增长率应用题
一元二次方程增长率应用题
一元二次方程增长率应用题一、增长率问题的基本公式1. 若初始量为a,平均增长率为x,增长n次后的量为b,则b = a(1 + x)^n。
2. 若初始量为a,平均降低率为x,降低n次后的量为b,则b=a(1 - x)^n。
二、例题解析(一)正向增长率问题例1:某工厂去年1月份的产值为100万元,由于受市场经济的影响,2、3月份的产值逐月下降,平均每月下降率为x。
(1)写出3月份产值y(万元)关于x的函数关系式;(2)如果3月份产值为81万元,求x的值。
解析:1. (1)1月份产值为100万元,2月份产值是在1月份产值基础上下降x,则2月份产值为100(1 - x)万元。
3月份产值是在2月份产值基础上又下降x,所以3月份产值y = 100(1 - x)(1 - x)=100(1 - x)^2。
2. (2)已知3月份产值为81万元,即y = 81,那么100(1 - x)^2=81。
- 首先将方程两边同时除以100得到(1 - x)^2=(81)/(100)。
- 然后开平方可得1 - x=±(9)/(10)。
- 当1 - x=(9)/(10)时,x = 1-(9)/(10)=(1)/(10)=0.1 = 10%;- 当1 - x=-(9)/(10)时,x = 1+(9)/(10)=1.9(增长率不能大于1,舍去)。
(二)连续两年增长率问题例2:某公司前年缴税40万元,今年缴税48.4万元。
该公司缴税的年平均增长率为多少?解析:设该公司缴税的年平均增长率为x。
1. 前年缴税40万元,去年缴税是在前年基础上增长x,则去年缴税40(1 + x)万元。
2. 今年缴税是在去年基础上又增长x,所以今年缴税40(1 + x)(1 + x)=40(1 + x)^2万元。
3. 已知今年缴税48.4万元,则40(1 + x)^2=48.4。
- 方程两边同时除以40得(1 + x)^2=1.21。
- 开平方得1 + x=±1.1。
题型(二) 实际应用题-2021年中考数学一轮复习知识考点课件(74张)
对点训练 1.(2020·上海)去年某商店“十一”黄 周进行促销活动期间,前六天的总营业
额为450万元,第七天的营业额是前六天总营业额的12%. (1)求该商店去年“十一”黄 周这七天的总营业额;
解:(1)450+450×12%=504(万元). 答:该商店去年“十一”黄 周这七天的总营业额为504万元.
解:设甲物资采购了x吨,乙物资采购了y吨.
依题意,得
x y 540, 解得 3x 2y 1380,
x
y
300, 240.
答:甲物资采购了300吨,乙物资采购了240吨.
上一页 下一页
(2)现在计划安排A,B两种不同规格的卡车共50辆来运输这批物资.甲物资7
吨和乙物资3吨可装满一辆A型卡车;甲物资5吨和乙物资7吨可装满一辆B
上一页 下一页
以分配类问题中购买商品为例,常出现的量有:购买数量、单价及购买
额,常见等量关系式为:单价×数量=总价.
1.以购买商品背景为例,常考以下三种形式:
模型一:已知a,b的单价、购买a,b的总数量及总花费,求a,b各自购
买的数量;
模型二:已知购买一定数量的a和一定数量的b的总花费(两组信息),求
上一页 下一页
(2)选购期间发现该品牌足球在两个文体用品商场有不同的促销方案:A商场 买十送一,B商场全场九折,试问去哪个商场购买足球更优惠?
(2)在A商场实际需要购买的足球为100× 10 = 1000 ≈91(个),
11 11
在A商场需要的费用为162×91=14 742(元), 在B商场需要的费用为162×100× 9 =14 580(元).
方案2:安排26辆A型卡车,24辆B型卡车;
方案3:安排27辆A型卡车,23辆B型卡车.
一元二次方程应用题-增长率
列一元二次方程解决增长(降低)率问题时,
要理清原来数、后来数、增长率或降低率, 以及增长或降低的次数之间的数量关系.如
果列出的方程是一元二次方程,那么应在 原数的基础上增长或降低两次. (1)增长率问题: 平均增长率公式为a(1+x)n=b(a为原来数,x 为平均增长率,n为增长次数,b为增长后 的量.) (2)降低率问题: 平均降低率公式为a(1-x)n=b(a为原来数,x 为平均降低率,n为降低次数,b为降低后 的量.)
整理得 : 25x2 25x 6 0.
解得 :
x 25 1225 5 7 ,
50
10
x1
5 10
7
0.2
20%;
x2
5 10
7
1.2
0(不合题意, 舍去).
答 :该厂今年产量的月平均增长率为20%.
练习
1、某工厂第一季度的一月份生产电视机是1万台,第一季度 生产电视机的总台数是3.31万台,求二月份、三月份生产 电视机平均增长的百分率是多少?
实验器材投资上的平均增长率是x,则可列方程
为
.
开启 智慧
某电冰箱厂每个月的产量都比上个月增长的百分数相同 。已知该厂今年4月份的电冰箱产量为5万台,6月份比5月 份多生产了12000台,求该厂今年产量的月平均增长率为 多少?
解 :设该厂今年产量的月平均增长率为x,根据题意,得
5(1 x)2 51 x 1.2.
开启 智慧
2.某公司计划经过两年把某种商品的生产成本降低 19%,那么平均每年需降低百分之几?
解 :设每年平均需降低的百分数为x,根据题意,得
(1 x)2 1 19%.
解这个方程 : (1 x)2 0.81, (1 x) 0.9, x 1 0.9,
百分数应用问题增长率问题
第8讲:百分比的应用增长率等问题提出问题1、预备(9)班有44名学生,在上次数学双周测中有11名学生成绩达到优秀(90分以上).优秀率是多少?2、预备(4)班有40名学生,优秀率是30%,那么优秀人数有几名?3、预备(5)班的优秀人数是10名,优秀率是25%,那么你能知道他们班的人数吗?解决问题引导学生重点分析:求优秀率就是求()占()的百分之几?从而得出公式:__________________________________公式变形1:__________________________________公式变形2:__________________________________归纳:已知两个量,就能求第三个量。
讨论分析举例说明百分率是求()占()的百分之几?公式是什么?灵活应用,拓展延伸。
(一)、只列式,不计算1、某电视台调查了500个家庭,有462个家庭收看该电视台的节目,求该电视台的收视率?2、稻谷的出米率是70%,800千克的稻谷可碾米多少千克?3、某植树组共植树1000棵,结果有20棵没有成活。
求这批树的成活率是多少?4、25克盐放入100克水中,盐水的含盐率是多少?5、用若干千克花生仁榨出油760千克,已知花生仁的出油率是39%,求花生仁有多少千克?(二)、判断1、林场种树100棵,成活98棵,成活率为98%棵. ()2、一个工人加工103个零件,全部合格,合格率为103%. ( )3、种一批树苗,成活率为95%,那么这批树苗死亡率为5%. ( )4、用50粒种子作发芽试验,40粒种子发芽,发芽率为54. ( ) 5、有一个学生说:今天他班的出勤率是110%. ( )增长率问题(一)、增长率的意义增长率是求( )占( )的百分之几 ?公式是什么?(二)、运用公式练习某厂去年产值200万元,今年产值估计240万元,估计今年产值的增长率是多少?变式1:某厂去年产值200万元,估计今年产值的增长率是10%,今年产值是多少万元?变式2:某厂今年产值220万元,对去年产值的增长率是10%,估计去年产值是多少万元?练一练上海世博会期间九月的某一天,入园人数约有40万人,第二天入园人数增加了30%,问第二天入园人数约有多少万人?第三天入园人数的增长率在第二天增加的百分比基础上提高了10个百分点,问第三天入园人数约有多少万人?试一试一件衣服原价100元,先降价10%,再提价10%后出售,小明认为现售价仍然是100元,你同意他的观点吗?为什么?编一编树林里有杨树和柳树两种树,杨树共有200棵,_____________________,那么树林里总共有多少棵数?请在横线上添加一个条件,使它成为一道百分率应用题,并解答。
初三增长率传播问题应用题专题训练含答案
初三(增长率、传播问题)应用题专题训练1、一次会议上,每两个参加会议的人都握了一次手,有人统(总)计一共握了66次手,这次参加会议到会的人数是多少?2、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,三轮感染后,被感染的电脑会不会超过700台?3、滨州市体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?4、有一种传染性疾病,蔓延速度极快.据统汁,在人群密集的某城市里,通常情况下,每人一天能传染给若干人,通过计算解答下面的问题:(1 )现有一人患了这种疾病,开始两天共有225人患上此病,求每天一人传染了几人?(2)两天后,人们有所觉察,这样平均一个人一天以少传播5人的速度在递减,求再过两天共有多少人患有此病?5、雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款元,第三天收到捐款元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?6、某服装厂生产一批西服,原来每件的成本价是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低,第二个月比第一个月提高,为了使两个月后的销售利润达到原来水平,该产品的成本价平均每月应降低百分之几?7、百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?8、随着经济的发展,尹进所在的公司每年都在元月一次性的提高员工当年的月工资.尹进2008 年的月工资为2000 元,在2010 年时他的月工资增加到2420 元,他2011年的月工资按2008 到2010 年的月工资的平均增长率继续增长.(1)尹进2011年的月工资为多少?(2)尹进看了甲、乙两种工具书的单价,认为用自己2011年6 月份的月工资刚好购买若干本甲种工具书和一些乙种工具书,当他拿着选定的这些工具书去付书款时,发现自己计算书款时把这两种工具书的单价弄对换了,故实际付款比2o11年6月份的月工资少了242 元,于是他用这242 元又购买了甲、乙两种工具书各一本,并把购买的这两种工具书全部捐献给西部山区的学校.请问,尹进总共捐献了多少本工具书?9、广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售。
一元二次方程应用题经典题型汇总
一元二次方程应用题经典题型汇总列一元二次方程解应用题中遇到的常见的典型题目,举例说明.一、增长率问题例1恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额到达了193.6万元,求这两个月的平均增长率.解设这两个月的平均增长率是x.,那么根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1〔舍去〕.答这两个月的平均增长率是10%.说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,假设经过两次相等下降后,那么有公式m(1-x)2=n即可求解,其中m>n.二、商品定价例2益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,假设每件商品售价a元,那么可卖出〔350-10a〕件,但物价局限定每件商品的利润不得超过20%,商店方案要盈利400元,需要进货多少件?每件商品应定价多少?解根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,解这个方程,得a1=25,a2=31.因为21×(1+20%)=25.2,所以a 2=31不合题意,舍去.所以350-10a =350-10×25=100〔件〕.答需100件,每件商品应定价25元. 商品的定价问题是商品交易中的重要问题,也点. 三、储蓄问题 例3王红梅同学将100元压岁钱第一次按一年定期含蓄存入“行〞, 到期后将本金和利息取出,并将其中的500元捐给“希望工程〞,剩余的又全部按 一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期 后,可得本金和利息共530元,求第一次存款时的年利率.〔假设不计〕 解设第一次存款时的年利率为x. 那么根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得90x 2+145x -3=0. 解这个方程,得x 1≈0.0204=2.04%,x 2≈-1.63所以将x 2≈-1.63舍去. 答第一次存款的年利率约是2.04%. 这里是按教育储蓄求解的,应注意不计. 四、趣味问题 例4一个醉汉拿着一根竹竿进城,横着怎么也拿4米,旁边一个醉汉嘲笑他,你没看城门高吗,城门高2米,二人没方法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解设渠道的深度为xm,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.1那么根据题意,得(x+0.1+x+1.4+0.1)x=·1.8,整理,得x2+0.8x-1.8=0.2解这个方程,得x1=-1.8〔舍去〕,x2=1.所以x+1.4+0.1=1+1.4+0.1=2.5.答渠道的上口宽2.5m,渠深1m.说明求解此题开场时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解.例5读诗词解题:〔通过列方程式,算出周瑜去世时的年龄〕.大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解设周瑜逝世时的年龄的个位数字为x,那么十位数字为x-3.那么根据题意,得x2=10(x-3)+x,即x2-11x+30=0,解这个方程,得x=5或x =6.当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x=6时,周瑜年龄为36岁,完全符合题意.答周瑜去世的年龄为36岁.说明此题虽然是一道古诗问题,但它涉及到数字和年龄问题,通过求解同学们应从中认真口味.六、象棋比赛例6象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多少个选手参加.解设共有n个选手参加比赛,每个选手都要与(n-1)个选手比赛一局,共计n(n-1)局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总1局数应为n(n-1)局.由于每局共计2分,所以全部选手得分总共为n(n-1)分.显2然(n-1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0,2,6,故总分不可能是1979,1984,1985,因此总分只能是1980,于是由n(n-1)=1980,得n2-n-1980=0,解得n1=45,n2=-44〔舍去〕.答参加比赛的选手共有45人.说明类似于此题中的象棋比赛的其它体育比赛或互赠贺年片等问题,都可以仿照些方法求解.七、情景对话例7春秋旅行社为吸引市民组团去XX湾风景区旅游,推出了如图1对话中收费标准.某单位组织员工去XX湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去XX湾风景区旅游?解设该单位这次共有x名员工去XX湾风景区旅游.因为1000×25=25000<27000,所以员工人数一定超过25人.那么根据题意,得[1000-20(x-25)]x=27000.整理,得x2-75x+1350=0,解这个方程,得x1=45,x2=30.当x=45时,1000-20(x-25)=600<700,故舍去x1;当x2=30时,1000-20(x-25)=900>700,符合题意.答:该单位这次共有30名员工去XX湾风景区旅游.说明求解此题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论.如果人数超过25人,每增加1如果人数不超过25人,人,人均旅游费用降低20元,人均旅游费用为1000元.但人均旅游费用不得低于700图1八、等积变形例8长18米,宽15米的矩形荒地修建成一个花园〔阴影局部〕所占 的面积为原来荒地面积的二.〔准确到0.1m 〕 〔1〕设计方案1〔如图2〕花园中修两条互相垂直且宽度相等的小路. 〔2〕设计方案2〔如图3〕花园中每个角的扇形都一样. 以上两种方案是否都能符合条件?假设能,2中的小路图3中 扇形的半径;假设不能符合条件,请由. 解都能.〔1=0, 解这个方程,得x =〔2〕设扇形说明等积变形一般都是涉及的是常见图形的体积,积不变;或形变积也变,不变,等等. BQ 图2 图3 A PC 图4九、动态几何问题例9如图4所示,在△ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 从点 A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm/s 的速度移动.〔1〕如果P 、Q 同时出发,几秒钟后,可使△PCQ 的面积为8平方厘米?〔2〕点P 、Q 在移动过程中,是否存在某一时刻,使得△PCQ 的面积等于△ABC 的面积的一半.假设存在,求出运动的时间;假设不存在,说明理由.解因为∠C =90°,所以AB =22 ACBC = 2268=10〔cm 〕.〔1〕设xs 后,可使△PCQ 的面积为8cm 2,所以AP =xcm ,PC =(6-x)cm , CQ =2xcm.那么根据题意,得 1 2·(6-x)·2x =8.整理,得x 2-6x+8=0,解这个方程,得x 1= 2,x2=4.所以P 、Q 同时出发,2s 或4s 后可使△PCQ 的面积为8cm 2.〔2〕设点P 出发x 秒后,△PCQ 的面积等于△ABC 面积的一半.那么根据题意,得 1 2 (6-x)·2x = 1 2 ×1 2 ×6×整8.理,得x 2-6x+12=0. 由于此方程没有实数根,所以不存在使△PCQ 的面积等于ABC 面积一半的时刻.说明此题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必 须依据路程=速度×时间.十、题例10为10m 的梯子斜靠在墙上,梯子的底端6m.〔1〕假设梯子的顶端下滑1m ,求梯子的底端水平滑动多少米? 〔2〕假设梯子的底端水平向外滑动1m ,梯子的顶端滑动多少米? 〔3〕如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距 离是多少米? 解依题意,梯子的顶端距墙角 22 106=8〔m 〕.〔1〕假设梯子顶端下滑1m ,那么顶端距地面7m.设梯子底端滑动xm. 那么根据勾股定理,列方程72+(6+x)2=102,整理,得x 2+12x -15=0, 解这个方程,得x 1≈1.14,x 2≈-13.14〔舍去〕,所以梯子顶端下滑1m ,底端水平滑动约1.14m.〔2〕当梯子底端水平向外滑动1m 时,设梯子顶端向下滑动xm.那么根据勾股定理,列方程(8-x)2+(6+1)2=100.整理,得x 2-16x+13=0. 解这个方程,得x 1≈0.86,x2≈15.14〔舍去〕.所以假设梯子底端水平向外滑动〔3〕设梯子顶端向下滑动xm 时,底端向外也滑动xm. 那么根据勾股定理,列方程(8-x)2+(6+x)2=102,整理,得2x 2-4x =0,解这个方程,得x1=0〔舍去〕,x2=2.所以梯子顶端向下滑动2m时,底端向外也滑动2m.说明求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.十一、航海问题例11如图5所示,我海军基地位于A处,在其正南A方向200海里处有一重要目标B,在B的正东方向200海D 里处有一重要目标C,小岛D恰好位于AC的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航.一艘补FBE图5C给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.〔1〕小岛D和小岛F相距多少海里?〔2〕军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?〔准确到0.1海里〕解〔1〕F位于D的正南方向,那么DF⊥BC.因为AB⊥BC,D为AC的中点,所以DF=12AB=100海里,所以,小岛D与小岛F相距100海里.〔2〕设相遇时补给船航行了x海里,那么DE=x海里,AB+BE=2x海里,EF=AB+BC-(AB+BE)-CF=(300-2x)海里.在Rt△DEF中,根据勾股定理可得方程x2=1002+(300-2x)2,整理,得3x2-1200x+100000=0.解这个方程,得x1=200-10063 ≈118.4,x2=200+10063〔不合题意,舍去〕.所以,相遇时补给船大约航行了118.4海里.说明求解此题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程.十二、图表信息例12如图6所示,正方形ABCD的边长为12,划分成12×12个小正方形格,将边长为n〔n为整数,且2≤n≤11〕的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一Xn×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二X纸片盖住第一X纸片的局部恰好为(n-1)×n(-1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.请你认真观察思考后答复以下问题:〔1〕由于正方形纸片边长n的取值不同,?完成摆放时所使用正方形纸片的X 数也不同,请填写下表:纸长n23456使用的纸片X数〔2〕设正方形ABCD被纸片盖住的面积〔重合局部只计一次〕为S1,未被盖住的面积为S2.①当n=2时,求S1∶S2的值;②是否存在使得S1=S2的n值?假设存在,请求出来;假设不存在,请说明理由.解〔1〕依题意可依次:11、10、9、8、7. 〔2〕S 1=n 2+(12-n)[n 2-(n -1)2]=-n 2+25n -12. 图6①当n =2时,S 1=-22+25×2-12=34,S2=12×12-34=110.所以S 1∶S2=34∶110=17∶55.②假设S 1=S 2,那么有-n 2+25n -12= 1 2 ×122,即n 2-25n+84=0,解这个方程,得n 1=4,n2=21〔舍去〕.所以当n =4时,S 1=S 2.所以这样的n 值是存在的.说明求解此题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第〔3〕小题,可以先假定问题的存在,进而构造一元二次方程,看 得到的一元二次方程是否有实数根来加以判断.十三、探索在在问题例13将一2c m的铁丝剪成两段,并以每一一个正方形. 〔1〕要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分少? 〔2〕两个正方形的面积之和可假设不能,请说明理由. 解〔1〕设剪成两段后其中一段为x cm ,那么另一段为〔20-x 〕cm.x 4 2 + 20 4x 2 那么根据题意,得=17,解得x 1=16,x2=4,当x =16时,20-x =4,当x =4时,20-x =16,答这段铁丝剪成两段后是4cm 和16cm. 〔2〕不能.理由是:不妨设剪成两段后其中yc m ,那么另〔20-y 〕 y 4 2 + 20 4 y 2 cm.那么由题意得=12,整理,得y 2-20y+104=0,移项并配方, 得(y -10)2=-4<0,所以此方程无解,即不能剪成两段使得面12cm 2. 说明此〔2〕小问也可以运用求根公式中的b 2-4ac 来判定.假设b 2-4ac ≥0,方程有两个实数根,假设b 2-4ac <0,方程没有实数根,此题中的b 2-4ac =- 16<0即无解. 十四、平分几何图形的面积问题 例14如图7,在等腰梯形ABCD 中,AB =DC =5,AD =4,BC =10.点E?在下 BC 上,点F 在腰AB 上. 〔1〕假设E F平分等腰梯形A B CD的周长,设B x,x 的代数式表示△BEF 的面积; 〔2〕是否存在线段EF 将等腰梯形ABCD 的周长和面积同时平分?假设存在,求 出此时BE 的长;假设不存在,请说明理由; 〔3〕是否存在线段EF 将等腰梯形ABCD 的周长和面积同时分成1∶2的两部 分?假设存在,求此时BE 的长;假设不存在,请说明理由.解〔1〕由条件得,梯形12,高4,28.AD F F 作F G ⊥B C 于G A 作AK ⊥BC 于K.那么可得,FG = 12x 5 ×4, B C E GK 图7 所以S △BEF = 1 2 BE ·FG =- 2 5 x 2+ 24 5 x 〔7≤x ≤10〕. 〔2〕存在.由〔1〕得-2 5 x 2+ 24 5 x =14,解这个方程,得x 1=7,x 2=5〔不合 题意,舍去〕,所以存在线段E F 将等腰梯形ABCD 的周长与面积同时平分,此时BE =7.〔3〕不存在.假设存在,显然有S △BEF ∶S 多边形AFECD =1∶2, 即(BE+BF)∶(AF+AD+DC)=1∶2.那么有- 2 5 x 2+ 16 5 x = 28 3,整理,得3x 2-24x+70=0,此时的求根公式中的b 2-4ac =576-840<0, 所以不存在这数x .即不存EF 将等腰梯形ABCD 的周长和面积同时 分成1∶2的两局部.求解此题时应注意:一是要x 的取值X 围;二是在求得x 2= 5时,并不属于7≤x ≤10,应及时地舍用一元二次方程来探索问题的. 十五、利用图形律 例15在如图8中,每个正方形有图8〔1〕观察图形,请填写 正长1357⋯n 〔奇数〕黑色小正方形个数⋯ 正长2468⋯n 〔偶数〕 黑色小正方形个数⋯〔2n 〔n ≥1〕的正方形中,设黑色小正方形的个数为P 1,白色小 正方形的个数为P 2,问是否在偶数.n ,使P 2=5P 1?假设存在,n 的值;假设 不存在,请由. 解〔1〕观察分析图案可知正方1、3、5、7、⋯、n 时,黑色正方 形的个数为1、5、9、13、2n-1〔奇数〕;正方2、4、6、8、⋯、n 时,黑色正方形的个数为4、8、12、16、2n 〔偶数〕. 〔2〕由〔1〕可知n 为偶数时P 1=2n ,所以P 2=n 2-2n.根据题意,得n 2-2n =5×2n ,即n 2-12n =0,解得n 1=12,n2=0〔不合题意,舍去〕.所以存在偶数 n =12,使得P2=5P1.说明此题的第〔2〕小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解.综上所言,列一元二次方程解应用题是列一元一次方程、二元一次方程组解应用题的延续和开展,列方程解应用题就是先把实际问题抽象为方程模型,然后通过解方程获得对实际问题的解决.列一元二次方程解应用题的关键是:找出未知量与已知量之间的联系,从而将实际问题转化为方程模型,要善于将普通语言转化为代数式,在审题时,要特别注意关键词语,如“多少、快、慢、和、差、倍、分、超过、剩余、增加、减少〞等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等等.。
中考实际应用题(三)增长率问题针对演练(含答案)
题型一实际应用题(必考)类型三增长率问题针对演练1.(2017襄阳)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率;(2)若2017年保持前两年利润的年平均增长率不变,该企业2017 年的利润能否超过3.4亿元?2.(2017盐城)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?3.(2017 长沙一中期中考试)长沙市马王堆蔬菜批发市场某批发商原计划以每千克10元的单价对外批发销售某种蔬菜.为了加快销售,该批发商对价格进行两次下调后,售价降为每千克6.4元.(1)求平均每次下调的百分率;(2)某大型超市准备到该批发商处购买2吨该蔬菜,因数量多,该批发商决定再给予两种优惠方案以供选择.方案一:打八折销售;方案二:不打折,每吨优惠现金1000元.试问超市采购员选择哪种方案更优惠?请说明理由.4.(2017长沙中考模拟卷七)某文具店去年8月底购进了一批文具共1160件,预计在9月份进行试销,购进价格为每件10元.若售价为12元/件,则可全部售出,每涨价0.1元,销售量就减少2件.(1)若该文具店在9月份销售量不低于1100件,则售价应不高于多少元?(2)由于销量好,10月份该文具的进价比8月底的进价每件增加20%,该店主增加了进货量,并加强了宣传力度,结果10月份的销售量比9月份在(1)的条件下的最低销售量增加了m%,但售价比9月份在(1)的条件下的最高售价减少2 15m%.结果10月份利润达到3388元,求m的值(m>10).答案1. 解:(1)设该企业利润的年平均增长率为x ,根据题意得:2×(1+x )2=2.88, 解得x 1=0.2=20%,x 2=﹣2.2(不合题意,舍去),答:该企业利润的年平均增长率为20%;(2)2.88×(1+20%)=3.456>3.4,答:该企业2017年的利润能超过3.4亿元.2. 解:(1)设2014年这种礼盒的进价为x 元/盒,根据题意得:3500x =2400x -11,解得x =35, 经检验,x =35是原方程的解,且符合题意,答:2014年这种礼盒的进价为35元/盒;(2)设年增长率为a ,由(1)得2014年售出礼盒的数量为:3500÷35=100(盒),∴(60-35)×100(1+a )2=[60-(35-11)]×100,解得a 1=0.2,a 2=-2.2(舍去),答:年增长率为20%.3. 解:(1)设每次下调的百分率为x ,根据题意得:10×(1-x)2=6.4,解得x 1=0.2,x 2=1.8(舍去),答:平均每次下调的百分率为20%;(2)方案一更优惠.理由如下:6.4×1000×2=12800(元),八折:12800×0.8=10240(元),优惠:12800-2000=10800(元),∴10240<10800∴方案一更优惠.答:采购员选择方案一更优惠.4. 解:(1)设售价应为x 元,根据题意得:1160-2×x -120.1≥1100,解得x ≤15,答:售价应不高于15元;(2)10月份的进价:10×(1+20%)=12(元),根据题意得:1100×(1+m %)[15(1-215m %)-12]=3388,设m %=t ,化简得50t 2-25t +2=0,解得t 1=25,t 2=110,∴m 1=40,m 2=10,∵m >10,∴m =40,答:m 的值为40.。
一元二次方程应用题(2)增长率问题
50+50(1+x)+(1+x)2=165.5
整理得:x2+3x-0.31=0
解之得: x1 =0.1=10% x2 =-3.1(不合题意,舍去)
答:二、三月份平均每月的增长率是10% .
活学活用
3. 商店里某种商品在两个月里降价两次,现在
该商品每件的价格比两个月前下降了36%,
跟踪训练
2.某厂一月份的产值为10万元,二、三 月份的总产值为70万元,设平均每月 的增长率为x,可列出方程为( B ) A.10(1-x)2=70 B.10(1+x)+10(1+x)2=70 C.10+10(1+x)+10(1+x)2=70 D.10(1+x)2=70
跟踪训练
3.新兴电视机厂由于改进技术,降低 成本,电视机售价连续两次降价10﹪, 降价后每台售价为1000元,问该厂的 电视机每台原价应为( B )元
探究二
某工厂一月份的生产零件1000个,以后
每月降低率为x,
二月份的产量是__1_0_0_0(_1_-_x_)__个。 三月份的产量是__1_0_0_0(_1_-_x_)_2__个。 四月份的产量是__1_0_0_0_(_1_-x_)_3__个。
初见成果
1.若始发数据为a,平均增长率是x,终结 数据为b,则
跟踪训练
某企业所得2011年底向银行贷款200万 元用于生产某种新产品,约定2013年 底到期时一次性还本付息,两年总利 息为本金的8%,由于产销对路,两年 到期时,该企业除还清贷款的本金和 利息外,还盈余72万元,若每年的资 金增长率相同,求这个百分率。
(完整版)一元二次方程应用题经典题型汇总含答案
z 一元二次方程应用题经典题型汇总一、增长率问题例 1 恒利商厦九月份的销售额为200 万元,十月份的销售额下降了20% ,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6 万元,求这两个月的平均增长率.解设这两个月的平均增长率是X.,则根据题意,得200(1 —20%)(1+ x)2= 193.6 ,即(1+x)2= 1.21,解这个方程,得x i = 0.1 , X2=— 2.1 (舍去).答这两个月的平均增长率是10%.说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2= n求解,其中m v n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1 —x)2= n即可求解,其中m >n.二、商品定价例2 益群精品店以每件21 元的价格购进一批商品, 该商品可以自行定价, 若每件商品售价a元,则可卖出(350 —10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400 元,需要进货多少件?每件商品应定价多少?解根据题意,得(a—21)(350 —10a) = 400,整理,得a2—56a+775 = 0 ,解这个方程,得a1 = 25 , a2 = 31.因为21 p+20%) = 25.2,所以a2=31不合题意,舍去.所以350 —10 a= 350 —10 X25 = 100 (件).答需要进货100 件,每件商品应定价25元.说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率•(假设不计利息税)解设第一次存款时的年利率为X.则根据题意,得[1000(1+ x)- 500](1+0.9 x) = 530.整理,得90X2+145 x —3 = 0.解这个方程,得X i~0.0204 = 2.04% , X21.63.由于存款利率不能为负数,所以将X2~—1.63 舍去.答第一次存款的年利率约是 2.04%.说明这里是按教育储蓄求解的,应注意不计利息税四、趣味问题例4 一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?解设渠道的深度为x m,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.则根据题意,得2(x+0.1+ x+1.4+0.1) x= 1.8,整理,得x2+0.8 x—1.8 = 0.解这个方程,得X1 = — 1.8 (舍去),X2= 1.所以x+1.4+0.1 = 1 + 1.4+0.1 = 2.5.答渠道的上口宽2.5m,渠深1m.说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解例5 读诗词解题:(通过列方程式,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?解设周瑜逝世时的年龄的个位数字为X,则十位数字为x - 3.则根据题意,得x2= 10(x —3)+ x,即X2-11X+30 = 0,解这个方程,得x= 5或x= 6.当x = 5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x = 6时,周瑜年龄为36岁,完全符合题意.答周瑜去世的年龄为36岁.六、象棋比赛例6 象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979 , 1980 , 1984 , 1985.经核实,有一位同学统计无误•试计算这次比赛共有多少个选手参加•解设共有n个选手参加比赛,每个选手都要与(n —1)个选手比赛一局,共计n(n —1)1局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为2 n(n —1)局由于每局共计2分,所以全部选手得分总共为n(n —1)分•显然(n—1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0, 2 , 6,故总分不可能是1979 , 1984 , 1985,因此总分只能是1980,于是由n(n —1) = 1980,得n2—n —1980 = 0 ,解得n1 = 45 , n2=—44 (舍去).答参加比赛的选手共有45人.说明类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题, 法求解• 七、情景对话例7 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准. 某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元•请问该单位 这次共有多少员工去天水湾风景区旅游?解设该单位这次共有 x 名员工去天水湾风景区旅游 •因为1000 >25 = 25000 V 27000,所以员工人数一定超过 25人.则根据题意,得[1000 — 20(x — 25)] x = 27000.整理,得 x 2 — 75X +1350 = 0,解这个方程,得 x i = 45 , X 2= 30.当 x = 45 时,1000 — 20( x — 25) = 600 V 700,故舍去 x i ;当 X 2= 30 时,1000 — 20(x — 25) = 900 >700,符合题意.答:该单位这次共有30名员工去天水湾风景区旅游说明 求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论都可以仿照些如果人数不超过25人 如果人数超过25人,每増加1 人人均放游费用降低20元 旦人均册费用不得低于700人均旅游费用海1000元.八、等积变形例8 将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为 原来荒地面积的三分之二•(精确到0.1m )(1 )设计方案1 (如图2)花园中修两条互相垂直且宽度相等的小路(2)设计方案2 (如图3)花园中每个角的扇形都相同 .以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由 解 都能.(1)设小路宽为 X ,则 18x +16x — x 2=^ X18 X15,即 x 2— 34X +180 = 0 ,解这个方程,得x = 2 ,即x ~ 6.6.(2)设扇形半径为 r ,则 3.14 r 2 =X18 X15 ,即卩 r 2疋 57.32,所以 r ~7.6.明 等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变; 积也变,但重量不变,等等九、动态几何问题例9 如图 4所示,在△ ABC 中,/ C = 90?/SPAN> , AC = 6cm , BC = 8cm ,点 P 从 点A 出发沿边AC 向点C 以1cm/s 的速度移动,点Q 从C 点出发沿CB 边向点B 以2cm/s 的速度移动(1)如果P 、Q 同时出发,几秒钟后,可使△ PCQ 的面积为8平方厘米?X ,或形变(2)点P 、Q 在移动过程中,是否存在某一时刻,使得△ PCQ 的面积等于△ ABC 的面积的一半•若存在,求出运动的时间;若不存在,说明理由(1 )设 x s 后,可使△ PCQ 的面积为 8cm 2,所以 AP = x cm , PC = (6 — x )cm , CQ =2x cm.则根据题意,得(6 — x ) 2x = 8.整理,得X 2— 6x +8 = 0,解这个方程,得 x i = 2, X 2=4. 所以P 、Q 同时出发,2s 或4s 后可使△ PCQ 的面积为8cm 2.(2)设点P 出发x 秒后,△ PCQ 的面积等于△ ABC 面积的一半•1 1 1则根据题意,得 2(6 — x ) 2x =2 x2 x6 X8.整理,得 x 2— 6x +12 = 0.由于此方程没有实数根,所以不存在使厶 PCQ 的面积等于ABC 面积一半的时刻•说明 本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程=速度x 时间.十、梯子问题例10 一个长为10m 的梯子斜靠在墙上,梯子的底端距墙角6m.(1) 若梯子的顶端下滑1m ,求梯子的底端水平滑动多少米? (2) 若梯子的底端水平向外滑动 1m ,梯子的顶端滑动多少米?(3 )如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?解 依题意,梯子的顶端距墙角 =8 (m ).(1 )若梯子顶端下滑1m ,则顶端距地面7m.设梯子底端滑动x m.因为/ C = 90?/SPAN>,所以AB ="汙\取匸=用卜『=10(cm )(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ ABC的则根据勾股定理,列方程72+(6+ x)2= 102,整理,得x2+12 x—15 = 0 ,解这个方程,得X i~ 1.14 , X213.14 (舍去),所以梯子顶端下滑1m,底端水平滑动约1.14m.(2)当梯子底端水平向外滑动1m时,设梯子顶端向下滑动x m.则根据勾股定理,列方程(8 —X)2+(6+1)2= 100.整理,得X2—16X+13 = 0.解这个方程,得X1~ 0.86 , X2 ~ 15.14 (舍去).所以若梯子底端水平向外滑动1m,则顶端下滑约0.86m.(3)设梯子顶端向下滑动x m时,底端向外也滑动x m.则根据勾股定理,列方程(8 —X)2+(6+X)2= 102,整理,得2x2—4x = 0,解这个方程,得X1 = 0 (舍去),X2= 2.所以梯子顶端向下滑动2m时,底端向外也滑动2m.说明求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.十一、航海问题例11如图5所示,我海军基地位于A处,在其正南方向200 海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC 的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航•一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(精确到0.1海里)解(1) F位于D的正南方向,贝U DF丄BC•因为AB丄BC, D为AC的中点,所以DF =2 AB = 100海里,所以,小岛D与小岛F相距100海里.(2 )设相遇时补给船航行了x海里,那么DE = x海里,AB+BE= 2x海里,EF= AB+BC -(AB+ BE)—CF= (300 - 2x)海里.在Rt△ DEF中,根据勾股定理可得方程x2= 100 2+(300 - 2x)2,整理,得3x2-1200 x+100000 = 0.lOtK/6 10(K/6解这个方程,得X1 = 200 —孑 ~ 118.4 , X2 = 200+3 (不合题意,舍去)•所以,相遇时补给船大约航行了118.4海里.说明求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程十二、图表信息例12 如图6所示,正方形ABCD的边长为12,划分成12 X12个小正方形格,将边长为n (n 为整数,且2w n< 11 )的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n Xi的纸片正好盖住正方形ABCD左上角的n刈个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n - 1) X n —1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.请你认真观察思考后回答下列问题:(1)由于正方形纸片边长n的取值不同,冼成摆放时所使用正方形纸片的张数也不同,请填写下表:纸片的边长n23456使用的纸片张数(2 )设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S i,未被盖住的面积为S2.①当n = 2时,求S i : S2的值;解(1 )依题意可依次填表为: 11、10、9、8、7.②是否存在使得S i = S2的n值?若存在,请求出来;若不存在,请说明理由(2) S1 = n2+(12 - n)[n2—(n - 1)2] = - n2+25 n - 12.①当n = 2 时,S1 = - 22+25 X2 - 12 = 34 , S2= 12 X12 - 34 = 110.所以S1 : S2 = 34 : 110 = 17 : 55.1②若S1 = S2,则有—n2+25 n —12 =? X122,即n2—25 n +84 = 0 ,解这个方程,得n1 = 4 , n2= 21 (舍去).所以当n = 4时,S1= S2.所以这样的n值是存在的.说明求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.十三、探索在在问题例13 将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于 12cm 2吗?若能,求出两段铁丝的长度; 若不能, 请说明理由解(1)设剪成两段后其中一段为 x cm ,则另一段为(20 — x ) cm.当 x = 16 时,20 — x = 4,当 x = 4时,20 — x = 16 , 答 这段铁丝剪成两段后的长度分别是4cm 和16cm.(2)不能.理由是:不妨设剪成两段后其中一段为 y cm ,则另一段为(20 — y ) cm.则由题意得I 4丿+1 4丿=12,整理,得 y 2— 20 y +104 = 0,移项并配方,得(y — 10) 2 =—4v 0,所以此方程无解,即不能剪成两段使得面积和为12cm 2.说明 本题的第(2 )小问也可以运用求根公式中的 b 2 — 4ac 来判定 若b 2 — 4ac >0,方程有两个实数根,若 b 2— 4ac v 0,方程没有实数根,本题中的b 2 — 4ac =— 16 v 0即无解.十四、平分几何图形的周长与面积问题例14 如图7,在等腰梯形 ABCD 中,AB = DC = 5 , AD = 4 , BC = 10.点E?^下底边BC 上,点F 在腰AB 上.(1 )若EF 平分等腰梯形 ABCD 的周长,设BE 长为X ,试用含x 的代数式表示 △ BEF 的面积; (2) 是否存在线段 EF 将等腰梯形ABCD 的周长和面积同时平分?若存在,求出此时BE 的长;若不存在,请说明理由;(3) 是否存在线段 EF 将等腰梯形ABCD 的周长和面积同时分成1 : 2的两部分?若存在,求此时BE 的长;若不存在,请说明理由则根据题意,得 =17,解得 X i = 16X 2 = 4 ,Be K解(1 )由已知条件得,梯形周长为12,高4,面积为28.过点F作FG丄BC于G,过点A作AK丄BC于K.12 - K则可得,FG= 总,込24所以S A BEF=BEFG=—§ x2+ x (7 < x < 10).2 24(2)存在.由 (1 )得—5 x2+ 5 x = 14,解这个方程,得x i = 7, X2 = 5 (不合题意,舍去),所以存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE= 7.(3)不存在•假设存在,显然有S A BEF : S多边形AFECD = 1 : 2,2 16 28即(BE+BF):(AF+AD + DC) = 1 : 2.则有一5 x2+ 5 x =3 ,整理,得3x2—24x+70 = 0,此时的求根公式中的b2—4ac = 576 —840 V 0,所以不存在这样的实数X.即不存在线段EF将等腰梯形ABCD的周长和面积同时分成1 : 2的两部分.说明求解本题时应注意:一是要能正确确定x的取值范围;二是在求得X2 = 5时,并不属于7 < X W 10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.十五、利用图形探索规律例15 在如图8中,每个正方形有边长为1的小正方形组成:(1 )观察图形,请填写下列表格:正方形边长 13黑色小正方形个数 正方形边长 24黑色小正方形个数(2 )在边长为n (n > 1)的正方形中,设黑色小正方形的个数为个数为P 2,问是否存在偶数.n ,使P 2= 5P i ?若存在,请写出 n 的值;若不存在,请说明 理由.解(1)观察分析图案可知正方形的边长为 1、3、5、7、…、n 时,黑色正方形的个 数为1、5、9、13、2n — 1 (奇数);正方形的边长为2、4、6、8、…、n 时,黑色正方形 的个数为4、& 12、16、2n (偶数)•(2 )由(1 )可知n 为偶数时P 1 = 2 n ,所以P 2= n 2— 2n .根据题意,得n 2 — 2 n = 5 x 2n ,即n 2 —12 n = 0,解得n 1= 12 , n 2 = 0 (不合题意,舍去).所以存在偶数n = 12,使得P 2 =5P 1.n (奇数)n (偶数)P i ,白色小正方形的说明本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解综上所言,列一元二次方程解应用题是列一元一次方程、二元一次方程组解应用题的延续和发展,列方程解应用题就是先把实际问题抽象为方程模型,然后通过解方程获得对实际问题的解决.列一元二次方程解应用题的关键是:找出未知量与已知量之间的联系,从而将实际问题转化为方程模型,要善于将普通语言转化为代数式,在审题时,要特别注意关键词语,如“多少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等等.。
增长率百分比应用题汇总
增长率百分比应用题汇总本文档收集了一些关于增长率百分比的应用题,旨在帮助读者更好地理解和应用增长率百分比的概念。
以下是一些例题及其解答。
例题一:销售增长率计算某公司去年的销售额为100万美元,今年的销售额增长到120万美元。
求该公司今年的销售增长率是多少?解答:首先,我们需要计算销售增长额。
销售增长额等于今年的销售额减去去年的销售额,即120万美元 - 100万美元 = 20万美元。
然后,我们可以计算销售增长率。
销售增长率等于销售增长额除以去年的销售额,再乘以100%。
所以,销售增长率为 (20万美元 / 100万美元) * 100% = 20%。
例题二:人口增长率计算某城市去年的人口为100万人,今年的人口增加到120万人。
求该城市的人口增长率是多少?解答:与销售增长率类似,我们先计算人口增长额。
人口增长额等于今年的人口减去去年的人口,即120万人 - 100万人 = 20万人。
然后,我们可以计算人口增长率。
人口增长率等于人口增长额除以去年的人口,再乘以100%。
所以,人口增长率为 (20万人 /100万人) * 100% = 20%。
例题三:投资增长率计算某投资项目去年的价值为1000万元,今年的价值增长到1200万元。
求该投资项目的增长率是多少?解答:同样地,我们先计算投资增长额。
投资增长额等于今年的价值减去去年的价值,即1200万元 - 1000万元 = 200万元。
然后,我们可以计算投资增长率。
投资增长率等于投资增长额除以去年的价值,再乘以100%。
所以,投资增长率为 (200万元 / 1000万元) * 100% = 20%。
例题四:物价上涨率计算某商品去年的价格为10元,今年的价格上涨到12元。
求该商品的物价上涨率是多少?解答:和前面的例题类似,我们先计算价格增长额。
价格增长额等于今年的价格减去去年的价格,即12元 - 10元 = 2元。
然后,我们可以计算物价上涨率。
物价上涨率等于价格增长额除以去年的价格,再乘以100%。
人教版九年级上册数学实际问题与一元二次方程——增长率问题应用题
人教版九年级上册数学21.3实际问题与一元二次方程——增长率问题应用题1.某水果商场经销一种高档水果,原价每千克128元,连续两次降价后每千克98元,若每次下降的百分率相同.(1)求每次下降的百分率;(2)若该水果每千克盈利20元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克.现该商场要保证销售该水果每天盈利9000元,且要减少库存,那么每千克应涨价多少元?2.某商场于今年年初以每件40元的进价购进一批商品.当商品售价为60元时,一月份销售64件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到100件.设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销,经调查发现,该商品每降价2元,销售量增加20件,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售,商场获利2240元?3.某工厂一月份的产品产量为100 万件,由于工厂管理理念更新,管理水平提高,产量逐月提高,三月份的产量提高到144万件,求一至三月该工厂产量的月平均增长率.4.某商场对某种商品进行销售调整.已知该商品进价为每件30元,售价为每件40元,每天可以销售48件,现进行降价处理.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求这两次中平均每次下降的百分率.(2)经调查,该商品每降价0.5元,平均每天可多销售4件.若要使每天销售该商品获利510元,则每件商品应降价多少元?5.某大型电子商场销售某种空调,每台进货价为2500元,标价为3200元.(1)若电子商场连续两次降价,每次降价的百分率相同,最后以2592元售出,求每次降价的百分率;(2)市场调研表明:当每台售价为3000元时,平均每天能售出10台,当每台售价每降100元时,平均每天就能多售出4台,若商场要想使这种空调的销售利润平均每天达到5400元,且顾客得到优惠,则每台空调的定价应为多少元?6.由于新冠疫情的影响,口罩需求量急剧上升,经过连续两次价格的上调,口罩的价格由每包10元涨到了每包14.4元,(1)求出这两次价格上调的平均增长率;(2)在有关部门调控下,口罩价格还是降到了每包10元,而且调查发现,定价为每包10元时,一天可以卖出30包,每降价1元,可以多卖出5包,当销售额为315元时,且让顾客获得更大的优惠,应该降价多少元?7.某楼盘准备以每平方米4800元的均价对外销售,由于受经济形势的影响后,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米3888元的均价开盘销售.(1)求平均每次下调的百分率;(2)陈先生准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.5折销售;①不打折,一次性送装修费每平方米188元.试问哪种方案更优惠?8.据统计,第一天公益课受益学生2万人次,第三天公益课受益学生2.42万人次.(1)设第二天,第三天公益课受益学生人次的增长率相同,请求出这个增长率;(2)若(1)中的增长率保持不变,预计第四天公益课受益学生将达到多少万人次?9.为了满足师生的阅读需求,某校图书馆的藏书从2019年底到2021年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年平均增长率;(2)该校期望2022年底藏书量达到8.6万册,按照(1)中藏书的年平均增长率,上述目标能实现吗?请通过计算说明.10.两年前,生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元.随着生产技术的进步,现在生产1吨甲种药品的成本是3200元,生产1吨乙种药品的成本是3375元,哪种药品成本的年平均下降率较大?11.随着人们节能意识的增强,节能产品的销售量逐年增加.某地区高效节能灯的年销售量2019年为10万只,预计2021年将达到12.1万只.求该地区2019年到2021年高效节能灯年销售量的平均增长率.12.甲商品的进价为每件20元,商场将其售价从原来的每件40元进行两次调价,已知该商品现价为每件32.4元(1)若该商场两次调价的降价率相同,求平均降价率;(2)经调查,该商品每降价0.2元,即可多销售10件,已知甲商品售价40元时每月可销售500件,若商场希望该商品每月能盈利10000元,且尽可能扩大销售量,求该商品应该如何定价出售?13.2022年北京冬奥会吉祥物“冰墩墩”的销售十分火爆,出现了“一墩难求”的现象.据统计,某特许零售店2021年11月的销量为3万件,2022年1月的销量为3.63万件.(1)求该店“冰墩墩”销量的月平均增长率;(2)假设该店“冰墩墩”销量的月平均增长率保持不变,则2022年2月“冰墩墩”的销量有没有超过4万件?请利用计算说明.14.2022年北京冬奥会吉祥物“冰墩墩”的销售十分火爆,出现了“一墩难求”的现象.据统计,某特许零售店2021年11月的销量为4万件,2022年1月的销量为4.84万件.(1)求该店“冰墩墩”销量的月平均增长率;(2)假设该店“冰墩墩”销量的月平均增长率保持不变,则2022年2月“冰墩墩”的销量有没有超过5万件?请利用计算说明.15.某口罩厂生产的口罩1月份平均日产量为10000个,1月底市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产量,3月份平均日产量达到14400个.求口罩日产量的月平均增长率.16.随着合肥都市圈的成立,合肥市将加大对都市圈内基础设施投人,尽快形成合肥都市圈“1小时通勤圈”和“1小时生活圈”.在都市圈内,计划四年完成对某条重要道路改造工程,2019年投入资金2000万元,2021年投入的资金为2420万元,设这两年问每年投人资金的年平均增长率相同.(1)求出这两年间的年平均增长率.(2)若对该道路投人资金的年平均增长率不变,预计完成这条道路改造工程的总投入.17.“新冠肺炎”疫情初期,一家药店购进A,B两种型号防护口罩共8万个,其中B型口罩数量不超过A 型口罩数量的1.5倍,第一周就销售A型口罩0.4万个,B型口罩0.5万个,第三周的销量占30%.(1)购进A型口罩至少多少万个?(2)从销售记录看,第二周两种口罩销售增长率相同,第三周A型口罩销售增长率不变,B型口罩销售增长率是第二周的2倍.求第二周销售的增长率.18.某玩具店两周前以40元一个的价格购进一批玩偶,原定以50%的利润率定价,但由于销路不好导致商品积压,于是在周末调价时打折促销.通过两次打折调价,每次打折力度相同,现在的售价为每个48.6元.(1)请问该批玩偶每次打几折?(2)若玩偶库存共20个,计划通过两次相同力度打折调价,清空所有库存,并保证两次降价后销售的总利润不少于200元,则第一次降价至少售出多少件玩偶,才可以进行第二次降价?19.书籍是人类宝贵的精神财富.读书则是传承优秀文化的通道.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次.若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不超过450人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.20.为进一步提高某届学生的阅读量,学校积极开展课外阅读活动,目标将该届学生人均阅读量从刚上七年级的80万字增加到八年级结束时的115.2万字.(1)求该届学生人均阅读量这两年中每年的平均增长率;(2)若按这两年中每年的平均增长率增长,学校能否实现九年级结束时该届学生人均阅读量达到140万字的目标,请计算说明.。
应用题(增长率专题)
1.今年,本市的夏季特别炎热,各类饮料的销售量持续上升。
为民超市六月份可乐饮料的销售量为1000箱,7、8两个月份的销售量又累计达2310元。
如果假设7、8月份可乐饮料销售的平均增长率相同,求每个月的增长率。
2.某企业2005年初投资100万元生产适销对路的产品。
2005年低,将获得的利润与年初的投资的和作为2006年初的投资。
到2006年底。
两年共获得利润56万元。
已知2006年的年利率比2005年的年利率多10个百分点(即2006年的年利率是2005年的年利率与10%的和)求2005年和2006年的年利率各是多少?3.小明把1000元压岁钱按一年期存入银行,以期取出200元购买学习用具。
剩下的800元和应得的利息继续按一年期存入银行。
若年利息保持不变,这样到期后可得本金和利息共892.5元。
求这种存款的年利息是多少?4.某家电销售商2006年盈利600万元,虽然2008年底全球出现经济危机,但家电行业受惠于我国政府大力扶持,同时销售商采取了各种促销手段,到2008年销售商盈利726万元,若2006年到2008年,每年盈利的年增长率相同、1、该销售商2006年到2008年,每年盈利的年增长率是多少2、若该公司盈利的年增长率继续保持不变,预计2009年盈利多少万元1.今年,本市的夏季特别炎热,各类饮料的销售量持续上升。
为民超市六月份可乐饮料的销售量为1000箱,7、8两个月份的销售量又累计达2310元。
如果假设7、8月份可乐饮料销售的平均增长率相同,求每个月的增长率。
解:设每个月的增长率为X1000(1+X)+1000(1+X)^2=2310解得X=0.1=10%或X=-3.1(不合题意舍去)答:每个月的增长率为10%2.某企业2005年初投资100万元生产适销对路的产品。
2005年低,将获得的利润与年初的投资的和作为2006年初的投资。
到2006年底。
两年共获得利润56万元。
已知2006年的年利率比2005年的年利率多10个百分点(即2006年的年利率是2005年的年利率与10%的和)求2005年和2006年的年利率各是多少?解:设2005年获利率是x100x+100(1+x)(x+0.1)=56x1=-2.3(舍)x2=0.2 0.2+0.1=0.3答:2005年获利率是20%,2006年获利率是30%3.小明把1000元压岁钱按一年期存入银行,以期取出200元购买学习用具。
中考数学实际问题与一元二次方程的几种题型(传播问题,销售问题和增长率)
一元二次方程应用题(增长率)(1)一、知识回顾:1、列方程解应用题有哪几步?关键是什么?2、某工厂一月份生产零件1000个,二月份生产零件1200个,那么二月份比一月份增产个? 增长率是。
二、例题精讲:例: 某钢铁厂去年1月某种钢的产量为5000吨,3月上升到7200吨,这两个月平均每月增长的百分率是多少?经检验: 答:[总结]:如果某个量原来的值是a,每次增长的百分率是x,则增长1次后的值是a(1+x),增长2次后的值是a(1+x)2,……增长n 次后的值是a(1+x)n ,这就是重要的增长率公式.同样,若原来的量的值是a,每次降低的百分率是x,则n 次降低后的值是a(1-x)n ,这就是降低率公式.三、 巩固练习:1、某农场的粮食产量在两年内从3000吨增加到3630吨,平均每年增产的百分率是多少?2、制造一种产品,原来每件的成本是300元,经过两次降低成本,现在的成本是147元.平均每次降低成本百分之几?检测题1、某商场销售商品的收入款,3月份为25万元,5月份为36万元,该商场这两个月销售商品收入款的平均每月增长率是多少?2、市政府为了解决市民看病难的问题,决定下调药品的价格。
某种药品经过连续两次降价后,由每盒200元下调至128元,求这种药品平均每次降价的百分率。
3、某地区开展“科技下乡”活动三年来,接受科技培训的人员累计达95万人次,其中第一年培训了20万人次。
求每年接受科技培训的人次的平均增长率。
实际问题与一元二次方程(探究案)(传播问题)(2)1、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?(分析:1、设每轮传染中平均一个人传染了x个人,那么患流感的这一个人在第一轮中传染了_______人,第一轮后共有______人患了流感;第二轮传染中,这些人中的每个人又传染了_______人,第二轮后共有_______人患了流感。
解:【合作探究】问题1、某种细菌,一个细菌经过两轮繁殖后,共有256个细菌,每轮繁殖中平均一个细菌繁殖了多少个细菌?【题型练习】2、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支?问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。
一元二次方程应用题--增长率问题
一元二次方程应用题增长率问题:1.某商场3月份的销售额为16万元,5月份的销售额为25万元,该商场这两个月的销售额的平均增长率是________2. 某公司八月份出售电脑200台,十月份售出242台,这两个月平均增长的百分率是多少3.我国土地沙漠化日益严重,西部某市2003年有沙化土地100平方公里,到2005年已增至144平方公里。
请问:2003至2005年沙化土地的平均增长率为多少4 经过两年的连续治理,某城市的大气环境有了明显改善,其每年每平方公里的降尘量从50t下降到,则平均每年下降的百分率是_____5. 某种药品两次降价后,每盒售价从原来元降到元,平均每次降价的百分率是多少6. 哈尔滨市政府为了申办2010年冬奥会,决定改善城市容貌,绿化环境,计划用两年时间,使绿地面积增加44%,这两年绿地平均每年增长百分率是多少7. 某电脑公司2001年的各项经营中,一月份的营业额约为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率。
8.某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到万元,求3月份到5月份的营业额的平均月增长率.数字问题:1、有两个连续整数,它们的平方和为25,求这两个数。
2.两个相邻偶数的积为168,则这两个偶数是多少3.一个两位数,十位数字与个位数字之和为5,把这个数的十位数字与个位数字对调后,所得的新两位数与原两位数乘积为736,求原两位数4.有一个两位数,它的十位上的数字比个位上的数字小2,十位上的数字与个位上的数字之和的 3倍刚好等于这个两位数。
求这个两位数。
5、有一个两位数,它的个位上的数字与十位上的数字之和是6,如果把它的个位数字与十位数字调换位置,所得的两位数乘以原来的两位数所得的积等于1008,求调换位置后得到的两位数。
6.有一个两位数,它十位上的数字与个位上的数字的和是8。
一元二次方程应用题(2)增长率问题
探究二
某工厂一月份的生产零件1000个,以后
每月增长率为x,
二月份的产量是__1_0_0_0(_1_+_x_)__个。 三月份的产量是__1_0_0_0(_1_+_x_)_2__个。 四月份的产量是__1_0_0_0_(_1_+x_)_3__个。
解:设二、三月份平均每月的增长率为x,依题意得
50+50(1+x)+(1+x)2=165.5
整理得:x2+3x-0.31=0
解之得: x1 =0.1=10% x2 =-3.1(不合题意,舍去)
答:二、三月份平均每月的增长率是10% .
活学活用
3. 商店里某种商品在两个月里降价两次,现在
该商品每件的价格比两个月前下降了36%,
问平均每月降价百分之几?
解:设平均每月降价的百分数为x,商品原价为a元, 则现价为a(1-36%)元,依题意得 a(1-x)2=a(1-36%)
整理得:(1-x)2=0.64 解之得: x1 =0.2=20%
x2 =1.8(不合题意,舍去) 答:平均每月降价10% .
小结
增长率问题:a(1±x)2=b 注意:(1)找准各个量
跟踪训练
某企业所得2011年底向银行贷款200万 元用于生产某种新产品,约定2013年 底到期时一次性还本付息,两年总利 息为本金的8%,由于产销对路,两年 到期时,该企业除还清贷款的本金和 利息外,还盈余72万元,若每年的资 金增长率相同,求这个百分率。
跟踪训练
2.某厂一月份的产值为10万元,二、三 月份的总产值为70万元,设平均每月 的增长率为x,可列出方程为( B ) A.10(1-x)2=70 B.10(1+x)+10(1+x)2=70 C.10+10(1+x)+10(1+x)2=70 D.10(1+x)2=70
增长率应用题
两年前生产 1吨甲种药品的成本是5000元,生产1吨 乙种药品的成本是6000元,随着生产技术的进步,现在生 产 1吨甲种药品的成本是3000元,生产1吨乙种药品的成 本是3600元,哪种药品成本的年平均下降率较大?
分析:甲种药品成本的年平均下降额为 (5000-3000)÷2=1000(元)
a(1 x)n b
其中增长取+,降低取-
增长率与方程
1.甲公司前年缴税40万元,今年缴税48.4万元.该公司 缴税的年平均增长率为多少?
解 :设每年平均增长率为x,根据题意,得
40(1 x)2 48.4.
解这个方程 : (1 x) 2 1.21,
(1 x ) 1.1, x 1 1.1, x1 1 1.1 10%; x2 1 1.1 0(不 合 题 意 , 舍 去 ). 答 : 每 年 的 平 均 增 长 率 为10%.
小结
•列一元二次方程解应用题的步骤与 列一元一次方程解应用题的步骤类似,
即审、设、列、解、检、答.
• 这里要特别注意:在列一元二次方 程解应用题时,由于所得的根一 般有两个,所以要检验这两个根 是否符合实际问题的要求.
增长率与方程
2.某公司计划经过两年把某种商品的生产成本降低 19%,那么平均每年需降低百分之几?
解 :设每年平均需降低的百分数为x,根据题意,得
(1 x)2 1 19%.
解这个方程 : (1 x)2 0.81,
(1 x ) 0.9,
x 1 0.9, x1 1 0.9 10%; x2 1 0.9(不 合 题 意 , 舍 去 ). 答 : 每 年 平 均 需 降 低 的 百 分 数 为10% .
5000(1x)2 3000
解方程,得
一元二次方程的应用——-增长率问题
解得:x1=4%,x2=-1.6(不符合题意,故舍去)
答:定期一年的利率是4%.
抽测二: 某科技公司研制成功一种产品,决定向银行贷 款200万元资金用于生产这种产品,贷款的合同 上约定两年到期时,一次性还本付息,利息为本 金的8﹪。该产品投放市场后,由于产销对路, 使公司在两年到期时除还清贷款的本息外,还 盈余72万余。若该公司在生产期间每年比上一 年资金增长的百分数相同,试求这个百分数。
3、某农户种植花生,原来种植的花生亩产量为 200千克,出油率为50%(即每100千克花生可 加工成花生油50千克).现在种植新品种花生后, 每亩收获的花生可加工成花生油132千克,其中 花生出油率的增长率是亩产量增长率的 1/2,求 新品种花生亩产量的增长率。
4、某拖拉机厂今年一月产出甲乙两种型号 的拖拉机一批,其中乙型16台.从二月起,甲 型每月增产10台,乙型每月按相同的增长率 逐月增加,又知二月甲乙两种型号拖拉机的 产量比是3:2,三月甲乙两种型号拖拉机的产 量之和为65台,求乙型拖拉机每月增长率和 甲型拖拉机一月的产量.
能力拓展2
某人购买了1000元债券,定期一年,到期兑换 后他用去了440元,然后把剩下的钱又全部购买了这 种债券,定期仍为一年,到期后他兑现得款624元。 求这种债券的年利率。
解:设定期一年的利率是x,根据题意得:一年时:1000+1000x=1000(1+x)元, 用去440后剩:1000(1+x)-440元,同理两年后是[1000(1+x)-440](1+x)元, 即方程为: [1000(1+x)-440]•(1+x)=624,
当堂演练:
1.某厂今年一月的总产量为500吨,三月的总产量为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程的应用(增长率问题)
________
________姓名班级
一、学习目标
、会列一元二次方程解有关增长率的应用问题;1 、通过探究增长率公式体会数学中的建模思想;2 、通过学习探究提高能力,通过合作互助,共同进步;
3二、学习过程(一)复习旧知,温故知新(导)【知识回顾】、
列一元二次方程解应用题有那几步?1、什么叫增长率? 2个,那么二月份比一月份增12001000个,二月份生产零件如:某工厂一月份生产零件
产多少个?增长率是多少?
【明确目标】
、我们已经用列方程方法解决了数字、面积等问题,今天我们要学习与工农业生产及日常3生活密切有关的增长率问题。
希望同学们……(二)快乐探究,组内互助(学)
【规律探究】 20%,则月份的总产量为、某厂今年1100吨,平均每月比上一月增长1吨;二月份总产量为
吨。
(列式)三月份总产量为
x ,则月份的总产量为500吨,设平均每月增长率是2、某厂今年1
吨;二月份总产量为吨;三月份总产量为的式子)吨;(填含x四月份总产量为
、若把上述问题中的“增长”都改为“降低”结果又会是怎样呢?3,则,平均增长率为x、(1)设基数为a4)一次增长后的值为(二次增长后的值为())n次增长后的值为( x,则设基数为a,平均降低率为(2))一次降低后的值为()二次降低后的值为()次降低后的值为( n则它次后的量是)nb,增长或降低()前的是a,(或降低增长百分率为或降低、若平均增长5()x,们的数量关系怎样表示?【总结公式】
(三)活学实用,举一反三(研)【应用举例】机动车尾气污染是导
致城市空气质量恶化的重要原因。
为解决这一问题,某市实验将现1例。
按计划,该市今后两年内将使全市这有部分汽车改装成液化石油气燃料汽车(简称环保汽车)辆,求这种环保汽车平均每年增长的百分率。
325辆增加到637
种环保汽车由目前的
吨,前年、去年、今年的总产量是吨。
小明家去50 2小明家承包的土地前年的粮食产量是例年、今年平均每年的粮食产量增长率是多少?
【跟踪练习】某商品两次降价后,每盒售价从元降到元,平均每次降价的百分率是多少1.
万吨,第一季度共生产万吨,求二、三月份平均每月的的42.某化肥厂今年一月份化肥产量为增长率是多少?
(四)实战演练,巩固提高(练)【夯实基础】x列方程,720吨,平
均每月增长率是1.某厂今年一月的总产量为500吨,三月的总产量为
( )2223xxxx ))=720 C.500(1+=500 (1+))=720 (1+=720 (1+万元,如果平均每月营业额的增长率相2年的各项经营中,1月份的营业为2.某电脑公司2008 x同设为)月份的营业额为万元,则可列方程为((1)若预计3 )月、月、23月的营业额共万元,则可列方程为((2)若预计1【拓展延伸】年底的)根据图中所提供的信息回答下列问题:2011。
(1某城区绿地面积不断增加(如图所示)2011年,年,20102009比2010年底增加了公顷;在绿地面积为公顷,
年绿地面积增长率最大的一年是,2013年2012)为满足城市发展的需要,计划到2013年底使城区绿地面积达到公顷,试求2(年两年绿地面积的年平均增长率。
2011201020092008.
(五)方法点击,总结升华(评)
记牢公式
找准各个量
准确求解
你的收获是…………
(六)挑战自我,放飞梦想
1.制造一种产品,原来每件的成本是100元,由于连续两次降低成本,现在的成本是81元,则平均每次降低成本
A.8.5% % %
2.某超市一月份的营业额为200万元,一月、二月、三月的营业额共1000万元,
如果平均每月增长率为x,则由题意列方程为( )
3.农场的粮食产量产量在两年内从600吨增加到726吨,平均每年的增长率是多少?
4.亨利商厦九月份的销售额为200万元,十月份的销售额下降了20,商厦从十一月份加强管理
,改善经营,使销售额稳步上升,十二月份达到了万元,求这两个月的平均增长率.
5.某种药品经过两次降价,(每次降价的百分率相同),价格降低了36%,求每次降低的百分率.
增长量%100=增长率×、基础量。