随机过程第1章 预备知识
(完整版)随机过程知识点汇总
第一章随机过程 的基本概念与基本类型 一.随机变量及其分布X ,分布函数 F (x) P(X x) 1.随机变量 离散型随机变量 X 的概率分布用分布列 p P(X x k ) F(x)p kf (t)dt分布函数kxX 的概率分布用概率密度 f (x)F(x)分布函数连续型随机变量 2.n 维随机变量 X (X ,X , , X ) 1 2 n F(x) F(x ,x , ,x ) P(X x , X 2 x , , X n x n ,)其联合分布函数 1 2 n 1 1 2 离散型联合分布列连续型联合概率密度3.随机变量 的数字特征 数学期望:离散型随机变量 XEX x p kkXEX xf (x)dx连续型随机变量2DX E(X EX) 2 EX (EX) 2方差:反映随机变量取值 的离散程度协方差(两个随机变量 X ,Y ):B E[( X EX)(Y EY)] E(XY) EX EYXYB XY相关系数(两个随机变量X,Y ):0,则称 X ,Y 不相关。
若XYDX DY独立不相关itXg(t) E(e )itxe p k 连续 g(t)ke itxf (x)dx4.特征函数离散 g(t) 重要性质: g(0) 1,g(t) 1 g( t) g(t),, g (0) i EX kk k5.常见随机变量 的分布列或概率密度、期望、方差 0-1分布 二项分布P( X 1) p,P( X 0) qEX pDX pqP(X k) C p q n kk kEX npDX n p qnk泊松分布P( X k) ek!EXDX均匀分布略( x a)21 2N(a, ) f (x)222EX a正态分布eDX2xe ,x 0 0, x 011指数分布f (x)EXDX2X (X ,X , ,X ) 的联合概率密度 X ~ N(a, B) 6.N维正态随机变量1 2 n11 2T 1(x a) B (x a)}f (x , x , , x n ) exp{ 11 2n 2(2 ) | B |2a (a ,a , ,a ), x (x , x , ,x ), B (b ) 正定协方差阵 1 2 n 1 2 n ij n n二.随机过程 的基本概念 1.随机过程 的一般定义设 ( , P)是概率空间, T 是给定 的参数集,若对每个 t T ,都有一个随机变量 X 与之对应, X(t,e),t T ( , 是P)上 的随机过程。
第一章 随机过程
第一章随机过程本章主要内容:随机过程的基本概念●随机过程的数字特征●随机过程的微分和积分计算●随机过程的平稳性和遍历性●随机过程的相关函数及其性质●复随机过程●正态分布的随机过程第一章我们介绍了随机变量,随机变量是一个与时间无关的量,随机变量的某个结果,是一个确定的数值。
例如,骰子的6面,点数总是1~6,假设A面点数为1,那么无论你何时投掷成A面,它的点数都是1,不会出现其它的结果,即结果具有同一性。
但生活中,许多参量是随时间变化的,如测量接收机的电压,它是一个随时间变化的曲线;又如频率源的输出频率,它随温度变化,所以有个频率稳定度的范围的概念(即偏离标称频率的最大范围)。
这些随时间变化的随机变量就称为随机过程。
显然,随机过程是由随机变量构成,又与时间相关。
1.1 随机过程的基本概念及统计特性1.1.1 随机过程的定义现在我们进一步论述随机过程的概念。
当对接收机的噪声电压作“单次”观察时,可以得到波形)(1t x ,也可能得到波形)(2t x ,)(3t x 等等,每次观测的波形的具体形状,虽然事先不知道,但肯定为所有可能的波形中的一个。
而这些所有可能的波形集合)(1t x ,)(2t x ,)(3t x ,…,)(t x n ,…..,就构成了随机过程)(t X 。
图1.1 噪声电压的起伏波形1. 样本函数:)(1t x ,)(2t x ,)(3t x ,…,)(t x n ,都是时间的函数,称为样本函数。
2. 随机性:一次试验,随机过程必取一个样本函数,但所取的样本函数带有随机性。
因此,随机过程不仅是时间t 的函数,还是可能结果ζ的函数,记为),(ζt X ,简写成)(t X 。
3.随机过程的定义:定义1把随机过程看成一族样本函数。
4.定义的理解上面两种随机过程的定义,从两个角度描述了随机过程。
具体的说,作观测时,常用定义1,这样通过观测的试验样本来得到随机过程的统计特性;对随机过程作理论分析时,常用定义2,这样可以把随机过程看成为n 维随机变量,n越大,采样时间越小,所得到的统计特性越准确。
随机过程课程第一章 基础知识
P( X xi ,Y y j ) pij (i 1,2, j 1,2, )
则称上式为二维离散型随机向量(X,Y)的联合分布律。
它满足
pij 0
pij 1
i1 j 1
首页
2.二维分布密度
连续型
如果存在一个非负的二元函数f(x,y),使对 任意的实数x,y有
如果对于随机变量X的分布函数为F(x), 存在非负的函数f(x),使对任意的实数x 有
x
F (x) f (t)dt
则称X为连续型随机变量,f(x)称为X的概率密 度,且满足
f (x) 0
f (x)dx 1
首页
二、随机变量的联合分布
1.联合分布函数
设 X1,X 2, ,X n 是样本空间的n个随机
(4) D(X ) 0 的充要条件是 P[X E(X )] 1
3.性质
(5)(柯西—许瓦兹不等式)
| E(XY ) |2 E(X 2 ) E(Y 2 )
等式成立当且仅当 P(Y t0 X ) 1
(6)若X为非负整数值的随机变量,则
E(X ) P(X i) i 1
证
首页
E( X ) kP( X k) k 1
n
n
P( Ai ) 1 1 P( Ai )
i 1
i 1
首页
n
n
P( Ai ) 1 1 P( Ai )
i 1
i 1
证
n
n
P( Ai ) 1 P( Ai )
i 1
i 1
n
1 P( Ai )
i 1
n
1 P( Ai ) i 1
返回
应用随机过程 第一章 预备知识
1.4.3 独立性
定义 1.11
(1)设{A i,i I}是F的事件族,如果对I的每个非空 有限子集{i1,...,ik },有 P( A i j)= P(A i j) 则称{A i,i I}关于P是相互独立的.
j=1 j=1 k k
(2)设{Ai,i I}是F 的 子代数族,如果对I的每个非空 有限子集{i1,...,ik },Ai j Ai j 使得上式成立,则称 {Ai,i I}是相互独立的.
p p
(4)设{F ( n x)}是分布函数列,如果F(x):单调不减, 使得对F (x)的所有连续点x有 lim Fn (x)=F(x),则称 n {F ( }弱收敛于F(x); n x) 再设{X n }是一列以{F ( n x)}为分布函数的r.v.列, 如果{F ( } 敛于F(x), 则称{X n }依分布收敛。 n x)弱收
n
(9)若X , Y 是两个独立的随机变量,函数(x,y)使得 E(| (X,Y))<,则 E[ (X,Y)|Y] E[ (X,y)] |y=Y a.s
作业:
结合《概率论》和第一章的内容,写出学习心得. 要求:1. 可就某个知识点或某个定理、引理或例题等, 用自己的语言写出; 2. 也可以写一点对《应用随机过程 》这们课的一些想 法(例如希望通过学习这门课学点什么 等).
B
X dP=[P(B)] E(X I B).
-1
性质:
(1) 若X L1,则 E[E(X |B) ]=EX。
(2) 若X是B随机变量, 则 E(X |B) =X, a.s.。
(3) 若X=Y, a.s. 且X L 1, 则E(X|B)=E(Y|B),a.s.
(4) 若a,b是实数,X,Y L 1, 则E[(aX+bY)|B ]=aE(X|B )+bE(Y|B ),a.s.
随机过程预备知识
徐
概率空间
四、全概率公式与Bayes公式 定理:设 (Ω,F, P)是概率空间,若 1) A i∈F, 且 P(Ai)>0 ,(i=1,2, …); 2)
i 1
Ai Ω , Ai A j .
完备性 条件.
徐
概率空间
则对任意B∈F 有 1)
Ak Ak 1 B k , ˆ
kn kn
An+1
n 1,2,
徐
其中B1,B2,…互不相容,由完全可加性有
概率空间
1 P ( A1 ) P B k P Ak Ak 1 0 k 1 k 1
lim P Bn 0 P An P A P An A 0.
n
P An P A
( as
n )
徐
概率空间
4)多除少补原理 设 Ai F, i 1,2, , n , 有
n n P Ai P Ai i 1 i 1
P Ai P Ai i 1 i 1
Ai F i 1,2, , Ai A j , i j ,
称P是(Ω,F)上的概率(测度),P(A)是事件A 的概率. 三元体(Ω,F, P)称为概率空间.
徐
概率空间
二、概率性质 设(Ω,F, P)是概率空间,则概率P 有如下性质: 1) P(φ)=0;
n
lin P An P A.
徐
n 1
概率空间
A
证:在推论2中
令 Bn An A, 则 B1 B2 ,
随机过程-第一章__概率预备知识
概率空间
(1) Ω∈F ; (2) 若A∈F ,则A=Ω\A∈F ; (3) 若An∈F ,n=1,2,…,则 n 1 An∈F , 那么F 称为ς-代数(Borel域).(Ω,F )称为可测空间,F中 的元素称为事件. 由定义1.1且有: (4) υ∈F ; (5) 若A,B∈F ,则A\B∈F ; n n (6) 若Ai∈F ,i=1,2,…,则 i 1 Ai, i 1 Ai, i 1 Ai∈F . 定义1.2 设(Ω,F )是可测空间,P(· )是定义在F 上的实值 函数.若 (1) 任意A∈F ,0≤P(A)≤1; (2) P(Ω)=1;
y1
yn
n维随机变量及其概率分布
率密度. 定义1.6 设{Xt,t∈T}是一族随机变量,若对任意的n≥2, t1,t2,…,tn∈T, x1,x2,…,xn∈R, 有 n P( X t≤x1, X t≤x2,…, X t≤xn)= i 1 P( X t xi ) 1 2 n 则称{Xt,t∈T}是独立的. • 若{Xt,t∈T}是一族独立的离散型随机变量, 则上式等 n 价于P( X t1 =x1, X t2 =x2,…, X t n=xn)= i 1 P( X t xi ) ; 若{Xt,t∈T}是一族独立的连续型随机变量, 则上式等 n 价于 f t1 ,t2 ,,tn(x1,x2,…,xn)= i 1 f t ( xi ), 其中 f t1 ,t2 ,,tn 1, (x x2,…,xn)是随机向量(X1,X2,…,Xn)的联合概率密度且 f ti ( xi ) 是随机变量 X t 的概率密度,i=1,2,…,n. • 独立性是概率论中的重要概念,独立性的判断通常是根 据经验或具体情况来决定的.
n维随机变量及其概率分布
是右连续函数; (3)对于Rn中的任意区域(a1,b1;…;an,bn),其中ai≤bi, i=1,2,…,n, 成立 n F(b1,b2,…,bn)- i 1 F(b1,…,bi-1,ai,bi+1,…,bn)
随机过程讲义(第一章)
P (Ω ) = 1 ;
对任意两两不交的至多可数集 {An } ⊂ F , P⎛ ⎜ U An ⎞ ⎟ = P ( An ) ⎝n ⎠ ∑ n
称 P(⋅) 为 F 上的概率测度, (Ω, F , P) 称为概率空间。
1
1.4 随机变量的概念 定义:设 (Ω, F , P ) 为一概率空间, X = X ( w) 为 Ω 上的一个实值函数,若对 任意实数 x ,X −1 ((−∞, x) ) ∈ F , 则称 X 为 (Ω, F , P ) 上的一个 (实) 随机变量。 称 F ( x) = P( X < x ) = P( X ∈ (−∞, x)) = P X −1 ((−∞, x) ) 为随机变量 X 的 分布 函数。 随 机 变 量 实 质 上 是 (Ω, F ) 到 (R, B ( R ) ) 上 的 一 个 可 测 映 射 ( 函 数 ) 。 记
_______
2
α 1 , α 2 Lα m , ∑∑ ϕ (t l − t k )α l α k ≥ 0 ;
l =1 k =1
m
m
5) ϕ ( w) 为 R n 上的连续函数。 6) 有限多个独立随机变量和的特征函数等于各自特征函数的乘积; 7) 设 X = (ξ1 , Lξ n ) 为 n 维 随 机 向 量 , 特 征 函 数 为 ϕ ( w1 ,L wn ) , 则
n→∞
敛到随机变量 X ;
2)
若 E X n 存在, 且 lim E X n − X
n→∞
p
p
则称 X 1 , X 2 , L X n ,L p 阶收敛到 = 0,
随机变量 X ,特别当 p = 2 ,称为均方收敛。
3) 4)
若 P lim X n = X = 1 ,称 X 1 , X 2 , L X n ,L 几乎必然收敛到随机变量 X 。
随机过程第章预备知识
基本
概念 ℱ = ������, ������1, ������2, ������3 , ������4, ������5, ������6 , Ω - ℱ为-代数, ������, ℱ 为可测空间
代数
•
若������������ ∈ ℱ ,则ڂ������������=1 ������������ , ځ������������=1 ������������ , ځ���∞���=1 ������������ ∈ ℱ (有限并,有限
概率 交,可列交事件)
空间
独立 事件
中南民族大学经济学院
3
《随机过程》第1章-预备知识
1 概率空间
例:抛掷一枚骰子,观察出现的点数。
背景
������ = 1,2,3,4,5,6
基本
概念 ������ = 1,3,5 ⊆ Ω ������ = 2,4,6 ⊆ Ω
-
代数 骰子“出现1点”, “出现2点”, … ,“出现6点”, “点数不大于6”,“点数为偶数” 等都为随机事件.
-
代数 (3)若������������ ∈ ℱ, ������ ∈ ������,则ڂ���∞���=1 ������������ ∈ ℱ(可列并事件)
概率
空间 则称ℱ为-代数, (������, ℱ)为可测空间。
独立 事件
中南民族大学经济学院
6
《随机过程》第1章-预备知识
背景 例:抛掷一枚骰子,������������表示出现������点。
∞
∞
概率 空间
随机过程第1章
由于概率测度 P 只是一种特殊的测度,因而它具有测度应有的那些性质.
概率的所有性质都是在其满足的非负性、规范性及可列可加性这三条公理的基础上演绎 出来的.
n1
(2) 与(1)的证明的前半部分类似,可得
P
n1
k n
Ak
P
lim
n
k n
Ak
lim
n
P
k n
Ak
lim
n
1
P
k n
Akc
.
再由独立性及定理条件,知
证毕.□
0
半环 C 上定义如下的集函数
P(a,b] F(b) F(a), (a,b]C .
由测度扩张定理,P 可扩张为 σ(C )上的概率测度,至此,本例的概率空间(Ω,F,P)构造完 毕.□
注 在本例中,如果认为每个样本点ω的出现机会均等,那么可取 f (·)为常值,易知, f(x) = 1,0< x < 1,而 F(x) = x,0≤ x ≤ 1.此时,
(2) 上例构造概率空间的方法可推广到 Ω ={ω1,ω2,…}为可列集的这种场合. (3) 在以后的讨论中,如无特别需要,均认为概率空间(Ω,F,P)是预先给定的.
延伸阅读
如果某试验的样本空间 Ω 为不可列集,那么通常要用测度论的方法才能构造出相应的概 率空间(Ω,F,P).请看下面的例子.
概率论与随机过程
概率论与随机过程(工程硕士生60学时)教材及主要参考书:1.《随机过程》刘次华著,华中理工大学出版社出版。
2.《概率论与数理统计》浙江大学编,高等教育出版社出版。
3.《概率论与数理统计》同济大学编,高等教育出版社出版。
第一章 概率论第一节 预备知识一、排列与组合问题(一) 排列问题的提法:从n 个不同元素n a a a ...,21中任取r 个)(n r ≤,按先后顺序把它们排列,共有多少种不同的排列?分析:第一个位置有n 种取法,第二个位置有1-n 种取法,…第r 个位置有1+-r n 种取法,则共有:rn A r n n r n n n =-=+--)!(!)1()1((二) 组合问题的提法:从n 个不同元素n a a a ...,21中任取r 个(n r ≤),不按先后顺序得到一种组合,共有多少中不同的组合?分析:由于不按先后顺序,因此r r a a a a 121- 与121a a a a r r -是同一组合,因此一种组合对应!r 种排列,共有:!)1()1(r r n n n +-- =)!(!!r n r n -=rn C 二、集合论(不妨假设所有集合全为Ω的子集)(一)A B ⊂,A 是B 的子集,即集合A 的元素全部属于集合B 。
例:{}全体实数=R {}全体自然数=N 则:R N ⊂(二)B A =B A ⊂⇔且A B ⊂分析:定义蕴涵了证明两个集合相等的方法。
(三)B A C =或B A C +=,即集合C 包含集合A 和集合B 的全部元素,但不包含其它元素。
例:{}全体有理数=A {}全体无理数=B 则:{}R B A C ==+=全体实数 1.运算规律(1)交换律 A B B A =(2)结合律 )()(C B A C B A =特别地:若B A ⊂,则:B B A =A A =Φ Ω=Ω A A A A =2.推广情形集合的并运算可以推广到有限个、可数多个甚至到不可数情形,为了阐述清楚,下面补充可数集合的定义。
随机过程第一章复习题及其解答预备知识
第一章 一、 填空1.设{t X ,t T ∈}是一族独立的随机变量,则对于任意2n ≥和12,,...,t t ,n t T ∈12,,...,,n x x x R ∈有1212(,,...,)n t t t n P X x X x X x ≤≤≤=( )。
答案:1()int i i P X x =≤∏2.若2EX <∞,2EY <∞,则2()EXY ≤( )。
答案:22EX EY (Schwarz 不等式)3.设随机变量X 的特征函数为()X g t ,Y aX b =+,其中a ,b 为任意实数,则Y 的特征函数()Y g t =( ()itb X e g at )。
解:()()()()[][][]()it aX b i at X ibt ibt i at X ibt Y X g t E e E e e e E e e g at +====。
4.若12,,...X X 是相互独立且同分布的非负整数值随机变量,N 是与12,,...X X 独立的非负整数值随机变量,并且1,N X 的母函数分别为()G s 和()P s 。
则1Nk k Y X ==∑的母函数()H s =((())G P s )。
解:0()()kk H s P Y k s ∞===∑=0(,())kk l P Y k N l s ∞∞====∑=00()()k k l P N l P Y k s ∞∞====∑∑=00()()k l k P N l P Y k s ∞∞====∑∑=01()()lkj l k j P N l P X k s∞∞=====∑∑∑0()[()][()]ll P N l P s G P s ∞===∑。
5.设12,,...X X 为一列独立同分布的随机变量,随机变量N 只取正整数值,且N 与{}n X 独立,则1()Ni i E X ==∑(1()()E X E N )。
解:1111()[(|)](|)()N N Ni i i i i n i E X E E X N E X N n P N n +∞========∑∑∑∑1111111()()()()()()n n i n n E X P N n nE X P N n E X np N n +∞+∞+∞==========∑∑∑∑1()()E X E N =6.若X 1,X 2,…,X n 是相互独立的随机变量,且g i (t)是X i 的特征函数,i=1,2,…,n)则X=X 1+X 2+…X n 的特征函数g(t)= _g 1(t) g 2(t)…g n (t) 二、解答与证明题1.设P(S)是X 的母函数,试证: (1)若E(X)存在,则()1EX P '=(2)若D(X)存在,则 DX = P"(1)+ P ′(1)-[ P ′(1)]2 证明:(1)因为()0kkk P s p s∞==∑,则()11k k k P s kp s∞-='=∑,令1s →,得()11kk EX P kp ∞='==∑ 。
01_随机过程的基础知识
∫
∞ −∞
车 辆 随 机 振 动 理 论 及 应 用
3、付氏变换的性质
(1)如果f(t)是实函数,则F(ω)一般为复函数,且实 部为偶函数,虚部为奇函数。 (2)奇偶虚实定理 如果f(t)是实的偶函数,则F(ω)也是实的偶函数; 如果f(t)为实的奇函数,则F(ω)为虚的奇函数。 (3)线性叠加定理:假设α、β为常数,则
18飞飞4方脉冲函数的频谱图续周期函数的频谱为离散谱非周期函数的频谱为连续谱反之亦然19三付氏变换及其性质飞飞1付氏变换对周期函数ft有付氏级数和付氏系数对于非周期函数ft有如下关系飞飞1付氏变换续f称为ft的付里叶变换简称为付氏变换记为飞飞2付氏变换的含义非周期函数ft是由无穷多个复振幅为fd的谐波叠加而成的而且频率是连续的
车 辆 随 机 振 动 理 论 及 应 用
2、付氏系数
Ø付氏级数中的系数a0、an、bn,称为付氏系数。
a0 =
an =
2 T
∫
T
2 −T
2
x(t )dt
dt T∫ 2 2 T2 bn = ∫ − T x(t ) sin nωtdt 2 T
(n = 1, 2, 3L)
车 辆 随 机 振 动 理 论 及 应 用
4、方脉冲函数的频谱图
Ø令τ/T=1/3,则复振幅的模为
E nπτ E nπ sin = sin nπ T nπ 3 Eτ E c0 = = T 3 cn =
(n = ±1, ± 2 L)
Ø得到频谱图
ü离散的点 üΔω=ω1 ü复振幅的模
马 天 飞
15 16
0.25
0.60 0.45 0.30 0.15 0.00 20 50 80 110
随机过程-第一章 预备知识及补充
A ) P( A ) (Boole's inequality,布尔不等式:
n n 1 n 1 n
假定一些事件组成了一个可数的集合, 那么这集合中的至少一个事件发生的概率不大于每个事件 发生的概率的和。 ) ;
当 An , n 1, 2, 两两互不相容时,则 P(
A ) P( A ) ;
15收敛性151极限定理1强大数定律如果2中心极限定理如果独立同分布且具有均值和方差152收敛性1依概率收敛对于随机变量序列如果存在随机变量x使得对任意的依概率收敛于x记为上有lim是其对应的分布函数序列如果3依概率收敛与依分布收敛的关系依概率收敛强于依分布收敛即依概率收敛依分布收敛
第一章 预备知识
1.1 概率空间
概率论的一个基本概念是随机试验:其结果在事先不能确定的试验。随机试验具有三 个特征: (1)可以在相同的条件下重复进行; (2)每次试验的结果不止一个,但预先知道试验的所有可能的结果; (3)每次试验前不能确定哪个结果会出现。 随机试验的所有可能结果组成的集合称为该试验的样本空间,记为 。 中的元素 称为样本点或基本事件, 的子集 A 称为事件。样本空间 称为必然事件,空集 称为不 可能事件。 定义 1.1:设 是一个样本空间, F 是 某些子集组成的集合族,如果满足: (1) F ; (2)若 A F ,则 A \ A F ;
n
n
定义 1.3:假设对样本空间 的每一个事件 A 定义了一个数 P( A) ,且满足以下三条公
理:
-1-
(1)非负性: 0 P( A) 1; (2)规范性: P() 1 , P() 0 ; (3)可列可加性:对任意的两两互不相容事件 A1 , A2 , ,即 Ai Aj , i j ,有
随机数学第1讲 第一章预备知识
c12 c 22 cn2
c1 n ⎞ ⎟ c2n ⎟ ⎟ ⎟ c nn ⎟ ⎠
为 n 维随机变量的 协方差矩阵 .
定理:( X 1 ,
当 ρXY = 0 时, X 和 Y 不相关.
, X n ) 的协方差阵B 是对称,非负定的。
证明:对任意
x Bx = ∑
T i =1 n n n
x T = ( x1 , x2 ,
(
))
)
⎡ n = E ⎢∑ ⎣ i =1
n
∑x x (X
j =1 i j
n
i
⎤ − EX i ) X j − EX j ⎥ ⎦
(
证明: 对任意的实数t,
E[ X + Yt ]2 = t 2 EY 2 + 2tE[ XY ] + EX 2 ≥ 0 Δ = b 2 − 4ac = ( 2 E[ XY ]) − 4 EY 2 EX 2 ≤φ( t ) = E (e itX ) = 1i e itc = e itc , t ∈ R. Ex.2 两点分布
X 0 1 PX 1-p p
X c PX 1
Ex.3 指数分布 f ( x ) = ⎨
⎧λ e − λ x , ⎪ ⎪0, ⎩
x ≥ 0; x < 0.
(λ > 0)
φ(t ) = E e itX = ∫ e itx λe −λx dx
0
( )
2
+∞
φ(t ) = E eitX
( )
= ∫0 λe − λx costxdx + i λ ∫0 e − λx sintxdx
=λ
=
+∞
+∞
= eit⋅0 (1 − p) + eit⋅1 p
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章预备知识
解释与说明
◆随机过程以概率论、线性代数、微积分为学科基础
1.1 特征函数
◆复数z=a+ib,其中a,b为实数,z̅=a−ib称为z的共轭复数
zz̅=a2−b2, 复数z的模|z|=√a+b
欧拉公式e z=e a(cosb+isinb)
◆随机变量的特征函数ϕ(t)=E(e itX)
例设有随机事件X的分布律为
X的特征函数为
ϕ(t)=E(e itX)=e it×0.2+e i2t×0.5+e i3t×0.3
=e it(0.2+e it×0.5+e i2t×0.3)
◆多为随机向量的均值向量和协方差矩阵,以二维情形为例
设X=(X1,X2)T,则
数学期望向量E(X)=(EX1,EX2)T
协方差矩阵Var(X)=E[(X−E(X))(X−E(X))T]
=E{(X1−EX1
X2−EX2)((X1−EX1),(X2−EX2))}
=E((X1−EX1)2(X1−EX1)(X2−EX2)
(X2−EX2)(X1−EX1)(X2−EX2)2
)
=(σ11σ12
σ21σ22)≜Σ
其中,σ11,σ22分别是X1和X2的方差,σ12=σ21是X1和X2的协方差cov(X1,X2)
例如有X=(X1,X2)T,联合分布律为
可见E(X1)=0×0.6+1×0.4=0.4
E(X2)=0×0.3+1×0.3+2×0.4=1.1
数学期望向量E(X)=(EX1,EX2)T=(0.4,1.1)T
又σ11=D(X1)=E(X12)−(E(X1))2=0.4−0.42=0.24
σ22=D(X2)=E(X22)−(E(X2))2=1.9−1.12=0.69
σ12=σ21=cov(X1,X2)=E(X1X2)−E(X1)E(X2)
=0×0.8+1×0.1+2×0.1−0.4×1.1=−0.14
协方差矩阵Σ=Var(X)=(0.24−0.14
−0.140.69)
Σ被称为协方差矩阵,它既是对称矩阵,也是正定矩阵,根据线性代数有关知识,存在正交矩阵B,使得Σ=BB T
◆多维随机向量之间的相互独立,以二维情形为例
设有二维随机变量X=(X1,X2),Y=(Y1,Y2),若对任意x1,x2,y1,y2,有
F XY(x1,x2,y1,y2)=F X(x1,x2)F Y(y1,y2)
称(X1,X2)与(Y1,Y2)相互独立
1.2 多元正态分布
掌握定理1.2.1和定理1.2.2的结论
◆若n维随机向量(X1,X2,⋯,X n)T服从正态分布N(μ,Σ),则n为密度函数为
f(x)=
1
√2π
n√|Σ|
{−
1
2
(x−μ)TΣ−1(x−μ)}
◆若n维随机向量X=(X1,X2,⋯,X n)T服从正态分布N(μ,Σ),则X的任意线性
组合l T X服从一维正态分布,其中l T是常数n维向量
1.3 条件分布与条件期望
条件分布律
求{Y=3}的条件下X的条件分布律
P (X =0Y =3⁄)=P(X=0,Y=3)P(Y=3)=0.30.4=3
4 P (X =1Y =3⁄)=
P(X=1,Y=3)P(Y=3)
=0.1
0.4=1
4
求P(Y =2)的条件下,X 的条件分布律?
习题一
1.1 设随机变量变量X 服从参数为λ的指数分布,求X 的特征函数。
解 已知X 的密度函数为
{λe −λx , x >0
0, 其它
X 的特征函数为
ϕ(t )=E(e
itX
)=∫λe
−λx e
itx
dx =λ∫e −(λ−it )x dx ∞
∞
=−λ
λ−it ∫e −(λ−it )x d((it −λ)x)∞
0 =−λ
λ−it e −(λ−it )x |0∞
=λ
λ−it
1.6 设X 1,X 2,⋯,X n 相互独立且服从相同的正态分布N(μ,σ2),求1
n ∑X i n i=1的密度函数。
解 首先X =(X 1,X 2,⋯,X n )服从独元正态分布N(μ⃗,Σ),其中数学期望向量为 μ⃗=(μ,μ,⋯,μ )T
因为X 1,X 2,⋯,X n 相互独立,所以协方差矩阵为 Σ=(σ2⋯0⋮
⋱⋮0⋯
σ2
) 记X
̅=1
n ∑X i
, l
⃗=((1
n ,
1n
,⋯,1
n ))T
n i=1,则根据定理1.2.2,知X
̅服从正态分布,记为N(μ0,σ02
),且
X ̅的数学期望 μ0=l ⃗T ∙μ⃗=(1
n ,⋯,1
n )(μ
⋮μ
)=μ
X̅的方差σ02=l⃗TΣl⃗=(1
n ⋯1
n
)(
σ2⋯0
⋮⋱⋮
0⋯σ2
)(
1
n
⋮
1
n
)=σ2
n
因此,X̅的密度函数为
f(x)=
√2πσ{−(x−μ0)2
2σ02
}=√n
√2πσ
{−n(x−μ)2
2σ
}。