渗流的基本定律(达西定律) 38页PPT文档
渗流的基本定律达西定律
因此,无论是固体骨架,还是空隙空间,微观上讲都不是连续函数
普通水流与渗流
共同点: 1.总体流向取决于水头差 2.流量取决于水头差及沿程损耗 区别:水在管道中运动取决于 管道大小、形状及粗糙度;渗流运动取决于空隙大小、形状、 连通性。
是否适用:非均匀介质,二维或三维流动, 非稳定流,层流条件?
三、变水头达西实验 非稳定流达西实验(实验一): 水自上部加入,用溢水管保持稳定水位,下部用管口出流,可 通过它测定渗流量,用两根测压管来测量水头值。 达西定理:
实验结果: 在非稳定流条件下,地下水运动仍满足 线性渗流定律
达西定律适用条件 1.临界雷诺数Re(J. Bear):
影响渗透系数大小的因素
K= f(孔隙大小、多少、液体性质) 岩层空隙性质(孔隙大小、多少) 由流体的物理性质决定,与γ成正比,与μ成 反比.流体的物理性质与所处的温度、压力有关。
渗透率
渗透系数的表达式
多孔介质(概化为等径的平行毛细管束):
六、渗流分类 1.按运动要素(v,p,H)是否随时间变化,分:稳定流与非稳定流 2.按地下水质点运动状态的混杂程度,分:
什么是典型体元呢?现以孔隙度为例来讨论。
型体元的定义
把V0称为典型体元。 引进REV后就可以把多孔介质处理为连续
体,这样多孔介质就处处有孔隙度了。 REV究竟有多大? REV相对于单个孔隙是相当大的,但相对
于渗流场又是非常小的。
概化后的理想渗流
二、地下水实际流速、渗透流速
渗透流速——假想渗流的速度,是假想的平均流速。实际
L——渗透途径(上下游过水断面的距 离) ;
渗流的基本定律(达西定律)
多孔介质概念与特性
我们把孔隙岩层称为多孔介质(porous media). •多孔介质特性:
彼此连通的网络,几何形态及连通情况异常复杂, 难以用精确的方法来描述。 由固体骨架和孔隙组成,孔隙通道是不连续的。
L——渗透途径(上下游过水断面的距 离) ;
I ——水力梯度(相当于h / L,即水头 差除以渗透途径) ;
K——渗透系数。 此即达西公式。
二、达西实验条件
稳定达西实验:得出渗透流速与水力坡度成 正比即线性渗流定律,说明此时地下水的流 动状态呈层流。
实验条件:均匀介质,一维流动,稳定流, 层流。
三个方向均存在分流速
z x
y
图1-2-8a 一维流
岩层按渗透性分类
6. 按岩层渗透性随空间和方向变化特点,分 均质各向同性、均质各向异性、 非均质各向同性、非均质各向异性 几个概念: 各向同性、各向异性、均质、非均质
渗透流速与实际流速关系
渗透流速与实际流速关系
三、水头与水力坡度
潜水含水层压强与水头
图1-1-4a 潜水含水层的压强与水头
承压含水层压强与水头
图1-1-4b 承压含水层的压强与水头
水力梯(坡)度
水力梯度I 为沿渗透途径水头损失与相应渗透途径长度的比值。 水在空隙中运动时,必须克服水与隙壁以及流动快慢不同的水 质点之间的摩擦阻力 (这种摩擦阻力随地下水流速增加而增 大) ,从而消耗机械能,造成水头损失。因此,水力梯度可 以理解为水流通过单位长度渗透途径为克服摩擦阻力所耗失的 机械能。从另一个角度,也可以将水力梯度理解为驱动力,即 克服摩擦阻力使水以一定速度流动的力量。既然机械能消耗于 渗透途径上,因此求算水力梯度I 时,水头差必须与相应的渗 透途径相对应。
渗流的基本定律(达西定律)
三、变水头达西实验 非稳定流达西实验(实验一): 水自上部加入,用溢水管保持稳定水位,下部用管口出流,可 通过它测定渗流量,用两根测压管来测量水头值。 达西定理:
实验结果: 在非稳定流条件下,地下水运动仍满足 线性渗流定律
达西定律适用条件 1.临界雷诺数Re(J. Bear):
影响渗透系数大小的因素
K= f(孔隙大小、多少、液体性质) 岩层空隙性质(孔隙大小、多少) 由流体的物理性质决定,与γ成正比,与μ成 反比.流体的物理性质与所处的温度、压力有关。
渗透率
渗透系数的表达式
多孔介质(概化为等径的平行毛细管束):
六、渗流分类 1.按运动要素(v,p,H)是否随时间变化,分:稳定流与非稳定流 2.按地下水质点运动状态的混杂程度,分:
均质、非均质,各向同性、各向异性区别 流网绘制
§1.1 渗流基本概念
地下水在岩石空隙中的运动称为渗流(seepage flow/ groundwater flow)。发生渗流的区域称为渗流场。
渗流场(flow field)由固体骨架和岩石空隙中的水两部分 组成。渗流只发生在岩石空隙中。
多孔介质概念与特性
流速在REV上的平均值。
地下水实际流速—质点流速在以P点为中心REV体积上的平均 值称为地下水在P点的实际流速。
渗透流速与实际流速关系
渗透流速与实际流速关系
三、水头与水力坡度
潜水含水层压强与水头
图1-1-4a 潜水含水层的压强与水头
承压含水层压强与水头
图1-1-4b 承压含水层的压强与水头
2.临界渗透流速vc(巴甫洛夫斯基): 3.临界水力梯度Jc(罗米捷): 4.达西定律下限问题(J0)
渗流的基本定律(达西定律)
根据实验需求,设计并建立渗流装置,包括渗流管、压力源、流量 计等。
设定实验条件
设定恒定的水头压力、流量等实验条件,确保实验数据的准确性和 可靠性。
实验结果分析
01
02
03
数据记录
详细记录实验过程中的水 头压力、流量等数据,并 确保数据的准确性和完整 性。
数据处理
对实验数据进行整理、分 析和处理,绘制水头压力 与流量之间的关系曲线。
达西定律的发现可以追溯到19世纪初,由法国工程师达西通 过实验观察到流体在砂质土壤中的流动规律,并提出了该定 律。
达西定律的概述
达西定律描述了流体在多孔介质中的流动速度与压力梯度 之间的关系。具体来说,当流体在多孔介质中流动时,流 速与作用在流体上的压力梯度成正比,同时与介质的渗透 系数有关。
达西定律的数学表达式为:v = -K * grad(p),其中v是流速, K是介质的渗透系数,grad(p)是压力梯度。该公式表明流速 与压力梯度成正比,与渗透系数成反比。
达西定律与实际渗流过程的联系
01
达西定律是描述均匀、定常、不可压缩流体在多孔介质中稳态 流动的基本定律。
02
它指出,在一定条件下,流体的流量与压力梯度成正比,与介
质孔隙的阻力成反比。
达西定律适用于小孔径、低流速、高孔隙度、均质的多孔介质。
03
达西定律的局限性
1
达西定律不适用于非均匀、非定常、非线性流动, 以及大孔径、高流速、低孔隙度、非均质的多孔 介质。
渗流的基本定律(达西定律)
目录
• 引言 • 达西定律的数学表达 • 达西定律的物理意义 • 达西定律的实验验证 • 达西定律的应用实例 • 达西定律的发展与展望
01 引言
渗流的基本定律(达西定律)
地下水实际流速—质点流速在以P点为中心REV体积上的平均值 称为地下水在P点的实际流速。
渗透流速与实际流速关系
渗透流速与实际流速关系
三、水头与水力坡度
潜水含水层压强与水头
图1-1-4a 潜水含水层的压强与水头
承压含水层压强与水头
图1-1-4b 承压含水层的压强与水头
三个方向均存在分流速
z x
y
图1-2-8a 一维流
岩层按渗透性分类
岩层按渗透性分类
同一点各方向上渗透性相同的介质称为各向同性 介质(isotropy medium); 同一点各方向上渗透性不同的介质称为各向异性 介质(anisotropy medium) 。 均质(homogeneity)、非均质(inhomogeneity): 指K于空间坐标的关系,即不同位置K是否相同; 各向同性、各向异性: 指同一点不同方向的K是否 相同。
渗透流速与实际流速关系渗透流速与实际流速关系三水头与水力坡度潜水含水层压强与水头图114a潜水含水层的压强与水头承压含水层压强与水头图114b承压含水层的压强与水头水力梯坡度水力梯度i为沿渗透途径水头损失与相应渗透途径长度的比值
第一章 地下水运动基本概念
重要知识点: 渗流、典型体元(REV) 地下水质点实际流速、空隙平均流速,达西流速及其关系 达西定律基本式,微分式,推广式及应用条件 渗透系数及其影响因素 渗流分类
什么是典型体元呢?现以孔隙度为例来讨论。
把V0称为典型体元。 引进REV后就可以把多孔介质处理为连续
体,这样多孔介质就处处有孔隙度了。
REV究竟有多大?
REV相对于单个孔隙是相当大的,但相对 于渗流场又是非常小的。
概化后的理想渗流
渗流的基本定律达西定律
地下水实际流速—质点流速在以P点为中心REV体积上的平均值 称为地下水在P点的实际流速。
渗透流速与实际流速关系
渗透流速与实际流速关系
三、水头与水力坡度
潜水含水层压强与水头
图1-1-4a 潜水含水层的压强与水头
承压含水层压强与水头
图1-1-4b 承压含水层的压强与水头
以平面二维流问题为例:
vx K xx J x K xy J y v y K yx J x K yy J y
3. 渗透系数张量的坐标轴转换
渗透主轴方向与所选x,y,z方向不一致时,须进行坐标转换 以平面二维流问题为例:
vx K xx J x K xy J y v y K yx J x K yy J y
什么是典型体元呢?现以孔隙度为例来讨论。
型体元的定义
把V0称为典型体元。 引进REV后就可以把多孔介质处理为连续
体,这样多孔介质就处处有孔隙度了。 REV究竟有多大? REV相对于单个孔隙是相当大的,但相对
于渗流场又是非常小的。
概化后的理想渗流
二、地下水实际流速、渗透流速
渗透流速——假想渗流的速度,是假想的平均流速。实际
影响渗透系数大小的因素
K= f(孔隙大小、多少、液体性质) 岩层空隙性质(孔隙大小、多少) 由流体的物理性质决定,与γ成正比,与μ成 反比.流体的物理性质与所处的温度、压力有关。
渗透率
渗透系数的表达式
多孔介质(概化为等径的平行毛细管束):
六、渗流分类 1.按运动要素(v,p,H)是否随时间变化,分:稳定流与非稳定流 2.按地下水质点运动状态的混杂程度,分:
L——渗透途径(上下游过水断面的距 离) ;
渗流的基本定律(达西定律) PPT
§1.1 渗流基本概念
地下水在岩石空隙中的运动称为渗流(seepage flow/ groundwater flow)。发生渗流的区域称为渗流场。
渗流场(flow field)由固体骨架和岩石空隙中的水两部分 组成。渗流只发生在岩石空隙中。
多孔介质概念与特性
我们把孔隙岩层称为多孔介质(porous media). •多孔介质特性:
影响渗透系数大小的因素
K= f(孔隙大小、多少、液体性质) ➢ 岩层空隙性质(孔隙大小、多少) ➢ 由流体的物理性质决定,与γ成正比,与μ成 反比.流体的物理性质与所处的温度、压力有关。
渗透率
渗透系数的表达式
多孔介质(概化为等径的平行毛细管束):
六、渗流分类 1.按运动要素(v,p,H)是否随时间变化,分:稳定流与非稳定流 2.按地下水质点运动状态的混杂程度,分:
彼此连通的网络,几何形态及连通情况异常复杂, 难以用精确的方法来描述。 由固体骨架和孔隙组成,孔隙通道是不连续的。
因此,无论是固体骨架,还是空隙空间,微观上讲都不是连续函数
普通水流与渗流
共同点: 1.总体流向取决于水头差 2.流量取决于水头差及沿程损耗 区别:水在管道中运动取决于 管道大小、形状及粗糙度;渗流运动取决于空隙大小、形状、 连通性。
三个方向均存在分流速
z x
y
图1-2-8a 一维流
岩层按渗透性分类
岩层按渗透性分类
➢同一点各方向上渗透性相同的介质称为各向同性 介质(isotropy medium); ➢同一点各方向上渗透性不同的介质称为各向异性 介质(anisotropy medium) 。 ➢均质(homogeneity)、非均质(inhomogeneity): 指K于空间坐标的关系,即不同位置K是否相同; ➢各向同性、各向异性: 指同一点不同方向的K是否 相同。
渗流的基本定律(达西定律)
多孔介质概念与特性
我们把孔隙岩层称为多孔介质(porous media). •多孔介质特性:
彼此连通的网络,几何形态及连通情况异常复杂, 难以用精确的方法来描述。 由固体骨架和孔隙组成,孔隙通道是不连续的。
层流、紊流与过渡区流态
3. 按地下水有无自由表面,分为: 承压流、无压流、承压—无压流
4. 按岩层透水性以及对地下水所起作用,分 隔水层、含水层、透水层(弱透水层)
5. 按渗流速度在空间上变化的特点,分
一维流、二维流、三维流(见下页)
a. 一维流:仅沿一个方向存在流速 b. 二维流:沿两个方向存在分流速 分:平面二维流、剖面二维流) c. 三维流:
§1-2 渗流的基本定律—达西定律
1856 年,法国水力学家达西(H. Darcy)通过大量的实验,得 到线性渗透定律。根据实验结果,得到下列关系式:
式中:Q——渗透流量(出口处流量,即为 通过砂柱各断面的流量) ;
ω——过水断面(在实验中相当于砂柱 横断面积) ;
h——水头损失( h =H1−H 2 ,即上下 游过水断面的水头差) ;
2.临界渗透流速vc(巴甫洛夫斯基): 3.临界水力梯度Jc(罗米捷): 4.达西定律下限问题(J0)
达西定律的应用条件 达西定律的上下限?
非线性渗透定律 1.1901年福希海默提出Re>10时:
2.1912年克拉斯诺波里斯基提出紊流公式:
四、达西定律的微分形式 微分形式:
渗透系数K
从达西定律V = KI可以看出。水力梯度I 是无因次的,故渗 透系数K的因次与渗透流速V 相同。一般采用 m/d 或 cm/s 为单位。令 I = 1 ,则V =K 。意即渗透系数为水力梯度等 于 1 时的渗透流速。水力梯度为定值时,渗透系数愈大。 渗透流速就愈大;渗透流速为一定值时,渗透系数愈大, 水力梯度愈小。由此可见,渗透系数可定量说明岩石的渗 透性能。渗透系数愈大,岩石的透水能力愈强。
渗流的基本定律(达西定律)
REV究竟有多大?
REV相对于单个孔隙是相当大的,但相对 于渗流场又是非常小的。
概化后的理想渗流
二、地下水实际流速、渗透流速
渗透流速——假想渗流的速度,是假想的平均流速。实际
流速在REV上的平均值。
地下水实际流速—质点流速在以P点为中心REV体积上的平均值 称为地下水在P点的实际流速。
§1-2 渗流的基本定律—达西定律
1856 年,法国水力学家达西(H. Darcy)通过大量的实验,得 到线性渗透定律。根据实验结果,得到下列关系式:
式中:Q——渗透流量(出口处流量,即为 通过砂柱各断面的流量) ;
ω——过水断面(在实验中相当于砂柱 横断面积) ;
h——水头损失( h =H1−H 2 ,即上下 游过水断面的水头差) ;
影响渗透系数大小的因素
K= f(孔隙大小、多少、液体性质) 岩层空隙性质(孔隙大小、多少) 由流体的物理性质决定,与γ成正比,与μ成 反比.流体的物理性质与所处的温度、压力有关。
渗透率
渗透系数的表达式
多孔介质(概化为等径的平行毛细管束):
六、渗流分类 1.按运动要素(v,p,H)是否随时间变化,分:稳定流与非稳定流 2.按地下水质点运动状态的混杂程度,分:
2.临界渗透流速vc(巴甫洛夫斯基): 3.临界水力梯度Jc(罗米捷): 4.达西定律下限问题(J0)
达西定律的应用条件 达西定律的上下限?
非线性渗透定律 1.1901年福希海默提出Re>10时:
2.1912年克拉斯诺波里斯基提出紊流公式:
四、达西定律的微分形式 微分形式:
渗透系数K
从达西定律V = KI可以看出。水力梯度I 是无因次的,故渗 透系数K的因次与渗透流速V 相同。一般采用 m/d 或 cm/s 为单位。令 I = 1 ,则V =K 。意即渗透系数为水力梯度等 于 1 时的渗透流速。水力梯度为定值时,渗透系数愈大。 渗透流速就愈大;渗透流速为一定值时,渗透系数愈大, 水力梯度愈小。由此可见,渗透系数可定量说明岩石的渗 透性能。渗透系数愈大,岩石的透水能力愈强。
渗流的基本概念和基本规律
第一章渗流的基本概念和基本规律内容概要:油气渗流是在地下油层中进行的,因此学习渗流力学首先需了解油气储集层和多孔介质的概念;流体在地下渗流需要里的作用,故还要了解流体受到哪些力的作用、地层中有哪些能量;然后学习渗流的基本规律-达西定律;流体渗流不总是遵循达西定律,就有了非达西渗流或称非线性渗流;对于地层中有多相流体同时参与流动的情况就是两相或多相渗流了,在本章也做一简单介绍。
第一节油气储集层及渗流过程中的力学分析内容概要:油气渗流是在地下油层中进行的,因此学习渗流力学首先需了解油气储集层和多孔介质的概念;掌握他们的特点。
流体在地下渗流需要力的作用,本节应掌握流体受到哪些力的作用,其中哪些是动力、哪些是阻力;地层中有哪些能量为地层流体流入井底提供动力,理解油藏的驱动方式,了解各种驱动方式下油藏的生产特点。
课程讲解:讲解ppt教材自学:油气储集层本节导学油气渗流是在地下油层中进行的,因此学习渗流力学首先需了解油气储集层和多孔介质的概念;掌握他们的特点。
本节重点1、油气层的概念★★★★★2、油气层的分类和特点★★★3、多孔介质的概念★★★4、多孔介质的表征参数★★★一、油气层的概念油气层是油气储集的场所和流动空间,在其中油气水构成一个统一的水动力学系统,包括含油区、含水区、含气区及它们的过渡带。
在一个地质构造中流体是相互制约、相互作用的,每一局部地区的变化都会影响到整体。
可分为:层状和块状 1.层状油藏往往存在于海相沉积和内陆盆地沉积中,厚度较小,分布面积大、多油层、多旋回。
水动力特点:流动只在平面进行,忽略垂向上流体的运动和物质交换。
按边界类型可分为:封闭边界油藏: 边界为断层或尖灭,没有边水供给定压边界油藏:层体延伸到地表,有边水供给区,在边界上保持一个恒定的压头。
定压边界油藏 封闭式油藏1-供给边缘;2-含油边缘;3-含气边缘 1-封闭边缘;2-含油边缘;3-含气边缘特点:边界压力保持不变。
渗流的基本定律达西定律
水力梯(坡)度
水力梯度I 为沿渗透途径水头损失与相应渗透途径长度的比值。 水在空隙中运动时,必须克服水与隙壁以及流动快慢不同的水 质点之间的摩擦阻力 (这种摩擦阻力随地下水流速增加而增 大) ,从而消耗机械能,造成水头损失。因此,水力梯度可 以理解为水流通过单位长度渗透途径为克服摩擦阻力所耗失的 机械能。从另一个角度,也可以将水力梯度理解为驱动力,即 克服摩擦阻力使水以一定速度流动的力量。既然机械能消耗于 渗透途径上,因此求算水力梯度I 时,水头差必须与相应的渗 透途径相对应。
渗流特点
– 通道是曲折的,质点运动轨迹弯曲; – 流速是缓慢的,多数为层流; – 水流仅在空隙中运动,在整个多孔介质中不连续; – 通常是非稳定的; – 通常为缓变流。
一、典型体元
(Representative elementary volume)
在水力学中引进质点的概念,把水看成连续介质, 则可用连续函数描述运动要素。 为了把渗流场概化为多孔介质连续体,用连续函数 描述,引进典型体元的概念。
影响渗透系数大小的因素
K= f(孔隙大小、多少、液体性质) 岩层空隙性质(孔隙大小、多少) 由流体的物理性质决定,与γ成正比,与μ成 反比.流体的物理性质与所处的温度、压力有关。
渗透率
渗透系数的表达式
多孔介质(概化为等径的平行毛细管束):
六、渗流分类 1.按运动要素(v,p,H)是否随时间变化,分:稳定流与非稳定流 2.按地下水质点运动状态的混杂程度,分:
流速在REV上的平均值。
地下水实际流速—质点流速在以P点为中心REV体积上的平均值 称为地下水在P点的实际流速。
渗透流速与实际流速关系
渗透流速与实际流速关系
三、水头与水力坡度
渗流的基本定律(达西定律)
彼此连通的网络,几何形态及连通情况异常复杂, 难以用精确的方法来描述。 由固体骨架和孔隙组成,孔隙通道是不连续的。
因此,无论是固体骨架,还是空隙空间,微观上讲都不是连续函数
普通水流与渗流
共同点: 1.总体流向取决于水头差 2.流量取决于水头差及沿程损耗 区别:水在管道中运动取决于 管道大小、形状及粗糙度;渗流运动取决于空隙大小、形状、 连通性。
是否适用:非均匀介质,二维或三维流动, 非稳定流,层流条件?
三、变水头达西实验 非稳定流达西实验(实验一): 水自上部加入,用溢水管保持稳定水位,下部用管口出流,可 通过它测定渗流量,用两根测压管来测量水头值。 达西定理:
实验结果: 在非稳定流条件下,地下水运动仍满足 线性渗流定律
达西定律适用条件 1.临界雷诺数Re(J. Bear):
L——渗透途径(上下游过水断面的距 离) ;
I ——水力梯度(相当于h / L,即水头 差除以渗透途径) ;
K——渗透系数。 此即达西公式。
二、达西实验条件
稳定达西实验:得出渗透流速与水力坡度成 正比即线性渗流定律,说明此时地下水的流 动状态呈层流。
实验条件:均匀介质,一维流动,稳定流, 层流。
1. 几点讨论: (1) 当K1≠K2,α1≠0,流线才会折射 (2)当K1=K2,α1= α2 (3) 只有在0< α1<90,才会折射 (4)在层界面上发生的流线折射并不改变地下水流总方向,总体 流向仍受边界条件和源汇等控制。
典型流网特征
各向异性介质中的流网
小结
– 上述分类标准不同,无从属系,可以 组合
– 均质与非均质,各向同性与各向异性概 念容易混淆
渗流的基本定律(达西定律)
I ——水力梯度(相当于h / L,即水头 差除以渗透途径) ;
K——渗透系数。 此即达西公式。
二、达西实验条件
稳定达西实验:得出渗透流速与水力坡度成 正比即线性渗流定律,说明此时地下水的流 动状态呈层流。
实验条件:均匀介质,一维流动,稳定流, 层流。
一、典型体元
(Representative elementary volume)
在水力学中引进质点的概念,把水看成连续介质, 则可用连续函数描述运动要素。 为了把渗流场概化为多孔介质连续体,用连续函数 描述,引进典型体元的概念。
什么是典型体元呢?现以孔隙度为例来讨论。
把V0称为典型体元。 引进REV后就可以把多孔介质处理为连
2.临界渗透流速vc(巴甫洛夫斯基): 3.临界水力梯度Jc(罗米捷): 4.达西定律下限问题(J0)
达西定律的应用条件 达西定律的上下限?
非线性渗透定律 1.1901年福希海默提出Re>10时:
2.1912年克拉斯诺波里斯基提出紊流公式:
四、达西定律的微分形式 微分形式:
渗透系数K
从达西定律V = KI可以看出。水力梯度I 是无因次的,故渗 透系数K的因次与渗透流速V 相同。一般采用 m/d 或 cm/s 为单位。令 I = 1 ,则V =K 。意即渗透系数为水力梯度等 于 1 时的渗透流速。水力梯度为定值时,渗透系数愈大。 渗透流速就愈大;渗透流速为一定值时,渗透系数愈大, 水力梯度愈小。由此可见,渗透系数可定量说明岩石的渗 透性能。渗透系数愈大,岩石的透水能力愈强。
3. 渗透系数张量的坐标轴转换
K xx 0 0
渗透主轴方向与所选x,y,z方向一致时
渗流的基本定律(达西定律)
3. 渗透系数张量的坐标轴转换
K xx 0 0
渗透主轴方向与所选x,y,z方向一致时
K
0 0
K yy 0 0 K zz
H
v x K xx x
vy
K yy
H y
vz
K zz
H z
渗透主轴方向与所选x,y,z方向不一致时,须进行坐标转换
一、典型体元
(Representative elementary volume)
在水力学中引进质点的概念,把水看成连续介质, 则可用连续函数描述运动要素。 为了把渗流场概化为多孔介质连续体,用连续函数 描述,引进典型体元的概念。
什么是典型体元呢?现以孔隙度为例来讨论。
把V0称为典型体元。 引进REV后就可以把多孔介质处理为连续
体,这样多孔介质就处处有孔隙度了。
REV究竟有多大?
REV相对于单个孔隙是相当大的,但相对 于渗流场又是非常小的。
概化后的理想渗流
二、地下水实际流速、渗透流速
渗透流速——假想渗流的速度,是假想的平均流速。实际
流速在REV上的平均值。
地下水实际流速—质点流速在以P点为中心REV体积上的平均值 称为地下水在P点的实际流速。
L——渗透途径(上下游过水断面的距 离) ;
I ——水力梯度(相当于h / L,即水头 差除以渗透途径) ;
K——渗透系数。 此即达西公式。
二、达西实验条件
稳定达西实验:得出渗透流速与水力坡度成 正比即线性渗流定律,说明此时地下水的流 动状态呈层流。
实验条件:均匀介质,一维流动,稳定流, 层流。
第一章 地下水运动基本概念
重要知识点: 渗流、典型体元(REV) 地下水质点实际流速、空隙平均流速,达西流速及其关系 达西定律基本式,微分式,推广式及应用条件 渗透系数及其影响因素 渗流分类
渗流的基本定律(达西定律)
多孔介质概念与特性
我们把孔隙岩层称为多孔介质(porous media). •多孔介质特性:
彼此连通的网络,几何形态及连通情况异常复杂, 难以用精确的方法来描述。 由固体骨架和孔隙组成,孔隙通道是不连续的。
渗透流速与实际流速关系
渗透流速与实际流速关系
三、水头与水力坡度
潜水含水层压强与水头
图1-1-4a 潜水含水层的压强与水头
承压含水层压强与水头
图1-1-4b 承压含水层的压强与水头
水力梯(坡)度
水力梯度I 为沿渗透途径水头损失与相应渗透途径长度的比值。 水在空隙中运动时,必须克服水与隙壁以及流动快慢不同的水 质点之间的摩擦阻力 (这种摩擦阻力随地下水流速增加而增 大) ,从而消耗机械能,造成水头损失。因此,水力梯度可 以理解为水流通过单位长度渗透途径为克服摩擦阻力所耗失的 机械能。从另一个角度,也可以将水力梯度理解为驱动力,即 克服摩擦阻力使水以一定速度流动的力量。既然机械能消耗于 渗透途径上,因此求算水力梯度I 时,水头差必须与相应的渗 透途径相对应。
体,这样多孔介质就处处有孔隙度了。
REV究竟有多大?
REV相对于单个孔隙是相当大的,但相对 于渗流场又是非常小的。
概化后的理想渗流
二、地下水实际流速、渗透流速
渗透流速——假想渗流的速度,是假想的平均流速。实际
流速在REV上的平均值。
地下水实际流速—质点流速在以P点为中心REV体积上的平均值 称为地下水在P点的实际流速。
层流、紊流与过渡区流态
3. 按地下水有无自由表面,分为: 承压流、无压流、承压—无压流
4. 按岩层透水性以及对地下水所起作用,分 隔水层、含水层、透水层(弱透水层)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重要知识点: 渗流、典型体元(REV) 地下水质点实际流速、空隙平均流速,达西流速及其关系 达西定律基本式,微分式,推广式及应用条件 渗透系数及其影响因素 渗流分类
均质、非均质,各向同性、各向异性区别 流网绘制
§1.1 渗流基本概念
地下水在岩石空隙中的运动称为渗流(seepage flow/ groundwater flow)。发生渗流的区域称为渗流场。
2.临界渗透流速vc(巴甫洛夫斯基): 3.临界水力梯度Jc(罗米捷): 4.达西定律下限问题(J0)
达西定律的应用条件 达西定律的上下限?
非线性渗透定律 1.1901年福希海默提出Re>10时:
2.1912年克拉斯诺波里斯基提出紊流公式:
四、达西定律的微分形式 微分形式:
渗透系数K
从达西定律V = KI可以看出。水力梯度I 是无因次的,故渗 透系数K的因次与渗透流速V 相同。一般采用 m/d 或 cm/s 为单位。令 I = 1 ,则V =K 。意即渗透系数为水力梯度等 于 1 时的渗透流速。水力梯度为定值时,渗透系数愈大。 渗透流速就愈大;渗透流速为一定值时,渗透系数愈大, 水力梯度愈小。由此可见,渗透系数可定量说明岩石的渗 透性能。渗透系数愈大,岩石的透水能力愈强。
L——渗透途径(上下游过水断面的距 离) ;
I ——水力梯度(相当于h / L,即水头 差除以渗透途径) ;
K——渗透系数。 此即达西公式。
二、达西实验条件
稳定达西实验:得出渗透流速与水力坡度成 正比即线性渗流定律,说明此时地下水的流 动状态呈层流。
实验条件:均匀介质,一维流动,稳定流, 层流。
一、典型体元
(Representative elementary volume)
在水力学中引进质点的概念,把水看成连续介质, 则可用连续函数描述运动要素。 为了把渗流场概化为多孔介质连续体,用连续函数 描述,引进典型体元的概念。
什么是典型体元呢?现以孔隙度为例来讨论。
把V0称为典型体元。 引进REV后就可以把多孔介质处理为连续
是否适用:非均匀介质,二维或三维流动, 非稳定流,层流条件?
三、变水头达西实验 非稳定流达西实验(实验一): 水自上部加入,用溢水管保持稳定水位,下部用管口出流,可 通过它测定渗流量,用两根测压管来测量水头值。 达西定理:
实验结果: 在非稳定流条件下,地下水运动仍满足 线性渗流定律
达西定律适用条件 1.临界雷诺数Re(J. Bear):
§1-2 渗流的基本定律—达西定律
1856 年,法国水力学家达西(H. Darcy)通过大量的实验,得 到线性渗透定律。根据实验结果,得到下列关系式:
式中:Q——渗透流量(出口处流量,即为 通过砂柱各断面的流量) ;
ω——过水断面(在实验中相当于砂柱 横断面积) ;
h——水头损失( h =H1−H 2 ,即上下 游过水断面的水头差) ;
影响渗透系数大小的因素
K= f(孔隙大小、多少、液体性质) 岩层空隙性质(孔隙大小、多少) 由流体的物理性质决定,与γ成正比,与μ成 反比.流体的物理性质与所处的温度、压力有关。
渗透率
渗透系数的表达式
多孔介质(概化为等径的平行毛细管束):
六、渗流分类 1.按运动要素(v,p,H)是否随时间变化,分:稳定流与非稳定流 2.按地下水质点运动状态的混杂程度,分:
三个方向均存在分流速
z x
y
图1-2-8a 一维流
岩层按渗透性分类
岩层按渗透性分类
同一点各方向上渗透性相同的介质称为各向同性 介质(isotropy medium); 同一点各方向上渗透性不同的介质称为各向异性 介质(anisotropy medium) 。 均质(homogeneity)、非均质(inhomogeneity): 指K于空间坐标的关系,即不同位置K是否相同; 各向同性、各向异性: 指同一点不同方向的K是否 相同。
渗透流速与实际流速关系
渗透流速与实际流速关系
三、水头与水力坡度
潜水含水层压强与水头
图1-1-4a 潜水含水层的压强与水头
承压含水层压强与水头
图1-1-4b 承压含水层的压强与水头
Hale Waihona Puke 水力梯(坡)度水力梯度I 为沿渗透途径水头损失与相应渗透途径长度的比值。 水在空隙中运动时,必须克服水与隙壁以及流动快慢不同的水 质点之间的摩擦阻力 (这种摩擦阻力随地下水流速增加而增 大) ,从而消耗机械能,造成水头损失。因此,水力梯度可 以理解为水流通过单位长度渗透途径为克服摩擦阻力所耗失的 机械能。从另一个角度,也可以将水力梯度理解为驱动力,即 克服摩擦阻力使水以一定速度流动的力量。既然机械能消耗于 渗透途径上,因此求算水力梯度I 时,水头差必须与相应的渗 透途径相对应。
层流、紊流与过渡区流态
3. 按地下水有无自由表面,分为: 承压流、无压流、承压—无压流
4. 按岩层透水性以及对地下水所起作用,分 隔水层、含水层、透水层(弱透水层)
5. 按渗流速度在空间上变化的特点,分
一维流、二维流、三维流(见下页)
a. 一维流:仅沿一个方向存在流速 b. 二维流:沿两个方向存在分流速 分:平面二维流、剖面二维流) c. 三维流:
因此,无论是固体骨架,还是空隙空间,微观上讲都不是连续函数
普通水流与渗流
共同点: 1.总体流向取决于水头差 2.流量取决于水头差及沿程损耗 区别:水在管道中运动取决于 管道大小、形状及粗糙度;渗流运动取决于空隙大小、形状、 连通性。
渗流特点
– 通道是曲折的,质点运动轨迹弯曲; – 流速是缓慢的,多数为层流; – 水流仅在空隙中运动,在整个多孔介质中不连续; – 通常是非稳定的; – 通常为缓变流。
渗流场(flow field)由固体骨架和岩石空隙中的水两部分 组成。渗流只发生在岩石空隙中。
多孔介质概念与特性
我们把孔隙岩层称为多孔介质(porous media). •多孔介质特性:
彼此连通的网络,几何形态及连通情况异常复杂, 难以用精确的方法来描述。 由固体骨架和孔隙组成,孔隙通道是不连续的。
体,这样多孔介质就处处有孔隙度了。
REV究竟有多大?
REV相对于单个孔隙是相当大的,但相对 于渗流场又是非常小的。
概化后的理想渗流
二、地下水实际流速、渗透流速
渗透流速——假想渗流的速度,是假想的平均流速。实际
流速在REV上的平均值。
地下水实际流速—质点流速在以P点为中心REV体积上的平均值 称为地下水在P点的实际流速。