导体和电介质习题解答

合集下载

11静电场中的导体和电介质一解答

11静电场中的导体和电介质一解答

解: 取柱状高斯面,由高斯定理有
R1 R2 R
A
D ds qi 2rL Dr L Dr 2r i s Dr 0 r Er Er 1 2 0 r r EA 1443 V/m lnR2 R1 R R R2 R2 Er d r ln UA ln 12.5V 2 0 r R1 R lnR R R
旧版静电场中的导体 选择题 1
q
静电场中的导体和电介质(一)
第六章
2.如图,一带正电荷的物体M,靠近一不带电的金属 导体N,N的左端感应出负电荷,右端感应出正电荷. 若 将N的左端接地,则 N
(A)N上的电荷不动.
(B)N上的正电荷入地. (C)N上的负电荷入地.

M


1 2
1 d2 2 d1
旧版静电场中的导体 填空题 3
d1
d2
静电场中的导体和电介质(一)
第六章
3.一极板间距为d的空气平行板电容器,其电容为C, 充电至板间电压为U.然后将电源断开,在两板间平行 地插入一厚度为d/3的金属板,则板间电压变成U'=__, 该电容器的电容变为C'=__。
导体球电荷守恒 qex qin 0 qex q1 q2 导体外表面为球面,各处曲率相同,感应电荷均匀分布 由高斯定理可求得导体外表面感应电荷在q处产生的电 场强度 q1 q2
E
4 0 r
21Biblioteka 2q受到的的作用力
qq1 q2 FAq qE 2 4 0 r


E0 0
E 0 r


第十章 静电场中的导体和电介质习题解答

第十章 静电场中的导体和电介质习题解答

10-1 如题图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q ,设无限远处为电势零点。

试求: (1) 球壳内外表面上的电荷;(2) 球心O 点处,由球壳内表面上电荷产生的电势;(3) 球心O 点处的总电势。

习题10-1图解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q 。

(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为0d 4q qU aπε-=⎰aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和q Q q q O U U U U +-++=04qr πε=04qa πε-04Q qb πε++01114()q r a bπε=-+04Q bπε+ 10-2 有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷,如题图(a)所示。

试求:(1) 导体板面上各点的感生电荷面密度分布(参考题图(b)); (2) 面上感生电荷的总电荷(参考题图(c))。

习题10-2图解:(1) 选点电荷所在点到平面的垂足O 为原点,取平面上任意点P ,P 点距离原点为r ,设P 点的感生电荷面密度为.在P 点左边邻近处(导体内)场强为零,其法向分量也是零,按场强叠加原理,()220cos 024P q E r b θσεπε⊥=+=+ ∴ ()2/3222/b r qb +-=πσ (2) 以O 点为圆心,r 为半径,d r 为宽度取一小圆环面,其上电荷为 ()3222d d d //Q S qbr r r bσ==-+q Q a bO r()q brrr qb S Q S-=+-==⎰⎰∞2322d d /σ10-3 如题图所示,中性金属球A ,半径为R ,它离地球很远.在与球心O 相距分别为a 与b 的B 、C 两点,分别放上电荷为A q 和B q 的点电荷,达到静电平衡后,问: (1) 金属球A 内及其表面有电荷分布吗?(2) 金属球A 中的P 点处电势为多大?(选无穷远处为电势零点)B C R AP Oq A q Bba习题10-3图解:(1) 静电平衡后,金属球A 内无电荷,其表面有正、负电荷分布,净电荷为零. (2) 金属球为等势体,设金属球表面电荷面密度为. ()()000d 4=4////AP A B S U U S R q a q a σπεπε==⋅+⎰⎰∵d 0AS S σ⋅=⎰⎰∴ ()()04///P A B U q a q a πε=+10-4 三个电容器如题图联接,其中C 1 = 10×10-6 F ,C 2 = 5×10-6 F ,C 3 = 4×10-6 F ,当A 、B 间电压U =100 V 时,试求:(1) A 、B 之间的电容;(2) 当C 3被击穿时,在电容C 1上的电荷和电压各变为多少?ABC 1C 2 C 3U习题10-4图解:(1) =+++=321321)(C C C C C C C 3.16×10-6 F(2) C 1上电压升到U = 100 V ,电荷增加到==U C Q 111×10-3 C10-5 一个可变电容器,由于某种原因所有动片相对定片都产生了一个相对位移,使得两个相邻的极板间隔之比为2:1,问电容器的电容与原来的电容相比改变了多少?(a) (b)习题10-5图解:如图所示,设可变电容器的静片数为n ,定片数为1-n ,标准情况下,极板间的距离为d (图a ),极板相对面积为S 。

川师大学物理第十章 静电场中的导体和电介质习题解

川师大学物理第十章 静电场中的导体和电介质习题解

第十章 静电场中的导体和电介质10–1 如图10-1所示,有两块平行无限大导体平板,两板间距远小于平板的线度,设板面积为S ,两板分别带正电Q a 和Q b ,每板表面电荷面密度σ1= ,σ2= ,σ3= ,σ4= 。

解:建立如图10-2所示坐标系,设两导体平板上的面电荷密度分别为σ1,σ2,σ3,σ4。

由电荷守恒定律得12a S S Q σσ+= (1)34b S S Q σσ+= (2)设P ,Q 是分别位于二导体板内的两点,如图10-2所示,由于P ,Q 位于导板内,由静电平衡条件知,其场强为零,即3124000002222P E σσσσεεεε=---= (3)3124000002222Q E σσσσεεεε=++-= (4) 由方程(1)~(4)式得142abQ Q Sσσ+== (5) 232a bQ Q Sσσ-=-= (6) 由此可见,金属平板在相向的两面上(面2,3),带等量异号电荷,背向的两面上(面1,4),带等量同号电荷。

10–2 如图10-3所示,在半径为R 的金属球外距球心为a 的D 处放置点电荷+Q ,球内一点P 到球心的距离为r ,OP 与OD 夹角为θ,感应电荷在P 点产生的场强大小为 ,方向 ;P 点的电势为 。

解:(1)由于点电荷+Q 的存在,在金属球外表面将感应出等量的正负电荷,距+Q 的近端金属球外表面带负电,远端带正电,如图10-4所示。

P 点的场强是点电荷+Q 在P 点产生的场强E 1,与感应电荷在P 点产生的场强E 2的叠加,即E P =E 1+E 2,当静电平衡时,E P =E 1+E 2=0,由此可得21r 2204π(2cos )Qa r ar εθ=-=-+-E E e其中e r 是由D 指向P 点。

因此,感应电荷在P 点产生的场强E 2的大小为图10–4xσ2 4σQQ aQ b 图10-2σ1σ2 σ4σ3 Q a Q b图10-1图10-322204π(2cos )QE a r ar εθ=+-方向是从P 点指向D 点。

习题解答---大学物理第7章习题--2

习题解答---大学物理第7章习题--2

专业班级_____ ________学号________第七章静电场中的导体和电介质一、选择题:1,在带电体A旁有一不带电的导体壳B,C为导体壳空腔的一点,如下图所示。

则由静电屏蔽可知:[ B ](A)带电体A在C点产生的电场强度为零;(B)带电体A与导体壳B的外表面的感应电荷在C点所产生的合电场强度为零;(C)带电体A与导体壳B的表面的感应电荷在C点所产生的合电场强度为零;(D)导体壳B的、外表面的感应电荷在C点产生的合电场强度为零。

解答单一就带电体A来说,它在C点产生的电场强度是不为零的。

对于不带电的导体壳B,由于它在带电体A这次,所以有感应电荷且只分布在外表面上(因其部没有带电体)此感应电荷也是要在C点产生电场强度的。

由导体的静电屏蔽现象,导体壳空腔C点的合电场强度为零,故选(B)。

2,在一孤立导体球壳,如果在偏离球心处放一点电荷+q,则在球壳、外表面上将出现感应电荷,其分布情况为 [ B ](A)球壳表面分布均匀,外表面也均匀;(B)球壳表面分布不均匀,外表面均匀;(C)球壳表面分布均匀,外表面不均匀;(D)球壳的、外表面分布都不均匀。

解答 由于静电感应,球壳表面感应-q ,而外表面感应+q ,由于静电屏蔽,球壳部的点电荷+q 和表面的感应电荷不影响球壳外的电场,外表面的是球面,因此外表面的感应电荷均匀分布,如图11-7所示。

故选(B )。

3. 当一个带电导体达到静电平衡时:[ D ](A) 表面上电荷密度较大处电势较高 (B) 表面曲率较大处电势较高。

(C)导体部的电势比导体表面的电势高。

(D)导体任一点与其表面上任一点的电势差等于零。

4. 如图示为一均匀带电球体,总电量为+Q ,其外部同心地罩一、外半径分别为r 1、r 2的金属球壳、设无穷远处为电势零点,则在球壳半径为r 的P 点处的场强和电势为: [ D ](A )E=r Q U r Q 0204,4πεπε=(B )E=0,104r Q U πε= (C )E=0,rQ U 04πε=(D )E=0,204r Q U πε=5. 关于高斯定理,下列说法中哪一个是正确的? [ C ](A )高斯面不包围自由电荷,则面上各点电位移矢量D为零。

第十二章 静电场中的导体和电介质作业答案

第十二章 静电场中的导体和电介质作业答案

B E dx
A
B A
q1 q2 S20
dx
q1 q2 20S
d
3. 有一接地的金属球,用一弹簧吊起,金属球原来不带电.若在它的下方放置一电荷
为q的点电荷,如图所示,则 C
(A) 只有当q 0时,金属球才下移.
(B) 只有当q 0时,金属球才下移.
(C) 无论q是正是负金属球都下移.
(D) 无论q是正是负金属球都不动.
0
Q球
1 2
q
二、填空题
1. 地球表面附近的电场强度约为100N/C,方向垂直地面向下,假设地球上的电荷都均
匀分布在地球表面上,则地面的电荷密度为______。
分析:地球是一个等势体,里边的场强为零,达到静电平衡,表面附近的场强
E
0
100
0 100 8. 85 1012 100 8. 85 1010 C2 m-2
q UAB
q
1
UAB
q
1
UAB 40RB外表面
1
q UAB
1 4 0 R B外表面
40RB外表面
q UAB
q UAB
4 0 R B外表面
q
1
UAB
q
1
UAB 40RB外表面
jintian 2. 在空气平行板电容器中,平行地插上一块各向同性均匀电介质板,如图所示,当电 容器充电后,若忽略边缘效应,则电介质中的场强E与空气中的场强E0相比较,应
q
分析:一带电量为q、半径为R的金属薄球壳,里边的场强为零,电介质不被极化,电介质
不产生附加电场,壳外是真空,壳外的场强就是电量q产生的场强。半径为R的金属薄球壳
是一个等势体,
E U壳

《大学物理学》习题解答静电场中的导体和电介质

《大学物理学》习题解答静电场中的导体和电介质

根据球形电容器的电容公式,得:
C
4 0
R1R2 R2 R1
4.58102 F
【12.7】半径分别为 a 和 b 的两个金属球,球心间距为 r(r>>a,r>>b),今用一根电容可忽略的细导线将 两球相连,试求:(1)该系统的电容;(2)当两球所带的总电荷是 Q 时,每一球上的电荷是多少?
【12.7 解】由于 r a , r b ,可也认为两金属球互相无影响。
以相对电容率 r ≈1 的气体。当电离粒子通过气体时,能使其电离,若两极间有电势差时,极间有电流,
从而可测出电离粒子的数量。若以 E1 表示半径为 R1 的长直导体附近的电场强度。(1)求两极间电势差的
关系式;(2)若 E1 2.0 106 V m1 , R1 0.30 mm , R2 20.00 mm , 两极间的电势差为多少?
, (R2
r) ;
外球面的电势 内外球面电势差
VR2
R2
E3 dr
Q1 Q2 4 0 R2
U
VR2
VR1
R2 R1
E2
dr
Q1 4 0
(1 R1
1) R2
可得:
Q1 6 109 C , Q2 4 109 C
【12.4】如图所示,三块平行导体平板 A,B,C 的面积均为 S,其中 A 板带电 Q,B,C 板不带电,A 和 B 间相距为 d1,A 和 C 之间相距为 d2,求(1)各导体板上的电荷分布和导体板间的电势差;(2)将 B,C 导体 板分别接地,再求导体板上的电荷分布和导体板间的电势差。
第 12 章 静电场中的导体和电介质
【12.1】半径为 R1 的金属球 A 位于同心的金属球壳内,球壳的内、外半径分别为 R2、R3 ( R2 R3 )。

(整理)静电场中的导体和电介质习题详解

(整理)静电场中的导体和电介质习题详解

习题二一、选择题1.如图所示,一均匀带电球体,总电量为+Q ,其外部同心地罩一内、外半径分别为1r 和2r 的金属球壳。

设无穷远处为电势零点,则球壳内半径为r 的P 点处的场强和电势为[ ] (A )200, 44Q QE U r rεε==ππ; (B )010, 4QE U r ε==π;(C )00, 4QE U rε==π;(D )020, 4QE U r ε==π。

答案:D解:由静电平衡条件得金属壳内0=E ;外球壳内、外表面分别带电为Q -和Q +,根据电势叠加原理得000202Q Q Q QU r r r r εεεε-=++=4π4π4π4π2.半径为R 的金属球与地连接,在与球心O 相距2d R =处有一电量为q 的点电荷,如图所示。

设地的电势为零,则球上的感应电荷q '为[ ](A )0; (B )2q ; (C )2q-; (D )q -。

答案:C解:导体球接地,球心处电势为零,即000044q q U dRπεπε'=+=(球面上所有感应电荷到球心的距离相等,均为R ),由此解得2R qq q d '=-=-。

3.如图,在一带电量为Q 的导体球外,同心地包有一各向同性均匀电介质球壳,其相对电容率为r ε,壳外是真空,则在壳外P 点处(OP r =)的场强和电位移的大小分别为[ ] (A )2200,44r Q Q E D rr εεε==ππ; (B )22,44r Q QE D r r ε==ππ; (C )220,44Q Q E D r r ε==ππ; (D )2200,44Q QE D r r εε==ππ。

答案:C解:由高斯定理得电位移 24QD r =π,而 2004D QE r εε==π。

4.一大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图所示。

当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电量为+q 的质点,在极板间的空气区域中处于平衡。

电磁学第二章习题答案

电磁学第二章习题答案

习题五(第二章 静电场中的导体和电介质)1、在带电量为Q 的金属球壳内部,放入一个带电量为q 的带电体,则金属球壳内表面所带的电量为 - q ,外表面所带电量为 q +Q 。

2、带电量Q 的导体A 置于外半径为R 的导体 球壳B 内,则球壳外离球心r 处的电场强度大小204/r Q E πε=,球壳的电势R Q V 04/πε=。

3、导体静电平衡的必要条件是导体内部场强为零。

4、两个带电不等的金属球,直径相等,但一个是空心,一个是实心的。

现使它们互相接触,则这两个金属球上的电荷( B )。

(A)不变化 (B)平均分配 (C)空心球电量多 (D)实心球电量多5、半径分别R 和r 的两个球导体(R >r)相距很远,今用细导线把它们连接起来,使两导体带电,电势为U 0,则两球表面的电荷面密度之比σR /σr 为 ( B )(A) R/r (B) r/R (C) R 2/r 2 (D) 16、有一电荷q 及金属导体A ,且A 处在静电平衡状态,则( C )(A)导体内E=0,q 不在导体内产生场强; (B)导体内E ≠0,q 在导体内产生场强; (C)导体内E=0,q 在导体内产生场强; (D)导体内E ≠0,q 不在导体内产生场强。

7、如图所示,一内半径为a ,外半径为b 的金属球壳,带有电量Q , 在球壳空腔内距离球心为r 处有一点电荷q ,设无限远 处为电势零点。

试求: (1)球壳外表面上的电荷;(2)球心O 点处由球壳内表面上电荷产生的电势; (3)球心O 点处的总电势。

解: (1) 设球壳内、外表面电荷分别为q 1 , q 2,以O 为球心作一半径为R (a <R <b )的高斯球面S,由高斯定理01εqq dS E S +=⋅⎰⎰ ,根据导体静电平衡条件,当a <R <b 时,0=E。

则0=⋅⎰⎰SdS E ,即01=+q q ,得q q -=1根据电荷守恒定律,金属球壳上的电量为21q q Q +=q Q q Q q +=-=∴12(2)在内表面上任取一面元,其电量为dq ,在O 点产生的电势adq dV o πε411=q 1在O 点产生的电势aq aq adq dV V o o o πεπεπε4441111-====⎰⎰内内(3) 同理,外球面上的电荷q 2在O 点产生的电势bqQ bq V o o πεπε4422+== 点电荷q 在O 点产生的电势rq V o q πε4=∴ O 点的总点势o q V V V V πε41210=++=(bq Q a q r q ++-) 8、点电荷Q 放在导体球壳的中心,球的内、外半径分别为a 和b ,求场强和电势分布。

静电场中的导体与电介质一章习题解答

静电场中的导体与电介质一章习题解答

静电场中的导体与电介质一章习题解答习题8—1 A 、B 为两个导体大平板,面积均为S ,平行放置,如图所示。

A 板带电+Q 1,B 板带电+Q 2,如果使B 板接地,则AB 间电场强度的大小E 为:[ ] (A)S Q 012ε (B) SQ Q 0212ε- (C) SQ 01ε (D) S Q Q 0212ε+解:B 板接地后,A 、B 两板外侧均无电荷,两板内侧带等值异号电荷,数值分别为+Q 1和-Q 1,这时AB 间的场应是两板内侧面产生场的叠加,即SQS Q S Q E 01010122εεε=+=板间 所以,应该选择答案(C)。

习题8—2 C 1和C 2两个电容器,其上分别标明200pF(电容量),500V(耐压值)和300pF ,900V 。

把它们串联起来在两端加上1000V 的电压,则[ ](A) C 1被击穿,C 2不被击穿 (B) C 2被击穿,C 1不被击穿 (C) 两者都被击穿 (D) 两者都不被击穿 答:两个电容器串联起来,它们各自承受的电压与它们的电容量成反比,设C 1承受的电压为V 1,C 2承受的电压为V 2,则有231221==C V V ①100021=+V V ②联立①、②可得V 6001=V , V 4002=V可见,C 1承受的电压600V 已经超过其耐压值500V ,因此,C 1先被击穿,继而1000V 电压全部加在C 2上,也超过了其耐压值900V ,紧接着C 2也被击穿。

所以,应该选择答案(C)。

习题8—3 三个电容器联接如图。

已知电容C 1=C 2=C 3,而C 1、C 2、C 3的耐压值分别为100V 、200V 、300V 。

则此电容器组的耐压值为[ ](A) 500V (B) 400V (C) 300V (D) 150V (E) 600V解:设此电容器组的两端所加的电压为u ,并且用C 1∥C 2表示C 1、C 2两电容器的并联组合,这时该电容器组就成为C 1∥C 2与C 3的串联。

大学物理第7章 静电场中的导体和电介质 课后习题及答案

大学物理第7章 静电场中的导体和电介质 课后习题及答案

第7章 静电场中的导体和电介质 习题及答案1. 半径分别为R 和r 的两个导体球,相距甚远。

用细导线连接两球并使它带电,电荷面密度分别为1σ和2σ。

忽略两个导体球的静电相互作用和细导线上电荷对导体球上电荷分布的影响。

试证明:Rr =21σσ 。

证明:因为两球相距甚远,半径为R 的导体球在半径为r 的导体球上产生的电势忽略不计,半径为r 的导体球在半径为R 的导体球上产生的电势忽略不计,所以半径为R 的导体球的电势为R R V 0211π4επσ=14εσR= 半径为r 的导体球的电势为r r V 0222π4επσ=24εσr= 用细导线连接两球,有21V V =,所以Rr =21σσ 2. 证明:对于两个无限大的平行平面带电导体板来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同。

证明: 如图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ (1)取与平面垂直且底面分别在A 、B 内部的闭合圆柱面为高斯面,由高斯定理得S S d E S∆+==⋅⎰)(10320σσε 故 +2σ03=σ上式说明相向两面上电荷面密度大小相等、符号相反。

(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又 +2σ03=σ 故 1σ4σ=3. 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量。

解:如图所示,设金属球表面感应电荷为q ',金属球接地时电势0=V由电势叠加原理,球心电势为=O V R qdq R 3π4π4100εε+⎰03π4π400=+'=Rq R q εε 故 -='q 3q 4.半径为1R 的导体球,带有电量q ,球外有内外半径分别为2R 、3R 的同心导体球壳,球壳带有电量Q 。

第10章导体和电介质 习题解答共8页文档

第10章导体和电介质 习题解答共8页文档

第10章 静电场中的导体和电介质 习题解答10-1 点电荷q +处在导体球壳的中心,壳的内、外半径分别为1R 和2R 。

试求:(1)1R r <;(2)21R r R <<;(3)2R r >三个区域的电场强度和电势。

r 为观察点到q +的距离。

解:由高斯定理 ⎰∑=⋅SE εq S d ϖϖ 得(1)当1R r <时,2014r q E πε=1120012111,()44q qE V rr R R πεπε==-+ 当21R r R <<时,02=E 22020,4q E V R πε==当2R r >时,2034rq E πε=33200,44q q E V rrπεπε==(2)当1R r <时,)111(421032112211R R r qr d E r d E r d E V R R R R R r+-=⋅+⋅+⋅=⎰⎰⎰∞πεϖϖϖϖϖϖ 当21R r R <<时,⎰⎰∞=⋅+⋅=R R R rR q r d E r d E V 22203224πεϖϖϖϖ当2R r >时,⎰∞=⋅=R rrq r d E V 0334πεϖϖ10-2 一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B和r C 的金属球壳B 同心放置,如图所示,则习题10-2图中P 点的电场强度如何?若用导线将A 和B 连接起来,则A 球的电势为多少?(设无穷远处电势为零)解:过P 点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出异种,但是高斯面内只有电荷q 。

根据高斯定理可得 E 4πr 2 = q /ε0 可得P 点的电场强度为当金属球壳内侧会感应出异种电荷-q 时,外侧将出现同种电荷q 。

用导线将A 和B 连接起来后,正负电荷将中和。

A 球是一个等势体,其电势等于球心的电势。

A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为10-3 同轴电缆是由半径为R 1的直导线和半径为R 2的同轴薄圆筒构成的,其间充满了相对介电常数为εr 的均匀电介质,设沿轴线单位长度上导线和圆筒的带电量分别为+λ和-λ,则通过介质内长为l ,半径为r 的同轴封闭圆柱面的电位移通量为多少?该圆柱面上任一点的场强为多少?解:介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,根据介质中的高斯定理,通过圆柱面的电位移通过等于该面包含的自由电荷,即 Φd = q = λl 。

《静电场中的导体与电介质》选择题解答与分析

《静电场中的导体与电介质》选择题解答与分析

13静电场中的导体与电介质 13.1静电平衡1. 当一个带电导体达到静电平衡时: (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高. (C) 导体内部的电势比导体表面的电势高. (D) 导体内任一点与其表面上任一点的电势差等于零. 答案:(D) 参考解答:静电平衡时的导体电荷、场强和电势分布的特点: (1) 电荷仅分布在导体的表面,体内静电荷为零.(2) 导体表面附近的场强方向与导体表面垂直,大小与导体表面面电荷密度成正比;(3) 导体为等势体,表面为等势面.答案(D)正确,而(A)(B)(C)均需考虑电势是一个相对量,在场电荷的电量以及分布确定的同时,还必须选定一个电势零点,在这样的情况下,场中各点电势才能确定。

给出参考解答,进入下一题:2. 设一带电导体表面上某点附近电荷面密度为σ,则紧靠该表面外侧的场强为0/εσ=E . 若将另一带电体移近,(1) 该处场强改变,公式0/εσ=E 仍能用。

(2) 该处场强改变,公式0/εσ=E 不能用。

上述两种表述中正确的是(A) (1) . (B) (2).答案:(A) 参考解答:处于静电平衡的导体,其表面上各处的面电荷密度与相应表面外侧紧邻处的电场强度的大小成正比,即0εσ=E . 将另一带电体移近带电导体,紧表面外侧的场强会发生改变,电荷面密度为σ也会改变,但公式0εσ=E 仍能用。

给出参考解答,进入下一题:3. 无限大均匀带电平面(面电荷密度为σ)两侧场强为)2/(0εσ=E ,而在静电平衡状态下,导体表面(该处表面面电荷密度为σ)附近场强为0/εσ=E ,为什么前者比后者小一半?参考解答:关键是题目中两个式中的σ不是一回事。

下面为了讨论方便,我们把导体表面的面电荷密度改为σ′,其附近的场强则写为./0εσ'=E对于无限大均匀带电平面(面电荷密度为σ),两侧场强为)2/(0εσ=E .这里的 σ 是指带电平面单位面积上所带的电荷。

大学物理下 静电场中的导体和电介质习题解答

大学物理下 静电场中的导体和电介质习题解答

q
q q
2.如图所示,一带负电荷的金属球,外面同 心地罩一不带电的金属球壳,则在球壳中一点 P处的场强大小与电势(设无穷远处为电势零 点)分别为:
(A) E = 0,U > 0. (B) E = 0,U < 0. B
(C) E = 0,U = 0. (D) E > 0,U < 0.
P
球壳内表面带正电荷,外表面带负电荷 金属球壳是一个等势体
ε1 ε2
5. 一导体球外充满相对介电常量为εr的均匀电介质,若测得导 体表面附近场强为 E ,则导体球面上的自由电荷面密度ε0 εr E 。
D ds Dds ds D
s
D
0
r
E
6. 一电荷为q的点电荷,处在半径为R、介电常量为ε1的各向同性、
均匀电介质球体的中心处,球外空间充满介电常量为ε2的各向同
性、均匀电介质,则在距离点电荷r (r<R) 处的场强为

电势 (选U∞=0)为

D ds qi
s
i
4r 2 Dr q
Er Dr
U
E
4Rrq1rR2
Er d r , U
q 4π1
1 r
1 R
q 4 2 R
2 1 qr R
7. 两金属球的半径之比为1:4,带等量的同号电荷。当两者的距 离远大于两球半径时,系统具有电势能W04 r
q 4 r
0
0
球心O点处总电势为分布在球壳内、外表面上的电荷和点电荷
q在O点产生的电势的代数和,
U 0
Uq
Uq
UQq
q 4 r
0
q 40R1
q Q 4 R
02

大学物理第六章课后习题答案

大学物理第六章课后习题答案

第六章 静电场中的导体与电介质 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。

由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。

6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。

若将导体N 的左端接地(如图所示),则( )(A ) N 上的负电荷入地 (B )N 上的正电荷入地(C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。

因而正确答案为(A )。

6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。

设无穷远处为零电势,则在导体球球心O 点有( )(A )d εq V E 0π4,0== (B )dεq V d εq E 020π4,π4== (C )0,0==V E(D )R εq V d εq E 020π4,π4==分析与解 达到静电平衡时导体内处处各点电场强度为零。

点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。

因而正确答案为(A )。

6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。

下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。

习题课(静电场中的导体和电介质)

习题课(静电场中的导体和电介质)

习题课(静电场中的导体和电介质)1、半径为R 1的导体球带正电Q 1其内外半径分别为R 2和R 3,球壳带正电Q 2(1)此带电系统的场强分布;(2)球的电势U 1和球壳的电势U 2; (3)球与球壳的电势差;(4)若用导线将球和球壳相连,U 1和U 2解:(1)电量均匀分布在球面上,即R 1球面电量为Q 1,R 2球面电量为-Q 1,R 3球面电量为Q 1+Q 2 ,利用均匀带电球面在空间任一点场强的结果和场强叠加原理,可求得场强分布为: r < R 1: E 1 = 0; R 1 < r <R 2 : E 2 = Q 1/4πε0r 2; R 2 < r < R 3 : E 3 = 0 r > R 3: E 4 = (Q 1+Q 2)/4πε0r 2(2) 30214243R Q Q dr E U Rπε+==⎰∞dr E dr E dr E U R R R R R ⎰⎰⎰∞++=332214321302121014)11(4R Q Q R R Q πεπε++-=(3) )11(421012112R R Q U U U -=-=πε (4) 3021214R Q Q U U πε+== 2、如图,在半径为a 的金属球外有一层外半径为b 的均匀电介质球壳,电介质的相对电容率为εr (1)介质层内外的场强大小;(2)介质层内外的电势; (3)金属球的电势;(4)电场的总能量; (5)解:(1)电量Q 均匀分布在半径为a r的球面为高斯面,利用高斯定理可求得场强分布 r < a : E 1 = 0; a < r < b : 2024rQ E r επε=; r > b : rQ E 034πε=(2) r > b : rQ dr E U r0334πε==⎰∞a < r <b : b Q b r Q dr E dr E U r bb r 003224)11(4πεεπε+-=+=⎰⎰∞r < a : b Q b a Q dr E dr E dr E U r bb a a r 0032114)11(4πεεπε+-=++=⎰⎰⎰∞(3)金属球的电势等于U 1(4)abb a a Q dV E dV E W r r b r baεπεεεεε022302208)(2121+-=+=⎰⎰∞ (5)ba a ab U Q C r r +-==εεπε014 3、在半径为R 的导体球壳薄壁附近与球心相距为d(d >R)的P 点处,放一点电荷q ,求:(1)球壳表面感应电荷在的球心O 处产生电势和场强; (2)空腔内任一点的电势和场强; (3)若将球壳接地,计算球壳表面感应电荷的总电量。

大学物理第十二章习题解答

大学物理第十二章习题解答

4π 0 r r R2 4π 0 R2
(3)金属球的电势

Q
1 (

r
1 )
4π 0 r r R2
U
R2 R1
E内

dr

R2 E外 dr
R2
Qdr
Qdr
R 4π 0 r r 2 R2 4π 0 r 2

Q
1 (
r
1 )

D Q
2πrl
(1)电场能量密度
D2
Q2
w
2 8π 2r 2l 2
薄壳中 dW wd Q2 2π rdrl Q2dr
8π 2r 2l 2
4π rl
(2)电介质中总电场能量
9
(3)电容:∵ ∴
Qr
Qr
D 4πr 3 , E外 4π 0r 3
(2)介质外 (r R2 ) 电势
Q
U r E外 dr 4π 0r
介质内 (R1 r R2 ) 电势

U r E内 dr r E外 dr
q 11
Q

( )
12-2 如附图所示,一导体球半径为 R1,外罩一半径为 R2 的同心薄球壳,外球壳所带总电荷 为 Q,而内球的电势为 U0,求此系统的电势和电场分布。
解:根据静电平衡时电荷的分布,可知电场分布呈球对称.设内球壳带电量为q 取同心球
面为高斯面,由高斯定理 E dS Er 4πr2 Er q / ε0 ,根据不同半径的高斯面内的电

R2 R1
E2
dl


q
Q
R2 E3 dl 4π 0 R1 4π 0 R2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章 静电场中的导体和电介质一 选择题1. 半径为R 的导体球原不带电,今在距球心为a 处放一点电荷q ( a >R )。

设无限远处的电势为零,则导体球的电势为 ( ) 20200π4 . D )(π4 . C π4 . B π4 .A R)(a qa R a q a qR a q o --εεεε 解:导体球处于静电平衡,球心处的电势即为导体球电势,感应电荷q '±分布在导体球表面上,且0)(='-+'+q q ,它们在球心处的电势 ⎰⎰'±'±='='='q q q R R q V 0d π41π4d 00εε 点电荷q 在球心处的电势为 aq V 0π4ε= 据电势叠加原理,球心处的电势aq V V V 00π4ε='+=。

所以选(A )2. 已知厚度为d 的无限大带电导体平板,两表面上电荷均匀分布,电荷面密度均为 ,如图所示,则板外两侧的电场强度的大小为 ( )00002 . D . C 2 . B2 .Aεd E=εE=E E σσεσεσ== 解:在导体平板两表面外侧取两对称平面,做侧面垂直平板的高斯面,根据高斯定理,考虑到两对称平面电场强度相等,且高斯面内电荷为S 2σ,可得 0εσ=E 。

所以选(C )3. 如图,一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为 d 处(d<R ),固定一电量为+q 的点电荷。

用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心o 处的电势为 ( ))Rd (q R d q 11π4 D. 4πq C. π4 B. 0 A.000-εεε 解:球壳内表面上的感应电荷为-q ,球壳外表面上的电o R d +q . 选择题3图选择题2图d荷为零,所以有)π4π4000Rq d qV εε-+=。

所以选( D )4. 半径分别为R 和r 的两个金属球,相距很远,用一根细长导线将两球连接在一起并使它们带电,在忽略导线的影响下,两球表面的电荷面密度之比R /r 为 ( )A . R /r B. R 2 / r 2 C. r 2 / R 2 D. r / R 解:两球相连,当静电平衡时,两球带电量分别为Q 、q ,因两球相距很远,所以电荷在两球上均匀分布,且两球电势相等,取无穷远为电势零点,则r q R Q 00π4π4εε= 即 rR q Q = Rr r q R Q r R ==22 4/4/ππσσ 所以选(D )5. 一导体球外充满相对介质电常数为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度为 ( )A. ε0 EB. ε0εr EC. εr ED. (ε0εr -ε0) E 解:根据有介质情况下的高斯定理⎰⎰∑=⋅q S D d ,取导体球面为高斯面,则有S S D ⋅=⋅σ,即E D r 0εεσ==。

所以选(B )6. 一空气平行板电容器,充电后测得板间电场强度为E 0,现断开电源,注满相对介质常数为εr 的煤油,待稳定后,煤油中的极化强度的大小应是( )0r 00rr 0r r 00r 01 . D 1 . C 1 . B .A )E (εεE ε)(εE ε)(εεE εε --- 解:断开电源后,不管是否注入电介质,极板间的自由电荷q 不变,D 0=D 即 E E r 000εεε= 得到 r 0/εE E =又 P E D +=0ε0rr 0r 00000)1(E E E E D P εεεεεεε-=-=-= 所以选(B )7. 两个半径相同的金属球,一为空心,一为实心,两者的电容值相比较( )A. 实心球电容值大B. 实心球电容值小C. 两球电容量值相等D. 大小关系无法确定解:孤立导体球电容R C 0π4ε=,与导体球是否为空心或者实心无关。

所以选(C )8. 金属球A 与同心球壳B 组成电容器,球A 上带电荷q ,壳B 上带电荷Q ,测得球和壳间的电势差为U AB ,则该电容器的电容值为( )A. q /U ABB. Q /U ABC. (q +Q )/ U ABD. (q +Q )/(2 U AB )解:根据电容的定义,应选(A )。

9. 一空气平行板电容器,极板间距为d ,电容为c 。

若在两板中间平行地插入一块厚度为d / 3的金属板,则其电容值变为 ( )A. CB. 2C /3C. 3 C /2D. 2C 解:平行板电容器插入的金属板中的场强为零,极板上电荷量不变,此时两极板间的电势差变为:0 32)3(εσεσd d d d E U =-='= 其电容值变为: C d S S U Q C 23233d 2 00===='εεσσ 所以选(C )10. 一平板电容器充电后保持与电源连接,若改变两极板间的距离,则下述物理量中哪个保持不变?( )A. 电容器的电容量B. 两极板间的场强C. 电容器储存的能量D. 两极板间的电势差解:平板电容器充电后保持与电源连接,则两极板间的电势差不变;平行板电容器的电容dS C ε=,改变两极板间的距离d ,则电容C 发生变化;两极板间的场强dU E =,U 不变,d 变化,则场强发生变化;电容器储存的能量2e 21CU W =,U 不变,d 变化,导致电容C 发生变化,则电容器储存的能量也要发生变化。

所以选(D )二 填空题1. 一任意形状的带电导体,其电荷面密度分布为(x 、y 、z ),则在导体表面外附近任意点处的电场强度的大小E (x 、y 、z ) = ,其方向 。

解:E (x 、y 、z )= (x 、y 、z )/ε0,其方向与导体表面垂直朝外(>0)或与导体表面垂直朝里(σ<0)。

d /3 d 选择题9题2. 如图所示,一无限大均匀带电平面附近设置一与之平行的无限大平面导体板。

已知带电面的电荷面密度为 ,则导体板两侧面的感应电荷密度分别为 1 和 2 = 。

解:由静电平衡条件和电荷守恒定律可得:022202010=-+εσεσεσ;21σσ-=。

由此可解得:21σσ-= ;22σσ=。

3. 半径为R 1和R 2的两个同轴金属圆筒(R 1< R 2),其间充满着相对介电常数为εr 的均匀介质,设两筒上单位长度带电量分别为λ 和λ ,则介质中的电位移矢量的大小D = ,电场强度的大小E = 。

解:根据有介质情况下的高斯定理,选同轴圆柱面为高斯面,则有D = λ /(2πr ),电场强度大小E = D /εr ε0=λ /(2πεr ε0 r )。

4. 平行板电容器的两极板A 、B 的面积均为S ,相距为d ,在两板中间左右两半分别插入相对介电常数为εr1和εr2的电介质,则电容器的电容为 。

解:该电容器相当于是两个面积为S /2的电容器的并联,电容值分别为:d S C 211r 01εε=,dS C 212r 02εε=, )(22r 1r 021εεε+=+=∴dS C C C 5. 半径为R 的金属球A ,接电源充电后断开电源,这时它储存的电场能量为5×10-5J,今将该球与远处一个半径是R 的导体球B 用细导线连接,则A 球储存的电场能量变为 。

解:金属球A 原先储存的能量J 1052152-⨯==CQ W ,当它与同样的金属球B 连接,则金属球A 上的电荷变为原来的1/2,则能量J 1025.1)2/(2152-⨯=='CQ W 6. 一空气平行板电容器,其电容值为C 0,充电后将电源断开,其储存的电场能量为W 0,今在两极板间充满相对介电常数为εr 的各向同性均匀电介质,则此时电容值C = ,储存的电场能量W e = 。

解:初始时电容000U Q C =,充电后将电源断开,Q 0不变,由r 0/εεD E =,当两极板间充满电介质时,两极板电势差r 0r 00r 0εεεεεU S d Q d D Ed U ====, 1 填充题2图0r 0C U Q C ε==∴ ,r 00r 20202121εεW C Q C Q W === 。

7. 一平行板电容器,极板面积为S ,间距为d ,接在电源上并保持电压恒定为U 。

若将极板距离拉开一倍,那么电容器中静电能增加了 ,电源对电场做功为 ,外力对极板做功为 。

解:初始时,电容器的静电能2000002121U dS U Q W e ε==,将极板距离拉开一倍,电容值变为00212C d S C ==ε,极板间电压不变,00002121Q U C CU Q ===∴,此时电容器的静电能200e 0e 412121U d S W QU W ε=== ∴电容器中静电能的增量 200e e e 41U d S W W W ε-=-=∆ 电源对电场做功200021)21(U dS Q Q U q U W ε-=-=∆= 由能量守恒,电源和外力做功的和等于电容器中静电能的改变,所以外力做的功d SU U d SU d SW W W 424202020e εεε=+-=-∆='三 计算题1. 如图所示,一内半径为a 、外半径为b 的金属球壳,带有电量Q ,在球壳空腔内距离球心r 处有一点电荷q ,设无限远处为电势零点,试求:(1)球壳内外表面上的电荷;(2)球心处由球壳内表面上电荷产生的电势;(3)球心处的总电势。

解:(1)由静电感应,金属球壳的内表面上有感应电荷q ,外表面上带电荷q +Q 。

(2)不论球壳内表面上的感应电荷是如何分布的,因为任一电荷元离O 点的距离都是a ,所以由这些电荷在O 点产生的电势为a q a q V q 00π4π4d εε-==⎰- (3)球心O 点处的总电势为分布在球壳内外表面上的电荷和电荷q 在O 点产生的电势的代数和b Q b a r q bq Q a q r q V V V V q Q q q 000000π4)111(π4 π4π44πεεεεε++-=++-=++=+-2. 一导体球半径为R 1,其外部是一个同心的厚导体球壳,球壳内、外半径分别为R 2和R 3。

此系统带电后内球电势为U , 外球壳所带总电量为Q 。

求此系统各处的电势和电场分布。

解:设内球带电q 1,则)(411121310R q R q R q Q U +-+=πε 由此得 21313221321014R R R R R R Q R R U R R R q +--=πε 1R r <: U U =, 0=E21R r R <<: )(41121310r q R q R q Q U +-+=πε 2014r q E πε= 32R r R <<: 31041R q Q U +=πε, 0=E 3R r >: r q Q U 014πε+= 2014r q Q E πε+=3.电荷以相同的面密度 分布在半径为r 1=10cm 和r 2=20cm 的两个同心球面上,设无限远处电势为零,球心处的电势为V 0=300V 。

相关文档
最新文档