心肌的特性有哪些
心肌细胞的电生理特性5篇
心肌细胞的电生理特性5篇以下是网友分享的关于心肌细胞的电生理特性的资料5篇,希望对您有所帮助,就爱阅读感谢您的支持。
第一篇(一)心肌细胞的电生理特性心肌细胞有自律性、兴奋性、传导性和收缩性,前三者和心律失常关系密切。
1.自律性:部分心肌细胞能有规律地反复自动除极(由极化状态转为除极状态),导致整个心脏的电—机械活动,这种性能称为自律性,具有这种性能的心肌细胞,称为自律细胞。
窦房结、结间束、房室交接处、束支和蒲肯野纤维网均有自律性;腔静脉和肺静脉的入口、冠状窦邻近的心肌以及房间隔和二尖瓣环也具有自律性,而心房肌、房室结的房—结区和结区以及心室肌则无自律性。
2.兴奋性(即应激性):心肌细胞受内部或外来适当强度刺激时,能进行除极和复极,产生动作电位,这种性能称为兴奋性或应激性。
不足以引起动作电位的刺激,称为阈值下刺激,能引起动作电位的最低强度的刺激,称为阈值刺激。
心肌在发生兴奋时,首先产生电变化,并由电变化进而引起心肌的收缩反应。
心肌的兴奋性在心动周期的不同时期有很大变化,根据这一变化可将心动周期分为反应期和不应期,后者又可分为绝对不应期、有效不应期、相对不应期和超常期。
(1)绝对不应期和有效不应期:从除极开始,在一段时间内心肌细胞对任何强度的刺激均不起反应,称为绝对不应期。
有效不应期是刺激不能引起动作电位反应的时期,在时间上略长于绝对不应期。
在有效不应期的后期,刺激可引起局部兴奋,但不能传布,从而影响下一个动作电位,形成隐匿传导。
这一时期相当于QRS波群开始至接近T波顶峰这一段时间。
心肌的不应期可保护心肌不至于因接受过频的刺激而发生频繁收缩。
房室结不应期最长,心室肌次之,心房肌最短。
心肌不应期的长短与其前一个搏动的心动周期长短有关。
心动周期越长,不应期越长,反之,则短。
(2)相对不应期:对弱刺激不起反应,对较强的刺激虽可产生兴奋反应,但这种兴反应较弱而不完全,表现在对兴奋传导速度缓慢和不应期缩短,二者均容易形成单向阻滞和兴奋的折返而发生心律失常。
四 心肌的生理特性
2020/2/17
39
结论:血压降落的幅度与该段血管对血流阻力
大小成正比,微动脉段的血流阻力最大,血压降
低最显著 2020/2/17
40
2020/2/17
41
3. 影响动脉血压的因素
一个 形成 前提
循环系统内的血液充盈
动
脉 血 压
两个 心脏射血 因素 外周阻力
心输 每搏输出量 出量
心率
影响
2020/2/17
36
2020/2/17
37
搏出量的1/3流向外周——动能 搏出量的2/3贮存在大动脉中形成血压——势能
2020/2/17
38
2.动脉血压的正常值
➢收缩压:100~120mmHg ➢舒张压:60~80mmHg ➢脉 压:30~40mmHg ➢平均A压:一个心动周期中每一瞬间动脉
血压的平均值。100mmHg 左右。 平均动脉压=舒张压+1/3脉压
正常:脉率=心率
2020/2/17
45
四、静脉血压和静脉回心血量 (一)静脉血压
1.中心静脉压(central venous pressure, CVP)
——右心房和胸腔内大静脉的血压。 正常值:4~12cmH2O
( 1mmHg=0.133kPa=1.36cmH2O ) CVP取决于心脏射血能力和静脉回心血量的关系。
C.动作电位3期的长短
D.阈电位水平的高低
E.钠-钾泵功能
2. 轻度高血钾引起心肌兴奋性升高的原因是:A
A.静息电位绝对值减小,距阈电位水平的差距缩小
B.静息电位绝对值增大,距阈电位水平的差距增大
C.阈电位水平下移
D.细胞膜对钾的通透性减小
E.细胞膜对钠的通透性增大
心肌生理特性-自律性和兴奋性
第二节心脏的电生理学及生理特性Part 2 心肌生理特性----自律性和兴奋性掌握内容自律性、正常起搏点、潜在起搏点、异位起搏点概念,不同部位自律细胞的自律性的差异。
影响自律性高低的因素(4期自动去极速度、最大舒张电位与阈电位之差、血钾、神经递质)及影响机制。
影响心肌兴奋性的因素及机制。
心肌兴奋性的周期性变化及变化机制。
心室肌细胞兴奋性变化对心肌收缩的影响。
解释早搏后为什么常有较长的舒张期。
熟悉内容窦房结控制整个心脏节律的机制。
为什么窦房结停搏后常需要较长时间才出现逸搏心律。
了解内容快钠通道与L-型钙通道功能活动的异同。
(一)选择题(一)A型题【A1型题】单项选择题,每题有A、B、C、D、E五个备选答案,请从中选出一个最佳答案。
1. 窦房结能成为心脏正常起搏点的原因是A. 静息电位仅为-70mVB. 阈电位为-40mVC. 0期去极化速度快D. 动作电位没有明显的平台期E. 4期膜电位去极速率快2. 衡量组织兴奋性高低的指标是A. 肌肉收缩强弱B. 腺体分泌多少C. 刺激阈大小D. 动作电位幅度E. 阈电位水平3. 窦房结是心跳起搏点的原因是A. 静息电位低B. 动作电位无平台期C. 0期去极化速度快D. 传导速度最快E. 4期自动去极化速度最快4. 心室肌的有效不应期较长,一直持续到A. 收缩期开始B. 收缩期中间C. 舒张期早期D. 舒张中后期E. 舒张期结束5. 当血钾逐步升高时,心肌的兴奋性A. 逐步升高B. 逐步降低C. 先升高后降低D. 先降低后升高E. 不变6.下列哪项不引起heart rate增快( )A.epinephrine B.thyroid hormoneC.M受体阻断剂阿托品D.β受体阻断剂普萘洛尔E.体温升高7.下列哪项不影响心肌细胞的auto-rhythmicity ( )A.maximal repolarization potentialB.threshold potentialC.effective refractory periodD.4期自动去极速度E.以上都不是8.在特殊传导系统中auto-rhythmicity最高的部位在( )A.窦房结B.心房肌C.房室交界区D.浦肯野氏细胞E.房室束9.Norepinephrine使浦肯野细胞auto-rhythmicity增高是通过( ) A.maximal repolarization potential降低B.threshold potential水平下移C.If电流增强D.膜对K+通透性降低E.Ica-T电流增大10.Acetylcholine使窦房结细胞auto-rhythmicity降低是通过( ) A.maximal repolarization potential减小B.threshold potential水平上移C.If电流降低D.膜对K+通透性增大E.Ica-T电流增大11.心室肌absolute refractory period的产生是由于( )A.Na+通道处于激活状态B.Na+通道处于备用状态C.Ca2+通道处于激活状态D.Ca2+通道处于备用状态E.以上都不是12.心室肌细胞是否具有excitability的前提是Na+通道是否处于( ) A.启动状态 B.备用状态 C.激活状态D.失活状态E.以上都不是13. 窦房结能成为心脏pacemaker的原因是( )A.resting potential仅为-70mVB.threshold potential为-40mVC.0期去极速度快D.action potential没有明显的plateauE.4期自动去极速度快(三)X型题多项选择题,每题有A、B、C、D四个备选答案,请从中选出2~4个正确答案。
心肌细胞电生理特性
(五)影响自律性的电生理因素和生理与病理病因 从电生理角度来讲,影响自律性的因素有4相除极速度、舒张期电位水平
2、心房 心房内传导系统激动发放的频率50—60bpm, 成为心脏第二起搏点,房内起搏点自律性丧失或降低,出现 房性停搏或过缓的房性逸搏心律;自律性强度轻度增高,出 现加速的房性逸搏心律;中度增高,出现房性早搏和房性心 动过速;重度增高,出现心房扑动;极度增高,发生心房颤 动。
3、交界区 房室交界区激动发放的频率为40— 60bpm,为心脏第三级起搏点,交界区起搏点丧失, 出现交界性停搏;自律性强度降低,出现过缓的交 界性逸搏心律;自律性强度增高,出现交界性心动 过速。
2、超速抑制(overdrive suppression)窦房结发 出的高频率的激动对下属潜在起搏点有一种直接的 抑制作用,称为超速抑制。这种抑制作用以频率为 依据。频率差别愈大,对低位起搏点抑制的程度愈 严重。例如,窦房结自律性降低以后,往往出现的 是交界性逸搏心律,而不是室性逸搏心律。反过来, 异位起搏点自律性强度增高以后所形成的快速心律 失常,对窦房结也有直接的抑制作用,异位快速心 律失常的频率愈快,对窦房结的抑制作用愈明显。 如房性心动过速终止以后的代偿间歇比房性早搏长, 而心房颤动终止后的代偿间歇又比房性心动过速的 代偿间歇长(图9—3)。
(2)药物反应的差别:常用抗心律失常药物主要影响心肌细胞膜的Na+、 K+孔道,对快反应自律性有明显的抑制作用,而对慢反应自律性作用很 小。例如奎尼丁、苯妥英钠、利多卡因等在治疗量,对普肯野细胞的自律 性有明显的抑制作用,而对窦房结自律性和浦肯野细胞在病理情况下的自 律性(由快反应自律性转变为慢反应自律性)则几乎无影响。说明常用的 抗心律失常药物治疗自律性异常引起的心律失常的效果并不一致的部分机 制。因此,目前发展的治疗内容,开展了针对抑制慢反应自律性的药物的 应用。
《心肌的生理特性》演示PPT
时间短 时间长
-60
↓↓
自律性高 自律性低
0.1 0.2 0.3 0.4 0.5 0.6 0.7
时间(s)
10
⑵4期自动除极的速度
若自动除极速度
从最大舒张电位到达阈 电位所需的时间缩短
单位时间内自动兴奋发 生的次数
自律性
儿茶酚胺可加速窦房结细
反之,4期自动除极速度 胞4期自动去极化速度,
缓慢,则使自律降低。 提高自律性,使心率 。
‖
‖
‖
‖
兴奋性正常 兴奋性=0
兴奋性低 兴奋性高
20
心肌兴奋时兴奋性变化的主要特点是有效不 应期特别长(平均250ms),相当于心肌整个收缩期 和舒张早期。
它 是 骨 骼 肌 与 神 经 纤 维 有 效 不 应 期 的 100 倍 和 200倍。
这一特性是保证心肌能收缩和舒张交替进行,不 出现强直收缩的生理学基础。
大部复活 Na+通道基本 恢复到备用状态
不能产生 仅能产生 局部电位 阈上刺激
阈下刺激
14
1 兴 奋 性 的 周 期 性 变 化
15
2、影响兴奋性的因素
(1)静息电位或最大复极电位的水平 (2)阈电位的水平 (3)引起0期去极化的离子通道性状
16
⑴静息电位或最大复极电位的水平
17
⑵阈电位的水平
4
2.窦房结对潜在起搏点的控制
①抢பைடு நூலகம்占领 也称夺获。 在潜在起搏点4期自动去极化尚未达到阈电位水平之前,已 被自律性最高的窦房结传来的兴奋抢先激动,使之产生与窦 房结节律相一致的动作电位,从而使潜在起搏点自身的节律 兴奋不能出现。
②超驱动阻抑 窦房结的快速节律活动,对潜在起搏点较低 频率的兴奋有直接抑制作用,称为超驱动阻抑。当窦房结停 止发放冲动或下传受阻后,则首先由自律性相对较高、受超 驱动阻抑较轻的房室交界来替代,而不是由自律性更低的心 室传导组织来替代。人工起搏器。
心肌的生理特性PPT课件
(二)心的泵血过程
心室泵血过程中的四个要素:心室内
压变化、瓣膜的开启、心室内容积变化、血液
方向。
等容收缩期
心动周期
心室收缩期 心室舒张期
快速射血期 减慢射血期 等容舒张期 快速充盈期
减慢充盈期
(心房收缩期)
思考:在心脏泵血的过程中,心室的压 力、容积、瓣膜、血液的方向有何变化?各时 期的特点是什么?
一、各类血管的功能特点 弹性贮器血管、分配血管、毛细血管前阻
力血管、毛细血管前括约肌、交换血管、容量 血管、短路血管。 二、血液量、血液阻力和血压
1. 血压 指血管内流动的血液对单 位面积血管壁的侧压力。
2. 血液量 指单位时间内血液渡过 某一截面积的血量。
3. 血液阻力 指血液流动时,血液 与血管壁之间的摩擦阻力以及血液内血液量。
(二)心肌的兴奋性
1. 决定和影响兴奋性的因素:静息电 位与阈电位之间的距离,Na+通道的开放状态。
2. 一次兴奋过程中兴奋性的周期变化
有效不应期:由0期开始到3期复极达到- 60 mV 的时期。
相对不应期:从-60 mV 复极到-80 mV 的时期。
超常期:膜电位从-80 mV 复极到-90 mV 时期。
2.心率及其对心输出量的调节 在一定范围内心率增加,心输出量也会增加。
四、体表心电图
(一)心电图:心脏的兴奋引起体表各部 位在心动周期中也发生有规律的电变化,将这 种电的变化测量并在体表记录出来的心脏电变 化曲线,即体表心电图。
(二)心电图的各波及意义
P波:反映左、右两心 房的去极化过程。 QRS波群:代表左、右 两心室去极化过程的电
(三)传导性 传导的结构基础:闰盘和心脏的传导
系统。 兴奋传导的顺序:窦房结→左右心房肌 →房室交界区→房室束及左右束枝→浦肯野纤 维→左右心室肌。
浅谈心肌细胞的生理特性和大学生的学习特性
浅谈心肌细胞的生理特性和大学生的学习特性心肌细胞是构成心脏肌肉的细胞,负责心脏的收缩和舒张,是维持人体正常生理功能的重要组成部分。
而大学生是社会中受教育程度较高、年龄在18-22岁之间的群体,他们的学习特性也是独特的。
本文将浅谈心肌细胞的生理特性和大学生的学习特性,从细胞到人的角度探讨这两个话题。
让我们来了解一下心肌细胞的生理特性。
心肌细胞是一种具有收缩功能的特殊细胞,其主要功能是完成心脏的搏动。
心肌细胞的独特之处在于它具有自律性和传导性。
自律性指的是心肌细胞具有产生和传导冲动的能力,即使在没有外界刺激的情况下,心肌细胞也能自发地产生冲动,促使心脏肌肉收缩。
传导性则是指心肌细胞之间能够通过突触传递冲动,使心脏肌肉协调收缩。
这些特性使得心肌细胞成为身体中功能最为重要的细胞之一。
而大学生的学习特性也是多方面的。
大学生的学习能力和接受新知识的能力是较强的,他们具有较高的认知能力和思维能力,能够更好地理解和掌握学习内容。
大学生处于青春期到成年期的过渡阶段,他们的学习兴趣强烈,希望通过学习获得知识和技能,从而为将来的发展奠定基础。
大学生有相对自由的学习环境和学习时间,他们可以更加自主地选择学习内容和学习方式,培养自己的学习兴趣和学习方法。
从生理特性来看,心肌细胞的自律性和传导性使得心脏肌肉能够自主地完成收缩和舒张,保证了人体血液的流动和营养的供给。
而学习特性上,大学生具有较强的认知能力和学习兴趣,能够更好地吸收学习内容,为自己的成长和发展打下基础。
心肌细胞和大学生在生理特性和学习特性上也存在着一些相似之处。
心肌细胞作为心脏肌肉的组成部分,需要不断地接受营养和氧气,保持正常的代谢和功能。
而大学生作为学习者,也需要通过不断地学习和思考,不断地吸收新知识和经验,保持自己的认知和思维能力。
心肌细胞和大学生在自主性上也有一些相似之处。
心肌细胞具有自主地产生冲动和传导冲动的能力,能够独立地完成心脏的搏动。
而大学生也具有较高的自主性和独立性,能够自主选择学习内容和学习方式,独立完成学习任务。
4-3心脏生理特性
为什么在静脉窦和心房之间结扎后,心室停止跳 动? 过几分钟之后,为什么心室又开始跳动?为什么 心室跳动比静脉窦慢得多? 在心室和房室结处结扎后,为什么心室又停止跳 动?
心脏的起搏点
• 正常起搏点:窦房结
• 窦性心律:由窦房结起搏而形成的心搏节律 • 潜在起搏点:窦房结以外的起搏点,作为备用 • 异位心律:在病理情况下,潜在起搏点成为异 位起搏点,由异位起搏点引起的心脏活动,成 为异位心律
窦房结控制潜在起搏点的方式 : 1、抢先占领(抢先达到阈电位产生AP ) 窦房结兴奋驱动→潜在起搏点的兴奋不易出现。
2、超速驱动压抑 A、长期超速驱动→潜在起搏点自身活动被压抑 B、窦房结驱动中断→潜在起搏点恢复本身节律
1. 影响兴奋性的因素
心肌细胞的兴奋包括两个过程:
-70
◆即从静息电位去极化达到阈电位, -90 ◆激活Na+通道或Ca2+通道从而产生产生动作电位 凡能影响这两个过程的因素,都可影响心肌的兴奋性。
(1)静息电位(最大复极电位)与阈电位之间的差值
思考:差值越大,心肌兴奋性?
差值↑ →需刺激阈值↑→兴奋性↓ 例:血钾浓度对心肌兴奋性的影响。 (血钾浓度轻度升高 、血钾浓度明显升高)
×
静息状态 (关) 激活状态 (开) 失活状态 (关)
复活
钠通道状态的变化
迅速
激活
去极化达 阈电位
失活
复活
关闭 (静息)
2.心肌兴奋时兴奋性的周期变化 骨骼肌兴奋时兴奋性的周期变化
心室肌兴奋性的周期性变化
周期变化 对应位置 机 制 兴奋性 新AP产生能力 不能产生 0
有效不应期 0期→复极-60mV ①绝对不应期:↓ Na+通道处于 -55mV 完全失活状态 ②局部反应期:↓ -60mV 相对不应期 ↓ -80mV 超 常 期 ↓ -90mV Na+通道少量复活 Na+通道部分复活
心肌细胞的生理特性
心肌细胞的生理特性以“心肌细胞的生理特性”为标题,写一篇3000字的中文文章心肌细胞是人体心肌的基础单位,是心功能的基本组成部分。
心肌细胞的生理特性至关重要,它控制着心功能的健康发展。
因此,了解心肌细胞的生理特性对研究心脏病有着重要意义。
本文就心肌细胞的生理特性做一综述,希望能够更加深入地了解心肌细胞的生理特性,从而为心脏病的预防治疗提供有力的科学依据。
首先,心肌细胞的特点主要可以分为形态特征、功能特征和免疫特征三个方面。
心肌细胞的形态特征是指细胞的外观形状。
心肌细胞的外观是由质膜、细胞质和细胞核组成的。
心肌细胞的质膜是一层半透明的环状结构,具有吸收营养和调节细胞环境的功能。
细胞质是心肌细胞内含有许多酶、激素、结构蛋白等细胞内质,负责细胞的活动和营养等功能。
心肌细胞的细胞核是由核膜和核基质组成,负责酶的合成和遗传物质的保存。
其次,心肌细胞的功能主要有机械功能和电生理功能。
心肌细胞的机械功能是指细胞在受到激励刺激时会产生特定的变化,使心脏跳动一次,然后细胞恢复原状,又可以再次受到激励刺激而变化,使心脏再次跳动。
心肌细胞的电生理功能是指细胞受到激励刺激后可以产生特征的电位变化,如心房肌的舒张电位和心室肌的收缩电位。
第三,心肌细胞的免疫特征是指细胞的抗病毒能力和抗炎能力。
心肌细胞具有抗炎能力,可以对抗心肌炎病毒的传播,从而预防心脏病的发生。
同时,心肌细胞还具有抗病毒能力,能够减少病毒的传播,减少心脏病患者的病情恶化。
总之,心肌细胞的生理特性是控制心功能发展的关键。
它有形态特征、功能特征和免疫特征。
心肌细胞的形态特征是指细胞的外观形状,它具有吸收营养和调节细胞环境的功能;心肌细胞的功能特征是指细胞受到激励刺激后会产生特定的变化,使心脏跳动一次;心肌细胞的免疫特征是指细胞的抗病毒能力和抗炎能力,它可以抵抗心肌炎病毒的传播,减少病毒的传播。
因此,了解心肌细胞的生理特性对研究心脏病有着重要意义,可以为心脏病的预防和治疗提供有力的科学依据。
第四讲 心肌的生理特性
第四讲心肌的生理特性二、心肌细胞的电生理特性——兴奋性、自律性、传导性和收缩性(一)兴奋性:●心肌细胞属于可兴奋组织,在受到适当刺激时可产生动作电位的能力,以阈值作指标。
●阈值高表示兴奋性低,阈值低表示兴奋性高。
1、兴奋性的周期性变化(1)有效不应期(effective refractory period,ERP)●心肌细胞一次兴奋过程中,由0期开始到3期膜电位恢复到-60mV这段时期,心肌不能产生新的动作电位。
●包括绝对不应期和局部反应期。
●绝对不应期(ARP):0期∽-55mV,兴奋性为0,膜电位负值太低,Na+通道完全失活。
●局部反应期:-55mV∽-60mV,Na+通道少量复活,引起局部去极化,不产生动作电位。
(2)相对不应期(Relative refractory period)●-60mV∽-80mV,Na+通道已逐渐复活,但开放能力尚未恢复正常,兴奋性低于正常,只有阈上刺激才能引起动作电位。
(3)超常期(Supernormal period)●-80mV∽-90mV,膜电位已基本恢复,更接近阈电位水平,Na+通道恢复到备用状态,兴奋性高于正常,阈下刺激能引起新的动作电位。
●心肌兴奋时,兴奋性周期性变化特点是有效不应期长,相当于整个收缩期和舒张早期。
这一特性是的心肌收缩和舒张活动能交替有序,在心缩期不会接受外来的兴奋而发生强直收缩。
2、决定兴奋性的因素①静息电位或最大复极电位水平:负值↑→兴奋性↓;负值↓→兴奋性↑②阈电位水平:水平↑→兴奋性↓;水平↓→兴奋性↑③引起0期去极化的离子通道性状:Na+通道和L型钙通道状态是否处于备用状态。
●Na+通道和L型钙通道活动是电压依从性和时间依从性的。
●有激活、失活和备用三种状态。
●Na+通道:-90mV -70mV -55mV(复极)-90mV激活失活复活备用●慢反应细胞的兴奋性决定于L型钙通道的功能状态,但L型钙通道的激活、失活和复活速度均较慢,其有效不应期也很长,可持续到完全复极之后。
心肌细胞的生理特性
心肌细胞的生理特性
心肌细胞是人体内心脏主要组成部分,由于其重要的器官功能,心肌细胞的生理特性受到广泛关注。
心肌细胞是以三维形式出现的结构敏感细胞,其密度、尺寸、形状、结构和生理活动都受到环境因素的影响,在长期运动后会发生各种细微调整。
心肌细胞的结构由多种组分组成,其细胞质构成了细胞核、细胞质量比较大的质膜、细胞质内质网等;而细胞质也有自己的特殊功能,它是发挥心肌细胞功能的重要组成部分。
心肌细胞的特殊细胞器是肌纤维和肌细胞膜,它们都具备电性,是心肌细胞重要的功能结构。
心肌细胞在发放心脏能量的过程中具有复杂而完整的功能,它可以把电能转化为化学能而促进心肌收缩,这是心脏的基本功能。
心肌细胞收缩和放松,这是心肌细胞的特殊特性。
心肌细胞的电容当心脏的收缩和舒张时,它的容量会发生变化,电容越大则收缩力越强,而这种能量转化又可以从电能转成化学能,从而推动心肌收缩的过程。
此外,心肌细胞还具有保护机制。
当心脏受到刺激时,心肌细胞会通过调节线粒体功能以及活化蛋白激酶来调节心律,以降低心肌细胞损伤和抗击炎活动,及早发现和修复受损的细胞,这是心肌细胞的生理特性之一。
心肌细胞具有质膜钙信号调控机制,也就是当心肌细胞收缩时,会排出大量的钙离子,而这种钙离子会引起肌纤维内钙离子浓度的变化,从而使肌纤维张力变化并控制心肌收缩。
此外,心肌细胞还可以识别外界信号,如氧气浓度变化,由此产生的钙离子浓度变化会调节
心脏收缩的强度以及时间。
总之,心肌细胞是心脏系统重要的组成部分,它的结构及其特殊功能都与心脏的运作息息相关,而心肌细胞本身也有一系列的保护机制,以调节心脏的收缩、舒张及能量转换,以保证心跳正常运行。
心肌细胞的生理特性
心肌细胞的生理特性心肌细胞是心脏工作的基本单位,在心跳和血液循环中起着至关重要的作用。
心肌细胞具有独特的生理特性,其中一些特征受到精神因素和其他内部和外部因素的影响。
本文旨在描述心肌细胞的生理特性,以及其如何受到影响。
心肌细胞的结构是单细胞的构造,其内部结构有细胞核、质膜、细胞质和线粒体等。
细胞质内有很多蛋白质,其中最重要的是受体蛋白质,它们可以使心脏受到的信号传递到心脏内部,从而产生心肌收缩,促使血液循环。
心肌细胞具有固定的形状,即侧壁加厚和表面凹陷等特点。
此外,心肌细胞还具有催化、代谢和接受信号传导等功能,这些过程在心肌收缩时非常重要。
心肌细胞的生理特性是受到精神因素和其他内部和外部因素的影响的。
其中一个主要因素是精神因素,即心理因素和情绪因素,它们可以影响心脏的功能,增加心肌细胞的活动幅度,从而增加心跳的频率或减少心跳的频率。
另外,其他内部因素如荷尔蒙、体温、血管阻力等也会影响心肌细胞的生理特性。
此外,外部因素如营养状况、心脏供血、体力活动、以及利用药物治疗等也会对心肌细胞的生理特性产生影响。
因此,心肌细胞的生理特性在心脏的正常功能中起着至关重要的作用,受到精神因素和其他内部和外部因素的影响。
心脏是人体最重要的器官之一,保护心脏的健康非常重要,为了对心脏功能的维护,保持心理和生活节奏的健康,平衡营养,进行有节制的运动,调节体温和血压,避免吸烟和饮酒等心脏病危险因素是必不可少的。
总之,心肌细胞的生理特性在心脏功能中占有重要地位,受精神因素以及其他内部和外部因素的影响,必须对心脏功能维护有正确的认识,注重心理和生活节奏的平衡,合理调节体温和血压,避免吸烟和饮酒,进行有节制的运动,增强身体的抵抗力,以避免心脏病的发生。
只有正确的认识和行为方式,才能保护心脏健康,保持心肌细胞的正常功能,为心脏提供最佳的保护。
心肌的四种生理特性
心肌的四种生理特性
1、自律性:
心肌的自律性是指心肌在不受外来刺激的情况下会产生兴奋和收缩的特症,是因为心脏窦房结的自律细胞而产生的这一生理特征。
2、传导性:
心肌具有传导兴奋的生理特征,传导系统与心肌细胞都具有传导性,其中房室间的心肌细胞互不相连,是依靠传导系统传递。
3、兴奋性:
心肌具有兴奋性的生理特征,心肌细胞会对外界的刺激产生反应的能力,从而引起心肌的兴奋。
4、收缩性:
心肌具有收缩性的生理特征,对细胞外液的钙离子浓度有明显的依赖性,终池不发达依靠细胞外液的钙离子,全或无的同步收缩。
当心肌的解剖结构或者生理特征发生变化时,会引起相应的症状,引发人体的严重不适,应及时的去医院进行检查,明确病因,对症治疗。
心肌的生理特性
心肌的生理特性
心肌的生理特性:
1. 肌细胞内质受到特殊的可塑性。
心肌细胞本身具有弹性,其内质的变化可以使它们更容易或更难收缩,从而影响心脏的节律。
2. 心肌细胞具有单向性。
即一旦被收缩,就不会再恢复原来的状态。
这也是为什么心脏节律不断变化的原因。
3. 心肌细胞具有自发性。
它们可以自发地收缩,但必须通过神经系统信号才能收缩。
4. 心肌细胞具有超微结构。
它们由一系列细胞组织和器官组成,并具有独特的超微结构,如肌动蛋白、肌小球等。
5. 心肌细胞需要氧气和营养素的供应。
心肌细胞需要氧气和营养素的供应,以维持正常的功能,并能够抗病毒感染。
描述心肌生理特性与心脏功能的关系
描述心肌生理特性与心脏功能的关系1.心肌的生理特性心肌组织具有兴奋性、自律性、传导性和收缩性四种生理特性。
心肌的收缩性是指心肌能够在肌膜动作电位的触发下产生收缩反应的特性,它是以收缩蛋白质之间的生物化学和生物物理反应为基础的,是心肌的一种机械特性。
兴奋性、自律性和传导性,则是以肌膜的生物电活动为基础的,故又称为电生理特性。
心肌组织的这些生理特性共同决定着心脏的活动。
(1)兴奋性所有心肌细胞都具有兴奋性,即具有在受到刺激时产生兴奋的能力。
心肌的兴奋性是可变的,在一次兴奋过程中,细胞的兴奋性也相应发生一次周期性的变化。
兴奋周期各个阶段的特点:A.有效不应期细胞发生一次兴奋后,在一段时间内,无论给予多强的刺激,都不会产生动作电位。
B.相对不应期心肌细胞一次兴奋后,在有效不应期后,有一段时间,用阈上刺激可以引起动作电位。
C.超常期相对不应期后,有一段时间,用小于阈强度的刺激就能引起心肌细胞产生动作电位。
心肌兴奋性的特点是有效不应期长,相当于整个收缩期和舒张期早期。
(2)自律性组织、细胞能够在没有外来刺激的条件下,自动地发生节律性兴奋的特性,称为自动节律性,简称自律性。
心肌的自动节律性和各自律级组织的相互关系很早以前就有人观察到,在适宜条件下,两栖类和哺乳类动物的离体心脏,在未受到任何刺激的情况下,可以长时间地、自动地、有节奏地进行兴奋和收缩。
不是所有心肌细胞,而只是心脏特殊传导组织内某些自律细胞才具有自动节律性。
特殊传导系统各个部位(结区除外)的自律性有等级差别;其中窦房结细胞自律性最高,自动兴奋频率约为每分钟100次,末梢浦肯野纤维网自律性最低(约每分钟25次),而房室交界(约每分钟50次)和房室束支的自律性依次介于两者之间。
由于窦房结自律性最高,它产生的节律性按一定次序传播,引起其他部位的自律组织和心房、心室肌细胞兴奋,产生与窦房结一致的节律性活动,因此,窦房结是心脏的正常起搏点。
其他自律组织的自律性并不明显,只起传导兴奋的作用,故称为潜在起搏点。
心肌生理特性包括.
心肌生理特性包括:自律性、兴奋性、传导性和收缩性。
一、心肌的生物电现象(跨膜电位)心肌细胞可分为两类:一类是普通心肌,即构成心房壁和心室壁的心肌细胞,故又称为工作细胞。
另一类是特化心肌,组成心内特殊传导系统,故又称为自律细胞。
图1 各部分心肌细胞的跨膜电位(一)、工作心肌的跨膜电位:以心室肌为例说明之。
图2 心室肌细胞的跨膜电位及形成机制心肌细胞的跨膜电位包括静息电位和动作电位。
其产生的前提条件是跨膜离子浓度差和细胞膜的选择通透性。
(1)、静息电位:心室肌细胞的静息电位约—90mV,其形成机制与神经纤维、骨骼肌细胞相似。
细胞内K+浓度高于细胞外;安静状态下心肌细胞膜对K+有较大的通透性。
因此,K顺浓度差由膜内向膜外扩散,达到K的电一化学平衡电位。
(2)、动作电位:心室肌细胞的动作电位分为0、1、2、3、4五个时期1、去极化:又称为0期。
在适宜刺激作用下,心肌发生兴奋时,膜内电位由原来的一90 mV上升到+30 mV左右,形成动作电位的上升支。
0期历时1~2 ms。
其产生机制:刺激使膜去极化达到阈电位(一70mV)时,大量Na+通道开放,Na 快速内流,使膜内电位急剧上升,达到Na的电一化学平衡电位。
2、复极化:包括l期、2期、3期、4期。
1期:膜内电位由原来的+30 mV迅速下降到O mV左右,此期历时1 O ms 此期形成的原因主要是K+外流。
2期: 1期结束膜内电位达O mV左右后,膜电位基本停滞在此水平达1 00~1 50 ms。
记录的动作电位曲线呈平台状,故此期称为平台期。
2期的形成主要是由Ca 内流与K外流同时存在,二者对膜电位的影响相互抵消。
3期:膜内电位由0MV 左右下降到-90 ,3期是Ca内流停止,K外流逐渐增强所致。
4期:此期膜电位稳定于静息电位,所以也称静息期。
4期跨膜离子流较活跃,主要通过离子泵的活动,以恢复兴奋前细胞内外离子分布状态,保证心肌细胞的兴奋性。
2++2++++++(二)、自律细胞的跨膜电位及其产生机制:以窦房结细胞为例说明之。
心肌细胞具有的生理特性
心肌细胞具有的生理特性
心肌细胞是心脏的主要成分,它们代表着心脏的生命力,我们可以从它们的生理学特性来看它们有着多少能量。
心肌细胞是有一定形状的,它们一般是有小叶、狭长,彼此间有小缝隙,构成了多孔性结构。
心肌细胞有两个特殊的特征,一是具有自发性节律性肌动,断缆实验证明心肌细胞具有自发性的肌动;二是受神经调控,断缆实验证明,心脏可以受到神经调控。
心肌细胞具有很强的营养保护作用,它可以有效补充氧气;同时,还可以保护肌肉免受损伤,从而减少肌肉细胞的修复时间,使肌肉恢复时间更短更有效。
另外,心肌细胞具有多孔性结构,可以吸收营养,抗逆转行突变,减少病原体破坏组织的可能性;并且,可以维持正常的血液循环,维持正常的血液流速。
心肌细胞还具有高度的物质稳定性,可以自发地吸收和运输物质,有效地控制细胞内物质的比例和浓度,保持最佳的生理功能。
此外,心肌细胞还具有非常强大的再生潜力,可以在短时间内发育出大量新的心肌细胞,以填补组织损伤所留下的鸿沟。
总之,心肌细胞是心脏功能不可缺少的组成部分,左心室及其细胞特殊性,其内部结构行为特点决定了其细胞特殊性,使之具备如此奇特的生理特性。
心脏的功能完全取决于各种不同的细胞的正常运作,因此,为了保护心脏健康,维持心脏生理机能,科学地保护和关爱心肌细胞将会有助于延缓心脏病的发病和恶化,从而提高人们得到更好的健康状况。