正态分布课件演示文稿
合集下载
大学正态分布ppt课件
记号
X服从正态分布时,记作X ~ N(μ, σ^2)。
正态分布的特点
钟形曲线
正态分布是一条钟形曲线,形状由均值和标准差决定。
均值为μ,方差为σ^2
正态分布的均值和方差是两个参数,均值为μ,方差为σ^2。
曲线下的面积
正态分布曲线下的面积为1,表示概率的累积分布。
正态分布的应用
自然现象
01
许多自然现象,如人类的身高、体重、智商等,都近
可靠性工程
在可靠性工程中,正态分布被用于描述设备的故 障概率和寿命分布,以及设计和优化设备的可靠 性。
PART 06
正态分布与其他统计分布 的关系
REPORTING
与二项分布的关系
01 02 03 04
二项分布是离散型的概率分布,而正态分布是连续型的概率分布。
二项分布中,随机变量取值是离散的,而正态分布中,随机变量取值 是连续的。
二项分布和正态分布的形状都呈现出钟形曲线,但二项分布的曲线比 较陡峭,而正态分布的曲线比较平缓。
二项分布和正态分布在一定条件下可以相互转化。例如,当二项分布 的试验次数足够大时,二项分布的极限分布就是正态分布。
与泊松分布的关系
泊松分布也是离散型的概率分布,但与二项分 布不同的是,泊松分布适用于描述单位时间( 或单位面积)内随机事件发生的次数。
似服从正态分布。
社会科学
02 在社会科学中,很多现象也服从正态分布,如人的出
生率、死亡率等。
科学实验
03
在科学实验中,实验结果往往呈现正态分布,如化学
反应速率等。
PART 02
正态分布的性质
REPORTING
数学期望与方差
数学期望
正态分布的期望值,即概率分布的中 心,表示为μ。它描述了分布的中心 位置。
X服从正态分布时,记作X ~ N(μ, σ^2)。
正态分布的特点
钟形曲线
正态分布是一条钟形曲线,形状由均值和标准差决定。
均值为μ,方差为σ^2
正态分布的均值和方差是两个参数,均值为μ,方差为σ^2。
曲线下的面积
正态分布曲线下的面积为1,表示概率的累积分布。
正态分布的应用
自然现象
01
许多自然现象,如人类的身高、体重、智商等,都近
可靠性工程
在可靠性工程中,正态分布被用于描述设备的故 障概率和寿命分布,以及设计和优化设备的可靠 性。
PART 06
正态分布与其他统计分布 的关系
REPORTING
与二项分布的关系
01 02 03 04
二项分布是离散型的概率分布,而正态分布是连续型的概率分布。
二项分布中,随机变量取值是离散的,而正态分布中,随机变量取值 是连续的。
二项分布和正态分布的形状都呈现出钟形曲线,但二项分布的曲线比 较陡峭,而正态分布的曲线比较平缓。
二项分布和正态分布在一定条件下可以相互转化。例如,当二项分布 的试验次数足够大时,二项分布的极限分布就是正态分布。
与泊松分布的关系
泊松分布也是离散型的概率分布,但与二项分 布不同的是,泊松分布适用于描述单位时间( 或单位面积)内随机事件发生的次数。
似服从正态分布。
社会科学
02 在社会科学中,很多现象也服从正态分布,如人的出
生率、死亡率等。
科学实验
03
在科学实验中,实验结果往往呈现正态分布,如化学
反应速率等。
PART 02
正态分布的性质
REPORTING
数学期望与方差
数学期望
正态分布的期望值,即概率分布的中 心,表示为μ。它描述了分布的中心 位置。
《正态分布l》PPT课件
▪ 随机现象或不确定性现象,有如下特点: ▪ 在一定的条件实现时,有多种可能的结果发生,事前人们不能预
言将出现哪种结果;对一次或少数几次观察或试验而言,其结果呈现 偶然性、不确定性;
▪ 但在相同条件下进行大量重复试验时,其试验结果却呈现出某种 固有的特定的规律性——频率的稳定性,通常称之为随机现象的统计 规律性。
f(x)
B
A
C x
和 对正态曲线的影响
5. 正态曲线下的总面积等于1; 6. 随机变量的概率由曲线下的面积给出。
f(x)
概率是曲线下的面积!
b
P (axb)a f(x)dx?
ab
x
7. 经验法则在正态分布中的应用: μ±σ范围内的面积为68.27% μσ范围内的面积为95% μσ范围内的面积占99%
D( X ) E[ X E ( X ) ]2
若X是 离 散 型随 机 变 量 , 则
D( X )
xi E ( X )2 pi
i 1
▪ 若X为离散型随机变量,则计算公式为:
D( X ) E[ X E ( X ) ]2
若X是 离 散 型 随 机 变 量 , 则
D( X )
xi E ( X )2 pi
▪ (2)连续型随机变量:数据间无缝隙,其取值充满整个区间,无法一一 列举每一可能值。
例如:身高、体重、血清胆固醇含量。
▪ 2.概率分布
▪ 概率分布:描述随机变量值 x i 及这些值对应概率 P(Xxi的) 表格、公式
或图形。
▪ (1). 离散型随机变量的概率分布
表 4.3 婴儿的性表别情2况婴表儿的性别情况
(3)
(4)
2.7~
正-
6
3.1~
正态分布完整ppt课件
正态性检验
使用如Shapiro-Wilk检验、Kolmogorov-Smirnov检验等方法,对 误差项进行正态性检验,以验证其是否符合正态分布。
方差分析中F分布应用
01 02
F分布的定义
F分布是一种连续型概率分布,常用于方差分析中的假设检验。在方差 分析中,通过比较不同组间的方差与组内方差,判断各因素对结果的影 响是否显著。
筛选方法
包括单变量分析和多变量分析等,结合临床 意义和统计学显著性进行生物标志物的筛选 。
社会科学调查数据分析
社会科学调查数据特点
大量、复杂、多维度的数据,往往需要进行统计分析和数据挖掘。
正态分布在社会科学调查数据分析中的应用
通过对调查数据进行正态性检验,选择合适的数据处理和分析方法,如参数检验、回归分析等。
有对称性和单峰性。
性质
对称性:正态分布曲线关于均值对称 。
单峰性:正态分布曲线只有一个峰值 ,位于均值处。
均值、中位数和众数相等。
概率密度函数在均值两侧呈指数下降 。
正态曲线特点
01
02
03
04
形状
钟形曲线,中间高,两边低。
对称性
关于均值对称,即左右两侧形 状相同。
峰值
位于均值处,且峰值高度由标 准差决定。
05
正态分布在金融学领域应用
风险评估及资产组合优化
风险评估
正态分布用于描述金融资产的收益和风险分布,通过计算均值和标准差来评估投资组合 的风险水平。
资产组合优化
基于正态分布假设,利用马科维茨投资组合理论等方法,构建最优资产组合以降低风险 并提高收益。
VaR(Value at Risk)计算
正态分布用于计算投资组合在一定置信水平下的最大可能损失(VaR),以衡量潜在风 险。
使用如Shapiro-Wilk检验、Kolmogorov-Smirnov检验等方法,对 误差项进行正态性检验,以验证其是否符合正态分布。
方差分析中F分布应用
01 02
F分布的定义
F分布是一种连续型概率分布,常用于方差分析中的假设检验。在方差 分析中,通过比较不同组间的方差与组内方差,判断各因素对结果的影 响是否显著。
筛选方法
包括单变量分析和多变量分析等,结合临床 意义和统计学显著性进行生物标志物的筛选 。
社会科学调查数据分析
社会科学调查数据特点
大量、复杂、多维度的数据,往往需要进行统计分析和数据挖掘。
正态分布在社会科学调查数据分析中的应用
通过对调查数据进行正态性检验,选择合适的数据处理和分析方法,如参数检验、回归分析等。
有对称性和单峰性。
性质
对称性:正态分布曲线关于均值对称 。
单峰性:正态分布曲线只有一个峰值 ,位于均值处。
均值、中位数和众数相等。
概率密度函数在均值两侧呈指数下降 。
正态曲线特点
01
02
03
04
形状
钟形曲线,中间高,两边低。
对称性
关于均值对称,即左右两侧形 状相同。
峰值
位于均值处,且峰值高度由标 准差决定。
05
正态分布在金融学领域应用
风险评估及资产组合优化
风险评估
正态分布用于描述金融资产的收益和风险分布,通过计算均值和标准差来评估投资组合 的风险水平。
资产组合优化
基于正态分布假设,利用马科维茨投资组合理论等方法,构建最优资产组合以降低风险 并提高收益。
VaR(Value at Risk)计算
正态分布用于计算投资组合在一定置信水平下的最大可能损失(VaR),以衡量潜在风 险。
《正态分布》ppt课件
《正态分布》ppt课件
目录
CONTENTS
• 正态分布基本概念 • 正态分布在统计学中应用 • 正态分布在自然科学领域应用 • 正态分布在社会科学领域应用 • 正态分布计算方法及工具介绍 • 正态分布在实际问题中案例分析
01 正态分布基本概念
CHAPTER
定义与性质
定义
对称性
正态分布是一种连续型概率分布,描述了许 多自然现象的概率分布情况。在统计学中, 正态分布又被称为高斯分布。
系统误差与随机误差
正态分布可以帮助区分系统误差和随机误差。系统误差是由于实验装置或方法本身的缺陷引 起的,而随机误差则是由于各种不可控因素引起的。通过正态分布分析,可以对这两类误差 进行识别和纠正。
化学中浓度分布规律研究
01
溶液浓度的正态分布
在化学实验中,溶液的浓度分布往往符合正态分布。通过测量不同位置
利用SPSS的图形功能,可以绘制多种统计图表,包括频率分布直 方图、正态分布曲线图等。
SPSS提供了丰富的统计分析方法,如参数估计、假设检验、方差 分析等,可以根据研究需求选择合适的方法进行分析。
06 正态分布在实际问题中案例分析
CHAPTER
质量控制过程中产品合格率评估
质量控制图
利用正态分布原理,通过绘制质 量控制图,可以直观地展示产品 质量的波动情况,从而及时发现 并处理异常波动,确保产品合格
数据输入与整理
在Excel中输入数据,并进行必要的整理,如删除重复值、处理缺失 值等。
使用内置函数计算均值和标准差
Excel提供了丰富的内置函数,可以直接计算数据集的均值 (AVERAGE函数)和标准差(STDEV函数)。
绘制图表
利用Excel的图表功能,可以根据数据快速生成频率分布直方图和正 态分布曲线图。
目录
CONTENTS
• 正态分布基本概念 • 正态分布在统计学中应用 • 正态分布在自然科学领域应用 • 正态分布在社会科学领域应用 • 正态分布计算方法及工具介绍 • 正态分布在实际问题中案例分析
01 正态分布基本概念
CHAPTER
定义与性质
定义
对称性
正态分布是一种连续型概率分布,描述了许 多自然现象的概率分布情况。在统计学中, 正态分布又被称为高斯分布。
系统误差与随机误差
正态分布可以帮助区分系统误差和随机误差。系统误差是由于实验装置或方法本身的缺陷引 起的,而随机误差则是由于各种不可控因素引起的。通过正态分布分析,可以对这两类误差 进行识别和纠正。
化学中浓度分布规律研究
01
溶液浓度的正态分布
在化学实验中,溶液的浓度分布往往符合正态分布。通过测量不同位置
利用SPSS的图形功能,可以绘制多种统计图表,包括频率分布直 方图、正态分布曲线图等。
SPSS提供了丰富的统计分析方法,如参数估计、假设检验、方差 分析等,可以根据研究需求选择合适的方法进行分析。
06 正态分布在实际问题中案例分析
CHAPTER
质量控制过程中产品合格率评估
质量控制图
利用正态分布原理,通过绘制质 量控制图,可以直观地展示产品 质量的波动情况,从而及时发现 并处理异常波动,确保产品合格
数据输入与整理
在Excel中输入数据,并进行必要的整理,如删除重复值、处理缺失 值等。
使用内置函数计算均值和标准差
Excel提供了丰富的内置函数,可以直接计算数据集的均值 (AVERAGE函数)和标准差(STDEV函数)。
绘制图表
利用Excel的图表功能,可以根据数据快速生成频率分布直方图和正 态分布曲线图。
《正态分布》教学课件(32张PPT)
x (,) 标准正态曲线 10
正态密度曲线的图像特征
方差相等、均数不等的正态分布图示
μ=0 μ= -1
μ= 1
σ=0.5
若 固定
, 随 值
的变化而
沿x轴平
移, 故
称为位置
参数;
3 1 2
正态密度曲线的图像特征
μ=0
均数相等、方差不等的正态分布图示
若 固定,
=0.5
大时, 曲线 矮而胖;
小时, 曲
在下列哪个区间内?( A)
A. (90,110] B. (95,125] C. (100,120] D.(105,115]
2、已知X~N (0,1),则X在区间 (, 2) 内取值的概率
等于( D ) A.0.9544 B.0.0456 C.0.9772 D.0.0228 3、设离散型随机变量X~N(0,1),则P(X 0)= 0.5 ,
120.68260.3413, P ( 6 x 7 ) P ( 5 x 7 ) P ( 5 x 6 )
0 . 4 7 7 2 0 . 3 4 1 3 0 . 1 3 5 9 .
5、把一个正态曲线a沿着横轴方向向右移动2个单位, 得到新的一条曲线b。下列说法中不正确的是( )
P(2X2)= 0.9544 .
4、若X~N(5,1),求P(6<X<7).
27
4、若X~N(5,1),求P(6<X<7).
解:因为X~N(5,1), 5,1.
又因为正态密度曲线关于直线 x=5 对称 ,P(5x7)1 2P(3x7)1 2P(521x521)
120.95440.4772, P(5x6)1 2P(4x6)
μ= -1
y σ=0.5
正态密度曲线的图像特征
方差相等、均数不等的正态分布图示
μ=0 μ= -1
μ= 1
σ=0.5
若 固定
, 随 值
的变化而
沿x轴平
移, 故
称为位置
参数;
3 1 2
正态密度曲线的图像特征
μ=0
均数相等、方差不等的正态分布图示
若 固定,
=0.5
大时, 曲线 矮而胖;
小时, 曲
在下列哪个区间内?( A)
A. (90,110] B. (95,125] C. (100,120] D.(105,115]
2、已知X~N (0,1),则X在区间 (, 2) 内取值的概率
等于( D ) A.0.9544 B.0.0456 C.0.9772 D.0.0228 3、设离散型随机变量X~N(0,1),则P(X 0)= 0.5 ,
120.68260.3413, P ( 6 x 7 ) P ( 5 x 7 ) P ( 5 x 6 )
0 . 4 7 7 2 0 . 3 4 1 3 0 . 1 3 5 9 .
5、把一个正态曲线a沿着横轴方向向右移动2个单位, 得到新的一条曲线b。下列说法中不正确的是( )
P(2X2)= 0.9544 .
4、若X~N(5,1),求P(6<X<7).
27
4、若X~N(5,1),求P(6<X<7).
解:因为X~N(5,1), 5,1.
又因为正态密度曲线关于直线 x=5 对称 ,P(5x7)1 2P(3x7)1 2P(521x521)
120.95440.4772, P(5x6)1 2P(4x6)
μ= -1
y σ=0.5
正态分布和对数正态分布ppt课件
若 X 是一个随机变量, Y=ln(X)服从正态分布: Y=ln(X)~N(,2)
则称 X 服从对数正态分布。 对数正态概率密度函数是:
f(x)=
1 x 2
exp
1 2
ln
x
2
0
x0
(3-9)
x0
和 不是对数正态分布的均值和标准差,而分别称为它的对数均值和对数标 准差。
(x)
1
x2
e2
2
分布函数
x
(x)
1
x2
e 2 dx
2
0 1
正态分布的密度函数的图形
y
1
2
-
+
x
ห้องสมุดไป่ตู้
中间高 两边低
对数正态分布:
是对数为正态分布的任意随机变
量的概率分布。如果 X 是正态分布的 随机变量,则 exp(X) 为对数分布;同 样,如果 Y 是对数正态分布,则 ln(Y) 为正态分布。
正态分布的概念和特征
变量的频数或频率呈中间最多,两端 逐渐对称地减少, 表现为钟形的一种概率分布。从理论上说,若随机变 量x的概率密度函数为:
f ( x) 1 e( x )2 / 2 2
2
则称x服从均数为μ,方差为σ2的正态分布
标准正态分布
定义 X ~ N(0,1)分布称为标准正态分布
密度函数
对数正态分布的均值是:
E(x )
exp
2
2
对数正态分布的方差是:
var(x ) exp 2 2 exp 2 -1
正态分布ppt精品课件
结果解释
根据检验结果,解释两组数据 是否存在显著差异,并结合实
际背景进行讨论。
06
正态分布在生活中的应用举例
质量控制领域应用举例
01
产品规格设定
在制造业中,正态分布用于设定产品规格。通过对产品特性进行统计分
析,可以确定产品特性的均值和标准差,进而设定合理的上下规格限。
02 03
过程能力分析
正态分布也用于评估生产过程的能力。通过计算过程能力指数(如Cp 和Cpk),可以了解生产过程是否稳定,并确定是否需要采取改进措施 。
多元方差分析(MANOVA)与多元回归分析( Multiple Regression Analysis):当涉及多个自 变量或多个因变量时,可以使用多元方差分析或 多元回归分析来探究它们之间的关系。
回归分析(Regression Analysis):用于探究自 变量与因变量之间的线性或非线性关系,通过拟 合回归方程来预测因变量的取值。
概率密度函数性质 f(x)≥0,对于所有x∈R。
02
正态分布在统计学中应用
描述性统计量计算
均值(Mean):表示数据的“中心 ”或“平均”水平,计算方法是所有 数值之和除以数值个数。
偏度(Skewness):描述数据分布 形态的偏斜程度,正偏态表示数据向 右偏,负偏态表示数据向左偏。
标准差(Standard Deviation):衡 量数据分布的离散程度,即数据偏离 均值的程度,计算方法是方差的平方 根。
实例分析:两组数据是否存在显著差异
数据描述
给出两组数据的描述性统计量, 如均值、标准差等。
假设检验步骤
按照上述假设检验步骤,对两组 数据进行假设检验。
结果解释
根据检验结果,判断两组数据是 否存在显著差异,并给出相应的
根据检验结果,解释两组数据 是否存在显著差异,并结合实
际背景进行讨论。
06
正态分布在生活中的应用举例
质量控制领域应用举例
01
产品规格设定
在制造业中,正态分布用于设定产品规格。通过对产品特性进行统计分
析,可以确定产品特性的均值和标准差,进而设定合理的上下规格限。
02 03
过程能力分析
正态分布也用于评估生产过程的能力。通过计算过程能力指数(如Cp 和Cpk),可以了解生产过程是否稳定,并确定是否需要采取改进措施 。
多元方差分析(MANOVA)与多元回归分析( Multiple Regression Analysis):当涉及多个自 变量或多个因变量时,可以使用多元方差分析或 多元回归分析来探究它们之间的关系。
回归分析(Regression Analysis):用于探究自 变量与因变量之间的线性或非线性关系,通过拟 合回归方程来预测因变量的取值。
概率密度函数性质 f(x)≥0,对于所有x∈R。
02
正态分布在统计学中应用
描述性统计量计算
均值(Mean):表示数据的“中心 ”或“平均”水平,计算方法是所有 数值之和除以数值个数。
偏度(Skewness):描述数据分布 形态的偏斜程度,正偏态表示数据向 右偏,负偏态表示数据向左偏。
标准差(Standard Deviation):衡 量数据分布的离散程度,即数据偏离 均值的程度,计算方法是方差的平方 根。
实例分析:两组数据是否存在显著差异
数据描述
给出两组数据的描述性统计量, 如均值、标准差等。
假设检验步骤
按照上述假设检验步骤,对两组 数据进行假设检验。
结果解释
根据检验结果,判断两组数据是 否存在显著差异,并给出相应的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合计
频数 1 2 5 12 18 25 16 13 4 2 2 100
列出频率分布表
频率
累积频率
0.01
0.01
0.02
0.03
0.05
0.08
0.12
0.20
0.18
38
0.25
0.63
0.16
0.79
0.13
0.92
0.04
0.96
0.02
0.98
0.02
1.00
1.00
频率/组距 0.0009 0.0018 0.0045 0.0109 0.0164 0.0227 0.0145 0.0118 0.0036 0.0018 0.0018
分组 25.235~25.265 25.265~25.295 25.295~25.325 25. 325~25.355 25.355~25.385 25.385~25.415 25.415~25.445 25.445~25.475 25.475~25.505 25.505~25.535 25.535~25.565
C
k n
p k q nk
C
n n
p
nq
0
复习与思考
1.由函数 y f (x) 及直线 x a, x b, y 0y b
围成的曲边梯形的面积S=__a _f_(_x_)d_x__;
2. 在我班同学身高频率分布直方图中O a ①区间(a,b)对应的图形的面积表示 _身__高__在__区__间__(_a_,_b_) _内__取__值__的__频__率____,
会越来越像一条钟形曲线图2.4 3.
y
O
图2.4 3
x
这条曲线就是(或近似地)下列函数的图象:
φμ,σ x
1
e
xμ2
2σ2
,x
, ,
2πσ
其中实数μ和σσ 0为参数.我们称φμ,σ x的
图象为正态分布密度曲线 ,简称正态曲线.
如果去掉高尔顿板试验 y
中最下边的球槽,并沿其
底部建立一个水平坐标
你见过高尔顿板吗? 图2. 4 1 所示的就是一块高尔顿板示意
演示
图.在一块木板上钉上若干排相
互平行但相互错开的圆柱 形小
木块,小木块之间留有适当的空
隙作为通道,前面挡有一块玻璃.
让一个小球从高尔顿板上方的
通 道 口 落 下,小 球 在 下 落 过 程 中
图2.4 1
与层层小木块碰撞,最后掉入高尔顿板下方的某一球槽内.
正态分布课件演示文稿
(优选)正态分布课件
两点分布 X 0 1
P 1-p p
超几何分布
X0
1
P
CM0 CNn M CNn
二项分布
C C 1 n1 M NM CNn
…k
…
C C k nk M NM CNn
…n
…
CMn CN0 M CNn
X0
1 … k …n
P … … C
0 n
p
0q
n
C
1 n
p
1q
n-1
频率分布直方图
频率 100件产品尺寸的频率分布直方图
组距
8 6 4 2
产品内径尺寸/mm
o
频数 组距
200件产品尺寸的频率分布直方图
y
0
x
样本容量增大时频率分布直方图
频率 组距
8
6
4
2
正态曲线
o
产品内径尺寸/mm
可以看出,当样本容量无限大,分组的组距无限
缩小时,这个频率直方图上面的折线就会无限接
②在频率分布直方图中, 所有小矩形的面积的和 为___1____.
a
bx
b
(一)创设情境1
某钢铁加工厂生产内径为25.40mm的钢管,为了 检验产品的质量,从一批产品中任取100件检测,测 得它们的实际尺寸如下:
25.39 25.36 25.34 25.42 25.45 25.38 25.39 25.42 25.47 25.35 25.41 25.43 25.44 25.48 25.45 25.43 25.46 25.40 25.51 25.45 25.40 25.39 25.41 25.36 25.38 25.31 25.56 25.43 25.40 25.38 25.37 25.44 25.33 25.46 25.40 25.49 25.34 25.42 25.50 25.37 25.35 25.32 25.45 25.40 25.27 25.43 25.54 25.39 25.45 25.43 25.40 25.43 25.44 25.41 25.53 25.37 25.38 25.24 25.44 25.40 25.36 25.42 25.39 25.46 25.38 25.35 25.31 25.34 25.40 25.36 25.41 25.32 25.38 25.42 25.40 25.33 25.37 25.41 25.49 25.35 25.47 25.34 25.30 25.39 25.36 25.46 25.29 25.40 25.37 25.33 25.40 25.35 25.41 25.37 25.47 25.39 25.42 25.47 25.38 25.39
轴,其刻度单位为球槽的
宽度,用 X 表示落下的小 o
x
球第1次与高尔顿板底部
图2.4 4
接触时的坐标,则X是一
个随机变量.X落在区间a,b的概率为
如果把球槽编号,就可以考察到底是落在第几号球槽
中.重 复 进 行 高 尔 顿 板 试 验,随 着 试 验 次 数 的 增 加, 掉 入
各个球槽内的小球的个数就 越来越多,堆积的高度也
会越来越高.各个球 槽的堆积高度反映了小球掉入各
球槽的个数多少?
模拟高尔顿板试验
y 频率 组距
球槽 编号 O 1 2 3 4 5 6 7 8 9 1011121314 x
模拟高尔顿板试验
y 频率 组距
球槽 编号 O 1 2 3 4 5 6 7 8 9 1011121314 x
y 频率 组距
O
x 球槽的编号
y 频率 组距
O
x 球槽的编号
y 频率 组距
总体密度曲线
O
x 球槽的编号
y 频率 组距
总体密度曲线
O
钟形曲线
x 球槽的编号
随着重复次数的增加,这个频率直方图的形状
近于一条光滑曲线---正态曲线.
引入
正态分布在统计学中是很重要的分布。我们知 道,离散型随机变量最多取可列个不同值,它等于 某一特定实数的概率可能大于0,人们感兴趣的是 它取某些特定值的概率,即感兴趣的是其分布列; 连续型随机变量可能取某个区间上的任何值,它等 于任何一个实数的概率都为0,所以通常感兴趣的 是它落在某个区间的概率。离散型随机变量的概率 分布规律用分布列描述,而连续型随机变量的概率 分布规律用密度函数(曲线)描述。
频数 1 2 5 12 18 25 16 13 4 2 2 100
列出频率分布表
频率
累积频率
0.01
0.01
0.02
0.03
0.05
0.08
0.12
0.20
0.18
38
0.25
0.63
0.16
0.79
0.13
0.92
0.04
0.96
0.02
0.98
0.02
1.00
1.00
频率/组距 0.0009 0.0018 0.0045 0.0109 0.0164 0.0227 0.0145 0.0118 0.0036 0.0018 0.0018
分组 25.235~25.265 25.265~25.295 25.295~25.325 25. 325~25.355 25.355~25.385 25.385~25.415 25.415~25.445 25.445~25.475 25.475~25.505 25.505~25.535 25.535~25.565
C
k n
p k q nk
C
n n
p
nq
0
复习与思考
1.由函数 y f (x) 及直线 x a, x b, y 0y b
围成的曲边梯形的面积S=__a _f_(_x_)d_x__;
2. 在我班同学身高频率分布直方图中O a ①区间(a,b)对应的图形的面积表示 _身__高__在__区__间__(_a_,_b_) _内__取__值__的__频__率____,
会越来越像一条钟形曲线图2.4 3.
y
O
图2.4 3
x
这条曲线就是(或近似地)下列函数的图象:
φμ,σ x
1
e
xμ2
2σ2
,x
, ,
2πσ
其中实数μ和σσ 0为参数.我们称φμ,σ x的
图象为正态分布密度曲线 ,简称正态曲线.
如果去掉高尔顿板试验 y
中最下边的球槽,并沿其
底部建立一个水平坐标
你见过高尔顿板吗? 图2. 4 1 所示的就是一块高尔顿板示意
演示
图.在一块木板上钉上若干排相
互平行但相互错开的圆柱 形小
木块,小木块之间留有适当的空
隙作为通道,前面挡有一块玻璃.
让一个小球从高尔顿板上方的
通 道 口 落 下,小 球 在 下 落 过 程 中
图2.4 1
与层层小木块碰撞,最后掉入高尔顿板下方的某一球槽内.
正态分布课件演示文稿
(优选)正态分布课件
两点分布 X 0 1
P 1-p p
超几何分布
X0
1
P
CM0 CNn M CNn
二项分布
C C 1 n1 M NM CNn
…k
…
C C k nk M NM CNn
…n
…
CMn CN0 M CNn
X0
1 … k …n
P … … C
0 n
p
0q
n
C
1 n
p
1q
n-1
频率分布直方图
频率 100件产品尺寸的频率分布直方图
组距
8 6 4 2
产品内径尺寸/mm
o
频数 组距
200件产品尺寸的频率分布直方图
y
0
x
样本容量增大时频率分布直方图
频率 组距
8
6
4
2
正态曲线
o
产品内径尺寸/mm
可以看出,当样本容量无限大,分组的组距无限
缩小时,这个频率直方图上面的折线就会无限接
②在频率分布直方图中, 所有小矩形的面积的和 为___1____.
a
bx
b
(一)创设情境1
某钢铁加工厂生产内径为25.40mm的钢管,为了 检验产品的质量,从一批产品中任取100件检测,测 得它们的实际尺寸如下:
25.39 25.36 25.34 25.42 25.45 25.38 25.39 25.42 25.47 25.35 25.41 25.43 25.44 25.48 25.45 25.43 25.46 25.40 25.51 25.45 25.40 25.39 25.41 25.36 25.38 25.31 25.56 25.43 25.40 25.38 25.37 25.44 25.33 25.46 25.40 25.49 25.34 25.42 25.50 25.37 25.35 25.32 25.45 25.40 25.27 25.43 25.54 25.39 25.45 25.43 25.40 25.43 25.44 25.41 25.53 25.37 25.38 25.24 25.44 25.40 25.36 25.42 25.39 25.46 25.38 25.35 25.31 25.34 25.40 25.36 25.41 25.32 25.38 25.42 25.40 25.33 25.37 25.41 25.49 25.35 25.47 25.34 25.30 25.39 25.36 25.46 25.29 25.40 25.37 25.33 25.40 25.35 25.41 25.37 25.47 25.39 25.42 25.47 25.38 25.39
轴,其刻度单位为球槽的
宽度,用 X 表示落下的小 o
x
球第1次与高尔顿板底部
图2.4 4
接触时的坐标,则X是一
个随机变量.X落在区间a,b的概率为
如果把球槽编号,就可以考察到底是落在第几号球槽
中.重 复 进 行 高 尔 顿 板 试 验,随 着 试 验 次 数 的 增 加, 掉 入
各个球槽内的小球的个数就 越来越多,堆积的高度也
会越来越高.各个球 槽的堆积高度反映了小球掉入各
球槽的个数多少?
模拟高尔顿板试验
y 频率 组距
球槽 编号 O 1 2 3 4 5 6 7 8 9 1011121314 x
模拟高尔顿板试验
y 频率 组距
球槽 编号 O 1 2 3 4 5 6 7 8 9 1011121314 x
y 频率 组距
O
x 球槽的编号
y 频率 组距
O
x 球槽的编号
y 频率 组距
总体密度曲线
O
x 球槽的编号
y 频率 组距
总体密度曲线
O
钟形曲线
x 球槽的编号
随着重复次数的增加,这个频率直方图的形状
近于一条光滑曲线---正态曲线.
引入
正态分布在统计学中是很重要的分布。我们知 道,离散型随机变量最多取可列个不同值,它等于 某一特定实数的概率可能大于0,人们感兴趣的是 它取某些特定值的概率,即感兴趣的是其分布列; 连续型随机变量可能取某个区间上的任何值,它等 于任何一个实数的概率都为0,所以通常感兴趣的 是它落在某个区间的概率。离散型随机变量的概率 分布规律用分布列描述,而连续型随机变量的概率 分布规律用密度函数(曲线)描述。