人教版《整式的乘法》1

合集下载

整式的乘法(1)——同底数幂的乘法 2021--2022学年第一学期人教版八年级数学上册课件

整式的乘法(1)——同底数幂的乘法 2021--2022学年第一学期人教版八年级数学上册课件
第十四章 整式的乘法与因式分解
第32课时
整式的乘法(1)——同底数幂的乘法
同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.
用式子表示为am·an=a m+n(m,n都是正整数).
1. 计算下列各式,结果用幂的形式
表示:
3
4
________+___________
2
3
4
(1)2 ·2 =____
=
7
2
__________;
3
5
________+_______
a _
(2)a3·a5=____
8
a
=____________.
典型例题
知识点1
am·an=am+n
【例1】计算,结果用幂的形式表示:
(1)32·35=____________;
37
105
(2)103·102=____________;
(1)y2m·ym+1;
(2)(a-b)·(a-b)4;
(3)x4·x6+x5·x5;
(4)-a2·a5+2a·a3·a3.
10. 计算,结果用幂的形式表示:
(1)(x-y)5·(x-y)3·(x-y);
(2)-a2·a5+a·a3·a3;
(3)x·x2n-3xn·xn+1.
11. 若a4·a2m-1=a11,求m的值.
A.x3+x2
B.x3·x2
C.x·x3
D.x7-x2
( C )
( B )
7. 计算下列各式,结果用幂的形式表示:
(1)x6·x2=____________;

人教版八年级数学上册---《整式的乘法》课堂设计

人教版八年级数学上册---《整式的乘法》课堂设计

人教版八年级数学上册---《整式的乘法》课堂设计整式的乘法(第一课时)整式的乘法(第二课时)3 分钟4 分钟(2)创设情境引入新知【引入】为了扩大绿地面积,要把街心花园的一块长为p米,宽b米的长方形绿地,向两边分别加宽a米和c米.教师提出问题:(4)你能用哪些方法表示扩大后的绿地面积;(5)不同的表示方法之间有什么关系?为什么?学生并回答问题:(1)()cbap++或pcpbpa++或()p a b pc++或)(cbppa++(2)相等,都表示扩大后的长方形的面积.追问1:你还能通过别的方法得到等式()pcpbpacbap++=++吗?学生回答:乘法分配律.追问2:()pcpbpacbap++=++,请问这属于什么运算?学生回答:单项式乘多项式.教师引出本节课的课题——单项式乘多项式,明确本节课探究的主要内容:单项式乘多项式的运算是怎样进行的?如何确定运算结果?【问题1】:你能尝试计算()yxx22-吗?教师引导学生利用乘法分配律进行运算.()yxxxyxx22222⋅-⋅=-xyx422-=追问1:你能尝试归纳单项式与多项式乘法运算法则吗?学生尝试进行归纳,用自己的语言加以概括,小组讨论,教师在学生表述的基础上,和学生共同得到单项式乘以多项式的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.追问2:你能尝试归纳单项式与多项式相乘的步骤吗?①用单项式去乘多项式的每一项;②转化为单项式与单项式的乘法运算;整式的乘法(第三课时)5 分钟2 探究新知得出pbpabap+=+)(活动2:问题引入:为了扩大街心花园的绿地面积,把一块原长am、宽pm的长方形绿地,加长了bm, 加宽了qm.你能用几种方法求出扩大后的绿地面积?教师设问:(1)扩大后的公园的面积有几种表示法?学生思考,得出结论:第一种:整体求面积,得))((qpba++第二种:先求A和B的总面积为)(bap+再求C和D的总面积为)(baq+最后求和,得)()(baqbap+++第三种:先求A和C的总面积为)(qpa+再求B和D的总面积为)(qpb+最后求和,得)()(qpbqpa+++第四种:分别求出A,B,C,D的面积,再求和,得bqbpaqap+++教师设问:(2)用四种方法表示出来的代数式是什么关系呢?为什么呢?学生回答:用四种方法表示出来的代数式是相等关系,因为图形的面积是相等的。

人教版数学初二《整式的乘法》课件PPT

人教版数学初二《整式的乘法》课件PPT

m + n a (当m、n都是正整数)
底数 不变,指数相加 。
如 43×45= 43+5 =48
同底数幂相乘,
运算形式 (同底、乘法) 幂的底数必须相同, 相乘时指数才能相加 .
运算方法(底不变、指加法)
ห้องสมุดไป่ตู้
m + n + p m n p (m、n、p都是正整数) 如a · a· a =a 想一想: 当三个或三个以上同底数幂相乘时,是否也 具有这一性质呢? 怎样用公式表示?
(m+n)个a
=am+n
(乘方的意义)
你们真棒,你的猜想是正确的!
八年级 数学
14.1同底数幂的乘法
同底数幂的乘法公式:
m a
m+n n ·a = a (m、n都是正整数)
同底数幂相乘,底数 不变,指数 相加。
同底数幂的乘法性质:
m a n ·a =
请你尝试用文字概 我们可以直接利 括这个结论。 用它进行计算.
1.计算: (1)107 ×104 ; ( 2 ) x2 · x5 . 解:(1)107 ×104 =107 + 4= 1011 ( 2 ) x2 · x5 = x2 + 5 = x7 2.计算: (1)23×24×25 ( 2) y · y2 · y3 解:(1)23×24×25=23+4+5=212 ( 2) y · y2 ·y3 = y1+2+3=y6
运用同底数幂的乘法的运算性质
例 计算: 2 5 x x ; ( 1)
6 a a ; ( 2) 4 3 (-2) (-2) (-2) ; ( 3) m 3m 1 x x . ( 4)

8年级上册数学人教版课件《整式的乘法》(第1课时 单项式与单项式、多项式相乘)

8年级上册数学人教版课件《整式的乘法》(第1课时  单项式与单项式、多项式相乘)

方,并改正过来.

-2a 2b
-
1 4
ab2c
1 a3b3 2
② 3a2b 1 - ab2c -3a3b3
× 1 a3b3c
2
漏了单独字母
3a2b - 3a3b3c × 漏乘1
③ -3a2 a2 2a -1 -3a4 6a3 - 3a2 ×
-3a4 - 6a3 3a2
符号没有变化
(4)(–2a)3(–3a)2.
解:(1)原式=(3×5)(x2·x3)=15x5;
单独因式x别 漏乘、漏写
(2)原式=[4×(–2)](y·y2) ·x= –8xy3;
(3) 原式=9x2·4x2 =(9×4)(x2·x2)=36x4;
(4)原式= –8a3·9a2 =[(–8)×9](a3·a2)= –72a5 有乘方运算,先算乘方,再算单项式相乘.
(1)(-3x2y)2·(-23
3 xyz)·4
xz2;
解:-92 x6y3z3.
(2)5a3b·(-3b)2+(-ab)(-6ab)2.
解:9a3b3.
13.先化简,再求值:(-2a2b3)·(-ab2)2+(-12 a2·b3)2·4b, 其中 a=2,b=1.
解:原式=-2a2b3·a2b4+
=–8x3–12x2+4x;
数与因式中多项式的项 数相同.2.含有混合运算
(2)原式
2 ab2 3
1 ab (2ab) 2
1 ab
2
1 a2b3 3
同的a类2应b项2注. 必意须运合算并顺同序类,项有,
从而得到最简结果.
转化
单项式与多项式相乘
单项式与单项式相乘
乘法分配律
巩固练习

人教版初中数学《整式的乘法》_PPT课件

人教版初中数学《整式的乘法》_PPT课件

【获奖课件ppt】人教版初中数学《整 式的乘 法》_p pt课件 1-课件 分析下 载
Hale Waihona Puke 【获奖课件ppt】人教版初中数学《整 式的乘 法》_p pt课件 1-课件 分析下 载 【获奖课件ppt】人教版初中数学《整 式的乘 法》_p pt课件 1-课件 分析下 载
【获奖课件ppt】人教版初中数学《整 式的乘 法》_p pt课件 1-课件 分析下 载
【获奖课件ppt】人教版初中数学《整 式的乘 法》_p pt课件 1-课件 分析下 载
【综合运用】 10.(7分)已知(-2axby2c)(3xb-1y)=12x11y7,求a+b+c的值. 解:∵(-2axby2c)(3xb-1y)=12x11y7,∴-6ax2b-1y2x+1=12x11y7, ∴-6a=12,2b-1=11,2c+1=7,∴a=-2,b=6,c=3,∴a +b+c=-2+6+3=7
8.(4分)如图,沿大正三角形的对称轴对折,则互相重合的两个小正 三角形的单项式的乘积为____a_或__2_a3_b_或__2_a_2_b.
【获奖课件ppt】人教版初中数学《整 式的乘 法》_p pt课件 1-课件 分析下 载
【获奖课件ppt】人教版初中数学《整 式的乘 法》_p pt课件 1-课件 分析下 载
6.(4 分)如果单项式-3x4a-by2 与13x3ya+b 之和仍是单项式, 则这两个单项式积为( A )
A.-x6y4 B.x6y4 C.x3y2 D.-3x3y2
【获奖课件ppt】人教版初中数学《整 式的乘 法》_p pt课件 1-课件 分析下 载
【获奖课件ppt】人教版初中数学《整 式的乘 法》_p pt课件 1-课件 分析下 载
【获奖课件ppt】人教版初中数学《整 式的乘 法》_p pt课件 1-课件 分析下 载

人教版数学《整式的乘法》_课件

人教版数学《整式的乘法》_课件

= aa…a (乘法结合律)
(m+n)个a =am+n (乘方的意义)
你们真棒,你的猜想是正确的!
【获奖课件ppt】人教版数学《整式的 乘法》 _课件1 -课件 分析下 载
【获奖课件ppt】人教版数学《整式的 乘法》 _课件1 -课件 分析下 载
同底数幂的乘法公式: am ·an = am+n (m、n都是正整数)
同底数幂相乘, 底数 不变 ,指数 相加 . 运算形式(同底、乘法), 运算方法(底不变、指相加)
知1-讲
【获奖课件ppt】人教版数学《整式的 乘法》 _课件1 -课件 分析下 载
【获奖课件ppt】人教版数学《整式的 乘法》 _课件1 -课件 分析下 载
知1-讲
当三个或三个以上同底数幂相乘时,是否也具有这一
【获奖课件ppt】人教版数学《整式的 乘法》 _课件1 -课件 分析下 载
知1-讲
【获奖课件ppt】人教版数学《整式的 乘法》 _课件1 -课件 分析下 载
知1-讲
1.同底数幂相乘时,指数是相加的; 2.不能忽略指数为1的情况; 3.公式中的a可为一个数、单项式或多项式,如:
(x -y)m • (x -y)n = (x -y) m+n .
15个 10
1010 10
18个10
=1018.
知1-导
【获奖课件ppt】人教版数学《整式的 乘法》 _课件1 -课件 分析下 载
问 题(二)
知1-导
根据乘方的意义填空,观察计算结果,你能发
现什么规律?
(1) 25 × 22 = 2( 7 );
(2) a3 ·a2=a ( 5 ) ;
(3)
5m
×
5n

人教版初中数学《整式的乘法》演示课件

人教版初中数学《整式的乘法》演示课件
人教版初中数学《整式的乘法》实用 实用课 件(PPT 优秀课 件)
人教版初中数学《整式的乘法》实用 实用课 件(PPT 优秀课 件)
第十四章 整式的乘法与因式分解 14.1 整式的乘法
第6课时 多(PPT 优秀课 件)
人教版初中数学《整式的乘法》实用 实用课 件(PPT 优秀课 件) 人教版初中数学《整式的乘法》实用 实用课 件(PPT 优秀课 件)
15
人教版初中数学《整式的乘法》实用 实用课 件(PPT 优秀课 件)
人教版初中数学《整式的乘法》实用 实用课 件(PPT 优秀课 件)
【综合运用】
11.(8分)若a,b,k均为整数且满足等式(x+a)(x+b)=x2+kx+36,
写出两个符合条件的k的值.
人教版初中数学《整式的乘法》实用 实用课 件(PPT 优秀课 件)
人教版初中数学《整式的乘法》实用 实用课 件(PPT 优秀课 件)
解:因为(x+a)(x+b)=x2+kx+36,所以 x2+(a+b)x+ab= x2+kx+36,根据等式的对应项的系数相等可得kab==a+ 36b. ,又因为 a,b,k 均为整数,36=1×36=2×18=3×12=4×9=6×6=(- 1)×( - 36) = ( - 2)×( - 18) = ( - 3)×( - 12) = ( - 4)×( - 9) = ( - 6)×(-6).所以 a,b 对应的值共有 10 对,从而求出 a+b 的值, 即 k 的值有 10 个,分别为±37,±20,±15,±13,±12.只要写 出其中的两个即可
人教版初中数学《整式的乘法》实用 实用课 件(PPT 优秀课 件)
人教版初中数学《整式的乘法》实用 实用课 件(PPT 优秀课 件)
5.(9分)计算: (1)(3x-5)(3x+5); 解:原式=9x2-25 (2)(x-1)(x2+x+1); 解:原式=x3-1 (3)(3x-y)(y+3x)-(4x-3y)(4x+3y). 解:原式=-7x2+8y2

5.1.4 整式的乘法(1) 课件(新人教版八年级上)

5.1.4 整式的乘法(1) 课件(新人教版八年级上)
-3x2y3(x2-1)-(x2+1)•5x2y3.
卧 室
厨房
客厅 4y 第4题图
4.创新应用
小李家的住房的结构如图所示(单位:米),小李打 算把卧室和客厅铺上木地板,请你根据图示的数 据算一算,小李至少要买多少平方米的木地板?
问题
如图15.2-1,为了扩大街心花园的 绿地面积,把一块原长a米,宽m米的 长方形绿地,增长了b米,加宽了n米. 你能用几种方法求出扩大后的绿地 的面积?
扩大后的绿地可能看成长为(a+b)米,宽为(m+n)米 的长方形,所以这块绿地的面积为(a+b)(m+n)米2. 扩大后的绿地还可以看成由四个小长方形组成,所 以这块绿地的面积为(am+an+bm+bn)米2.
因此(a+b)(m+n) =(am+an+bm+bn).
(a+b)(m+n) =am+an+bm+bn.
(1) (-5a2b)(-3a);
解:(1) (-5a2b)(-3a)
= [(-5)×(-3)](a2•a)b = 15a3b
=-40x4y2
练习
1.计算:
(1)3x25x3;
(3) (3x2y)3•(-4x) ;
(2) 4y(-2xy2) ;
(4) (-2a)3(-3a)2.
2.下面计算的对不对?如果不对,应当 怎样改正?
结论
单项式与单项式相乘,把它们 的( 系数 ),( 同底数幂)分别相 ( 乘 ),对于( 只在一个单项式里 含有的字母 ),则连同它的( 指数 ) 作为积的( 一个因式 ).
例题
例4 计算:
(2) (2x)3(-5xy2). (2) (2x)3(-5xy2) =8x3(-5xy2) =[8×(-5)](x3•x)y2

人教版数学八年级上册15.1.3《整式的乘法》(第1课时)教案

人教版数学八年级上册15.1.3《整式的乘法》(第1课时)教案

人教版数学八年级上册15.1.3《整式的乘法》(第1课时)教案一. 教材分析人教版数学八年级上册15.1.3《整式的乘法》是整式部分的重要内容,也是学习多项式乘法、平方差公式和完全平方公式的基石。

本节课主要让学生掌握整式乘法的基本方法,理解乘法分配律在整式乘法中的应用,为后续学习更复杂的整式运算打下基础。

二. 学情分析学生在七年级时已经学习了有理数的乘法、分配律等基础知识,对于整式的加减法有一定的了解。

但是,对于整式的乘法运算,学生可能还存在着一定的困难。

因此,在教学过程中,要注重引导学生理解乘法分配律,并通过大量的练习让学生熟练掌握整式乘法的方法。

三. 教学目标1.知识与技能:让学生掌握整式乘法的基本方法,理解乘法分配律在整式乘法中的应用。

2.过程与方法:通过实例演示、自主探究、合作交流等方式,让学生经历整式乘法的过程,培养学生的运算能力和思维能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。

四. 教学重难点1.教学重点:整式乘法的基本方法。

2.教学难点:乘法分配律在整式乘法中的应用。

五. 教学方法采用启发式教学法、情境教学法、合作学习法等多种教学方法,引导学生主动探究、合作交流,培养学生的运算能力和思维能力。

六. 教学准备1.教师准备:熟练掌握整式乘法的方法,准备相关教学案例和练习题。

2.学生准备:掌握有理数的乘法、分配律等基础知识。

七. 教学过程1. 导入(5分钟)教师通过一个实际问题引导学生思考:已知长方形的长是10cm,宽是5cm,求长方形的面积。

学生可以很容易地得出答案,从而引出整式乘法的概念。

2. 呈现(10分钟)教师通过PPT展示整式乘法的定义和基本方法,引导学生理解整式乘法的运算规律。

例如,对于两个整式ax + b和cx + d的乘法,可以将其看作是(a c)x^2 + (a d + b c)x + b d。

3. 操练(10分钟)教师给出几个简单的整式乘法例子,让学生在纸上完成。

人教版八年级数学上册整式的乘法和因式分解《整式的乘法(第1课时)》示范教学课件

人教版八年级数学上册整式的乘法和因式分解《整式的乘法(第1课时)》示范教学课件
(a+1)×(a+1)×(a+1)
乘方的意义:an=a·a·…·a,由此填写下表.
n个a相乘
1015×103=(10×···×10)×(10×10×10)=10×10×···×10 =1018.
一种电子计算机每秒可进行 1 千万亿(1015)次运算,它工作103 秒可进行多少次运算?
同底数幂乘法的运算法则可以逆用,即am+n=am·an(m,n都是正整数).当指数为多项式且项数大于等于 3 时同样适用,即am+n+p=am·an·ap(m,n,p都是正整数).
观察下列动图,进一步巩固对同底数幂乘法运算法则的理解和记忆.
观察下列动图,进一步巩固对同底数幂乘法运算法则的理解和记忆.
人教版八年级数学上册
整式的乘法第1课时
当an看作a的n次方的结果时,也可读作“__________”.
______
______
____
2.求n个相同因数的积的运算,叫做______,乘方的结果叫做____.
an
指数
底数

an
a的n次方
乘方

a的n次幂
3.(1)(-a)n表示____________,底数是____,指数是___,读作“____________”.
(2)-an表示__________________,底数是___,指数是___,读作“__________________”.
n个-a相乘
-a
n
-a的n次方
n个a乘积的相反数
a
n
a的n次方的相反数

底数
指数
积的形式
53
(-2)5
(a+1)3
5×5×5
3
5
4
-2

人教版数学八年级上册 14.1.4 整式的乘法

人教版数学八年级上册   14.1.4 整式的乘法

14.1.4 整式的乘法第1课时单项式与单项式、多项式相乘1.探索并了解单项式与单项式、单项式与多项式相乘的法则,并运用它们进行计算.2.设置实际情境,引导学生参与探索公式.3.让学生主动参与探究,形成独立思考、勇于探究的习惯.【教学重点】单项式与单项式、单项式与多项式乘法法则的应用.【教学难点】两个法则的探究.一、情境导入,初步认识引导学生复习幂的运算性质,并解答下列问题.【教学说明】主要由学生口述幂的乘法运算性质、公式及上述问题的答案,对学生暴露出的问题予以纠正,为后续学习打下基础.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知问题1光的速度约为3×105km/s,太阳光照射到地球上需要的时间大约是5×102s,试求地球与太阳的距离约是多少千米?【分析】由题意可列式为(3×105)×(5×102),这个算式可引导学生运用乘法交换律和结合律求出,即(3×5)×(105×102)=15×107=1.5×108,即地球与太阳的距离约为1.5×108km.【教学说明】要求学生认真分析体会上述计算过程,感受其中的思路与依据,再将上式中的数换成字母,如(a×105)×(b×103),ab2×3ab等,依据同样的方式经小组为单位探求结果,并发掘一般性规律,同伴间交流并互相完善.【归纳总结】单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.问题2解答下列问题.(3)何叶的步长为a米,她量得家里的卧室长15步,宽14步,问这间卧室的面积有多少平方米?(4)下面的计算对不对?如果不对,怎样改正?问题3三家连锁店以相同的价格m(单位:元/瓶)销售某种商品,它们在一个月内的销售量(单位:瓶)分别是a,b,c.求这个月内销售这种商品的总收入.【分析】这个问题的思路有两个:方法一先求三家连锁店的总销量,再求总收入,即总收入为m(a+b+c)元.方法二先分别求三家连锁店的收入,再求它们的和,即总收入为(ma+mb+mc)元.由于两种方法只是思考的角度不同,求的是同一个量,故必有m(a+b+c)=ma+mb+mc.引导学生联想乘法分配律及上述等式总结归纳,得出自己的结论.【归纳总结】单项式与多项式相乘,就是用单项式乘多项式的每一项,再把所得的积相加.例1计算:【教学说明】1.凡是在单项式里出现过的字母,结果里应全都有,不能漏掉;2.单项式中含有的多项式因式把它看作一个整体参加计算.例2计算下列各题.【教学说明】计算时,符号的确定是关键,可把单项式前和多项式各项前的“+”或“-”号看作性质符号,把单项式乘以多项式的结果用“+”连接,最后写成省略加号的代数和.三、运用新知,深化理解计算下列各题.【教学说明】1.本题是混合运算题,计算顺序仍是先乘除、后加减,先去括号等.混合运算的结果有同类项的需合并,从而得到最简结果.2.单项式与多项式的每一项都要相乘,不能漏乘、多乘.3.在确定积的每一项的符号时一定要小心.四、师生互动,课堂小结1.梳理本节所学内容,巩固单项式乘以单项式,单项式乘以多项式的法则.2.互相交流运用法则计算时要注意的事项.1.布置作业:从教材“习题14.1”中选取部分题.2.完成练习册中本课时的练习.本课时教学宜由学生根据已有知识(如乘法分配律法则等)自主推导出单项式乘法,单项式与多项式相乘的法则,充分体现学生课堂上的主体作用,再结合具体问题的解答,由学生间互相交流,体会法则计算的本质,以便灵活应用于解题之中.第2课时多项式与多项式相乘1.理解并掌握多项式乘以多项式的法则.2.类比前面的方法,自主探索多项式与多项式乘法法则.3.在探究过程中,形成独立思考,主动求知的习惯.【教学重点】多项式乘法法则的应用.【教学难点】多项式与多项式相乘法则的推导.一、情境导入,初步认识1.回忆单项式乘以多项式法则,并计算:(1)3a(5a-2b);(2)(x-3y)·(-6x).【思考】有一算式(a+b)(x+y),假设把(x+y)看作一个整体m,则上式变为(a+b)m,此时与上述习题类型相同么?你有何想法?第3课时同底数幂的除法1.掌握同底数幂的除法法则并用于计算.2.经历探索同底数幂的除法的运算法则的过程,理解运算算理.3.经历探索过程,获得成功感和积累数学经验.【教学重点】同底数幂的除法法则的运用.【教学难点】根据乘、除互为逆运算推出同底数幂的除法法则.一、情境导入,初步认识1.回忆同底数幂乘法法则,并填空:(2)依题(1)的结果,并结合乘除法互为逆运算,填空:(3)观察题(2)中的每一个等式,以小组为单位讨论,找出这些等式的共同特点,并互相交流归纳.【教学说明】教师讲课前,先让学生完成“自主预习”.2.师生共同归纳结论:同底数幂相除,底数不变,指数相减.即a m÷a n=a m-n(a≠0,m,n都是正整数,且m>n).提醒:底数可以是一个数,也可以是单项式或多项式;当三个或三个以上同底数幂相除时,也具有这个性质.二、思考探究,获取新知例1计算下列各题:【分析】(2)的解答可根据乘方的性质先确定商的性质符号,即(-a)8÷(-a)5=-a8÷a5;(3)与(2)有区别.其中(-a)5与-a5的意义不同,隐含了(-m)2=m2,(-m)3=-m3的关系式;(4)的底数是多项式,也适用同底数幂的除法法则.例2计算下列各题:【分析】同底数幂的除法法则也适用于底数是单项式的情形,当底数不相同时,应先设法转化为同底数幂,再应用法则.【教学说明】在学生理解例题后,教师提出零指数幂的定义与意义.即任何不等于0的数的0次幂都等于1.即a0=1(a≠0).例3已知2×5m=5×2m,求m的值.【分析】将等式化为方程的形式,利用a0=1的性质解答.例4计算下列各题:【分析】解答本题的关键是遵循运算顺序,避免错算.【教学说明】不要出现-a21÷a6÷a6=-a21÷1=-a21这样的错误.【分析】本题可逆用幂的有关性质,将结论中的代数式转化为含有已知条件的代数式进行求解,即要求32m-4n+1的值,则应把已知条件转化为以3为底的幂的形式,如9n=(32)n=32n.三、运用新知,深化理解1.下面的计算对不对?如果不对,应当怎样改正?2.计算下列各题.3.计算下列各题.【教学说明】安排上述三题是为了帮助学生深化理解同底数幂的除法运算,题可师生共同评析.题2,3教师可指派学生到黑板上演算,然后全班订正,让学生加深印象,达成共识.四、师生互动,课堂小结谈谈本节课获得了哪些知识和解决问题的方法.【教学说明】这节课利用除法的意义及乘、除互逆的运算,揭示了同底数幂的除法的运算规律.并能运用运算法则解决简单的计算问题,积累了一定的数学经验.1.布置作业:从教材“习题14.1”中选取部分题.2.完成练习册中本课时的练习.本课时教学重点在指导学生由同底数幂乘法法则推导出同底数幂除法法则,并类比已有知识由学生自主归纳总结出运用法则计算时应注意的问题,在学生充分认识法则的本质后,指导学生解决一定基础的具体问题,学生间互相查漏补缺,教师适时指点评价,帮助学生把知识转化为解决问题的能力,实际教学中,教师尽量多营造学生自主探究,自已解决问题的氛围.问题为了扩大街心花园的绿地面积,把一块长a米,宽p米的长方形绿地加长b米,加宽q米(如图).你能用几种方法求出扩大后的绿地面积?方法一这块花园现在长(a+b)米,宽(p+q)米,故面积为(p+q)(a+b)米2.方法二这块花园现在是由四小块组成,面积分别为ap米2,aq米2,bp米2,bq米2,故面积为(ap+aq+bp+bq)米2.由此可推知:(a+b)(p+q)=ap+aq+bp+bq.即多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.要求学生讨论这个公式的特点,并探讨如何应用于计算中.【教学说明】教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知例1计算下列各题.(1)(3a+2b)(4a-5b);(2)(x-1)(x+1)(x2+1);(3)(a+b)(a-2b)-(a+2b)(a-b);(4)5x(x2+2x+1)-(2x+3)(x-5).【教学说明】多项式乘以多项式时须把一个多项式中的每一项乘以另一多项式中的每一项,刚开始时要严格按照法则写出全部过程,要注意:(1)每一项的符号不能弄错;(2)不能漏乘任何一项.例2计算下列各题.(1)(x+2)(x+3);(2)(x-4)(x+1);(3)(y+4)(y-2);(4)(y-5)(y-3).求得结果后,与同伴一起观察,探寻其中的特征和规律,并交流.【教学说明】根据上述结果,可得(x+p)(x+q)=x2+(p+q)x+pq,这个公式可作为特别结论应用.回答下列问题:(1)(x+4)(x+3)=_________;(2)(x-1)(x+2)=_________;(3)(x-5)(x-6)=_________;(4)(x-5)(x-5)=_________.例3解方程:(x-2)(x2-6x-9)=x(x-5)(x-3).【分析】先应用多项式乘法法则进行化简,再解方程.例4先化简,再求值:(x+2y)(2x+y)-(3x-y)(x+2y),其中x=9,y=1 2 .【教学说明】本例的实质是多项式乘以多项式法则的应用.例5已知(x2+px+8)(x2-3x+q)的展开式中不含x2,x3项,试求p,q的值.【分析】先按多项式乘以多项式的法则展开,再合并同类项,欲使展开式中不含x2,x3项,就是x2项和x3项的系数为0,通过解方程组可求出p,q的值.因为展开式中不含x2,x3项,解之得p=3,q=1.【教学说明】一个多项式中可能含有很多字母,在解答问题时,一般把要求的字母当作已知数看待,合并同类项时,这些字母应看成单项式的系数.三、运用新知,深化理解甲、乙两人共同计算一道整式乘法:(2x+a)·(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x-10;由于乙漏抄了第二个多项式中x 的系数,得到的结果为2x2-9x+10.(1)你能知道式子中a、b的值各是多少?(2)请你计算出这道整式乘法的正确结果.【分析】甲抄错了a的符号,即甲的计算式为:(2x-a)(3x+b)=6x2-(3a-2b)x-ab,对比得到的结果可得:-(3a-2b)=11;①乙漏抄了第二个多项式x的系数,即乙的计算式为:(2x+a)(x+b)=2x2+(a+2b)x+ab,对比得到的结果可得:a+2b=-9.②由①、②两式即可得出a、b的值.【教学说明】此题综合性较强,教师可先让学生自行思考,寻求解题思路,然后教师引领学生去理解题意,师生共同完成解答.【答案】(2x-a)(3x+b)=6x2-(3a-2b)x-ab=6x2+11x-10;(2x+a)(x+b)=2x2+(a+2b)x+ab=2x2-9x+10;所以-(3a-2b)=11,且a+2b=-9,解得a=-5,b=-2.所以(2x-5)(3x-2)=6x2-19x+10.四、师生互动,课堂小结师生共同交流本节所学知识及收获.1.布置作业:从教材“习题14.1”中选取部分题.2.完成练习册中本课时的练习.本课时教学时可先利用几何图形的方式验证多项式乘法法则的正确性,形成直观感受;再把公式中的(m+n)整体看作一个单项式,利用单项式与多项式相乘法则,进一步推证多项式乘法法则,从中让学生体验转化的数学思想,课堂上引导学生解决一些具体的数学问题,帮助学生巩固对法则的理解认识.第4课时整式的除法1.经历探索单项式除以单项式,多项式与单项式相除的运算法则的过程,会进行单项式,多项式与单项式的除法运算.2.探究单项式与单项式、多项式与单项式相除的算理,发展有条理的表达与思考能力.3.从探索单项式除以单项式的运算法则的过程中,获取成功的体验,积累研究数学问题的经验.【教学重点】整式除法法则的应用.【教学难点】整式除法法则的探究.一、情境导入,初步认识1.(1)计算:2xy·(-3x2y2)=____,ab2·a=________.(2)根据(1)的结果,并由乘、除法互为逆运算填空:-6x3y3÷2xy=______.a2b2÷ab2=________.(3)仿照(1)(2)的形式,要求学生再举几个例子,并从中总结规律.【教学说明】教师讲课前,先让学生完成“自主预习”.2.师生共同表述这些式子所共有的特征:(1)都是单项式除以单项式.(2)运算结果都是把系数、同底数幂分别相除后作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.(3)单项式相除是在同底数幂的除法基础上进行的.3.提出单项式除以单项式的法则.例1计算:【分析】本题直接利用单项式除以单项式法则计算.计算时,要弄清两个单项式的系数各是什么,哪些是同底数幂,哪些是只在一个单项式里出现的字母,此外还要特别注意系数的符号.二、思考探究,获取新知由学生列举几个单项式乘以多项式的计算题,并求出结果,并根据乘、除法互逆,把整式乘法转化为多项式除以单项式的计算题,并写出结果.再观察特征,总结规律.【归纳总结】多项式除以单项式,先把多项式的每一项除以这个单项式,再把所得的商相加.即(am+bm)÷m=am÷m+bm÷m=a+b.例2计算:【分析】本题利用多项式除以单项式法则计算;(2)题中,把(a+b)看成一个整体,那么此式也可以看作是多项式除以单项式.例3计算:【分析】此题是整式加减乘除混合运算,解题时要注意运算顺序,先乘方,再乘除,最后加减,有括号先算括号里的.三、运用新知,深化理解1.计算:2.计算:3.化简求值.【教学说明】题1是有关单项式除以单项式的训练,题2是有关多项式除以单项式的训练,此两题可让学生自由训练,加强新知理解;题3是整式的乘法,除法的综合计算,教师着重指导学生如何正确地运用公式快速、准确地计算.四、师生互动,课堂小结集体交流本节知识点和解题方法,教师点评.1.布置作业:从教材“习题14.1”中选取部分题.2.完成练习册中本课时的练习.本课时的主要任务是完成单项式除以单项式法则的推导,进而将多项式除以单项式转化为单项式除以单项式,根据学生已有的认知水平,教师可鼓励学生自主探究整式的除法法则,并在小组间交流各自体会后由教师总结,最后学生在教师的指点下完成一定的训练,以确保能真正理解并应用法则.。

人教版数学八年级上册14.1.4整式的乘法(第1课时)优秀教学案例

人教版数学八年级上册14.1.4整式的乘法(第1课时)优秀教学案例
人教版数学八年级上册14.1.4整式的乘法(第1课时)优秀教学案例
一、案例背景
本节课为人教版数学八年级上册第14章第1节第4课时,内容为整式的乘法。在此之前,学生已经学习了有理数的乘法、乘方的概念和性质,以及整式的加减法。本节课的学习为后续多项式乘多项式、多项式乘单项式、单项式乘单项式等知识的学习奠定基础。
(二)问题导向
1.自主探究:鼓励学生自主探究整式乘法的运算法则,培养学生的问题解决能力。例如,让学生尝试计算两个多项式的乘积,总结规律。
2.引导发现:教师引导学生发现整式乘法的运算法则,帮助学生建立知识体系。例如,通过分析两个多项式的乘积,引导学生发现整式乘法的分配律。
(三)小组合作
1.分组讨论:将学生分成小组,让学生在小组内讨论整式乘法的运算法则,培养学生的合作交流能力。例如,让学生分组讨论如何计算两个多项式的乘积,并总结出运算法则。
(二)讲授新知
1.自主探究:鼓励学生自主探究整式乘法的运算法则,培养学生的问题解决能力。例如,让学生尝试计算两个多项式的乘积,总结规律。
2.引导发现:教师引导学生发现整式乘法的运算法则,帮助学生建立知识体系。例如,通过分析两个多项式的乘积,引导学生发现整式乘法的分配律。
(三)学生小组讨论
1.分组讨论:将学生分成小组,让学生在小组内讨论整式乘法的运算法则,培养学生的合作交流能力。例如,让学生分组讨论如何计算两个多项式的乘积,并总结出运算法则。
2.问题导向与自主探究的结合:教师引导学生发现整式乘法的运算法则,帮助学生建立知识体系。同时,鼓励学生自主探究、尝试计算,培养学生的自主学习能力。
3.小组合作与互动交流:将学生分成小组,鼓励小组间的互动交流,让学生在分享经验中共同成长。通过小组讨论,培养学生的合作交流能力和团队协作精神。

人教版八年级数学上册14.1整式的乘法(教案)

人教版八年级数学上册14.1整式的乘法(教案)
五、教学反思
在今天的课程中,我们探讨了整式的乘法,这是数学中的一个重要概念。我发现,同学们在理解单项式与单项式相乘时,普遍能够掌握得比较好,但是当涉及到多项式与多项式相乘时,尤其是分配律的运用上,大家就显得有些吃力了。
我意识到,分配律的概念虽然基础,但在整式乘法中的应用却非常关键。在讲授过程中,我尝试通过多个例子的逐步解析,来帮助学生理解这个难点。从学生的反馈来看,这种方法似乎有所帮助,但仍有一部分同学需要更多的练习和指导。
2.教学难点
-理解并掌握多项式乘以多项式的运算过程,特别是分配律的灵活应用。
-在实际问题中,将问题抽象为整式乘法问题,并进行正确建模。
-对乘法公式(平方差公式、完全平方公式)的理解和记忆,以及在实际计算中的运用。
举例解释:
-难点在于多项式乘法中分配律的多次应用,如(x+2)*(x+3)=x^2+3x+2x+6,学生容易在计算过程中遗漏或错误分配。
举例解释:
-重点讲解同类项合并法则在单项式乘法中的应用,如(3x^2)*(4x^2)=12x^4。
-强调分配律在整式乘法中的重要性,如(x+1)*(x+2)=x^2+2x+x+2。
-通过实例展示平方差公式(a^2-b^2=(a+b)(a-b))和完全平方公式((a+b)^2=a^2+2ab+b^2)在整式乘法中的应用。
-在实际问题中,如计算长方体的体积时,学生需要将长、宽、高表示为整式,并正确应用整式乘法进行计算。
-学生在运用乘法公式时,常出现记错公式或不会正确代入变量的问题,需要通过反复练习和讲解来突破这一难点。
四、教学流程
(一)导入新课(用时5分钟)

14.1.4 整式的乘法(第1课时) 初中数学人教版八年级上册教学课件(共26张PPT)

14.1.4 整式的乘法(第1课时) 初中数学人教版八年级上册教学课件(共26张PPT)

注意系数 的符号!
= [(-5)×(-3)] (a2 ·a)·b = 15a3b.
系数、同底数幂分别相乘、 只在一个单项式里含有的 字母,则连同它的指数作 为积的一个因式
例题练习 计算: (1) (-5a2b)(-3a);
先算乘方
(2) (2x)3(-5xy3).
解: (2)原式 = (8x3)·(-5xy3)
2x2 y5 ,
练习 2 计算: 3x4 x2 2x2 3
1 2
x2
y
3
3xy2
2
解:(1)原式 3x6 8x6 11x6 ;
(2)原式 1 x6 y3 9x2 y4 9 x8 y7 .
8
8
练习 3 计算:(1) 3m2n mn4 ;
(2) a2bc3 b2c 3 ;
距离=速度×时间
(3×105)×(5×102)km
如何计算该 结果呢?
探究新知
写出 (3×105)×(5×102) 的计算过程,并说明用到了哪些运算律 及运算性质.
有理数的乘法
(3×105)×(5×102)
= (3×5)×(105×102)
(乘法交换律、结合律)
= 15×107
(同底数幂的乘法)
= 1.5×108
有理数的运算律和运算性质在整式运算中仍然适用.
单项式乘单项式:
单项式与单项式相乘,把它们的系数、同底数 幂分别相乘,对于只在一个单项式里含有的字 母,则连同它的指数作为积的一个因式.
例题练习
计算: (1) (-5a2b)(-3a);
(2) (2x)3(-5xy3).
解:(1) (-5a2b)(-3a)
B. 6a2+2ab
C. 3a2+ab

人教版八年级上册数学《整式的乘法》整式的乘法与因式分解说课复习(单项式与单项式相乘)

人教版八年级上册数学《整式的乘法》整式的乘法与因式分解说课复习(单项式与单项式相乘)

(2) (- 4x) (2x2+3x-1)
解:原式=(- 4x) •2x2+(- 4x)•3x+(- 4x)•(-1) = - 8x3- 12x2+4x
(3) ab ( ab2 - 2ab)
解:原式= a2b3–2 a2b2 单项式与多项式相乘时,分两个阶段: ①按乘法分配律把乘积写成单项式与单项式乘积的代数和的形式; ②单项式的乘法运算。
(7)-5a3b2c·3a2b=-15a5b3c (8)a3b·(-4a3b)=-4a6b2 (9)(-4x2y)·(-xy)=4x3y2 (10)2a3b4(-3ab3c2)=-6a4b7c2 (11)-2a3·3a2=-6a5 (12)4x3y2·18x4y6=72x7y8
2.计算:(-a)2 ·a3 ·(-2b)3 -(-2ab)2 ·(-3a)3b
谢 谢 观 看!
4.若n为正整数,x3n=2,2x2n ·x4n+x4n ·x5n的值。
解:2x2n ·x4n+x4n ·x5n =2x6n+x9n =2(x3n)2+(x3n)3 =2×22+23 =8+8 =16
∴原式的值等于16。
5 已知1 (x2 y3 )m • (2xyn1)2 x4 • y9 , 4
情境引入 x
mx
1 8
x
x
3x 4
1 8
x
mx
第一幅的面积是 x(mx)
这是两个单项式相乘, 结果可以表达得更简
第二幅的面积是 (mx)( 3 x ) 单些吗?
4
光的速度约为3×105千米/秒,太阳光照射到
地球上需要的时间大约是5×102秒,你知道地
球与太阳的距离约是多少千米吗?

14.1.4整式的乘法(第1课时)(课件)-八年级数学上册精品课堂(人教版)

14.1.4整式的乘法(第1课时)(课件)-八年级数学上册精品课堂(人教版)
(2)同底数幂相乘,底数不变,指数相加;
(3)只在一个单项式里面含有的字母,要连同它的指数作为积的一
个因式;
(4)“-”代表的是系数“-1”.
课后作业
1.计算3b·2ab的结果是( C )
A.6b2
B.6ab
C.6ab2
D.5ab
2.下列计算中,正确的是( B )
A.2a3·3a2=6a6
B.4x3·2x5=8x8
C. -72a3b5
D. 72a3b5
3.若 (ambn) · (a2b) = a5b3,则 m + n = ( D )
A. 8
B. 7
C. 6
D. 5
随堂检测
4.计算:(1)(a2)3·a4 ;(2)4y·(-3xy3);
解:原式=a6·a4
=a10.
(3)(-x)3·(x2y)2;
解:原式=[4×(-3)](y·y3)·x
(3) 只在一个单项式里面含有的字母,要连同它的指数作为积的一个因式;
(4) “-”代表的是系数“-1”.
随堂检测
1.计算 3a2 · 2a3 的结果是 ( B )
A. 5a5
B. 6a5
C. 5a6
D. 6a6
2.计算 (-9a2b3)·8ab2 的结果是 ( C )
A. -72a2b5
B. 72a2b5
3m+n 5=4

2n 3 m=1
解得:m=2,n=3.
课堂小结
1.单项式乘法法则:一般地,单项式与单项式相乘,把它们的系数、
同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它
的指数作为积的一个因式.
2.单项式与单项式相乘的步骤:

14.1.4 整式的乘法(第1课时)说课稿 2022-2023学年人教版八年级上册数学

14.1.4 整式的乘法(第1课时)说课稿 2022-2023学年人教版八年级上册数学

14.1.4 整式的乘法(第1课时)说课稿一、教材分析本节课是人教版八年级上册数学的第14章“代数式的基本操作”中的第1节“整式的乘法”。

在这节课中,我们将学习整式的乘法运算。

二、教学目标1.知识与技能:–掌握整式的乘法运算的基本规则和方法。

–理解乘法的交换律。

–能够应用整式的乘法解决实际问题。

2.过程与方法:–通过观察、实践和思考,培养学生的数学思维能力和解决问题的能力。

–通过讲解、练习和讨论,提高学生的数学运算技巧和策略选择能力。

3.情感态度价值观:–培养学生对数学学科的兴趣和探索精神。

–引导学生正确对待失败和挫折,在解题过程中培养学生的坚持不懈和勇于尝试的品质。

三、教学重点与难点1.教学重点:–整式的乘法运算的基本规则和方法。

–乘法的交换律。

2.教学难点:–整式的乘法运算的应用解决实际问题。

四、教学过程1.导入新课:通过引入一个实际问题,引起学生的兴趣和思考。

例如:小明买了3本数学书和4本英语书,每本数学书的价格是5元,每本英语书的价格是8元,那么小明总共花费了多少钱?让学生思考如何解决这个问题。

2.引入新知:根据学生的思考,引入整式的乘法运算。

解释整式就是由常数项和各种同类项加减而成的代数式,然后引出整式的乘法运算的基本规则和方法。

3.示例演示:通过一些具体的例子,演示整式的乘法运算的步骤和操作方法。

例如:(3x + 4)(2x - 5)的乘法运算过程。

4.理解巩固:让学生通过练习,巩固整式的乘法运算。

设计一些练习题,让学生独立完成,并让学生互相交换答案,进行讨论和纠正。

5.拓展应用:让学生通过一些实际问题,应用整式的乘法运算解决实际问题。

例如:小明的房间长5米,宽3米,他想铺一个长宽相同的正方形地毯,地毯每平方米的价格是10元,那么他需要花费多少钱买地毯?6.归纳总结:引导学生总结整式的乘法运算的基本规则和方法。

强调乘法的交换律,并帮助学生理解乘法的交换律在整式的乘法中的应用。

7.课堂小结:对本节课的内容进行总结,确保学生掌握了整式的乘法运算的基本规则和方法。

人教版初中数学《整式的乘法》_课件

人教版初中数学《整式的乘法》_课件

知2-讲
(1)零指数幂在同底数幂除法中,是除式与被除式的指 数相同时的特殊情况.
(2)指数为0,但底数不能为0,因为底数为0时,除 法无意义.
【获奖课件ppt】人教版初中数学《整 式的乘 法》_ 课件1- 课件分 析下载
【获奖课件ppt】人教版初中数学《整 式的乘 法》_ 课件1- 课件分 析下载
1 计算:(-2)3+( 3 -1)0=___-__7___.
2
(中考•陕西)计算

2
0
3
=(
A)
A.1
B.- 2 3
C.0
2 D. 3
知2-练
【获奖课件ppt】人教版初中数学《整 式的乘 法》_ 课件1- 课件分 析下载
【获奖课件ppt】人教版初中数学《整 式的乘 法》_ 课件1- 课件分 析下载
(am )n amn
3. 积的乘方,积的乘方,等于每一个因式乘方的积 .
(ab)n anbn
知识点 1 同底数幂的除法法则
知1-导
我们来计算am÷ an (a ≠0,m,n都是正整数,并且m> n). 根据除法是乘法的逆运算,计算被除数除以除数所得的商, 就是求一个数,使它与除数的积等于被除数.由于式中的字母表 示数,所以可以用类似的 方法来计算am÷ an . ∵ am-n • an= a(m-n)+n = am , ∴ am÷ an = am-n .
【获奖课件ppt】人教版初中数学《整 式的乘 法》_ 课件1- 课件分 析下载
1 计算(-x)3 ÷(-x)2等于( A )
A.-x
B.x
C.-x5
D.x5
2 (中考•桂林)下列计算正确的是( A ) A.(a5)2=a10 B.x16÷x4=x4 C.2a2+3a2=6a4 D.b3•b3=2b3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习回顾 1.同底数幂的除法公式:
am÷an=am-n (a≠0, m, n都是正整数,并且m>n). 2.单项式乘以单项式法则:
单项式乘以单项式,把系数、相同字母分别相 乘,对于只在一个单项式中存在的字母连同它的指 数作为积的一个因式.
人教版《整式的乘法》1
人教版《整式的乘法》1
知识点 1 单项式除以单项式的法则
人教版《整式的乘法》1
导引:根据题意列出算式,再根据单项式除以单项式 进行计算可得结果.
解:依题意,得(2.4×1013)÷(4×1010)=600(滴). 600÷15=40(mL). 答:需要这种杀菌剂40 mL.
人教版《整式的乘法》1
人教版《整式的乘法》1
总结
知2-讲
这类实际问题先列出算式,要把2.4×1013和4×1010看 作单项式形式,其中2.4和4可当作系数.
人教版《整式的乘法》1
人教版《整式的乘法》1
知2-练
1 (中考·威海)下列运算正确的是( C ) A.(-2mn)2=-6m2n2
B.4x4+2x4+x4=6x4
C.(xy)2÷(-xy)=-xy
D.(a-b)(-a-b)=a2-b2
2 已知a=1.6×109,b=4×103,则a2÷b等于( D )
填空:
(1)2a? 4a2 8a3; (2) 2 x2 ? 3xy 6x3 y; (3)3ab2 ? 4a2 x3 12a3b2 x3 .
人教版《整式的乘法》1
知1-讲
人教版《整式的乘法》1
知1-讲
计算下列各题,并说说你的理由 .
(1) x5y÷x2 ; (2) 8m2n2÷2m2n ; (3) a4b2c÷3a2b .
C.(6x2y2)÷(3x)=2x2 D.(-3x)2=9x2
3 (2中考·苏州)下列运算结果正确的是( D )
A.a+2b=a8
D.(-a2b)3÷(a3b)2=-b
人教版《整式的乘法》1
人教版《整式的乘法》1
知识点 2 单项式除以单项式的应用
知2-导
可以用类似于 分数约分的方 法来计算.
人教版《整式的乘法》1
人教版《整式的乘法》1
知1-讲
单项式除以单项式的法则:
单项式相除,把系数、同底数幂分别相除后, 作为商的因式;对于 只在被除式里含有的字母, 则连同它的指数一起作为商的一个因式 .
人教版《整式的乘法》1
人教版《整式的乘法》1
例1 计算: (1)28x4y2 ÷ 7x3y; (2) - 5a5b3c ÷ 15a4b.
(2) ( 2 a3b4 ) ( 1 ab2 ).
5
4
导引:解题的依据是单项式除法法则.计算时,要弄
清两个单项式的系数各是什么,哪些是同底数
幂,哪些是只在被除式里含有的字母,此外,
还要特别注意系数的符号及运算顺序.
解:(1)-12x5y3z÷3x4y=(-12÷3)x5-4y3-1z=-4xy2z;
本题运用了方程思想求解.通过单项式除以单项式法 则把条件中的等式左边化简成一个单项式,再通过两 个单项式相等的特征构造方程是解题的关键.
人教版《整式的乘法》1
人教版《整式的乘法》1
知2-讲
例4 一种被污染的液体每升含有2.4×1013个有害细菌, 为了试验某种杀菌剂的效果,科学家们进行了实 验,发现1滴杀菌剂可以杀死4×1010个此种细菌, 要将1 L液体中的有害细菌全部杀死,需要这种 杀菌剂多少毫升?(注:15滴=1 mL)
(2) (
2 5
a3b4 ) (
1 4
ab2 )
2 5
(
1 4
)
a
b 31 4
2
8 5
a2b2 .
人教版《整式的乘法》1
人教版《整式的乘法》1
总结
知1-讲
单项式除以单项式时,尽量按字母的顺序去写并依据 法则将其转化为同底数幂相除来完成;计算时特别注 意符号的变化,不要漏掉只在被除式中含有的因式.
解:(1) 28x4y2 ÷ 7x3y = (28 ÷ 7) •x4 - 3 • y2 -1 =4xy ;
(2) - 5a5b3c ÷ 15a4b = [(- 5) ÷15]a5 - 4b 3 - 1 c = -1 ab2c .
3
人教版《整式的乘法》1
知1-讲
人教版《整式的乘法》1
知1-讲
例2 计算:(1)-12x5y3z÷3x4y;
解:因为 (-3x4 y3 )3 ( 3 xn y2 ) (27 x12 y9 ) ( 3 xn y2 )
2
2
=18x12-ny7,
所以18x12-ny7=mx8y7.因此m=18,12-n=8.
所以n=4,所以n-m=4-18=-14.
人教版《整式的乘法》1
人教版《整式的乘法》1
总结
知2-讲
人教版《整式的乘法》1
人教版《整式的乘法》1
知1-练
1 (中考·遵义)计算-12a6÷3a2的结果是( C )
A.-4a3 C.-4a4
B.-4a8
D.-
4 3
a4
人教版《整式的乘法》1
人教版《整式的乘法》1
知1-练
2 (中考·陕西)下列计算正确的是( D )
A.x2+3x2=4x4
B.x2y·2x3=2x4y
人教版《整式的乘法》1
第十四章 整式的乘法与因式分解
14.1 整式的乘法
第8课时 整式的乘法——单 项式除以单项式
人教版《整式的乘法》1
人教版《整式的乘法》1
1 课堂讲解 2 课时流程
单项式除以单项式的法则 单项式除以单项式的应用
逐点 导讲练
课堂 小结
作业 提升
人教版《整式的乘法》1
人教版《整式的乘法》1
A.4×107
B.8×1014
C.6.4×105
D.6.4×1014
人教版《整式的乘法》1
人教版《整式的乘法》1
1. 单项式除以单项式的法则: 单项式相除,把系数、同底数幂分别相除后,作 为商的因式;对于 只在被除式里含有的字母,则 连同它的指数一起作为商的一个因式 .
2. 在运算过程中注意数学方法和数学思想的应用, 在实际应用中要把数学问题转化成数学问题 .
如图所示,三个大小相同 的球恰好放在一个圆柱形盒子 里,三个球的体积之和占整个 盒子容积的几分之几?
人教版《整式的乘法》1
人教版《整式的乘法》1
知2-讲
例3 已知(-3x4y3)3÷ ( 3 xn y2 )=mx8y7,求n-m的值 . 2
导引:先利用单项式除以单项式法则计算等式左边的
式子,再与等式右边的式子进行比较求解.
相关文档
最新文档