q 作QM AB ∥,根据平行线的性质求解即可.【详解】(1)证明:过P 作PM AB ∥,如图,∴A APM ∠=∠,∵PM AB AB CD ∥,∥(已知),∴PM CD ∥,∴C CPM ∠=∠,∵APC APM CPM ∠=∠+∠,∴APC A C ∠=∠+∠;(2)如图,过点P 作PE AB ∥,过点Q 作QF AB ∥,∵AB DC ∥,PE AB ∥,QF AB ∥,∴AB PE QF CD ∥∥∥,∴180A APE ∠+∠=︒,180EPQ PQF ∠+∠=︒,=180FQC QCD ∠+∠︒,∴=540A APQ PQC C ∠+∠+∠+∠︒,故答案为:540︒;(3)过点P 作PE AB ∥,过点Q 作QF AB ∥,∵AB DC ∥,PE AB ∥,QF AB ∥,∴AB PE QF CD ∥∥∥,∴B BPE ∠=∠,QPE PQF ∠=∠,=FQC C ∠∠,∴=B PQC C BPQ ∠+∠∠+∠,即=x z m y ++,∴=m x z y +-,故答案为:x z y +-.【点睛】本题考查平行线的判定与性质,灵活运用平行线的性质和判定是解题的关键.4.(2023下·海南省直辖县级单位·七年级统考期末)如图1,AB CD ∥,点P 为直线AB CD ,间一点,点E ,F 分别是直线AB CD ,上的点,连接EP FP ,.(1)【证明推断】求证:EPF AEP CFP ∠=∠+∠,请完善下面的证明过程,并在()内填写依据.证明:过点P 作直线MN AB ∥,MN AB ∥ (已作),AEP EPN ∴∠=∠(______),又MN AB ∥ ,AB CD ∥(已知)∴______,(______)CFP FPN ∴∠=∠,AEP CFP EPN FPN ∴∠+∠=∠+∠=______.(2)如图2,若AEP ∠的平分线与PFC ∠的平分线交于点Q .①【类比探究】试猜想EPF ∠与EQF ∠之间的关系,并说明理由;②【结论运用】若240BEP DFP ∠+∠=︒,求EQF ∠的度数.(3)【拓展认知】如图3,直线AB CD ∥,点P ,H 为直线AB CD 、间的点,请直接写出AEP ∠,PHF ∠,EPH ∠,HFD ∠的数量关系:______.【答案】(1)两直线平行,内错角相等;MN CD ∥;平行于同一直线的两直线平行;EPF∠(3)过点P、H作m∥【点睛】本题考查平行的性质,角平分线的定义,添加合适的辅助线是解题关键.5.(2023上·重庆九龙坡·八年级重庆市育才中学校考开学考试)如图CD 上,点O 在直线AB 、CD 之间,且(1)求BEO OFD ∠+∠的值;(2)如图2,直线MN 分别交BEO ∠、OFC ∠的角平分线于点M 、N ,直接写出EMN ∠-(3)如图3,EG 在AEO ∠内,AEG m OEG ∠=∠;FH 在DFO ∠内,DFH m OFH ∠=∠,直线FH 分别于点M 、N ,且80FMN ENM ∠-∠=︒,直接写出m 的值.【答案】(1)280︒(2)50︒(2)解:如图2,过点M ,AB CD∥∴∥∥∥,AB MK NI CD∠∴∠=∠,KMN BEM EMK∴∠-∠=∠EMN FNM EMK(3)解:如图3,设直线FH∥,AB CD∴∠=∠,AHF DFHAHF EPH PEH∠=∠+∠=∴∠=∠+∠,DFH EPH AEG【点睛】本题考查了平行线的性质,角平分线的性质及三角形的外角性质,熟练掌握平行线的性质、角平分线的性质及三角形的外角性质并正确作出辅助线是解题关键.【考点三平行线中含多个拐点问题】例题:如图,直线AB CD ∥,则23415∠+∠+∠-∠-∠的度数为___________°.【答案】360【分析】过E 作EF ∥CD ,过G 作GH ∥CD ,过M 作MN ∥CD ,根据平行线的判定得出EF ∥GH ∥MN ∥AB ∥CD ,根据平行线的性质得出即可.【详解】过E 作EF ∥CD ,过G 作GH ∥CD ,过M 作MN ∥CD ,如图所示:∵CD ∥AB ,∴EF ∥GH ∥MN ∥AB ∥CD ,∴∠1=∠BEF ,∠GEF +∠EGH =180°,∠HGM +∠GMN =180°,∠NMC =∠5,∵∠2=∠BEF +∠GEF ,∠3=∠EGH +∠HGM ,∠4=∠GMN +∠NMC ,∴23415∠+∠+∠-∠-∠BEF GEF EGH HGM GMN NMC BEF NMC=∠+∠+∠+∠+∠+∠-∠-∠360GEF EGH HGM GMN =∠+∠+∠+∠=︒.故答案为:360.【点睛】本题考查了平行线的性质,能灵活运用平行线的性质进行推理是解此题的关键.【变式训练】【答案】88︒/88度【分析】本题考查平行线的性质、角平分线的定义等,解题的关键是会添加常用辅助线(即过2.(2023上·七年级课时练习)观察图形:已知a b ,在图1中,可得12∠+∠=_______________度,在图度……按照以上规律,则112n P P ∠+∠+∠++∠= _______________【答案】180,360,()1801n +.【详解】解:如图1,∵a b ,∴12180∠+∠= ;如图2,过1P 作11PQ a ,∵a b ,∴11PQ a b ,∴111180APQ ∠+∠=︒,112180BPQ ∠+∠=︒,∴112360APB ∠+∠+∠=;同理可得:112180(1)n P P n ∠+∠+∠++∠=+ ;故答案为:180,360,()1801n +.【点睛】本题考查平行线的性质,掌握两直线平行,同旁内角互补是解题的关键.3.如图:(1)如图1,1l ∥2l ,若65P ∠= ,计算并直接写出A B ∠∠+的大小.(2)如图2,在图1的基础上,将直线PB 变成折线PQB ,证明:180A B Q P ∠∠∠∠++=+(3)如图3,在图2的基础上,继续将且线BQ 变成折现BMQ .请你写出一条关于1∠、2345∠∠∠∠,,,的数量关系(无需证明直接写出)【答案】(1)65°(2)见解析(3)∠1+∠3+∠5=∠2+∠4【分析】(l )过P 作PE ∥l 1,根据平行线的性质和角的和差即可得到结论;(2)过点P 、Q 分别作l 1和l 2的平行线分别记为l 3和l 4,根据平行线的性质和等量代换即可得到结论;(3)分别过P ,Q ,M 作PC ∥l 1,QD ∥l 1,ME ∥l 1,根据平行线的性质和角的和差即可得到结论.(1)解:过P作PE∥l1∵l1∥l2∴PE∥l2∥l1∴∠A=∠1,∠B=∠2∴∠APB=∠1+∠2=∠A+∠B=65°即∠A+∠B=65°;(2)证明:过点P、Q分别作l1和l2的平行线分别记为l3和l4∵l1∥l2∴l1∥l2∥l3∥l4∵l1∥l3(已知)∴∠A=∠1(两直线平行,内错角相等)∵l3∥l4(已知)∴∠2=∠3(两直线平行,内错角相等)∵l2∥l4(已知)∴∠4+∠B=180°(两直线平行,同旁内角互补)∴∠A+∠3+∠4+∠B=∠1+∠2+180°又∵∠1+∠2=∠P,∠3+∠4=∠Q∴∠A+∠B+∠Q=∠P+180°.(3)解:如图,分别过P,Q,M作PC∥l1,QD∥l1,ME∥l1,∵12l l ∥,∴12////////PC QD ME l l ∴∠1=∠APC ,∠QPC =∠PQD ∴∠2=∠1+∠PQD ,∠4=∠∴∠2+∠4=∠1+∠PQD +∠5∴∠1+∠3+∠5=∠2+∠4.【点睛】本题考查了平行线的性质及平行公理的推论,熟练掌握平行线的性质是解题的关键.4.猜想说理:(1)如图,AB CD EF ∥∥形说明理由:拓展应用:(2)如图4,若AB CD ,则A C AFC ∠+∠+∠=(3)在图5中,若1n A B A D ∥,请你用含n 的代数式表示【答案】(1)A C AFC ∠∠∠+=;A C AFC ∠-∠∠=;∠(2)360(3)-1180n ⨯︒()【分析】(1)根据平行线的性质可直接得到结论;度数;通过前面的计算,找出规律.利用规律得到有n 个折点的结论;【详解】解:(1)如图1:A C AFC ∠∠∠+=,如图2:A C AFC ∠-∠∠=,如图3:C A AFC ∠-∠∠=,如图1说明理由如下:∵AB CD EF ∥∥,∴A AFE C EFC ∠∠∠∠=,=,∴A C AFE EFC ∠∠∠∠+=+,即A C AFC ∠∠∠+=;(2)如下图:过F 作FH AB ∥,∴180A AFH ∠∠︒+=,又∵AB CD ∥,∴CD FH ∥,∴180C CFH ∠∠︒+=,∴360A AFH C CFH ∠∠∠∠︒+++=,即360A C AFC ∠∠∠︒++=;故答案为:360;(3)如下图:AB CD ∥,过E 作EG AB ∥,过F 作FH AB ∥,∵AB CD ∥,∴AB EG FH CD ∥∥∥,∴180A AEG ∠∠︒+=,180GEF EFH ∠∠︒+=,180HFC C ∠∠︒+=,∴1803A AEG GEF EFH HFC C ∠∠∠∠∠∠︒⨯+++++=,即540A AEF EFC C ∠∠∠∠︒+++=;综上所述:由当平行线AB 与CD 间没有点的时候,180A C ∠∠︒+=,当A 、C 之间加一个折点F 时,2180A AFC C ∠∠∠⨯︒++=;当A 、C 之间加二个折点E 、F 时,则3180A AEF EFC C ∠∠∠∠⨯︒+++=;以此类推,如图5,1n A B A D ∥,当1A 、5A 之间加三个折点234A A A 、、时,则123454180A A A A A ∠+∠∠∠∠⨯︒+++=;…当1A 、n A 之间加n 个折点231n A A A -⋯、、时,则123-1180n A A A A n ∠∠∠⋯∠⨯︒+++=(),即1234n ∠∠∠∠∠+++++L 的度数是-1180n ⨯︒().【点睛】本题是探索型试题,主要考查了平行线的性质,根据题意作出辅助线,利用平行线的性质及三角形外角的性质等知识求解是解答此题的关键.【考点四平行线中在生活上含拐点问题】例题:(2023·广东深圳·校考模拟预测)“绿水青山,就是金山银山”在两个景区之间建立上的一段观光索道如图所示,索道支撑架均为互相平行(AM CN ∥),且每两个支撑架之间的索道均是直的,若65MAB ∠=︒,55NCB ∠=︒,则ABC ∠=()A .110︒B .115︒C .120︒D .125︒【答案】C 【分析】过点B 作∥BD AM ,则BD AM CN ∥∥,由平行线的性质可得65ABD MAB ∠=∠=︒,55CBD NCB ∠=∠=︒,由此进行计算即可得到答案.【详解】解:如图,过点B 作∥BD AM ,,AM CN ∥,A BD M CN ∴∥∥,65MAB ∠=︒,55NCB ∠=︒,65ABD MAB ∴∠=∠=︒,55CBD NCB ∠=∠=︒,6555120ABC ABD CBD ∴∠=∠+∠=︒+︒=︒,故选:C .【点睛】本题考查了平行线的性质,熟练掌握两直线平行,内错角相等是解此题的关键.【变式训练】1.(2023下·山西临汾·七年级统考期中)图①是某种青花瓷花瓶,图②是其抽象出来的简易轮廓图,已知AG EF ,AB DE ∥,若120DEF ∠=︒,则A ∠的度数为()A .60°B .65°C .70°D .75°【答案】A 【分析】连接CF ,根据AB CF ,AG EF 可得出CFE BAG ∠=∠,再由平行线的性质即可得出结论.【详解】解:连接CF ,延长AG 交CF 于点H ,作MN AG ,如图AB CF DE ∥∥,120DEF ∠=︒18012060CEF ∴∠=︒-︒=︒,AHF BAG∠=∠∵AG EF ,AG MN∥∴AHF MNF ∴∠=∠,EF MN∥60CFE FNM BAG ∴∠=∠=∠=︒.故选:A .【点睛】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线是解题的关键.2.(2023下·浙江台州·七年级统考期末)如图是路政工程车的工作示意图,工作篮底部AB 与支撑平台CD 平行.若130∠=︒,3150∠=︒,则2∠=()A .60︒B .50︒【答案】C 【分析】过2∠顶点作直线l 【详解】解:如图所示,过∠∵工作篮底部与支撑平台平行、直线∴直线l 支撑平台 工作篮底部,∴1430∠=∠=︒,53180∠+∠=︒∴230∠=︒,∴24560∠=∠+∠=︒,故选:C .【答案】100︒/100度【分析】过点D 作DG AB ∥,过点【详解】解:过点D 作DG ∥∵EF MN ⊥,∴90MFE ∠=︒,∵AB MN ∥,∴AB DG EH MN ∥∥∥,∴180ACD CDG ∠+∠=︒,DEH GDE ∠=∠,90HEF MFE ∠=∠=︒∵120,110DEF BCD ∠=︒∠=︒,∴30GDE DEH ︒∠=∠=,18011070CDG ∠︒=︒-︒=,∴100CDE CDG GDE =∠+∠=︒∠.故答案为:100︒【点睛】本题考查了平行线的判定和性质,解题的关键是过拐点构造平行线.。
七年级(下)数学重难点专题训练:平行线中拐点问题模型汇总(40道经典题)
七年级下数学重难点专题训练:平行线拐点问题模型汇总模型一:“M”型(猪蹄模型)例:1.(1)如图1,已知AB∥CD,求证:∠BED=∠1+∠2.(2)如图2,已知AB∥CD,写出∠1、∠EGH与∠2、∠BEG之间数量关系,并加以证明.(3)如图3,已知AB∥CD,直接写出∠1、∠3、∠5、与∠2、∠4、∠6之间的关系.【分析】(1)过点E作EF∥AB,依据平行线的性质,即可得到∠3+∠4=∠1+∠2,进而得出∠BED=∠1+∠2;(2)分别过点E、G作EF∥AB,GH∥AB,依据平行线的性质,即可得到∠1+∠5+∠6=∠3+∠4+∠2,进而得到∠1+∠EGH=∠2+∠BEG;(3)分别过平行线间的折点作AB的平行线,依据平行线的性质,即可得到∠1、∠3、∠5与∠2、∠4、∠6之间的关系.【解答】解:(1)证明:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠3=∠1,∠4=∠2,∴∠3+∠4=∠1+∠2,即∠BED=∠1+∠2;(2)∠1+∠EGH=∠2+∠BEG,理由如下:如图,分别过点E、G作EF∥AB,GH∥AB,∵AB∥CD,∴AB∥EF∥GH∥CD,∴∠1=∠3,∠4=∠5,∠6=∠2,∴∠1+∠5+∠6=∠3+∠4+∠2,即∠1+∠EGH=∠2+∠BEG;(3)由题可得,向左的角度数之和与向右的角度数之和相等,∴∠1、∠3、∠5与∠2、∠4、∠6之间的关系为:∠1+∠3+∠5=∠2+∠4+∠6.通关训练:2.如图,已知AB∥CD,∠B=30°,∠D=120°.(1)若∠E=60°,则∠F=.(2)请探索∠E与∠F之间满足何数量关系?并说明理由;(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P 的度数.3.如图,AB∥CD,点A,E,B,C不在同一条直线上.(1)如图1,求证:∠E+∠C﹣∠A=180°(2)如图2.直线F A,CP交于点P,且∠BAF=∠BAE,∠DCP=∠DCE.①试探究∠E与∠P的数量关系:②如图3,延长CE交P A于点Q,若AE∥PC,∠BAQ=α(0°<α<22.5°),则∠PQC的度数为(用含α的式子表示)4.如图,已知AB∥CD,现将直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F.(1)当直角三角形PMN所放位置如图①所示时,∠PFD与∠AEM存在怎样的数量关系?请说明理由.(2)当直角三角形PMN所放位置如图②所示时,请直接写出∠PFD与∠AEM之间存在的数量关系.(3)在(2)的条件下,若MN与CD交于点O,且∠AEM=40°,∠DON=20°,则∠N的度数为.5.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ 的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.6.请阅读小明同学在学习平行线这章知识点时的一段笔记,然后解决问题.小明:老师说在解决有关平行线的问题时,如果无法直接得到角的关系,就需要借助辅助线来帮助解答,今天老师介绍了一个“美味”的模型﹣﹣﹣“猪蹄模型”.即已知:如图1,AB∥CD,E为AB、CD之间一点,连接AE,CE得到∠AEC.求证:∠AEC=∠A+∠C.小明笔记上写出的证明过程如下:证明:过点E作EF∥AB,∴∠1=∠A.∵AB∥CD,EF∥AB,∴EF∥CD.∴∠2=∠C.∵∠AEC=∠1+∠2,∴∠AEC=∠A+∠C.请你利用“猪蹄模型”得到的结论或解题方法,完成下面的两个问题.(1)如图2,若AB∥CD,∠E=60°,则∠B+∠C+∠F=.(2)如图3,AB∥CD,BE平分∠ABG,CF平分∠DCG,∠G=∠H+27°,E、B、H 共线,F、C、H共线,则∠H=.7.如图1,已知AB∥CD,BP、DP分别平分∠ABD、∠BDC.(1)∠BPD=°;(2)如图2,将BD改为折线BED,BP、DP分别平分∠ABE、∠EDC,其余条件不变,若∠BED=140°,求∠BPD的度数;(3)如图3,若∠BEF=152°,∠EFD=136°,BP、DP分别平分∠ABE、∠CDF,其余条件不变,那么∠BPD=°.8.已知AB∥CD,点E在AB与CD之间.(1)图1中,试说明:∠BED=∠ABE+∠CDE;(2)图2中,∠ABE的平分线与∠CDE的平分线相交于点F,请利用(1)的结论说明:∠BED=2∠BFD.(3)图3中,∠ABE的平分线与∠CDE的平分线相交于点F,请直接写出∠BED与∠BFD之间的数量关系.9.已知:点E、点G分别在直线AB、直线CD上,点F在两直线外,连接EF、FG (1)如图1,AB∥CD,求证:∠AEF+∠FGC=∠EFG;(2)若直线AB与直线CD不平行,连接EG,且EG同时平分∠BEF和∠FGD如图2,请探索∠AEF、∠FGC、∠EFG之间的数量关系?并说明理由.10.如图,已知AB∥CD.(1)发现问题:若∠ABF=∠ABE,∠CDF=∠CDE,则∠F与∠E的等量关系为.(2)探究问题:若∠ABF=∠ABE,∠CDF=∠CDE.猜想:∠F与∠E的等量关系,并证明你的结论.(3)归纳问题:若∠ABF=∠ABE,∠CDF=∠CDE.直接写出∠F与∠E的等量关系.11.【引入】如图1,已知∠ABC+∠ECB=180°,∠P=∠Q,求证:∠1=∠2.【变式】如图2,AB∥CD,∠1=∠2,求证:∠F=∠M模型二:铅笔模型例:12.模型与应用.【模型】(1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°.【应用】(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为.如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为.(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1O与∠CM n M n﹣1的角平分线M n O 交于点O,若∠M1OM n=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n ﹣1的度数.(用含m、n的代数式表示)【分析】(1)过点E作EF∥CD,根据平行线的判定得出EF∥AB,根据平行线的性质得出即可;(2)过E作EQ∥CD,过F作FW∥CD,过G作GR∥CD,过H作HY∥CD,根据平行线的判定得出EQ∥FW∥GR∥HY∥AB∥CD,根据平行线的性质得出即可;(3)过点O作SR∥AB,根据平行线的性质得出即可;【解答】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°,∴∠1+∠2+∠MEN=360°;【应用】(2)过E作EQ∥CD,过F作FW∥CD,过G作GR∥CD,过H作HY∥CD,∵CD∥AB,∴EQ∥FW∥GR∥HY∥AB∥CD,∴∠1+∠MEQ=180°,∠QEF+∠EFW=180°,∠WFG+∠FGR=180°,∠RGH+∠GHY=180°,∠YHN+∠6=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=5×180°=900°,同理∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n﹣1),故答案为:900°,180°(n﹣1);(3)解:过点O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠C M n O=∠M n OR∴∠A M1O+∠CM n O=∠M1OR+∠M n OR,∴∠A M1O+∠CM n O=∠M1OM n=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠A M1O,同理∠CM n M n﹣1=2∠CM n O,∴∠AM1M2+∠CM n M n﹣1=2∠AM1O+2∠CM n O=2∠M1OM n=2m°,又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n﹣1+∠CM n M n﹣1=180°(n﹣1),∠2+∠3+∠4+∠5+∠6+…+∠n﹣1=(180n﹣180﹣2m)°.通关训练:13.如图1,MA1∥NA2,则∠A1+∠A2=度.如图2,MA1∥NA3,则∠A1+∠A2+∠A3=度.如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=度.如图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=度.从上述结论中你发现了什么规律?如图5,MA1∥NA n,则∠A1+∠A2+∠A3+…+∠A n=度.14.如图,AB∥CD,点F在CE上,∠EAF=∠BAF,若∠AEC=105°,∠DCE=115°,求∠AFC的度数.15.直线AB∥CD,E为直线AB、CD之间的一点,完成以下问题:(1)如图1,若∠B=15°,∠BED=90°,则∠D=;(2)如图2,若∠B=α,∠D=β,求出∠BED的度数(用a、β表示);(3)如图3,若∠B=α,∠C=β,则a、β与∠BEC之间有什么等量关系?请猜想证明.16.问题情境:如图1,AB∥CD,∠P AB=135°,∠PCD=125°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可求得∠APC的度数.请写出具体求解过程.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.17.如图,BN∥CD,点A是直线BN上一点,P是直线AB与直线CD之间一点,连接AP,PC.(1)求证:∠BAP+∠C=∠P;(2)过点C作CM平分∠PCD,过点C作CE⊥CM交∠NAP的角平分线于点E,过点P作PF∥AE交CM于点F,探索∠CFP和∠APC的数量关系,并说明理由;(3)在(2)的条件下,若2∠AEC﹣∠CPF=240°,Q是直线CD上一点,请直接写出∠PFQ和∠FQD的数量关系.模型三:钩型(臭脚模型和骨折模型)例:18.(1)如图1,AB∥CD,CF平分∠DCE,若∠DCF=30°,∠E=20°,求∠ABE 的度数;(2)如图2,已知AB∥CD,∠EBF=2∠ABF,CF平分∠DCE,若∠F的2倍与∠E的补角的和为190°,求∠ABE的度数;(3)如图3,若P是(2)中的射线BE上一点,G是CD上任一点,PQ平分∠BPG,PQ∥GN,GM平分∠DGP,若∠B=30°,求∠MGN的度数.【分析】根据平行线的判定与性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义解答即可.【解答】解:(1)过E作EM∥AB∵AB∥CD∴CD∥EM∥AB∴∠ABE=∠BEM∠DCE=∠CEM∵CF平分∠DCE∴∠DCE=2∠DCF∵∠DCF=30°∴∠DCE=60°∴∠CEM=60°又∵∠CEB=20°∴∠BEM=∠CEM﹣∠CEB=40°∴∠ABE=40°,(2)过E作EM∥AB,过F作FN∥AB∵∠EBF=2∠ABF∴设∠ABF=x,∠EBF=2x,则∠ABE=3x ∵CF平分∠DCE∴设∠DCF=∠ECF=y,则∠DCE=2y∵AB∥CD∴EM∥AB∥CD∴∠DCE=∠CEM=2y∠BEM=∠ABE=3x∴∠CEB=∠CEM﹣∠BEM=2y﹣3x同理∠CFB=y﹣x∵2∠CFB+(180°﹣∠CEB)=190°∴2(y﹣x)+180°﹣(2y﹣3x)=190°∴x=10°∴∠ABE=3x=30°,(3)过P作PL∥AB∵GM平分∠DGP∴设∠DGM=∠PGM=y,则∠DGP=2y ∵PQ平分∠BPG∴设∠BPQ=∠GPQ=x,则∠BPG=2x∵PQ∥QN∴∠PGN=∠GPQ=x∵AB∥CD∴PL∥AB∥CD∴∠GPL=∠DGP=2y∠BPL=∠ABP=30°∵∠BPL=∠GPL﹣∠BPG∴30°=2y﹣2x∴y﹣x=15°∵∠MGN=∠PGM﹣∠PGN=y﹣x∴∠MGN=15°.通关训练:19.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.20.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间.如图是某同学“抖空竹”时的一个瞬间,王聪把它抽象成如图的数学问题:已知AB∥CD,∠EAB=80°,∠ECD=110°,求∠E的度数.21.如图,BE∥CF,∠A=30°,∠C=80°,求∠B的度数.22.(1)(问题)如图1,若AB∥CD,∠AEP=40°,∠PFD=130°.求∠EPF的度数;(2)(问题迁移)如图2,AB∥CD,点P在AB的上方,问∠PEA,∠PFC,∠EPF之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知∠EPF=α,∠PEA的平分线和∠PFC的平分线交于点G,用含有α的式子表示∠G的度数.23.已知AB∥CD,点E在AB上,点G在CD上,点F在直线AB、CD之间,分别连接EF、FG,∠BEF+∠DGF=2∠EFG.(1)如图1,求∠EFG的度数;(2)如图2,若∠BEF的角平分线与FG的延长线交于点M,求证:∠AEF﹣2∠FME =60°;(3)如图3,已知点P在FG的延长线上,点K在CD上,点N在∠PGC内,分别连接NG,NK.若NK∥EF,∠PGN=2∠NGC,请直接写出∠AEF﹣∠GNK的值.24.同一平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB∥CD,点P在AB、CD内部,请写出∠BPD、∠B、∠D之间的数量关系(不必说明理由);(2)如图2,将直线AB绕点B逆时针方向转一定角度交直线CD于点Q,利用(1)中的结论求∠BPD、∠B、∠D、∠BQD之间有何数量关系?并证明你的结论;(3)如图3,设BF交AC于点M,AE交DF于点N.已知∠AMB=140°,∠ANF=105°,利用(2)中的结论直接写出∠B+∠E+∠F的度数和∠A比∠F大多少度.25.综合探究:已知,AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG =40°,求∠MGN+∠MPN的度数.26.已知直线AB∥CD.(1)如图1,请直接写出∠BME、∠E、∠END的数量关系为;(2)如图2,∠ABM=∠MBE,∠CDN=∠NDE,直线MB、ND交于点F,若∠F =10°,求∠E的度数;(3)如图3,∠BME的角平分线所在的直线与∠CNE的角平分线相交于点P,试探究∠P与∠E之间的数量关系,并证明你的结论.27.如图,已知直线AB∥CD.(1)在图1中,点M在直线AB上,点N在直线CD上,∠BME、∠E、∠END的数量关系是;(不需证明)(2)如图2,若GN平分∠CNE,FE平分∠AMG,且∠G+∠E=60°,求∠AMG的度数;(3)如图3,直线BM平分∠ABE,直线DN平分∠CDE相交于点F,求∠F:∠E的值;(4)若∠ABM=∠MBE,∠CDN=∠NDE,则=.(用含有n的代数式表示)28.如图1所示,AB∥CD,E为直线CD下方一点,BF平分∠ABE.(1)求证:∠ABE+∠C﹣∠E=180°.(2)如图2,EG平分∠BEC,过点B作BH∥GE,求∠FBH与∠C之间的数量关系.(3)如图3,CN平分∠ECD,若BF的反向延长线和CN的反向延长线交于点M,且∠E+∠M=130°,请直接写出∠E的度数.29.如图,平面内的直线有相交和平行两种位置关系(1)如图①,已知AB∥CD,求证:∠BPD=∠B+∠D;(提示;可过点P作PO∥AB)(2)如图②,已知AB∥CD,求证:∠B=∠P+∠D.30.如图,AB∥CD,分别探讨下面四个图形中∠APC与∠A,∠C的关系,请你从所得的关系中任意选取一个加以说明.图(1)结论:;图(2)结论:;图(3)结论:;图(4)结论:.你准备证明的是图,请在下面写出证明过程.31.如图1,将两根笔直的细木条MN,EF用图钉固定并平行摆放,将一根橡皮筋拉直后用图钉分别周定在MN,EF上,橡皮筋的两端点分别记为点A,点B.(1)图1中,点P在AB上,若∠1=110°,则∠2=°;(2)P为橡皮筋上一点,用皮筋的弹性拉动橡皮筋,使A,B,P三点不在同一直线,后用图固定点P.①如图2,若点P在两根细木条所在直线之间,且∠1+∠2=90°,试判断线段AP与BP所在直线的位置关系,并说明理由;②如图3,若点P在两根细木条所在直线的同侧,且∠1+∠2=90°,∠1=31°,试求∠APB的度数;(3)如图4,P1,P2两点在两根细木条所在直线之间,拉动橡皮筋并固定,若∠1+∠2=90°,则∠AP1P2+∠BP1P2=°.32.阅读下面材料:小明遇到这样一个问题:如图1,AC∥BD,点E为直线AC上方一点,连接CE、DE,猜想∠C、∠D、∠E的数量关系,并证明.小明发现,可以过点E作MN∥AC来解决问题,如图2,请你完成解答;用学过的知识或参考小明的方法,解决下面的问题:如图3,AB∥CD,P是平面内一点,连接AP、CP,使AP∥BD,∠APC=100°,BM、CM分别平分∠ABD、∠DCP交于点M,求∠M的度数.33.如图,已知直线MB∥ND,A、C分别为MB、ND上的点,E为直线MB、ND外的一点,连接AE、EC.(1)E在直线MB的上方(如图1),求证:∠AEC+∠ECD=∠EAB;(2)若∠MAE与∠NCE两角的角平分线交于F点,请在图2中将图形补充完整,并直接写出∠AEC与∠AFC之间的数量关系;(3)若∠EAB的角平分线的反向延长线与∠NCE的角平分线交于G点(如图3),且∠AGC比∠AEC的倍多50°,求∠AEC的度数.34.已知直线AB∥CD,E为直线AB、CD外的一点,连接AE、EC.(1)E在直线AB的上方(如图1),求证:∠AEC+∠EAB=∠ECD;(2)∠BAF=2∠EAF,∠DCF=2∠ECF(如图2),求证:∠AEC=∠AFC;(3)若E在直线AB、CD之间,在(2)条件下(如图3),且∠AFC比∠AEC的倍少40°,则∠AEC的度数为(不用写出解答过程).35.如图:已知AB∥DE,若∠ABC=60°,∠CDE=140°,求∠BCD的度数.36.如图,已知AB∥CD,点E在直线AB,CD之间.(1)求证:∠AEC=∠BAE+∠ECD;(2)若AH平分∠BAE,将线段CE沿CD平移至FG.①如图2,若∠AEC=90°,HF平分∠DFG,求∠AHF的度数;②如图3,若HF平分∠CFG,试判断∠AHF与∠AEC的数量关系并说明理由.37.如图,平面内有两条直线同AB、CD,且AB∥CD,P为一动点.(1)当点P移动到如图(1)的位置时,这时∠APC与∠A,∠C有怎样的关系?并说明理由;(2)当点P移动到如图(2)的位置时,这时∠APC与∠A,∠C又有怎样的关系?说明你的理由;(3)当点P移动到如图(3)的位置时,直接写出∠APC与∠A,∠C的关系式;(4)当点P移动到如图(4)的位置时,直接写出∠APC与∠A,∠C的关系式.38.如图所示,已知AB∥CD,分别探讨下面四个图形中,∠APC,∠P AB与∠PCD的关系.39.已知AB∥CD,点P为平面内一点,连接AP、CP.(1)探究:如图(1)∠P AB=145°,∠PCD=135°,则∠APC的度数是;如图(2)∠P AB=45°,∠PCD=60°,则∠APC的度数是.(2)在图2中试探究∠APC,∠P AB,∠PCD之间的数量关系,并说明理由.(3)拓展探究:当点P在直线AB,CD外,如图(3)、(4)所示的位置时,请分别直接写出∠APC,∠P AB,∠PCD之间的数量关系.40.探究:(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;(3)若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;(4)若将E点移至图c所示位置,情况又如何?(5)在图d中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?(6)在图e中,若AB∥CD,又得到什么结论?七年级下数学重难点专题训练:平行线拐点问题模型汇总1.(1)如图1,已知AB∥CD,求证:∠BED=∠1+∠2.(2)如图2,已知AB∥CD,写出∠1、∠EGH与∠2、∠BEG之间数量关系,并加以证明.(3)如图3,已知AB∥CD,直接写出∠1、∠3、∠5、与∠2、∠4、∠6之间的关系.【分析】(1)过点E作EF∥AB,依据平行线的性质,即可得到∠3+∠4=∠1+∠2,进而得出∠BED=∠1+∠2;(2)分别过点E、G作EF∥AB,GH∥AB,依据平行线的性质,即可得到∠1+∠5+∠6=∠3+∠4+∠2,进而得到∠1+∠EGH=∠2+∠BEG;(3)分别过平行线间的折点作AB的平行线,依据平行线的性质,即可得到∠1、∠3、∠5与∠2、∠4、∠6之间的关系.【解答】解:(1)证明:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠3=∠1,∠4=∠2,∴∠3+∠4=∠1+∠2,即∠BED=∠1+∠2;(2)∠1+∠EGH=∠2+∠BEG,理由如下:如图,分别过点E、G作EF∥AB,GH∥AB,∵AB∥CD,∴AB∥EF∥GH∥CD,∴∠1=∠3,∠4=∠5,∠6=∠2,∴∠1+∠5+∠6=∠3+∠4+∠2,即∠1+∠EGH=∠2+∠BEG;(3)由题可得,向左的角度数之和与向右的角度数之和相等,∴∠1、∠3、∠5与∠2、∠4、∠6之间的关系为:∠1+∠3+∠5=∠2+∠4+∠6.2.如图,已知AB∥CD,∠B=30°,∠D=120°.(1)若∠E=60°,则∠F=90°.(2)请探索∠E与∠F之间满足何数量关系?并说明理由;(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P 的度数.【分析】(1)分别过点E,F作EM∥AB,FN∥AB,根据平行线的性质得到∠B=∠BEM =30°,∠MEF=∠EFN,∠D+∠DFN=180°,代入数据即可得到结论;(2)根据平行线的性质得到∠B=∠BEM=30°,∠MEF=∠EFN,由AB∥CD,AB∥FN,得到CD∥FN,根据平行线的性质得到∠D+∠DFN=180°,于是得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,则∠EFD=(2x+30)°,根据角平分线的定义得到∠PEF=∠BEF=x°,∠EFG=∠EFD=(x+15)°,根据平行线的性质得到∠PEF=∠EFH=x°,∠P=∠HFG,于是得到结论.【解答】解:(1)如图1,分别过点E,F作EM∥AB,FN∥AB,∴EM∥AB∥FN,∴∠B=∠BEM=30°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN,∴∠D+∠DFN=180°,又∵∠D=120°,∴∠DFN=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠MEF+60°∴∠EFD=∠BEF+30°=90°;故答案为:90°;(2)如图1,分别过点E,F作EM∥AB,FN∥AB,∴EM∥AB∥FN,∴∠B=∠BEM=30°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN,∴∠D+∠DFN=180°,又∵∠D=120°,∴∠DFN=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠MEF+60°,∴∠EFD=∠BEF+30°;(3)如图2,过点F作FH∥EP,由(2)知,∠EFD=∠BEF+30°,设∠BEF=2x°,则∠EFD=(2x+30)°,∵EP平分∠BEF,GF平分∠EFD,∴∠PEF=∠BEF=x°,∠EFG=∠EFD=(x+15)°,∵FH∥EP,∴∠PEF=∠EFH=x°,∠P=∠HFG,∵∠HFG=∠EFG﹣∠EFH=15°,∴∠P=15°.3.如图,AB∥CD,点A,E,B,C不在同一条直线上.(1)如图1,求证:∠E+∠C﹣∠A=180°(2)如图2.直线F A,CP交于点P,且∠BAF=∠BAE,∠DCP=∠DCE.①试探究∠E与∠P的数量关系:②如图3,延长CE交P A于点Q,若AE∥PC,∠BAQ=α(0°<α<22.5°),则∠PQC的度数为180°﹣8α(用含α的式子表示)【分析】(1)如图1,过E作EF∥AB,根据平行线的性质即可得到结论;(2)①设∠BAF=x,∠BAE=3x,∠DCP=y,∠DCE=3y,由(1)知,∠E=180°﹣∠C+∠A=180°﹣3(y﹣x),如图2,过P作PG∥CD,根据平行线的性质即可得到结论;②如图3,过P作PG∥CD,根据平行线的性质即可得到结论.【解答】解:(1)如图1,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠AEF=∠A,∠C+∠FEC=180°,∴∠E=∠AEF+∠FEC=∠A+180°﹣∠C,即∠E+∠C﹣∠A=180°;(2)①∵∠BAF=∠BAE,∠DCP=∠DCE,∴设∠BAF=x,∠BAE=3x,∠DCP=y,∠DCE=3y,由(1)知,∠E=180°﹣∠C+∠A=180°﹣3(y﹣x),如图2,过P作PG∥CD,∵AB∥CD,∴AB∥PG,∴∠GP A=∠BAF=x,∠GPC=∠PCD=y,∴∠APC=y﹣x,即∠E=180°﹣3∠P;②如图3,过P作PG∥CD,∵∠BAQ=α,∴∠QAE=2α,∵AE∥PC,∴∠QAE=∠APC=2α,由①知,∠AEC=180°﹣3∠APC=180°﹣6α,∴∠PQC=∠AEC﹣∠QAE=180°﹣6α﹣2α=180°﹣8α,故答案为:180°﹣8α.4.如图,已知AB∥CD,现将直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F.(1)当直角三角形PMN所放位置如图①所示时,∠PFD与∠AEM存在怎样的数量关系?请说明理由.(2)当直角三角形PMN所放位置如图②所示时,请直接写出∠PFD与∠AEM之间存在的数量关系.(3)在(2)的条件下,若MN与CD交于点O,且∠AEM=40°,∠DON=20°,则∠N的度数为30°.【分析】(1)作PH∥AB,根据平行线的性质得到∠AEM=∠HPM,∠PFD=∠HPN,根据∠MPN=90°解答;(2)根据平行线的性质得到∠PFD+∠BHN=180°,根据∠P=90°解答;(3)根据对顶角相等,直角三角形的性质,平行线的性质以及三角形外角的性质计算即可求解.【解答】解:(1)如图①,作PH∥AB,则∠AEM=∠HPM,∵AB∥CD,PH∥AB,∴PH∥CD,∴∠PFD=∠HPN,∵∠MPN=90°,∴∠PFD+∠AEM=90°,故答案为:∠PFD+∠AEM=90°;(2)猜想:∠PFD﹣∠AEM=90°;理由如下:∵AB∥CD,∴∠PFD+∠BHN=180°,∵∠BHN=∠PHE,∴∠PFD+∠PHE=180°,∵∠P=90°,∴∠PHE+∠PEB=90°,∵∠PEB=∠AEM,∴∠PHE+∠AEM=90°,∴∠PFD﹣∠AEM=90°;(3)∵∠P=90°,∠PEB=∠AEM=40°,∴∠PHE=90°﹣∠PEB=90°﹣40°=50°,∵AB∥CD,∴∠HFO=∠PHE=50°,∵∠DON=20°,∴∠N=∠HFO﹣∠DON=30°.故答案为:30°.5.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:∠BME=∠MEN﹣∠END;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:∠BMF=∠MFN+∠FND;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ 的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.【分析】(1)过E作EH∥AB,易得EH∥AB∥CD,根据平行线的性质可求解;过F作FH∥AB,易得FH∥AB∥CD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF﹣∠FND=180°,可求解∠BMF=60°,进而可求解;(3)根据培训心得性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解.【解答】解:(1)过E作EH∥AB,如图1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.6.请阅读小明同学在学习平行线这章知识点时的一段笔记,然后解决问题.小明:老师说在解决有关平行线的问题时,如果无法直接得到角的关系,就需要借助辅助线来帮助解答,今天老师介绍了一个“美味”的模型﹣﹣﹣“猪蹄模型”.即已知:如图1,AB∥CD,E为AB、CD之间一点,连接AE,CE得到∠AEC.求证:∠AEC=∠A+∠C.小明笔记上写出的证明过程如下:证明:过点E作EF∥AB,∴∠1=∠A.∵AB∥CD,EF∥AB,∴EF∥CD.∴∠2=∠C.∵∠AEC=∠1+∠2,∴∠AEC=∠A+∠C.请你利用“猪蹄模型”得到的结论或解题方法,完成下面的两个问题.(1)如图2,若AB∥CD,∠E=60°,则∠B+∠C+∠F=240°.(2)如图3,AB∥CD,BE平分∠ABG,CF平分∠DCG,∠G=∠H+27°,E、B、H 共线,F、C、H共线,则∠H=51°.【分析】(1)由EM∥AB,FN∥EM,FN∥CD分别得∠1=∠B,∠2=∠3,∠4+∠C=180°,由角的和差计算∠B+∠C+∠F的度数为240°;(2)由角平分线得∴∠ABG=2∠1,∠DCG=2∠4,根据直线EF∥AB,EF∥CD得2∠1+∠7=180°,2∠4+∠8=180°,等式的性质得2(∠1+∠4)=∠BGC+180°;直线MN∥AB,MN∥CD得∠1=∠5,∠4=∠6,等量代换2(∠5+∠6)=∠BGC+180°,又因∠BGC=∠BHC+27°求得∠BHC的度数为51°.【解答】解:(1)过点E、F分别作EM∥AB,FN∥AB,如图2所示:∵EM∥AB,∴∠1=∠B,又∵FN∥AB,∴FN∥EM,∴∠2=∠3,又∵AB∥CD,∴FN∥CD,∴∠4+∠C=180°,又∵∠BEF=∠1+∠2,∠EFC=∠3+∠4,∠BEF=60°∴∠B+∠EFC+∠C=∠1+∠3+∠4+∠C=(∠1+∠2)+(∠4+∠C)=60°+180°=240°;(2)过点G、H作EF∥AB,MN∥AB,如图3所示:∵BE平分∠ABG,CF平分∠DCG,∴∠ABG=2∠1,∠DCG=2∠4,又∵EF∥AB,∴2∠1+∠7=180°,又∵AB∥CD,∴EF∥CD,∴2∠4+∠8=180°,∴∠7+∠8=360°﹣2(∠1+∠4),又∵∠7+∠8+∠BGC=180°,∴2(∠1+∠4)=∠BGC+180°,又∵MN∥AB,∴∠1=∠5,又∵AB∥CD,∴MN∥CD,∴∠4=∠6,∴2(∠5+∠6)=∠BGC+180°,又∵∠5+∠6+∠BHC=180°,∴∠BGC+2∠BHC=180°,又∠BGC=∠BHC+27°,∴3∠BHC+27°=180°,∴∠BHC=51°;故答案为:240°,51°.7.如图1,已知AB∥CD,BP、DP分别平分∠ABD、∠BDC.(1)∠BPD=90°°;(2)如图2,将BD改为折线BED,BP、DP分别平分∠ABE、∠EDC,其余条件不变,若∠BED=140°,求∠BPD的度数;(3)如图3,若∠BEF=152°,∠EFD=136°,BP、DP分别平分∠ABE、∠CDF,其余条件不变,那么∠BPD=54°.【分析】(1)先根据平行线的性质得出∠ABD+∠BDC=∠180°,再根据角平分线的定义得出∠PBD+∠PDB的度数,由三角形内角和定理即可得出结论;(2)连接BD,先求出∠EBD+∠EDB的度数,再由平行线的性质得出∠ABD+∠CDB的度数,由角平分线的性质得出∠PBE+∠PDE的度数,根据∠BPD=180°﹣∠PBE﹣PDE﹣∠EBD﹣∠EDB即可得出结论.(3)连接BD,先求出∠EBD+∠FDB的度数,再求出∠PBE+∠PDF的度数,再利用三角形内角和定理即可解决.【解答】解:(1)∵AB∥CD,∴∠ABD+∠BDC=∠180°,∵BP、DP分别平分∠ABD、∠BDC,∴∠PBD+∠PDB=90°,∴∠BPD=180°﹣90°=90°.(2)连接BD,∵∠BED=140°,∴∠EBD+∠EDB=40°,∵AB∥CD,∴∠ABD+∠CDB=180°,∵BP、DP分别平分∠ABE、∠EDC,∴∠PBE=∠ABE,∠PDE=∠CDE,∴∠PBE+∠PDE=×(180°﹣40°)=70°,∴∠BPD=180°﹣∠PBE﹣PDE﹣∠EBD﹣∠EDB=70°.(3)连接BD,∵∠BEF=152°,∠EFD=136°,∴∠EBD+∠FDB=360°﹣(152°+136°)=72°,∵BP、DP分别平分∠ABE、∠FDC,∴∠PBE=∠ABE,∠PDF=∠CDF,∴∠PBE+∠PDF=×(180°﹣72°)=54°,∴∠BPD=180°﹣(∠EBD+∠FDB)﹣(∠PBE+∠PDF)=54°.故答案为:90;54°.8.已知AB∥CD,点E在AB与CD之间.(1)图1中,试说明:∠BED=∠ABE+∠CDE;(2)图2中,∠ABE的平分线与∠CDE的平分线相交于点F,请利用(1)的结论说明:∠BED=2∠BFD.(3)图3中,∠ABE的平分线与∠CDE的平分线相交于点F,请直接写出∠BED与∠BFD之间的数量关系.【分析】(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE;(2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD;(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE =180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.【解答】解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°﹣2∠BFD.图3中,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°﹣(∠ABE+∠CDE),即∠BED=360°﹣(∠ABE+∠CDE),因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°﹣2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BFD=∠ABF+∠CDF,所以∠BED=360°﹣2∠BFD.9.已知:点E、点G分别在直线AB、直线CD上,点F在两直线外,连接EF、FG (1)如图1,AB∥CD,求证:∠AEF+∠FGC=∠EFG;(2)若直线AB与直线CD不平行,连接EG,且EG同时平分∠BEF和∠FGD如图2,请探索∠AEF、∠FGC、∠EFG之间的数量关系?并说明理由.【分析】(1)过F作FQ∥AB,利用平行线的性质,即可得到∠AEF+∠FGC=∠EFQ+∠GFQ=∠EFG;(2)延长AB,CD,交于点P,依据∠FEP=180°﹣∠AEF,∠FGP=180°﹣∠FGC,即可得到∠FEP+∠FGP=360°﹣(∠AEF+∠FGC),再根据四边形内角和,即可得到四边形EFGP中,∠F+∠P=360°﹣(∠FEP+∠FGP)=∠AEF+∠FGC,进而得出结论.【解答】解:(1)如图1,过F作FQ∥AB,∵AB∥CD,∴FQ∥CD,∴∠AEF=∠QFE,∠FGC=∠GFQ,∴∠AEF+∠FGC=∠EFQ+∠GFQ=∠EFG;(2)如图2,延长AB,CD,交于点P,∵EG同时平分∠BEF和∠FGD,∴∠FEG=∠PEG,∠FGE=∠PGE,∴∠F=∠P,∵∠FEP=180°﹣∠AEF,∠FGP=180°﹣∠FGC,∴∠FEP+∠FGP=360°﹣(∠AEF+∠FGC),∵四边形EFGP中,∠F+∠P=360°﹣(∠FEP+∠FGP)=360°﹣[360°﹣(∠AEF+∠FGC)]=∠AEF+∠FGC,即2∠EFG=∠AEF+∠FGC.10.如图,已知AB∥CD.(1)发现问题:若∠ABF=∠ABE,∠CDF=∠CDE,则∠F与∠E的等量关系为∠BED=2∠BFD.(2)探究问题:若∠ABF=∠ABE,∠CDF=∠CDE.猜想:∠F与∠E的等量关系,并证明你的结论.(3)归纳问题:若∠ABF=∠ABE,∠CDF=∠CDE.直接写出∠F与∠E的等量关系.【分析】(1)首先连接FE并延长,易得∠BED=∠BFD+∠EBF+∠EDF,又由BF、DF 分别平分∠ABE、∠CDE,以及(1)的结论,易证得∠BED=2∠BFD;(2)过点E、F分别作AB的平行线EG、FH,由平行线的传递性可得AB∥EG∥FH∥CD,根据平行线的性质得到∠ABF=∠BFH,∠CDF=∠DFH,根据已知条件即可得到结论.(3)由(1)(2)即可得出∠F与∠E的等量关系.【解答】解:(1)∠BED=2∠BFD.证明:连接FE并延长,∵∠BEG=∠BFE+∠EBF,∠DEG=∠DFE+∠EDF,∴∠BED=∠BFD+∠EBF+∠EDF,∵BF、DF分别平分∠ABE、∠CDE,∴∠ABE+∠CDE=2(∠EBF+∠EDF),∵∠BED=∠ABE+∠CDE,∴∠EBF+∠EDF=∠BED,∴∠BED=∠BFD+∠BED,∴∠BED=2∠BFD;(2)过点E、F分别作AB的平行线EG、FH,由平行线的传递性可得AB∥EG∥FH∥CD,∵AB∥FH,∴∠ABF=∠BFH,∵FH∥CD,∴∠CDF=∠DFH,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF;同理可得∠BED=∠DEG+∠BEG=∠ABE+∠CDE;∵∠BFD=∠DFH+∠BFH=∠CDF+∠ABF=(∠ABE+∠CDE)=∠BED,∴∠BED=3∠BFD.(3)由(1)(2)可得∠BED=n∠BFD.11.【引入】如图1,已知∠ABC+∠ECB=180°,∠P=∠Q,求证:∠1=∠2.【变式】如图2,AB∥CD,∠1=∠2,求证:∠F=∠M【分析】【引入】先判定AB∥DE,则∠ABC=∠BCD,再由∠P=∠Q,则∠PBC=∠QCB,从而得出∠1=∠2.【变式】延长EF交CD于G,利用平行线的性质得出∠1=∠EGD,进而得出∠EGD=∠2,再利用平行线的判定方法得出答案.【解答】【引入】证明:∵∠ABC+∠ECB=180°,∴AB∥DE,∴∠ABC=∠BCD,∵∠P=∠Q,∴PB∥CQ,∴∠PBC=∠BCQ,∵∠1=∠ABC﹣∠PBC,∠2=∠BCD﹣∠BCQ,∴∠1=∠2.【变式】证明:延长EF交CD于G,如图:∵AB∥CD,∴∠1=∠EGD∵∠1=∠2,∴∠EGD=∠2∴EF∥MN,∴∠EFM=∠M.12.模型与应用.【模型】(1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°.【应用】(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为900°.如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为180°(n﹣1).(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1O与∠CM n M n﹣1的角平分线M n O 交于点O,若∠M1OM n=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n ﹣1的度数.(用含m、n的代数式表示)【分析】(1)过点E作EF∥CD,根据平行线的判定得出EF∥AB,根据平行线的性质得出即可;(2)过E作EQ∥CD,过F作FW∥CD,过G作GR∥CD,过H作HY∥CD,根据平行线的判定得出EQ∥FW∥GR∥HY∥AB∥CD,根据平行线的性质得出即可;(3)过点O作SR∥AB,根据平行线的性质得出即可;【解答】(1)证明:过点E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°,∴∠1+∠2+∠MEN=360°;【应用】(2)过E作EQ∥CD,过F作FW∥CD,过G作GR∥CD,过H作HY∥CD,∵CD∥AB,∴EQ∥FW∥GR∥HY∥AB∥CD,∴∠1+∠MEQ=180°,∠QEF+∠EFW=180°,∠WFG+∠FGR=180°,∠RGH+∠GHY=180°,∠YHN+∠6=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=5×180°=900°,同理∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n﹣1),故答案为:900°,180°(n﹣1);(3)解:过点O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠C M n O=∠M n OR∴∠A M1O+∠CM n O=∠M1OR+∠M n OR,∴∠A M1O+∠CM n O=∠M1OM n=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠A M1O,同理∠CM n M n﹣1=2∠CM n O,∴∠AM1M2+∠CM n M n﹣1=2∠AM1O+2∠CM n O=2∠M1OM n=2m°,又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n﹣1+∠CM n M n﹣1=180°(n﹣1),∠2+∠3+∠4+∠5+∠6+…+∠n﹣1=(180n﹣180﹣2m)°.13.如图1,MA1∥NA2,则∠A1+∠A2=180度.如图2,MA1∥NA3,则∠A1+∠A2+∠A3=360度.如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=540度.如图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=720度.从上述结论中你发现了什么规律?如图5,MA1∥NA n,则∠A1+∠A2+∠A3+…+∠A n=180(n﹣1)度.【分析】首先过各点作MA1的平行线,由MA1∥NA2,可得各线平行,根据两直线平行,同旁内角互补,即可求得答案,注意找到规律:MA1∥NA n,则∠A1+∠A2+∠A3+…+∠A n=180(n﹣1)度是关键.【解答】解:如图1,∵MA1∥NA2,∴∠A1+∠A2=180°.如图2,过点A2作A2C1∥A1M,∵MA1∥NA3,∴A2C1∥A1M∥NA3,∴∠A1+∠A1A2C1=180°,∠C1A2A3+∠A3=180°,∴∠A1+∠A2+∠A3=360°.如图3,过点A2作A2C1∥A1M,过点A3作A3C2∥A1M,∵MA1∥NA3,∴A2C1∥A3C2∥A1M∥NA3,∴∠A1+∠A1A2C1=180°,∠C1A2A3+∠A2A3C2=180°,∠C2A3A4+∠A4=180°,∴∠A1+∠A2+∠A3+∠A4=540°.如图4,过点A2作A2C1∥A1M,过点A3作A3C2∥A1M,过点A4作A4C3∥A1M,∵MA1∥NA5,∴A2C1∥A3C2∥A4C3∥NA5,∴∠A1+∠A1A2C1=180°,∠C1A2A3+∠A2A3C2=180°,∠C2A3A4+∠A3A4C3=180°∠C3A4A5+∠A5=180°,∴∠A1+∠A2+∠A3+∠A4+∠A5=720°.从上述结论中你发现了规律:如图5,MA1∥NA n,则∠A1+∠A2+∠A3+…+∠A n=180(n ﹣1)度.故答案为:180,360,540,720,180(n﹣1).14.如图,AB∥CD,点F在CE上,∠EAF=∠BAF,若∠AEC=105°,∠DCE=115°,求∠AFC的度数.【分析】过点E作EM∥AB,由平行线的性质得到∠MEC=65°,从而得到∠AEM=40°,再根据平行线的性质得到∠EAB=180°﹣∠AEM=140°,进而得到∠EAF=35°,最后根据三角形的外角定理即可求解.【解答】解:如图,过点E作EM∥AB,∵AB∥CD,∴EM∥CD,∴∠MEC+∠DCE=180°,∵∠DCE=115°,∴∠MEC=180°﹣115°=65°,∵∠AEC=∠MEC+∠AEM,∠AEC=105°,∴∠AEM=40°,∵EM∥AB,∴∠AEM+∠EAB=180°,∴∠EAB=180°﹣∠AEM=140°,∵∠EAB=∠EAF+∠BAF,∠EAF=∠BAF,∴∠EAF+3∠EAF=140°,∴∠EAF=35°,∴∠AFC=∠EAF+∠AEC=35°+105°=140°.15.直线AB∥CD,E为直线AB、CD之间的一点,完成以下问题:(1)如图1,若∠B=15°,∠BED=90°,则∠D=75°;(2)如图2,若∠B=α,∠D=β,求出∠BED的度数(用a、β表示);(3)如图3,若∠B=α,∠C=β,则a、β与∠BEC之间有什么等量关系?请猜想证明.【分析】(1)过E作EF∥AB,根据两直线平行,内错角相等进行计算;(2)过E作EF∥AB,根据两直线平行,同旁内角互补进行计算;(3)过点E作EF∥AB,根据两直线平行,内错角相等,以及两直线平行,同旁内角互补进行计算.【解答】解:(1)过E作EF∥AB,∵AB∥CD,∴EF∥CD,∵∠B=15°,∴∠BEF=15°,又∵∠BED=90°,∴∠DEF=75°,∵EF∥CD,∴∠D=75°,故答案为:75°;(2)过E作EF∥AB,∵AB∥CD,∴EF∥CD,∴∠B+∠BEF+∠DEF+∠D=360°,又∵∠B=α,∠D=β,∴∠BED=∠BEF+∠DEF=360°﹣α﹣β,故答案为:∠BED=360°﹣α﹣β;(3)猜想:∠BEC=180°﹣α+β.证明:过点E作EF∥AB,则∠BEF=180°﹣∠B=180°﹣α,∵AB∥EF,AB∥CD,∴EF∥CD,∴∠CEF=∠C=β,∴∠BEC=∠BEF+∠CEF=180°﹣α+β.16.问题情境:如图1,AB∥CD,∠P AB=135°,∠PCD=125°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可求得∠APC的度数.请写出具体求解过程.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.【分析】过P作PE∥AB,构造同旁内角,通过平行线性质,可得∠APC=45°+55°=100°.(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.【解答】解:过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=180°﹣∠A=45°,∠CPE=180°﹣∠C=55°,∴∠APC=45°+55°=100°;(1)∠CPD=∠α+∠β,理由如下:。
平行线中的拐点问题经典实用
•平行线中的拐点问题
蓦然回首
对自己说,你有什么收获? 对同学说,你有什么温馨提示? 对老师说,你还有什么困惑?
•平行线中的拐点问题
•17
此课件下载可自行编辑修改,供参考! 感谢你的支持,我们会努力做得更好!
•平行线中的拐点问题
•13
思维导图
平行线性 质与判定
“拐点” 问题
‘凸’出来的模型 ‘凹’进去的模型 “猪手图”模型
•平行线中的拐点问题
•14
综合应用
如图所示,已知CD∥EF,∠C+∠F=∠ABC,求 证:AB∥GF.
•平行线中的拐点问题
•15
综合应用
(3)如图3,若点E在CD的下方,PF平分∠BPE,QH平分∠EQD,QH的反向延长线交PF于点F. 当∠PEQ=70°时,请求出∠PFQ的度数.
)
∴∠CPF=180°-∠C ,∠1=180°-∠A
∴∠APC=∠CPF-∠1
=(180°-∠C)-(180°-∠A)=∠A-∠C
•平行线中的拐点问题
B D
F
•7
知识点三:“猪手图”模型
新知究
A
B
C
D
P
∠APC=∠A-∠C
P
A
B
C
D
∠APC=∠C-∠A
•平行线中的拐点问题
•8
知识点三:“猪手图”模型
M
1
a
P
2 3
b
N
•平行线中的拐点问题
•2
知识点一:‘凸’出来的模型
(完整word版)平行线间的拐点问题.doc
平行线中的拐点问题学习目标:1.能正确解决常见的拐点问题。
2.灵活应用平行线的性质与判定解决相关问题。
复习回顾:1. 如图( 1), AB//CD , 那么∠ B +∠ E+∠ D=( ) .A、1800 B 、 270 0 C、 360 0 D、 54002. 如图( 2), AB∥CD,则 x, y, z 之间的关系是()A、x+y+z=360°B、x-y+z=180 °C、x+y-z=180 °D、y+z-x=180 °A BEC D方法指导:解决平行线中的拐点问题,常用方法为:根据题目中已知的平行线和“拐点“的情况,在“拐点”处作已知平行线的平行线,然后根据平行线的性质得到相应的结论。
合作探究一:(1)已知:如图 1,AB∥CD,求证:∠ B+∠D=∠ BED;(2)已知:如图 2,AB∥CD,试探求∠ B、∠ D 与∠ E 之间的数量关系,并说明理由.(3)已知:如图 3,AB∥CD,试探求∠ B、∠ D 与∠ E 之间的数量关系,并说明理由.合作探究二:已知:如, AB//CD,解决下列:(1)∠ 1+∠ 2=______;(2)∠ 1+∠ 2+∠3=_____;(3)∠ 1+∠ 2+∠3+∠ 4=_____;( 4)探究∠ 1+∠2+∠3+∠ 4+⋯+∠n=()。
跟踪:如,一条路修到一个村子,需拐弯道而,如果第一次拐的角∠A 是 105 度,第二次拐的角∠B 是 135 度,第三次拐的角是∠ C,的道路恰好和第一次拐弯之前的道路平行,那么∠C=.堂小:如何解决平行中的拐点?当堂:1.如,直 l 1∥l2,∠ A=125°,∠ B=85°,∠ 1+∠2=()A.30°B.35°C.36°D.40°2. 如,已知 AC∥BD,∠ CAE=30°,∠ DBE=35°,∠ AEB等于()A.30°B.45°C.65°D.75°拓展提升:如,已知 AB∥DE,BF,EF分平分∠ ABC与∠ CED,若∠ BCE=140°,求∠ BFE的度数.。
“拐点”平行线问题(拔高训练)
拐点问题作平行线的技巧当两条平行线间遇到拐点时,常过拐点作平行线构造出同位角、内错角和同旁内角.通过平行线的性质,得到题目中所求角与已知角之间的关系,从而解决问题.一般而言,有几个“拐点”就需要作几条平行线.类型1形图(燕尾型)1.如图,AB∥CD,P为AB,CD之间的一点,已知∠1=32°,∠2=25°,则∠BPC=57° .2.如图,已知AB∥CD,∠1与∠D,∠B 之间存在怎样的数量关系?解:∠1=∠B+∠D.理由如下:如图,过点E作EF∥AB.因为AB∥CD,所以AB∥EF∥CD,所以∠BEF=∠B,∠DEF=∠D.因为∠1=∠BEF+∠DEF,所以∠1=∠B+∠D.类型2形图(铅笔型)3.(1)如图1所示,若AB∥DE,∠B=135°,∠D=145°,求∠C的度数;(2)如图1所示,在AB∥DE的条件下,你能得出∠B,∠C,∠D之间的数量关系吗?请说明理由;(3)如图2所示,AB∥EF,根据(2)中的结果,直接写出∠B+∠C+∠D+∠E的度数.解:(1)如图所示,过点C作CF∥AB,则∠1=180°-∠B=45°.因为CF∥AB,DE∥AB,所以CF∥DE,所以∠2=180°-∠D=35°.所以∠BCD=∠1+∠2=45°+35°=80°.(2)∠B+∠C+∠D=360°.理由如下:由(1)得CF∥AB,CF∥DE,所以∠B+∠1=180°,∠D+∠2=180°,所以∠B+∠1+∠2+∠D=360°,即∠B+∠BCD+∠D=360°.(3)∠B+∠C+∠D+∠E=540°.类型3形图4.(2019·河南鹤壁一模)如图,已知AB∥CD,若∠A=25°,∠E=50°,则∠C= 75° .5.(2019·安徽淮北五校联考)小华在学习“平行线的性质”后,对图中∠B,∠D和∠BOD的关系进行了探究:(1)如图1,若点O在CD的上侧,试探究∠B,∠D和∠BOD之间有什么关系,并说明理由;(2)如图2,若点O在AB的下侧,试探究∠B,∠D和∠BOD之间有什么关系,请直接写出它们的关系式.解:(1)∠B=∠BOD+∠D.理由:如图,过点O作OM∥CD.因为AB∥CD,OM∥CD,所以AB∥CD∥OM,所以∠D=∠DOM,∠B=∠BOM,所以∠B=∠BOM=∠DOM+∠BOD=∠D+∠BOD.(2)∠D=∠BOD+∠B.类型4形图(靴子型)6.如图,直线AB∥CD,若∠A=100°,∠E=15°,则∠ECD = 115° .7.如图,已知AB∥CD,点E为AB,CD之外任意一点,探究∠CDE与∠B ,∠E之间的数量关系,并说明理由.解:∠CDE=∠B+∠BED.理由如下:如图,过点E作EF∥AB.因为AB∥CD,所以EF∥AB∥CD.所以∠B+∠BEF=180°,∠CDE+∠DEF=180°.又因为∠DEF=∠BEF-∠BED,所以∠CDE+∠BEF-∠BED=∠B+∠BEF,即∠CDE=∠B+∠BED.类型5形图8.(2019·江苏南京二十九中模拟)如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,求∠BCD的度数.解:方法1:如图1,过点C作FG∥AB.因为FG∥AB,AB∥DE,所以FG∥ED,所以∠ABC=∠BCF,∠CDE+∠DCF=180°.又因为∠ABC=80°,∠CDE=140°,所以∠BCF=80°,∠DCF=40°,所以∠BCD=∠BCF-∠DCF=40°.方法2:如图2,反向延长DE交BC于点M.因为AB∥DE,所以∠BMD=∠ABC=80°,所以∠CMD=180°-∠BMD=100°.又因为∠CDE+∠CDM=180°,∠CDM+∠BCD+∠CMD=180°,所以∠CDE=∠CMD+∠BCD,所以∠BCD=∠CDE-∠CMD=140°-100°=40°.类型6形图9.(2019·湖北武汉蔡甸区期末)如图,已知AB∥CD,∠ABE=110°,∠DCE=36°,求∠BEC的度数.解:如图,过点E作直线EF∥AB.因为AB∥CD,所以AB∥EF∥CD,所以∠ABE+∠BEF=180°,∠FEC=∠ECD=36°,所以∠BEC=∠BEF+∠CEF=180°-∠ABE+∠DCE=180°-110°+36°=106°. 类型7多拐点型10.如图所示,AB∥EF,∠B=45°,∠E=35°,则∠C+∠D的值为260° .11.如图,m∥n ,试说明:∠1+∠3=∠2+∠4. 解:如图,分别过点P1,P2作P1C∥m,P2D∥m.因为m∥n,所以P1C∥P2D∥m∥n,所以∠1=∠AP1C,∠CP1P2=∠P1P2D,∠DP2B =∠4,所以∠1+∠P1P2D+∠DP2B=∠AP1C+∠CP1P2+∠4,所以∠1+∠3=∠2+∠4.类型8复合“拐点”型12.已知直线AB∥CD.(1)如图1,BF,DF分别平分∠ABE,∠CDE,那么∠BFD和∠BED有怎样的数量关系?请说明理由;(3)如图2,若点E在直线BD的右侧,BF,DF仍分别平分∠ABE,∠CDE,求∠BFD 和∠BED的数量关系.解:(1)∠BFD=12∠BED.理由:因为BF,DF分别平分∠ABE,∠CDE,所以∠ABF=12∠ABE,∠CDF=12∠CDE,所以∠ABF+∠CDF=12∠ABE+12∠CDE=12(∠ABE+∠CDE).因为∠ABE+∠CDE=∠BED,∠BFD=∠ABF+∠CDF,所以∠BFD=12∠BED.(2)过点E作EG∥CD,如图所示.因为AB∥CD,EG∥CD,所以AB∥CD∥EG,所以∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,所以∠ABE+∠CDE+∠BED=360°.因为∠BFD=∠ABF+∠CDF,BF,DF分别平分∠ABE,∠CDE,所以∠ABF=12∠ABE,∠CDF=12∠CDE.所以∠BFD=12(∠ABE+∠CDE),所以2∠BFD+∠BED=360°.。
平行线与拐点问题(经典)
A
B
C
图1
E D
A
B
F
E
C
D
解:过点E 作EF∥AB ∵AB∥CD(已知)
∴AB∥CD∥EF ∴∠B+∠BEF=180°∴∠FED+∠D=180°
∴∠B+∠BEF+∠FED+∠D=360° ∵∠BED=∠BEF+∠DEF ∴∠B+∠BED+∠D=360°
〖练习〗 1.如图,AB∥CD,∠B=23°,∠D=42°,则 ∠E=____6_5_°____.
_____5_0_°____.
E
B
25°
F
A
75°
D
C
返回
变式训练:1、如图,已知:AB∥CD,CE分别 交AB、CD于点F、C,若∠E=20°,∠C=45°, 则∠A的度数为( ) A. 5° B. 15° C. 25° D. 35°
巧用平行解决“拐点”问题
〖探究4〗(犀牛角型或靴子型) 若将点E向线段AB的左上方拉动(如图). 已知AB∥CD,问 ∠B、∠D、∠ABE的关系.
F
E
A
B
C
D
过点E 作EF∥AB
∴∠FEA=∠A
∵AB∥CD(已知)
∴CD∥EF
∴∠FEC=∠C
∵∠FEA=∠FEC+∠AEC
∴∠A= ∠C +∠AEC
例2. 请思考:若改变点E的位置,则∠BED 与∠B、∠D的数量
关系会发生变化吗?
E
E
A
B
A
B
D
C
图4
D
∠BED=∠B-∠D
A
B
C
图5
平行线拐点问题六种模型题型
平行线常见四种易错题型分析七年级下学期,平行线常见四种易错题型分析,早点掌握避免出错。
平行线的性质定理用来证明角相等或角互补,判定定理是通过角相等或互补证明两条直线平行。
我们还介绍了平行线四大拐点模型:“铅笔”模型、“猪蹄”模型、“臭脚”模型、“骨折”模型,这四类模型的共通点是需要做辅助线,做辅助线的方法比较多,通用的方法为:过拐点作已知直线的平行线。
平行线间拐点问题基本模型有三种: 第一种铅笔模型;第二种M型;第三种猪手模型。
解题思路:过拐点作已知直线的平行线。
本篇内容,我们接着介绍平行线中常见的六种易错题型,早掌握避免遇到时出错。
一、性质定理与判定定理的区分在刚开始学习写证明题时,要求我们做到每一步都有理有据,因此需要在每一步后面写上得到的理由,写理由时一定要分清是性质定理还是还是判定定理。
很多学生刚开始学时,不知道使用哪个定理,分不清什么是性质定理,什么是判定定理。
要分清它们,只要注意:(1)由角得到直线平行,是判定定理,选择①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行,这三个定理之一。
(2)由平行的直线得到角的关系,是性质定理,选择①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补,这三个定理之一。
【分析】先由垂直的定义得到:∠2=∠3,然后由同位角相等,两直线平行得到:EF∥BD,再由两直线平行,同位角相等得到:∠4=∠5,然后根据等量代换得到:∠1=∠5,再根据内错角相等,两直线平行得到:DG∥BC,最后由两直线平行,同位角相等即可证∠ADG=∠C.二、三线八角理解不透彻很多学生遇到两条平行线被第三条直线所截时,会找同位角、内错角、同旁内角,但是遇到两条相交线被第三条直线所截时,却不会找了,主要原因就是对“三线八角”理解不透彻。
要想准确地解决这类问题,首先要明确三种角的位置特点,在前一篇文章中我们特地介绍过,七年级下学期,三线八角、平行线的性质与判定定理,掌握解题诀窍其次要搞清楚被哪条直线所截。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B
C
图6
D
E
∠BED=∠D-∠B
C
D
图7
E
∠BED=∠B-∠D
4.已知:如图,AB//CD,试解决下列问题: (1)∠1+∠2=___ _1_8_0;° (2)∠1+∠2+∠3=___ __;360° (3)∠1+∠2+∠3+∠4=_ __ __;540° (4)试探究∠1+∠2+∠3+∠4+…+∠n
A
B
C
D
巧用平行解决“拐点”问题
F
E
〖结论〗:
A
B ∠AEC= ∠C- ∠A
C
D
解:过点E 作EF∥AB。 ∵AB∥CD(已知) ∴EF∥AB∥CD ∴∠A=∠AEF∴∠C=∠FEC(两直线平行,内错角相等) ∵∠FEC=∠AEF+∠AEC ∴∠C= ∠A+∠AEC
A C
E B
D
〖练习3〗
如图,AB∥CD,∠C=75°,∠A=25°,则∠E的度数的为
C
D
当左边有n个角,右边有m个角时: ∠A+∠F1 + ∠ F2 +…+ ∠Fn= ∠E1 +∠E2 +…+ ∠Em+ ∠D
(同类拓展变题)
⑵如图AB∥DC,∠B,∠E,∠F,∠G,∠D 之间又会有何关系?
A
B
E
F
G
C
D
变式训练:3、已知:如图所示 ∠ABC=80°,∠BCD=40°,∠CDE= 140°.求证:AB//DE.
①点在两平行线之间
A
B
E
C
D
图1
ห้องสมุดไป่ตู้②点在两平行线之外
E
A
B
A
B
C
图3
D
C
D
图4 E
A C
图2
B E
D
E
A
B
A
B
C
D
图5
C
D
图6
E
方法指导
(2)燕尾型(或M型) 如图2,已知:AB∥CD,点E是平面内一点,
那么∠BED与∠B、∠D之间的数量关系是什么呢?
A
B
E
C
图1
D
A
B
E
F一推:平行
C
D
解:过点E 作EF∥AB。 ∵AB∥CD(已知)
_____5_0_°____.
E
B
25°
F
A
75°
D
C
返回
变式训练:1、如图,已知:AB∥CD,CE分别 交AB、CD于点F、C,若∠E=20°,∠C=45°, 则∠A的度数为( ) A. 5° B. 15° C. 25° D. 35°
巧用平行解决“拐点”问题
〖探究4〗(犀牛角型或靴子型) 若将点E向线段AB的左上方拉动(如图). 已知AB∥CD,问 ∠B、∠D、∠ABE的关系.
∴ BE∥CF
(内错角相等,两直线平行)
平行线与“拐点”问题
〖情景导入〗
已知如图,AB∥CD,若线段AC是拉直的橡皮筋, 上任 取一点E,向不同的方向拉动点E,那么
∠A、∠C、∠AEC之间有何关系呢?
A
B
在AC
E
C
D
右上
左上
一个动点与两条平行线的位置关系
①点在两平行线之间
②点在两平行线之外
一个动点与两条平行线的位置关系
课堂小结
平行线的“判定”与“性质”有什么不同:
判定:已知角的关系得平行的关系. 推平行,用判定. 性质:已知平行的关系得角的关系. 知平行,用性质.
练一练 已知:AB∥CD,∠1 = ∠2.试说明:BE∥CF.
证明: ∵AB ∥ CD
∴∠ABC=∠BCD (两直线平行,内错角相等)
∵∠1=∠2 ∴∠ABC -∠1=∠BCD- ∠2 即∠3=∠4
A
23° B
C
E
C
42° D
D
B
135°
E
145°
A
2.如图,AD∥BC,∠B=135°,∠A=145°,则 ∠E=_____8_0_°____.
巧用平行解决“拐点”问题
〖探究3〗(锄头型)
将点E向线段AB的右上方拉动,如图. 已知AB∥CD,∠A、∠C、 ∠AEC之间的关系.
E
解关系为:
∵AB∥CD ∴∠C=∠1 ∵∠A+∠E+∠2=180° ∠1+∠2=180° ∴∠1=∠A+∠E ∴∠C=∠A+∠E
变式训练:1.如下图所示,直线AB∥CD, ∠B=23°,∠D=42°,则∠E= 。65°
教材母题(教材P23第7(2)题)
如果AB∥CD∥EF, 那么∠BAC+∠ACE+∠CEF=( )
(A)180°(B)270°(C)360°(D)540°
A
B
C
D
E
F
方法指导
(1)铅笔型
如图1,已知:AB∥CD,点E是平面内一 点,那么∠BED与∠B、∠D之间的数量关系 是什么呢?
A
B
G
F
E
H
C
D
解:过点E作EG∥AB,过点F作FH∥AB, ∵AB∥CD ∴AB||CD||EG||FH ∴∠A=∠1,∠2=∠3,∠4=∠D ∴∠A+∠3+∠4=∠1+∠2+∠D ∴∠A+∠EFD=∠AEF+∠D
若左边有n个角,右边有m个角;你能找到规律吗?
A
F1 F2 Fn
B E1
E2
Em
E
A
B
C
D
图5
巧用平行解决“拐点”问题
F
E
A
B
〖结论〗: ∠E= ∠ ABE-∠D
C
D
解:过点E 作EF∥AB ∵AB∥CD(已知) ∴AB∥CD∥EF ∴∠ABE+∠BEF=180°∴∠FED+∠D=180° ∵∠FED=∠BEF+∠BED ∴∠BEF+ ∠BED+∠D=180° ∴∠ABE= ∠BED +∠D
(1)∠2=∠1+∠3.
(2)①如图2所示,当点P在 线段DC的延长线上时, ∠2=∠3-∠1
②如图3所示,当点P在线段 CD的延长线上时,∠2=∠1-∠3
A
B
E
C
F
D
解:延长线段BE交CD于点F
∵AB∥CD ∴∠B=∠EFD ∵∠EFD+∠D+∠FED=180° 又∵∠BED+∠FED=180° ∴∠BED=∠EFD+∠D
∴∠BED=∠B+∠D
辅助线添法:过拐点作已知直线的平行线(四部 曲)或延长线(利用邻补角互补,三角形内角 和),逢“拐点”,作平行。一般而言,有几个 “拐点”就需要作几条平行线。
A
B
D
E
C
5.如图,已知直线l1∥l2,直线l3和直线l1、l2交 于点C和D,P为直线l3上一点,A、B分别是直线l1、 l2上的不动点.其中PA与l1相交为∠1,PA、PB相 交为∠2,PB与l2相交为∠3.
(1)若P点在线段 CD(C、D两点除外) 上运动,问∠1、∠2、 ∠3之间的关系是什么?这种关系是否变化? (2)若P点在线段CD 之外时,∠1、∠2、∠3之间的关系有怎样?说明理 由.
= (n-1)180° ;
变式3:如图,若AB∥CD, 则:
A
BA
E
F
BA
E
F1
C
DC
DC
当左边有两个角,右边有一个角时: ∠A+∠C= ∠E
当左边有两个角,右边有两个角时: ∠A+∠F= ∠E +∠D
B E1
E2 D
当左边有三个角,右边有两个角时:∠A+∠ F1 +∠C = ∠ E1 +∠ E2
A
B
C
图1
E D
A
B
F
E
C
D
解:过点E 作EF∥AB ∵AB∥CD(已知)
∴AB∥CD∥EF ∴∠B+∠BEF=180°∴∠FED+∠D=180°
∴∠B+∠BEF+∠FED+∠D=360° ∵∠BED=∠BEF+∠DEF ∴∠B+∠BED+∠D=360°
〖练习〗 1.如图,AB∥CD,∠B=23°,∠D=42°,则 ∠E=____6_5_°____.
二推:角相等或互补 三推:加法或减法 四推:替换
∴EF∥AB∥CD(平行于同一直线的两条直线互相平行)
∴∠B=∠BEF ∴∠D=∠DEF(两直线平行,内错角相等)
∵∠BED=∠BEF+∠DEF
∴ ∠BED =∠B+∠D(等量代换)
A
B
E
F
C
D
图3
解:过点E 作EF∥AB。 ∴∠B=∠BEF(两直线平行,内错角相等) ∵AB∥CD(已知) ∴EF∥CD(平行于同一直线的两条直线互相平行) ∴∠D=∠DEF(两直线平行,内错角相等) ∴∠B+∠D=∠BEF+∠DEF(等量代换) ∴∠B+∠D=∠BED
F
E
A
B
C
D
过点E 作EF∥AB
∴∠FEA=∠A
∵AB∥CD(已知)
∴CD∥EF
∴∠FEC=∠C
∵∠FEA=∠FEC+∠AEC
∴∠A= ∠C +∠AEC
例2. 请思考:若改变点E的位置,则∠BED 与∠B、∠D的数量
关系会发生变化吗?
E
E