平抛运动中临界问题的分析(含答案)

合集下载

平抛运动临界问题典型例题

平抛运动临界问题典型例题

平抛运动临界问题平抛运动是指一个物体在不受外力影响下,沿着一个水平方向进行抛掷的运动。

在平抛运动中,物体受到重力的作用而向下做加速运动,而在水平方向上则保持匀速直线运动。

当物体的初速度和抛掷角度确定时,我们可以通过解析的方法来求解物体的最大高度、最大飞行距离以及落地处的速度等问题。

问题描述一个足球运动员以θ的角度用力将足球从地面上以v0的初速度抛出。

为了使足球能够在某一距离d处接触地面,求抛出足球时的最小速度v0。

解题思路根据平抛运动的基本公式,可以得到足球在竖直方向的运动方程为:ℎ=v0sinθt−gt2 2其中,ℎ是足球抛出后的最大高度,g是重力加速度,t是足球从抛出到落地所需的时间。

当足球接触地面时,ℎ的值为0,即:0=v0sinθt−gt22 ⇒ v0sinθt=gt22将t表示为:t=2v0sinθg代入求解接触地面的位置d与时间t的关系:d=v0cosθ⋅t ⇒ d=v0cosθ⋅2v0sinθg化简得到:d=2v02sinθ⋅cosθg将上述方程转化为关于v0的二次方程形式:v02sin2θ−gd2=0解二次方程,并根据物理意义得到一个物理解:v 0=√gd 2sin2θ该解即为足球抛出时的最小速度。

示例计算假设 d =50 m ,θ=45∘,g =9.8 m/s²,代入上述公式可得:v 0=√9.8×502sin90∘≈22.142≈11.07 m/s 因此,足球抛出时的最小速度为约 11.07 m/s 。

总结本文使用物理学中的平抛运动公式,通过计算和代数运算的方法,解决了一个关于平抛运动临界问题的例题。

通过该例题,我们了解到通过解析方法可以推导出平抛运动的高度和水平距离与初速度和抛射角度之间的关系,并使用这个关系来解决实际问题。

高考物理热点:平抛运动中的临界问题

高考物理热点:平抛运动中的临界问题
(2)求能被屏探测到的微粒的初速度范围; (3)若打在探测屏A、B两点的微粒的动能相等,求L 与h的关系。
答案 (1)
3h g
(2)L
4gh≤v≤L
g 2h
(3)L=2
2h
转到解析 目录
3.规律方法
1.处理平抛运动中的临界问题要抓住两点 (1)找出临界状态对应的临界条件; (2)要用分解速度或者分解位移的思想分析平抛运动的临界问题。 2.平抛运动临界极值问题的分析方法 (1)确定研究对象的运动性质; (2)根据题意确定临界状态; (3)确定临界轨迹,画出轨迹示意图; (4)应用平抛运动的规律结合临界条件列方程求解。
的初速度分别从 A、B 两点相差 1 s 先后水 平相向抛出,a 小球从 A 点抛出后,经过 时间 t,a、b 两小球恰好在空中相遇,且 速度方向相互垂直,不计空气阻力,取 g=10m/s2,则抛出点 A、B 间的水平距离是( )
A.80 5 m B.100 m C.200 m D.180 5 m
转到解析
6gh<v<L1
g 6h
B.L41
hg<v<
(4L12+L22)g 6h
C.L21 D.L41
6gh<v<12 hg<v<12
(4L21+L22)g 6h
(4L21+L22)g 6h
提示:球速最小时, 射程最小;球速最大
时,射程最大。
转到解析
目录
4.(2017·江西重点中学联考)如图 15
所示,将 a、b 两小球以大小为 20 5 m/s
目录
D.若石子不能落入水中,则v0越大,落 到斜面上时速度方向与斜面的夹角越大
转到解析 目录
4.备选训练
平抛运动与日常生活紧密联系,如乒乓球、足球、排球等运动模型,飞

平抛运动的临界问题(解析版)

平抛运动的临界问题(解析版)

平抛运动临界问题平抛运动受到某种条件的限制时就构成了平抛运动的临界问题,其限制条件一般有水平位移和竖直高度两种。

求解这类问题的关键是确定临界轨迹,当受水平位移限制时,其临界轨迹为自抛出点到水平位移端点的一条抛物线;当受竖直高度限制时,其临界轨迹为自抛出点到竖直高度端点的一条抛物线。

确定轨迹后再结合平抛运动的规律即可求解。

审题技巧1.有些题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程中存在着临界点。

2.若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程中存在着“起止点”,而这些起止点往往就是临界点。

3.若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程中存在着极值,这些极值点也往往是临界点。

解题技巧1. 分析平抛运动中的临界问题时一般运用极限分析的方法,即把要求的物理量设定为极大或极小,让临界问题突现出来,找到产生临界的条件。

2. 求解平抛运动中的临界问题的关键(1)确定临界状态.确定临界状态一般用极限法分析,即把平抛运动的初速度增大或减小,使临界状态呈现出来.(2)确定临界状态的运动轨迹,并画出轨迹示意图.画示意图可以使抽象的物理情景变得直观,更可以使有些隐藏于问题深处的条件暴露出来.【典例1】在某次乒乓球比赛中,乒乓球先后两次落台后恰好在等高处水平越过球网,过网时的速度方向均垂直于球网,把两次落台的乒乓球看成完全相同的两个球,球1和球2,如图所示,不计乒乓球的旋转和空气阻力,乒乓球自起跳到最高点的过程中,下列说法正确的是()A.起跳时,球1的重力功率等于球2的重力功率B.球1的速度变化率小于球2的速度变化率C.球1的飞行时间大于球2的飞行时间D.过网时球1的速度大于球2的速度【答案】AD【解析】乒乓球起跳后到最高点的过程,其逆过程可看成平抛运动。

重力的瞬时功率等于重力乘以竖直方向的速度,两球起跳后能到达的最大高度相同,由v2=2gh得,起跳时竖直方向分速度大小相等,所以两球起跳时重力功率大小相等,A 正确;速度变化率即加速度,两球在空中的加速度都等于重力加速度,所以两球的速度变化率相等,B 错误;由h =12gt 2可得两球飞行时间相同,C 错误;由题图可知,球1的水平位移较大,由x =vt 可知,运动时间相同,则球1的水平速度较大,D 正确。

平抛运动、圆周运动的临界问题 Word版含解析

平抛运动、圆周运动的临界问题 Word版含解析

[A组·基础题]1. 如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g取10 m/s2.则ω的最大值是( )A. 5 rad/s B. 3 rad/sC.1.0 rad/s D.5 rad/s2. 一圆盘可以绕其竖直轴在水平面内转动,圆盘半径为R,甲、乙两物体的质量分别为M与m(M>m),它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为l(l<R)的轻绳连在一起,如图所示,若将甲物体放在转轴的位置上,甲、乙之间接线刚好沿半径方向拉直,要使两物体与转盘之间不发生相对滑动,则转盘旋转的角速度最大值不得超过( )A.μ(M-m)gml B.μ(M-m)gMlC.μ(M+m)gMl D.μ(M+m)gml3. (2019·河南中原名校考评)如图所示,半径分别为R、2R的两个水平圆盘,小圆盘转动时会带动大圆盘不打滑的一起转动.质量为m的小物块甲放置在大圆盘上距离转轴R处,质量为2m的小物块放置在小圆盘的边缘处.它们与盘面间的动摩擦因数相同,当小圆盘以角速度转动时,两物块均相对圆盘静止,设最大静摩擦力等于滑动摩擦力,下列说法正确的是( )A .二者线速度大小相等B .甲受到的摩擦力大小为14mω2RC .在ω逐渐增大的过程中,甲先滑动D .在ω逐渐增大但未相对滑动的过程中,物块所受摩擦力仍沿半径指向圆心4. (2018·广东七校联考)如图所示,半径为R 的圆轮在竖直面内绕O 轴匀速转动,轮上A 、B 两点各粘有一小物体,当B 点转至最低位置时,此时O 、A 、B 、P 四点在同一竖直线上,已知:OA =AB ,P 是地面上的一点.此时A 、B 两点处的小物体同时脱落,最终落到水平地面上同一点.不计空气阻力,则OP 的距离是( )A.76RB .52RC .5RD .7R5.(多选) 水平面上有倾角为θ、质量为M 的斜面体,质量为m 的小物块放在斜面上,现用一平行于斜面、大小恒定的拉力F 作用于小物块上,绕小物块旋转一周,这个过程中斜面体和小物块始终保持静止状态.下列说法中正确的是( )A .小物块受到斜面的最大摩擦力为F +mg sin θB .小物块受到斜面的最大摩擦力为F -mg sin θC .斜面体受到地面的最大摩擦力为FD .斜面体受到地面的最大摩擦力为F cos θ6.(多选) (2018·山西省吕梁市期中)如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R,小球半径为r,则下列说法正确的是( )A.小球通过最高点时的最小速度v min=g(R+r)B.小球通过最高点时的最小速度v min=0C.小球在水平线ab以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线ab以上的管道中运动时,外侧管壁对小球一定有作用力7. 如图所示,水平屋顶高H=5 m,围墙高h=3.2 m,围墙到房子的水平距离L =3 m,围墙外空地宽x=10 m,为使小球从屋顶水平飞出落在围墙外的空地上,g取10 m/s2.求:(1)小球离开屋顶时的速度v0的大小范围;(2)小球落在空地上的最小速度.[B组·能力题]8. (多选)如图所示,两物块A、B套在水平粗糙的CD杆上,并用不可伸长的轻绳连接,整个装置能绕过CD中点的轴转动,已知两物块质量相等,杆CD对物块A、B的最大静摩擦力大小相等,开始时绳子处于自然长度(绳子恰好伸直但无弹力),物块B到轴的距离为物块A到轴距离的两倍,现让该装置从静止开始转动,使转速逐渐慢慢增大,在从绳子处于自然长度到两物块A、B即将滑动的过程中,下列说法正确的是( )A.A受到的静摩擦力一直增大B.B受到的静摩擦力先增大后保持不变C.A受到的静摩擦力先增大后减小再增大D.B受到的合外力先增大后保持不变9. (多选)(2016·浙江卷)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R=90 m的大圆弧和r=40 m的小圆弧,直道与弯道相切.大、小圆弧圆心O、O′距离L=100 m.赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的2.25倍,假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动,要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g=10 m/s2,π=3.14),则赛车( )A.在绕过小圆弧弯道后加速B.在大圆弧弯道上的速率为45 m/sC.在直道上的加速度大小为5.63 m/s2D.通过小圆弧弯道的时间为5.58 s10.如图为“快乐大冲关”节目中某个环节的示意图,参与游戏的选手会遇到一个人造山谷AOB,AO是高h=3 m的竖直峭壁,OB是以A点为圆心的弧形坡,∠OAB=60°,B点右侧是一段水平跑道.选手可以自A点借助绳索降到O点后再爬上跑道,但身体素质好的选手会选择自A点直接跃上跑道.选手可视为质点,忽略空气阻力,重力加速度g=10 m/s2.(1)若选手以速度v0水平跳出后,能跳在水平跑道上,求v0的最小值;(2)若选手以速度v1=4 m/s水平跳出,求该选手在空中的运动时间.11. (2017·河南开封模拟)如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN调节其与水平面所成的倾角.板上一根长为l=0.60 m的轻细绳,它的一端系住一质量为m的小球P,另一端固定在板上的O点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN拉直,然后给小球一沿着平板并与轻绳垂直的初速度v0=3.0 m/s.若小球能保持在板面内做圆周运动,倾角α的值应在什么范围内?(取重力加速度g=10 m/s2)。

平抛运动临界问题典型例题

平抛运动临界问题典型例题

平抛运动临界问题典型例题平抛运动是指一个物体在水平方向上以一定的初速度抛出后,在重力作用下在竖直方向上做自由落体运动的过程。

临界问题是指当物体以一定的初速度抛出时,求解它的最大高度、飞行时间以及最大水平距离等相关参数的问题。

下面是一个典型的平抛运动临界问题例题,我将从多个角度进行全面解答。

例题:一个物体以初速度v0 = 20 m/s沿着水平方向抛出,求解它的最大高度、飞行时间以及最大水平距离。

解答:1. 最大高度:在平抛运动中,物体的竖直运动与水平运动是独立的。

在竖直方向上,物体受到重力的作用,在水平方向上,物体的速度保持不变。

因此,最大高度发生在物体竖直速度为零的时刻。

首先,我们需要知道物体的竖直初速度和竖直加速度。

竖直初速度为0,竖直加速度为重力加速度g ≈ 9.8 m/s^2。

使用竖直运动的运动学公式,v = u + at,其中v为最终速度,u为初速度,a为加速度,t为时间。

将v取为0,u取为20 m/s,a取为-9.8 m/s^2,代入公式,解得t = 2.04 s。

再使用竖直运动的位移公式,s = ut + 1/2at^2,其中s为位移。

将u取为20 m/s,t取为2.04 s,a取为-9.8 m/s^2,代入公式,解得s = 20.4 m。

所以,最大高度为20.4 m。

2. 飞行时间:飞行时间是指物体从抛出到落地所经过的时间。

在平抛运动中,物体的水平速度保持不变,所以飞行时间等于物体竖直运动的时间。

根据上面的计算结果,飞行时间为2.04 s。

3. 最大水平距离:最大水平距离是指物体从抛出到落地时在水平方向上的位移。

在平抛运动中,水平方向上的速度保持不变,所以最大水平距离等于水平速度乘以飞行时间。

水平速度为20 m/s,飞行时间为2.04 s,所以最大水平距离为40.8 m。

综上所述,当一个物体以初速度v0 = 20 m/s沿着水平方向抛出时,它的最大高度为20.4 m,飞行时间为2.04 s,最大水平距离为40.8 m。

专题23 平抛运动临界问题、相遇问题、类平抛运和斜抛运动(解析版)

专题23 平抛运动临界问题、相遇问题、类平抛运和斜抛运动(解析版)

2023届高三物理一轮复习多维度导学与分层专练专题23 平抛运动临界问题、相遇问题、类平抛运和斜抛运动导练目标 导练内容目标1 平抛运动临界问题 目标2 平抛运动中的相遇问题目标3 类平抛运动 目标4斜抛运动一、平抛运动临界问题擦网压线既擦网又压线由21122121⎪⎪⎭⎫⎝⎛==-v x g gt h H 得:()h H gx v -=211由222122121⎪⎪⎭⎫⎝⎛+==v x x g gt H 得:()Hg x x v 2212+= 由20122121⎪⎪⎭⎫⎝⎛==-v x g gt h H 和202122121⎪⎪⎭⎫ ⎝⎛+==v x x g gt H 得:()22121x x x H h H +=-【例1】如图排球场,L=9m,球网高度为H=2m ,运动员站在网前s=3m 处,正对球网跳起将球水平击出,球大小不计,取重力加速度为g=10m/s.(1)若击球高度为h=2.5m,为使球既不触网又不出界,求水平击球的速度范围; (2) 当击球点的高度h 为何值时,无论水平击球的速度多大,球不是触网就是出界? 【答案】(1)10m /s <v 2/s (2)2.13m【详解】(1)当球刚好不触网时,根据h 1−h =12gt 12,解得:()()1122 2.521010h h t s g -⨯-===,则平抛运动的最小速度为:11/310/10min x v s m s t ===.当球刚好不越界时,根据h 1=12gt 22,解得:1222 2.5210h t s g ⨯=== ,则平抛运动的最大速度为:22/122/2max x v s m s t ===,则水平击球的速度范围为10/s <v 2/s .(2)设击球点的高度为h .当h 较小时,击球速度过大会出界,击球速度过小又会触网,1222()h h H g g -=,其中x 1=12m ,x 2=3m ,h=2m ,代入数据解得:h=2.13m ,即击球高度不超过此值时,球不是出界就是触网. 二、平抛运动中的相遇问题平抛与自由落体相遇水平位移:l=vt空中相遇:ght 2<平抛与平抛相遇(1)若等高(h 1=h 2),两球同时抛;(2)若不等高(h 1>h 2)两球不同时抛,甲球先抛; (3)位移关系:x 1+x 2=L(1)A 球先抛; (2)t A >t B ; (3)v 0A <v 0B(1)A 、B 两球同时抛; (2)t A =t B ; (3)v 0A >v 0B 平抛与竖直上抛相遇(1)L=v 1t ;(2)22222121v h t h gt t v gt =⇒=-+; (3)若在S 2球上升时两球相遇,临界条件:2v t g<,即:22h v v g<,解得:2v gh >;(4)若在S 2球下降时两球相遇,临界条件:222v v t g g <<,即2222v h vg v g<<, 解得:22ghv gh <<平抛与斜上抛相遇(1)Ltvt v=⋅+θcos21;(2)θθsin21sin212222vhthgttvgt=⇒=-+;(3)若在S2球上升时两球相遇,临界条件:2sinvtgθ<,即:22sinsinh vv gθθ<,解得:2singhvθ>;(4)若在S2球下降时两球相遇,临界条件:22sin2sinv vtg gθθ<<,即222sin2sinsinv h vg v gθθθ<<,解得:22sin singhghvθθ<<【例2】如图,两个弹性球P、Q在距离水平地面一定高度处,若给P水平向右的初速度0(00v≠),同时释放Q,(两球在同一竖直面内运动)两球与地面接触时间可忽略不计,与地面接触前后水平方向速度不变,竖直方向速度大小不变,方向相反。

考点08平抛运动的临界和极值问题

考点08平抛运动的临界和极值问题

[考点08] 平抛运动的临界和极值问题1.平抛运动的临界问题有两种常见情形(1)物体的最大位移、最小位移、最大初速度、最小初速度;(2)物体的速度方向恰好为某一方向.2.解题技巧在题中找出有关临界问题的关键字,如“恰好不出界”“刚好飞过壕沟”“速度方向恰好与斜面平行”“速度方向与圆周相切”等,然后利用平抛运动对应的位移规律或速度规律进行解题.1.与平抛运动相关的临界情况(1)有些题目中“刚好”“恰好”“正好”等字眼,明显表明题述的过程中存在临界点.(2)如题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述过程中存在着“起止点”,而这些“起止点”往往就是临界点.(3)若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述过程中存在着极值,这些极值也往往是临界点.2.分析平抛运动中的临界情况关键是确定临界轨迹.当受水平位移限制时,其临界轨迹为自抛出点到水平位移端点的一条抛物线;当受下落高度限制时,其临界轨迹为自抛出点到下落高度端点的一条抛物线,确定轨迹后再结合平抛运动的规律即可求解.典例如图所示,排球场的长为18 m,球网的高度为2 m.运动员站在离网3 m远的线上,正对球网竖直跳起,把球垂直于网水平击出.(取g=10 m/s2,不计空气阻力)(1)设击球点的高度为2.5 m,问球被水平击出时的速度v0在什么范围内才能使球既不触网也不出界?(2)若击球点的高度小于某个值,那么无论球被水平击出时的速度为多大,球不是触网就是出界,试求出此高度.答案 (1)310 m/s<v 0≤12 2 m/s (2)3215m解析 (1)如图甲所示,排球恰不触网时其运动轨迹为Ⅰ,排球恰不出界时其运动轨迹为Ⅱ,根据平抛运动的规律,由x =v 0t 和h =12gt 2可得,当排球恰好触网时有x 1=3 m ,x 1=v 1t 1①h 1=2.5 m -2 m =0.5 m ,h 1=12gt 12②由①②可得v 1=310 m/s. 当排球恰不出界时有x 2=3 m +9 m =12 m ,x 2=v 2t 2③ h 2=2.5 m ,h 2=12gt 22④由③④可得v 2=12 2 m/s.所以排球既不触网也不出界的速度范围是310 m/s<v 0≤12 2 m/s.(2)如图乙所示为排球恰不触网也恰不出界的临界轨迹.设击球点的高度为h ,根据平抛运动的规律有x 1=3 m ,x 1=v 0t 1′⑤h 1′=h -2 m ,h 1′=12gt 1′2⑥x 2=3 m +9 m =12 m ,x 2=v 0t 2′⑦ h 2′=h =12gt 2′2⑧联式⑤⑥⑦⑧式可得,高度h =3215m.1.(2023·甘肃·期中)如图所示,在水平路面上一运动员驾驶摩托车跨越壕沟,壕沟两侧的高度差为0.8 m ,水平距离为8 m ,则运动员跨过壕沟的初速度至少为(取g =10 m/s 2) ( )A .0.5 m/sB .2 m/sC .10 m/sD .20 m/s答案 D解析 根据x =v 0t 、y =12gt 2,将已知数据代入可得v 0=20 m/s ,故选项D 正确.2.如图所示,一网球运动员将网球(可视为质点)从O 点水平向右击出,网球恰好擦网通过落在对方场地的A 点,A 点到球网的水平距离是击球点到球网的水平距离的2倍.已知球网的高度为h ,重力加速度为g ,不计空气阻力,则网球击出后在空中飞行的时间为( )A.3hg B.32h g C.5h 2gD.322h g答案 B解析 设网球击出后在空中飞行的时间为t ,因为A 点到球网的水平距离是击球点到球网的水平距离的2倍,所以网球从击球点运动到球网的时间为t 3,则H =12gt 2,H -h =12g (t3)2,联立解得t =32hg,故选B. 3.(多选)如图所示,水平面上放置一个直径d =1 m 、高h =1 m 的无盖薄油桶,沿油桶底面直径AB 距左桶壁s =2 m 处的正上方有一点P ,P 点的高度H =3 m ,从P 点沿直径AB 方向水平抛出一小球,不考虑小球的反弹和空气阻力,下列说法正确的是(取g =10 m/s 2,CD 为桶顶平行AB 的直径)( )A .小球的速度范围为15 m/s<v <3210 m/s 时,小球击中油桶的内壁B .小球的速度范围为15 m/s<v <3210 m/s 时,小球击中油桶的下底C .小球的速度范围为2315 m/s<v <10 m/s 时,小球击中油桶外壁D .若P 点的高度变为1.8 m ,则小球无论初速度多大,均不能直接落在桶底(桶边沿除外) 答案 ACD解析 当小球落在A 点时,有H =12gt 2,s =v 1t ,联立解得v 1=sg 2H =2315 m/s ,同理可知,当小球落在D 点时,v 2=sg2(H -h )=10 m/s ,当小球落在B 点时,v 3=(s +d )g 2H=15 m/s ,当小球落在C 点时,v 4=(s +d )g 2(H -h )=3210 m/s ,选项A 、C 正确,B 错误;若P 点的高度变为H 0,轨迹同时过D 点和B 点,则此时初速度v ′=sg2(H 0-h )=(s +d )g 2H 0,解得H 0=1.8 m ,在此高度上,小球无论初速度多大,都不能直接落在桶底(桶边沿除外),选项D 正确.4.利用 可以玩一种叫“扔纸团”的小游戏.如图所示,游戏时,游戏者滑动屏幕将纸团从P 点以速度v 水平抛向固定在水平地面上的圆柱形废纸篓,纸团恰好从纸篓的上边沿入篓并直接打在纸篓的底角.若要让纸团进入纸篓中并直接击中篓底正中间,下列做法可行的是( )A .在P 点将纸团以小于v 的速度水平抛出B .在P 点将纸团以大于v 的速度水平抛出C .在P 点正上方某位置将纸团以小于v 的速度水平抛出D .在P 点正下方某位置将纸团以大于v 的速度水平抛出 答案 C解析 在P 点将纸团以小于v 的速度水平抛出,纸团下降到纸篓上边沿这段时间内,水平位移变小,纸团不能进入纸篓中,故A 错误;在P 点将纸团以大于v 的速度水平抛出,则纸团下降到篓底的时间内,水平位移增大,不能直接击中篓底的正中间,故B 错误;要使纸团进入纸篓且直接击中篓底正中间,分析临界状态可知,最可能的入篓点为左侧纸篓上边沿.若在P 点正上方某位置将纸团以小于v 的速度水平抛出,根据x =v2hg知,纸团水平位移可以减小且不会与纸篓的左边沿相撞,纸团有可能击中篓底正中间,故C 正确;同理可得D 错误.5.某科技比赛中,参赛者设计了一个轨道模型,如图所示.模型放到0.8 m 高的水平桌子上,最高点距离水平地面2 m ,右端出口水平.现让小球在最高点由静止释放,忽略阻力作用,为使小球飞得最远,右端出口距离桌面的高度应设计为( )A .0B .0.1 mC .0.2 mD .0.3 m答案 C解析 小球从最高点到右端出口,机械能守恒,有mg (H -h )=12m v 2,从右端出口飞出后,小球做平抛运动,有x =v t ,h =12gt 2,联立解得x =2(H -h )h ,根据数学知识可知,当H-h =h 时,x 最大,即h =1 m 时,小球飞得最远,此时右端出口距离桌面高度为Δh =1 m -0.8 m =0.2 m ,故C 正确.6.如图所示,M 、N 是两块挡板,挡板M 高h ′=10 m ,其上边缘与挡板N 的下边缘在同一水平面.从高h =15 m 的A 点以速度v 0水平抛出一小球(可视为质点),A 点与两挡板的水平距离分别为d 1=10 m ,d 2=20 m .N 板的上边缘高于A 点,若能使小球直接进入挡板M 的右边区域,则小球水平抛出的初速度v 0的大小可能是下列给出数据中的哪个(g 取10 m/s 2,空气阻力不计)( )A .8 m/sB .4 m/sC .15 m/sD .21 m/s答案 C解析 要让小球落到挡板M 的右边区域,下落的高度为Δh =h -h ′=5 m ,由t =2Δhg得t =1 s ,由d 1=v 01t ,d 2=v 02t ,得v 0的范围为10 m/s <v 0<20 m/s ,故C 正确,A 、B 、D 错误.7.套圈游戏是一项趣味活动,如图,某次游戏中,一小孩从距地面高0.45 m 处水平抛出半径为0.1 m 的圆环(圆环面始终水平),套住了距圆环前端水平距离为1.0 m 、高度为0.25 m 的竖直细圆筒.若重力加速度大小取g =10 m/s 2,忽略空气阻力,则小孩抛出圆环的初速度可能是( )A .4.3 m/sB .5.6 m/sC .6.5 m/sD .7.5 m/s答案 B解析 根据h 1-h 2=12gt 2得t =2(h 1-h 2)g=2(0.45-0.25)10s =0.2 s ,则平抛运动的最大速度v 1=x +2R t =1.0+2×0.10.2 m/s =6.0 m/s ,最小速度v 2=x t =1.00.2 m/s =5.0 m/s ,则5.0 m/s<v <6.0 m/s ,故选B.8.一阶梯如图所示,其中每级台阶的高度和宽度都是0.4 m ,一小球(可视为质点)以水平速度v 从图示位置飞出,不计空气阻力,g 取10 m/s 2,欲打在第4级台阶上,则v 的取值范围是( )A. 6 m/s<v ≤2 2 m/s B .2 2 m/s<v ≤3.5 m/s C. 2 m/s<v < 6 m/s D .2 m/s<v < 6 m/s 答案 A解析 若恰好打在第3级台阶的边缘,则有:3h =12gt 32,3l =v 3t 3,解得v 3= 6 m/s ,若恰好打在第4级台阶的边缘,则有4h =12gt 42,4l =v 4t 4,解得v 4=2 2 m/s ,所以打在第4级台阶上应满足的条件: 6 m/s<v ≤2 2 m/s ,A 正确.9.如图所示,窗子上、下沿间的高度H =1.6 m ,墙的厚度d =0.4 m ,某人在离墙壁距离L =1.4 m 、距窗子上沿h =0.2 m 处的P 点,将可视为质点的小物件以速度v 水平抛出,小物件直接穿过窗口并落在水平地面上,取g =10 m/s 2,不计空气阻力.则v 的取值范围是( )A .v >7 m/sB .v <2.3 m/sC .3 m/s <v <7 m/sD .2.3 m/s <v <3 m/s 答案 C解析 若小物件恰好经过窗口上沿,则有h =12gt 12,L =v 1t 1,解得v 1=7 m/s ;若小物件恰好经过窗口下沿,则有h +H =12gt 22,L +d =v 2t 2,解得v 2=3 m/s ,所以v 的取值范围是3 m/s<v <7 m/s ,故C 正确.10.(2023·湖北·期中)如图所示,边长为a 的正方体无盖盒子放置在水平地面上,O 为直线B ′A ′延长线上的一点,且与A ′的距离为a ,将小球(可视为质点)从O 点正上方距离2a 处以某一速度水平抛出,不计空气阻力,重力加速度为g 。

高一物理:平抛运动规律(两个推论、临界问题、类平抛运动)

高一物理:平抛运动规律(两个推论、临界问题、类平抛运动)

必考点16平抛运动规律(两个推论、临界问题、类平抛运动)题型一平抛运动的规律及应用如图所示,在同一竖直面内,小球a 、b 从高度不同的两点,分别以初速度v a 和v b 沿水平方向抛出,经过时间t a 和t b 后落到与两抛出点水平距离相等的P 点。

若不计空气阻力,下列关系式中正确的是()A .v a >v bB .t a >t bC .v a =v bD .t a <t b【解题技巧提炼】如图,以抛出点O 为坐标原点,以初速度v 0方向(水平方向)为x 轴正方向,竖直向下为y 轴正方向.1.飞行时间由t =2h g知,时间取决于下落高度h ,与初速度v 0无关。

2.水平射程x =v 0t =v 02h g ,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关。

3.落地速度v =v 2x +v 2y =v 20+2gh ,以θ表示落地速度与水平正方向间的夹角,有tan θ=v y v x =2gh v 0,落地速度与初速度v 0和下落高度h 有关。

题型二平抛运动规律(两个推论)如图所示,xOy 是平面直角坐标系,Ox 水平、Oy 竖直,一质点从O 点开始做平抛运动,P 点是轨迹上的一点.质点在P 点的速度大小为v ,方向沿该点所在轨迹的切线.M 点为P 点在Ox 轴上的投影,P 点速度方向的反向延长线与Ox 轴相交于Q 点.已知平抛的初速度为20m/s ,MP =20m ,重力加速度g 取10m/s 2,则下列说法正确的是A .QM 的长度为10mB .质点从O 到P 的运动时间为1sC .质点在P 点的速度v 大小为40m/sD .质点在P 点的速度与水平方向的夹角为45°【解题技巧提炼】1.平抛运动物体的速度变化量因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt 是相同的,方向恒为竖直向下,如图2所示.2.两个重要推论(1)做平抛运动的物体在任意时刻(任意位置)处,有tan θ=2tan α.推导:tan θ=v y v 0=gt v 0tan α=y x =gt 2v 0θ=2tan α(2)做平抛运动的物体在任意时刻的瞬时速度的反向延长线一定通过水平位移的中点,如图所示,即x B =x A 2.推导:tan θ=y A x A -x B tan θ=v y v 0=2y A xAx B =x A 2题型三平抛运动的临界、极值问题如图所示为足球球门,球门宽为L ,一个球员在球门中心正前方距离球门线s 处高高跃起,将足球顶入球门的左下方死角(图中P 点)。

物理高考专题 平抛运动与圆周运动组合中的双临界问题(解析版)

物理高考专题 平抛运动与圆周运动组合中的双临界问题(解析版)

尖子生的自我修养系列(一)曲线运动中的一个难点——双临界问题(细化题型)平抛运动和圆周运动是两种典型的曲线运动模型,均是高考的重点,两者巧妙地结合对学生的推理能力提出更高要求,成为高考的难点。

双临界问题能有效地考查学生的分析能力和创新能力,从而成为高考命题的重要素材。

下面分三类情况进行分析。

[例1] [多选](2020·将一锅水烧开,拿一块面团放在锅旁边较高处,用刀片飞快地削下一片片很薄的面片儿,面片便水平飞向锅里,若面团到锅上沿的竖直距离为0.8 m ,面团离锅上沿最近的水平距离为0.4 m ,锅的直径为0.4 m 。

若削出的面片能落入锅中,则面片的水平初速度可能是(g =10 m/s 2)( )A .0.8 m/sB .1.2 m/sC .1.8 m/sD .3.0 m/s【解析】水平飞出的面片发生的运动可看成平抛运动,根据平抛运动规律,水平方向:x =v 0t ①,竖直方向:y =12gt 2 ②,其中水平位移大小的范围是0.4 m≤x ≤0.8 m ,联立①②代入数据解得1 m/s≤v 0≤2 m/s ,故B 、C 项正确。

【答案】BC[方法规律] 解决平抛运动中双临界问题的一般思路(1)从题意中提取出重要的临界条件,如“恰好”“不大于”等关键词,准确理解其含义。

(2)作出草图,确定物体的临界位置,标注速度、高度、位移等临界值。

(3)在图中画出临界轨迹,运用平抛运动的规律进行解答。

[集训冲关]1.(2020·济南模拟)套圈游戏是一项很受欢迎的群众运动,要求每次从同一位置水平抛出圆环,套住与圆环前端水平距离为3 m 的20 cm 高的竖直细杆,即为获胜。

一身高1.7 m 的人从距地面1 m 高度水平抛出圆环,圆环半径为8 cm ,要想套住细杆,他水平抛出圆环的速度可能为(g 取10 m/s 2)( ) A .7.4 m/s B .7.8 m/s C .8.2 m/s D .8.6 m/s 【解析】选B 根据h 1-h 2=12gt 2得,t =2(h 1-h 2)g=2×(1.0-0.2)10s =0.4 s 。

微专题Ⅰ平抛运动的临界问题类平抛运动

微专题Ⅰ平抛运动的临界问题类平抛运动

微专题Ⅰ平抛运动的临界问题、类平抛运动知识点一平抛运动的临界问题1.与平抛运动相关的临界情况(1)有些题目中“刚好”“恰好”“正好”等字眼,明显表明题述的过程中存在临界点.(2)如题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述过程中存在着“起止点”,而这些“起止点”往往就是临界点.(3)若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述过程中存在着极值,这些极值也往往是临界点.2.分析平抛运动中的临界情况关键是确定临界轨迹.当受水平位移限制时,其临界轨迹为自抛出点到水平位移端点的一条抛物线;当受下落高度限制时,其临界轨迹为自抛出点到下落高度端点的一条抛物线,确定轨迹后再结合平抛运动的规律即可求解.[例题1](2023春•昌乐县期中)“套圈游戏”深受大家的喜爱,游戏者要站到区域线外将圆圈水平抛出,落地时套中的物体即为“胜利品”。

某同学在一次“套圈”游戏中,从P点以某一速度水平抛出的圆圈落到了物体左边,如图。

为了套中该物体,该同学做了如下调整,则下列方式中一定套不中的是(忽略空气阻力)()A.从P点正上方以原速度水平抛出B.从P点正前方以原速度水平抛出C.从P点增大速度水平抛出D.从P点正下方减小速度水平抛出【解答】解:A、设圆圈平抛运动下落的高度为h,水平位移为x,初速度为v0,竖直方向为自由落体运动,有ℎ=12gt2,解得下落时间为t=√2ℎg,水平为匀速直线运动,所以水平位移为x=v0t=v0√2ℎg,圆圈落到了物体左边,说明圆圈的水平位移偏小,若从P点正上方以原速度水平抛出,h增大,由t=√2ℎg可知时间增大,由x=v0t=v0√2ℎg知,水平位移增大,可能套住物体,故A不符合题意;B、若P点正前方以原速度水平抛出,则高度不变,运动时间不变,根据x=v0t=v0√2ℎg,水平位移不变,落地点右移,可能套住物体,故B不符合题意;C、若P点位置不变,增大速度水平抛出,v0增大,由x=v0t=v0√2ℎg知,水平位移增大,可能套住物体,故C 不符合题意;D 、若P 点正下方,减小速度水平抛出,h 和v 0都减小,由t =√2ℎg ,x =v 0t =v 0√2ℎg知,水平位移减小,圆圈还落到物体左边,故D 符合题意。

平抛运动典型问题

平抛运动典型问题

a

b

c

y gT
d
2
xvt
0
9、水平抛出的小球1s内、2s内、3s内… 的 。 竖直位移之比是 1:4:9:16 …
X1
h 4h 9h
O
A
X2
X3
X4
x
B
C
16h
D
y

【例1】如图所示,两斜面的倾角分别为
370和530.在顶点把两个小球以同大小的初 速度分别向左右水平抛出,小球都落到斜 面上,若不计空气阻力,则A、B两小球 运动的时间之比为( )
g
gy
典型问题4 类平抛运动
物体所做的运动不是真正的平抛运动,而是此运动可 看成某一方向的匀速直线运动和垂直于该方向的匀加速直 线运动。处理方法与平抛类似。
7.光滑斜面倾角为θ,长为L,上端一小球沿斜面水平方向以速 度v0抛出,如图,求小球滑到底端时,水平方向位移s有多大?
解析:沿斜面向下
1 2 1 L at ( g sin )t 2 2 2
2. 平抛运动: 抛体运动的初速度v0 沿水平方向 。
典型问题1、平抛运动的临界问题 1.如图,排球场总长18m,设网的高度为2m,运动员站在离网3m 远的线上正对网前竖直跳起把球水平击出.(g=10m/s2). (1)设击球点的高度为2.5m,问球被水平击出时的速度在什么范 围内才能使球既不触网也不出界? (2)若击球点的高度小于某个值,那么无论球被水平击出的速度 多大,球不是触网就是出界,试求此高度?
甲乙丙三小球分别位于如图所示的竖直平面内甲乙在同一条竖直线上甲丙在同一条水平线上水平面上的p点在丙的正下方在同一时刻甲乙丙开始运动甲以水平速度v0平抛乙以水平速度v0沿水平面向右做匀速直线运动丙做自由落体运动

平抛运动的临界和极值问题

平抛运动的临界和极值问题

平抛运动的临界和极值问题平抛运动是物理学中一个重要的运动形式,涉及到许多临界和极值问题。

平抛运动是指一个物体在水平方向上以一定的速度进行抛射,同时在竖直方向上受到重力的作用。

根据初始速度和发射角度的不同,我们可以分析出平抛运动的临界和极值问题。

首先,我们来讨论平抛运动的临界问题。

临界问题指的是物体抛射时的最大或最小条件。

在平抛运动中,当物体抛射的角度与速度达到一定数值时,可以达到最远的水平距离。

这个临界角度被称为最大射程角,对应的速度称为最大射程速度。

根据物理学的公式推导,我们可以得到最大射程角的正切值等于加速度由竖直向下变为零时的时间(即物体上抛到最高点的时间)。

而最大射程速度则由最大射程角与重力加速度确定。

通过计算和实验,我们可以得到最大射程角和最大射程速度的具体数值。

然后,我们转向讨论平抛运动的极值问题。

极值问题指的是物体在平抛运动过程中出现的最高点和最远点。

对于最高点问题,我们称为极大值,物体上抛到达最高点时速度为零,此时只受重力加速度的作用,该高度被称为最大抛高。

通过应用基本物理公式,我们可以计算出物体抛高与初始速度、发射角度和重力加速度的关系。

对于最远点问题,我们称为极小值,物体水平运动距离的极小值点就是物体的最远点。

通过计算最远点的水平距离,我们可以得到相应的极小值。

总结来说,平抛运动的临界和极值问题是通过运动学公式和物理原理来解决的。

通过计算和实验,我们可以得到平抛运动中最远距离、最大抛高以及相关极大值和极小值的具体数值。

这些问题的解决在理论上和实际应用中都有重要的意义,对于设计抛射物体的轨迹和优化射击等问题都有深远影响。

微专题19 平抛运动的临界问题

微专题19  平抛运动的临界问题

微专题19 平抛运动的临界问题【核心方法点拨】涉及平抛运动的临界问题关键是找出“恰好”“刚好”对应的状态物理量关系。

【微专题训练】(2016·宁夏银川高三质检)如图所示为四分之一圆柱体OAB 的竖直截面,半径为R ,在B 点上方的C 点水平抛出一个小球,小球轨迹恰好在D 点与圆柱体相切,OD 与OB 的夹角为60°,则C 点到B 点的距离为( )A .R B.R 2 C.3R 4 D.R 4【解析】设小球平抛运动的初速度为v 0,将小球在D 点的速度沿竖直方向和水平方向分解,则有v y v 0=tan 60°,得gt v 0=3。

小球平抛运动的水平位移x =R sin 60°,x =v 0t ,解得v 20=Rg2,v 2y =3Rg 2。

设平抛运动的竖直位移为y ,v 2y=2gy ,解得y =3R 4,则BC =y -(R -R cos 60°)=R 4,D 选项正确。

【答案】D(2014·上海)如图所示,宽为L 的竖直障碍物上开有间距d =0.6 m 的矩形孔,其下沿离地高h =1.2 m .离地高H =2 m 的质点与障碍物相距x ,在障碍物以v 0=4 m/s 匀速向左运动的同时,质点自由下落,为使质点能穿过该孔,L 的最大值为______m ;若L =0.6 m ,x 的取值范围是________m .(取g =10 m/s 2)【解析】以障碍物为参考系,相当于质点以v 0的初速度,向右平抛,当L 最大时,从抛出点经过孔的左上边界飞到孔的右下边界时,L 最大,y 1=H -d -h =12gt 21,x 1=v 0t 1;y 2=H -h =12gt 22,x 2=v 0t 2;解得t 1=0.2 s ,t 2=0.4 s ,x 1=0.8 m ,x 2=1.6 m ,L =x 2-x 1=0.8 m ;从孔的左上边界飞入小孔的临界的值x ′1=v 0t 1=0.8 m ,x ′2+0.6 m =v 0t 2,解得x ′2=1 m ,知0.8 m≤x ≤1 m.【答案】0.8 0.8 m≤x ≤1 m(2015·新课标全国Ⅰ)一带有乒乓球发射机的乒乓球台如图所示.水平台面的长和宽分别为L 1和L 2,中间球网高度为h .发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h .不计空气的作用,重力加速度大小为g .若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( )A.L 12g6h <v <L 1g6h B.L 14gh <v < (4L 21+L 22)g6h C.L 12g 6h <v <12 (4L 21+L 22)g6hD.L 14g h <v <12(4L 21+L 22)g6h【解析】发射机无论向哪个方向水平发射,乒乓球都做平抛运动.当速度v 最小时,球沿中线恰好过网,有: 3h -h =gt 212①L 12=v 1t 1② 联立①②得v 1=L 14g h当速度最大时,球斜向右侧台面两个角发射,有 (L 22)2+L 21=v 2t 2③ 3h =12gt 22④联立③④得v 2=12(4L 21+L 22)g6h所以使乒乓球落到球网右侧台面上,v 的最大取值范围为L 14g h <v <12(4L 21+L 22)g6h,选项D 正确. 【答案】D(河北省衡水中学2014届高三上学期三调)“套圈”是一项老少皆宜的体育运动项目.如图所示,水平地面上固定着3根直杆1、2、3,直杆的粗细不计,高度均为0.1 m ,相邻两直杆之间的距离为0.3 m.比赛时,运动员将内圆直径为0.2 m的环沿水平方向抛出,刚抛出时环平面距地面的高度为1.35 m,环的中心与直杆1的水平距离为1 m.假设直杆与环的中心位于同一竖直面,且运动中环心始终在该平面上,环面在空中保持水平,忽略空气阻力的影响,g取10 m/s2.以下说法正确的是()A.如果能够套中直杆,环抛出时的水平初速度不能小于1.8 m/sB.如果能够套中第2根直杆,环抛出时的水平初速度范围在2.4 m/s到2.8 m/s之间C.如以2.3 m/s的水平初速度将环抛出,就可以套中第1根直杆D.如环抛出的水平速度大于3.3 m/s,就不能套中第3根直杆【解析】由平抛运动可得h=12gt2、L-r=vt,解得v=1.8 m/s,故选项A正确;如果能够套中第2根直杆,水平位移在1.2~1.4 m之间,水平初速度范围在2.4 m/s到2.8 m/s之间,故选项B正确;如果能够套中第1根直杆,水平位移在0.9~1.1 m之间,水平初速度范围在1.8 m/s到2.2 m/s之间,故选项C错误;如果能够套中第3根直杆,水平位移在1.5~1.7 m 之间,水平初速度范围在3 m/s到3.4 m/s之间,故选项D错误.【答案】AB(多选)如图所示,在水平地面上的A点以速度v1与地面成θ角射出一弹丸,恰好以速度v2垂直穿入竖直壁上的小孔B,下列说法正确的是(不计空气阻力)()A.在B点以与v2大小相等的速度,与v2方向相反射出弹丸,它必定落在地面上的A点B.在B点以与v1大小相等的速度,与v2方向相反射出弹丸,它必定落在地面上的A点C.在B点以与v1大小相等的速度,与v2方向相反射出弹丸,它必定落在地面上A点的左侧D.在B点以与v1大小相等的速度,与v2方向相反射出弹丸,它必定落在地面上A点的右侧【解析】以速度v1与地面成θ角射出一弹丸,恰好以速度v2垂直穿入竖直壁上的小孔B,说明弹丸在B点的竖直速度为零,v2=v1cos θ,根据“逆向”思维:在B点以与v2大小相等方向相反的速度射出弹丸,它必落在地面上的A点,A正确;在B点以与v1大小相等的速度,与v2方向相反射出弹丸,由于v1>v2,弹丸在空中运动的时间不变,所以它必定落在地面上A点的左侧,C正确,B、D错误.【答案】AC(2016·江西八校联考)某电视台娱乐节目进行了一项抛球入筐游戏,如图所示,该游戏球筐(筐壁厚度忽略不计)紧靠竖直墙壁放在水平地面上,球筐高度和球筐左侧壁离墙壁的距离均为L 。

高中物理专题复习---平抛运动的临界问题

高中物理专题复习---平抛运动的临界问题

微专题19 平抛运动的临界问题【核心方法点拨】涉及平抛运动的临界问题关键是找出“恰好”“刚好”对应的状态物理量关系。

【微专题训练】(2016·宁夏银川高三质检)如图所示为四分之一圆柱体OAB 的竖直截面,半径为R ,在B 点上方的C 点水平抛出一个小球,小球轨迹恰好在D 点与圆柱体相切,OD 与OB 的夹角为60°,则C 点到B 点的距离为( )A .R B.R 2 C.3R 4 D.R 4【解析】设小球平抛运动的初速度为v 0,将小球在D 点的速度沿竖直方向和水平方向分解,则有v y v 0=tan 60°,得gt v 0=3。

小球平抛运动的水平位移x =R sin 60°,x =v 0t ,解得v 20=Rg2,v 2y =3Rg 2。

设平抛运动的竖直位移为y ,v 2y=2gy ,解得y =3R 4,则BC =y -(R -R cos 60°)=R 4,D 选项正确。

【答案】D(2014·上海)如图所示,宽为L 的竖直障碍物上开有间距d =0.6 m 的矩形孔,其下沿离地高h =1.2 m .离地高H =2 m 的质点与障碍物相距x ,在障碍物以v 0=4 m/s 匀速向左运动的同时,质点自由下落,为使质点能穿过该孔,L 的最大值为______m ;若L =0.6 m ,x 的取值范围是________m .(取g =10 m/s 2)【解析】以障碍物为参考系,相当于质点以v 0的初速度,向右平抛,当L 最大时,从抛出点经过孔的左上边界飞到孔的右下边界时,L 最大,y 1=H -d -h =12gt 21,x 1=v 0t 1;y 2=H -h =12gt 22,x 2=v 0t 2;解得t 1=0.2 s ,t 2=0.4 s ,x 1=0.8 m ,x 2=1.6 m ,L =x 2-x 1=0.8 m ;从孔的左上边界飞入小孔的临界的值x ′1=v 0t 1=0.8 m ,x ′2+0.6 m =v 0t 2,解得x ′2=1 m ,知0.8 m≤x ≤1 m.【答案】0.8 0.8 m≤x ≤1 m(2015·新课标全国Ⅰ)一带有乒乓球发射机的乒乓球台如图所示.水平台面的长和宽分别为L 1和L 2,中间球网高度为h .发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h .不计空气的作用,重力加速度大小为g .若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( )A.L 12g6h <v <L 1g6h B.L 14gh <v < (4L 21+L 22)g6h C.L 12g 6h <v <12 (4L 21+L 22)g6hD.L 14g h <v <12(4L 21+L 22)g6h【解析】发射机无论向哪个方向水平发射,乒乓球都做平抛运动.当速度v 最小时,球沿中线恰好过网,有: 3h -h =gt 212①L 12=v 1t 1② 联立①②得v 1=L 14g h当速度最大时,球斜向右侧台面两个角发射,有 (L 22)2+L 21=v 2t 2③ 3h =12gt 22④联立③④得v 2=12(4L 21+L 22)g6h所以使乒乓球落到球网右侧台面上,v 的最大取值范围为L 14g h <v <12(4L 21+L 22)g6h,选项D 正确. 【答案】D(河北省衡水中学2014届高三上学期三调)“套圈”是一项老少皆宜的体育运动项目.如图所示,水平地面上固定着3根直杆1、2、3,直杆的粗细不计,高度均为0.1 m ,相邻两直杆之间的距离为0.3 m.比赛时,运动员将内圆直径为0.2 m的环沿水平方向抛出,刚抛出时环平面距地面的高度为1.35 m,环的中心与直杆1的水平距离为1 m.假设直杆与环的中心位于同一竖直面,且运动中环心始终在该平面上,环面在空中保持水平,忽略空气阻力的影响,g取10 m/s2.以下说法正确的是()A.如果能够套中直杆,环抛出时的水平初速度不能小于1.8 m/sB.如果能够套中第2根直杆,环抛出时的水平初速度范围在2.4 m/s到2.8 m/s之间C.如以2.3 m/s的水平初速度将环抛出,就可以套中第1根直杆D.如环抛出的水平速度大于3.3 m/s,就不能套中第3根直杆【解析】由平抛运动可得h=12gt2、L-r=vt,解得v=1.8 m/s,故选项A正确;如果能够套中第2根直杆,水平位移在1.2~1.4 m之间,水平初速度范围在2.4 m/s到2.8 m/s之间,故选项B正确;如果能够套中第1根直杆,水平位移在0.9~1.1 m之间,水平初速度范围在1.8 m/s到2.2 m/s之间,故选项C错误;如果能够套中第3根直杆,水平位移在1.5~1.7 m 之间,水平初速度范围在3 m/s到3.4 m/s之间,故选项D错误.【答案】AB(多选)如图所示,在水平地面上的A点以速度v1与地面成θ角射出一弹丸,恰好以速度v2垂直穿入竖直壁上的小孔B,下列说法正确的是(不计空气阻力)()A.在B点以与v2大小相等的速度,与v2方向相反射出弹丸,它必定落在地面上的A点B.在B点以与v1大小相等的速度,与v2方向相反射出弹丸,它必定落在地面上的A点C.在B点以与v1大小相等的速度,与v2方向相反射出弹丸,它必定落在地面上A点的左侧D.在B点以与v1大小相等的速度,与v2方向相反射出弹丸,它必定落在地面上A点的右侧【解析】以速度v1与地面成θ角射出一弹丸,恰好以速度v2垂直穿入竖直壁上的小孔B,说明弹丸在B点的竖直速度为零,v2=v1cos θ,根据“逆向”思维:在B点以与v2大小相等方向相反的速度射出弹丸,它必落在地面上的A点,A正确;在B点以与v1大小相等的速度,与v2方向相反射出弹丸,由于v1>v2,弹丸在空中运动的时间不变,所以它必定落在地面上A点的左侧,C正确,B、D错误.【答案】AC(2016·江西八校联考)某电视台娱乐节目进行了一项抛球入筐游戏,如图所示,该游戏球筐(筐壁厚度忽略不计)紧靠竖直墙壁放在水平地面上,球筐高度和球筐左侧壁离墙壁的距离均为L 。

高中物理平抛运动临界问题、相遇问题、类平抛运和斜抛运动及参考答案

高中物理平抛运动临界问题、相遇问题、类平抛运和斜抛运动及参考答案

平抛运动临界问题、相遇问题、类平抛运和斜抛运动导练目标导练内容目标1平抛运动临界问题目标2平抛运动中的相遇问题目标3类平抛运动目标4斜抛运动【知识导学与典例导练】一、平抛运动临界问题擦网压线既擦网又压线由H−h=12gt2=12gx1v12得:v1=x1g2H−h由H=12gt2=12gx1+x2v22得:v2=x1+x2g2H由H−h=12gt2=12gx1v02和H=12gt2=12gx1+x2v02得:H−hH=x21x1+x221某天,小陈同学放学经过一座石拱桥,他在桥顶A处无意中把一颗小石子水平沿桥面向前踢出,他惊讶地发现小石子竟然几乎贴着桥面一直飞到桥的底端D处,但是又始终没有与桥面接触。

他一下子来了兴趣,跑上跑下量出了桥顶高OA=3.2m,桥顶到桥底的水平距离OD=6.4m。

这时小陈起一颗小石,在A 处,试着水平抛出小石头,欲击中桥面上两块石板的接缝B处(B点的正下方B′是OD的中点),小陈目测小石头抛出点离A点高度为1.65m,下列说法正确的是()A.石拱桥为圆弧形石拱桥B.小陈踢出的小石头速度约为6.4m/sC.小陈抛出的小石头速度约为4.6m/sD.先后两颗小石子在空中的运动时间之比为2:1二、平抛运动中的相遇问题平抛与自由落体相遇水平位移:l=vt空中相遇:t<2hg平抛与平抛相遇(1)若等高(h1=h2),两球同时抛;(2)若不等高(h1>h2)两球不同时抛,甲球先抛;(3)位移关系:x1+x2=L(1)A球先抛;(2)t A>t B;(3)v0A<v0B(1)A、B两球同时抛;(2)t A=t B;(3)v0A>v0B平抛与竖直上抛相遇(1)L=v1t;(2)12gt2+v2t−12gt2=h⇒t=hv2;(3)若在S2球上升时两球相遇,临界条件:t<v2g,即:hv2<v2g,解得:v2>gh;(4)若在S2球下降时两球相遇,临界条件:v2g<t< 2v2g,即v2g<hv2<2v2g,解得:gh2<v2<gh平抛与斜上抛相遇(1)v1t+v2cosθ⋅t=L;(2)12gt2+v2sinθt−12gt2=h⇒t=hv2sinθ;(3)若在S2球上升时两球相遇,临界条件:t<v 2sin θg ,即:hv 2sin θ<v 2sin θg ,解得:v 2>ghsin θ;(4)若在S 2球下降时两球相遇,临界条件:v 2sin θg <t <2v 2sin θg,即v 2sin θg <h v 2sin θ<2v 2sin θg ,解得:gh2sin θ<v 2<gh sin θ1如图所示,相距l 的两小球A 、B 位于同一高度h (l 、h 均为定值)。

平抛运动的临界问题

平抛运动的临界问题

平抛运动的临界问题平抛运动的临界问题,解决这类问题有三点: 1.是明确运动平抛运动的基本性质公式; 基本规律及公式:① 速度:0v v x =,gt v y =合速度 22y x v v v +=方向 :tan θ=oxy v gt v v =②位移x =v o t y =221gt 合位移大小:s =22y x + 方向:tan α=t v g x y o ⋅=2 ③时间由y =221gt 得t =xy2(由下落的高度y 决定) ④竖直方向自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立。

2.是确定临界状态;3.是确定临界轨迹——在轨迹示意图寻找出几何关系。

模型讲解:(排球不触网且不越界问题)模型简化(运动简化):将排球看成质点,把排球在空中的运动看成平抛运动。

问题:标准排球场场总长为l 1=18m ,宽l 2=9m 女排网高h=如上图所示。

若运动员在3m 线上方水平击球,则认为排球做类平抛运动。

分析方法:设击球高度为H ,击球后球的速度水平为v 0。

当击球点高度为H 一定时,击球速度为υ1时恰好触网;击球速度为υ2时恰好出界。

当击球点高度为h 时,击球速度为υ时,恰好不会触网,恰好不会出界,其运动轨迹分别如下图 中的(a )、(b )、(c )所示。

如图(a )、(b)当击球点高度为H 一定时,要不越界,需飞行的水平距离m m l l 12321=+〈 由于时,不越界。

因此,m gHv l gt H t v l 12221020〈===结论:① 若H 一定时,则v 0越大越易越界,要不越界,需H ggHv 2122120=<② 若v 0一定时,则H 越大越易越界,越不越界,需00022722144212v gv g v g H ==< 如图(c )要不触网,则需 竖直高度:221gt h H >- 水平距离:m t v 30=以上二式联立得:0229v t h H >-结论:1) 若H 一定(()一定h H -)时,则v 0越小,越易触网。

专题22 平抛运动的图像问题、相遇问题、临界问题、与圆周运动结合问题(解析版)

专题22 平抛运动的图像问题、相遇问题、临界问题、与圆周运动结合问题(解析版)

2023届高三物理一轮复习重点热点难点专题特训专题22 平抛运动的图像问题、相遇问题、临界问题、与圆周运动结合问题特训目标特训内容目标1 平抛运动的图像问题(1T—4T)目标2 平抛运动的相遇问题(5T—8T)目标3 平抛运动的临界问题(9T—12T)目标4 平抛运动与周期性圆周运动相结合问题(13T—16T)一、平抛运动的图像问题1.如图,在倾角为 的斜面顶端,将小球以v0的初速度水平向左抛出,经过一定时间小球发生第一次撞击。

自小球抛出至第一次撞击过程中小球水平方向的位移为x,忽略空气阻力,则下列图像正确的是()A.B.C .D .【答案】D【详解】如果小球落在斜面上,小球位移方向与水平方向夹角为α,则有0tan 2y gt x v α==则水平位移200002tan v x v t v v gα==∝小球落水平面上,小球飞行时间恒定,水平位移正比于0v ,故D 正确,ABC 错误。

故选D 。

2.如图甲所示,挡板OA 与水平面的夹角为θ,小球从O 点的正上方高度为H 的P 点以水平速度0v 水平抛出,落到斜面时,小球的位移与斜面垂直;让挡板绕定的O 点转动,改变挡板的倾角θ,小球平抛运动的初速度0v 也改变,每次平抛运动,使小球的位移与斜面总垂直,22011tan v θ-函数关系图像如图乙所示,重力加速度210m/s g =,下列说法正确的是( )A .图乙的函数关系图像对应的方程式220111tan 2gH v θ=⨯+ B .图乙中a 的数值2-C .当图乙中1b =,H 的值为0.1mD .当45θ=︒,图乙中1b =2【答案】D 【详解】A .设平抛运动的时间为t ,如图所示把平抛运动的位移分别沿水平和竖直方向分解,由几何关系02tan 12v tgt θ=解得0an 2t v t g θ=根据几何关系有201tan 2H gt v t θ-=⨯联立整理220111tan 2gH v θ=⨯-故A 错误; B .结合图乙22011tan v θ-函数关系图像可得1a =-故B 错误; C .由图乙可得22011tan v θ-函数关系图像的斜率2a gH kb =-=又有1a =-,1b =可得0.2m H =故C 错误;D .当45θ︒=,0.2m H =根据220111tan 2gH v θ=⨯-解得02v =根据0an 2t v t g θ=解得2t =故D 正确。

平抛物体的运动临界问题

平抛物体的运动临界问题

平抛物体的运动临界问题一、【模型】:排球不触网且不越界问题模型简化(运动简化):将排球看成质点,把排球在空中的 运动看成平抛运动。

问题:标准排球场: 场总长为I 1=18m 宽12 = 9m 女排网高 h=2.24m 如上图所示。

若运动员在3m 线上方水平击球,则认为排 球做类平抛运动。

竖直高度:H-hA 討 水平距离:v o t = 3m3 in 18n 以上二式联立得:H - h>/2v o结论:分析方法:设击球高度为H,击球后球的速度水平为v o 。

当击球点高度为H 一定时,击 球速度为U 1时恰好触网;击球速度为 U 2时恰好出界。

当击球点高度为 H 寸,击球速度为 U 时,示。

①若H 一定((H -h 一定)时,则V 0越小,越易触网。

要不触网,需vo讥 2H —h )U 1 恰好不会触网, 恰好不会出界,其运动轨迹分别如下图 中的(a )、(b )、(c )所②若v o —定时,则H 越小,越易触网。

要不触网,需H A h +単2v o3、总结论:1IIIHJ\IIIILh \11\MlIII\ 7 ■ ---------------------- *仙)①当H 一定时,不触网也不越界的条件是:1、不出界: 如图(a )、(b )当击球点高度为 由于 I =v o t LI 1 + 2H=艸 气\ A■ .r----------- X3』宀5华Y 2H -h )J 2H(即当H 一定时,速度太大太小均不行, g太小会触网,太大又易越界)若v o—定时,且v o在3占暑h vo < 12之外H —定时,要不越界,需飞行的水平距离 I 《匕+ 3m=12m2即v 0 >则无论初速度多大,结果是或越界或触网。

因此,I =v 0 I 2H <12m 时,不越界。

} g 简言之:^―V 2H> (也即H 晋h ]时,无论初速度多大,结果是或越界或触网。

结论: ① 若H —定时,则Vo 越大越易越界,要不越界,需 V o二、【例题分析】【例1】如图所示,排球场总长为 对网前竖直向上跳起把球垂直于网水平击出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平抛运动中临界问题的分析
1、如图所示,在水平路面上一运动员驾驶摩托车跨越壕沟,壕沟
两侧的高度差为0.8 m ,水平距离为8 m ,则运动员跨越壕沟的 初速度至少为(取g =10 m/s 2)
( )
A .0.5 m/s
B .2 m/s
C .10 m/s
D .20 m/s
答案 D
解析 运动员做平抛运动的时间t =
2Δh g =0.4 s ,v =x t =8
0.4
m/s =20 m/s. 2、《愤怒的小鸟》是一款时下非常流行的游戏,游戏中的故事也相当有趣,如图甲所示,为
了报复偷走鸟蛋的肥猪们,鸟儿以自己的身体为武器,如炮弹般弹射出去攻击肥猪们的堡垒.某班的同学们根据自己所学的物理知识进行假设:小鸟被弹弓沿水平方向弹出,如图乙所示,若h 1=0.8 m ,l 1=2 m ,h 2=2.4 m ,l 2=1 m ,小鸟飞出后能否直接打中肥猪的堡垒?请用计算结果进行说明.(取重力加速度g =10 m/s 2)
答案 不能
解析 (1)设小鸟以v 0弹出后能直接击中堡垒,则 ⎩⎪⎨⎪⎧
h 1+h 2=12
gt 2l 1+l 2=v 0t
t =
2(h 1+h 2)
g
= 2×(0.8+2.4)
10
s =0.8 s
所以v 0=l 1+l 2t =2+1
0.8 m/s =3.75 m/s
设在台面的草地上的水平射程为x ,则
⎩⎪⎨⎪⎧
x =v 0t 1h 1=12gt 21
所以x =v 0
2h 1
g
=1.5 m<l 1 可见小鸟不能直接击中堡垒.
3、乒乓球在我国有广泛的群众基础,并有“国球”的美誉,现
讨论乒乓球发球问题,已知球台长L ,网高h ,若球在球台 边缘O 点正上方某高度处,以一定的垂直球网的水平速度
发出,如图所示,球恰好在最高点时刚好越过球网.假设乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力,则根据以上信息可以求出(设重力加速度为g )
( )
A .球的初速度大小
B .发球时的高度
C .球从发出到第一次落在球台上的时间
D .球从发出到被对方运动员接住的时间 答案 ABC
解析 根据题意分析可知,乒乓球在球台上的运动轨迹具有重复和对称性,故发球时的高度等于h ;从发球到运动到P 1点的水平位移等于1
4L ,所以可以求出球的初速度大小,
也可以求出球从发出到第一次落在球台上的时间.由于对方运动员接球的位置未知,所以无法求出球从发出到被对方运动员接住的时间,故本题选A 、B 、C.
4、2011年6月4日,李娜获得法网单打冠军,实现了大满贯这一梦想,如图所示为李娜将球在边界A 处正上方B 点水平向右击出,球恰好过网C 落在D 处(不计空气阻力)的示意图,已知AB =h 1,AC =x ,CD =x
2
,网高为h 2,下列说法中正确的是( )
A .击球点高度h 1与球网的高度h 2之间的关系为h 1=1.8h 2
B .若保持击球高度不变,球的初速度v 0只要不大于x 2gh 1
h 1
,一定落在对方界内
C .任意降低击球高度(仍高于h 2),只要击球初速度合适(球仍水平击出),球一定能落在对方界内
D .任意增加击球高度,只要击球初速度合适(球仍水平击出),球一定能落在对方界内 答案 AD
解析 由平抛运动规律可知h 1=12gt 21,1.5x =v 0t 1,h 1-h 2=12
gt 2
2,x =v 0t 2,得h 1=1.8h 2,
A正确;若保持击球高度不变,球的初速度v0较小时,球可能会触网,B错误;任意降低击球高度,只要初速度合适,球可能不会触网,但球会出界,C错误;任意增加击球高度,只要击球初速度合适,使球的水平位移小于2x,一定能落在对方界内,D正确.5、如图所示,水平屋顶高H=5 m,围墙高h=3.2 m,围墙到房子
的水平距离L=3 m,围墙外马路宽x=10 m,为使小球从屋顶水平飞出
落在围墙外的马路上,求小球离开屋顶时的速度v的大小范围.(g取
10 m/s2) 图14
解析若v太大,小球落在马路外边,因此,要使球落在马路上,v的最大值v max为球落在马路最右侧A点时的平抛初速度,如图所示,小球做平抛运动,设运动时间为t1.
则小球的水平位移:L+x=v max t1,小球的竖直位移:H=1
2gt 2
1解以上两式得
v max=(L+x)
g
2H
=13 m/s.
若v太小,小球被墙挡住,因此,球不能落在马路上,v的最小值v min为球恰好越过围墙的最高点P落在马路上B点时的平抛初速度,设小球运动到P点所需时间为t2,则此过程中小球的水平位移:L=v min t2
小球的竖直方向位移:H-h=1
2gt 2
2
解以上两式得v min=L g
2(H-h)
=5 m/s
因此v0的范围是v min≤v≤v max,即5 m/s≤v≤13 m/s.
答案 5 m/s≤v≤13 m/s
说明:
1.本题使用的是极限分析法,v0不能太大,否则小球将落在马路外边;v0又不能太小,否则被围墙挡住而不能落在马路上.因而只要分析落在马路上的两个临界状态,即可解得所求的范围.
2.从解答中可以看到,解题过程中画出示意图的重要性,它既可以使抽象的物理
情境变得直观,也可以使隐藏于问题深处的条件显露无遗.小球落在墙外的马路上,其速度最大值所对应的落点位于马路的外侧边缘,而其速度最小值所对应的落点却不是马路的内侧边缘,而是围墙的最高点P,这一隐含的条件只有在示意图中才能清楚地显露出来.。

相关文档
最新文档