第四章双像立体测图基础与立体测图

合集下载

摄影测量学基础第4章 立体观测与模拟摄影测量

摄影测量学基础第4章 立体观测与模拟摄影测量

N2
相应的模型点的投影重合,取N1。
2)以N1为中心旋转图底,使对角线 上的另一控制点N4的模型点的投影
N3
N4
落在相应两控制点N1 N4的连线上。
3)调整模型比例尺。沿投影基线方向移动一 个投影器,改变投影基线的长度,直到两模型 点的投影正好与图底上相应控制点重合。
3. 模型置平
1)任取一点如N1为高程起始点,调整高程起始 读数,使N1的高程读数等于实测高程。 2)用测标立体切准N2、 N3两点,读出相应的高 程读数,并计算出相对N1的高程差。
3、零立体效应
将正立体情况下的两张像片,在各自 的平面内按同一方向旋转90°,使像片上 纵横坐标互换了方向。像片上原来的纵坐 标y轴转到与基线平行,此时生理视差变为 像片的y方向的视差。
零立体效应是基于人眼测量左右视差 的精度高于上下视差,将上下视差转换成 左右视差,以提高观测精度。
这种立体视觉,称为零立体效应。
立体镜的主要作用是使得一只眼睛能清晰地只看 一张像片的影像。
桥式立体镜:简单但 观察的范围小
可以观察23—30cm边长的大像幅立体像对
反光立体镜:用两条分开的观测光路将 来自左右像片的光线分别传送到观察者的左 右眼睛中,每条观测光路由物镜、目镜和其 他光学装置组成。相比扩大像片间距和放大 像幅的作用,其立体观测效果更好。
§4.2 立体像对
1、立体像对的定义
由不同摄站获取的,具 有一定影像重叠的两张像
片。
立体摄影测量(双像测图) 也就是以立体像对为测量 单元的
o1 a1 S1
o2 a2 S2
A
2、立体像对的分类
1)航摄立体像对:航摄仪沿航线定时启动快门 拍摄而成;主要介绍。要求相邻像片的航向重叠 60%以上,无人机搭载的数码相机拍摄的像对可 达80%重叠度。

第4章 双像立体测图原理与立体测图

第4章 双像立体测图原理与立体测图

o a
1
1
n
1
B
W
A
n
2 2
o a 2 S
2
P
2
J
2
S1
A
P J
1 1
o a
1
1
n
1
B
n
2 2
o a 2P2S来自2J2
S1
W
A
A
通过像底点的核面,称为垂核面。因为左右像片的底点与摄影 基线B位于同一铅垂面内,所以一个像对只有一个垂核面。垂
核面与像片面的交线称为垂核线。
§4-2立体像对与立体测图原理
B
的。
②两眼各看一张像片,即必须分像。 ③必须使同名像点的连线与眼基线平 行,以保证两视线 内。 在同一个视平面
P1 OL BL C L AL a1 c 1
C
b1 c2
a2 OR
b2 P2
④比例尺基本一致(比例尺的差异小
于比例尺的16%)
BR
CR AR
§4-1双像立体测图原理与立体测图
三、立体观察与立体量测 直接对像对进行目视观察时,立体观察条件中, 最难满足的是? 1.立体观察方法
ZT
A
YT
OT
XT
从方程个数 来讲,必须 要至少3个 方程。
复 习 Review
z S
y
x
y
a o
x
ZT
A
YT
从方程个数 来讲,有4 个方程,可 以解算
OT
XT
§4-2立体像对与立体测图原理
航向重叠60%
§4-2立体像对与立体测图原理
1、立体像对的定义(Stereo Pair)
由不同摄站获取的,具有一定影像重叠的两张像片。

第四章 双向立体测图基础与立体测图

第四章  双向立体测图基础与立体测图
立体摄影测量(双向立体测图)是利用一个立体像片对,在恢复它们内外方位元素后,重建与地面相似的几何模型,并对该模型进行测量的一种摄影测量方法。
几何模型:根据摄影过程的几何反转原理,恢复了立体像对的内方位和相对方位后,所有同名光线成对相交,由无数同名光线相交交点构成的与实地相似的几何表面。
重建立体模型的过程:1恢复像片对的内方位元素。2恢复像片对的外方位元素。(1找出两张像片位置的数据,称这些数据为像片对的相对定向元素,形成几何模型;2找出恢复该模型大小与空间方位的的数据,即绝对定向元素。)
立体观察方法:1立体镜观察法2双目镜观测光法立体观察。
立体摄影测量也称双像测图,是由两个相邻摄站所摄取的具有一定重叠度的一对像片对为量测单元。立体相对的特殊点线面:两摄影中心连线称摄影基线,地面上任一点在左右像片上的构像称同名像点,通过摄影基线与地面上任一点所做的平面称为该点的核面,若同名射线都在核面内,则同名射线必然对对相交。过像底点的核面称为垂核面。核面与像片面的交线称为核线。基线的延长线与左右像片的交点成为核点。
在不改变两投影中心位置的情况下,通过两个光束旋转来确定相对方位,适用于单独像对的作业,因此又称为单独像对系统。以基线坐标系为基础,将摄影基线固定水平(5个)
基线坐标系: 左摄站为原点,摄影基线为X0轴,左主核面为X0Z0面, Z0轴向上为正,Y0轴按右手法则来确定的坐标系
绝对方位元素确定几何模型的比例尺和它在地面坐标系中空间方位的元素
立体像对基本知识
空间景物在感光材料上构像,再用人眼观察构像的相片而产生生理视差,重建空间景物立体视觉,这样的立体感觉称人造立体视觉,所看到的立体模型称立体视模型。
立体观察条件①两张像片必须是从不同摄影站摄取的。②两眼各看一张像片,即必须分像。③必须使同名像点的连线与眼基线平行,以保证两视线 在同一个视平面内。④比例尺基本一致(比例尺的差异小于比例尺的15%)

04 双像立体测图基础与05解析基础

04   双像立体测图基础与05解析基础

立体像对的相对定向Relative orientation
相对定向的含义是 ,恢复摄影瞬间立体 像对左右像片之间的 相对空间方位。 确定两个像片的相 对空间方位需要5个 参数

单独法相 对定向
Φ1 ,k1 ,Φ2 ,k2 ,w2 Bx , By , Φ2 ,k2 ,w2 连续法相 对定向
立体像对的绝对定向 Absolute orientation
X a1 Y a 2 Z a3
b1 b2 b3
c1 X X s X X s c2 Y Ys R 1 Y Ys Z Z Z Z c3 s s
偏导数 1
二、几种典型的模拟法立体测图仪
(参考:朱肇光编 测绘出版社《摄影测量学》第七章)
1、B8S模拟测图仪
B8S为机械投影模拟立体测图仪,利 用精密机械仪器模拟外业航空摄影时航 片的相对位置,在室内建立立体模型, 用控制点来解算其它地物点坐标值,是 70年代为主流的摄影测量测图仪器。
生产厂家:德国WILD厂,规格:23×23cm
绝对定向也称大地定向,是指确定立体 模型或由多个立体模型构成的区域的绝对 方位,也就是确定立体模型相对地面的关 系。 绝对定向参数为7个 Xs、Ys、Zs、、、、b

§4-4 模拟法立体测图
一、模拟法立体测图原理
模拟法立体测图是利用光学投影或 机械投影方式,恢复摄影瞬间像对的内 方位元素和像对的外方位元素,形成与 实地相似的光学立体模型,从而实现摄 影过程的几何反转。
x x x x x x X s Ys Z s x 0 x X s Ys Z s y y y y y y X s Ys Z s y 0 y X s Ys Z s

摄影测量第四章

摄影测量第四章

1.3 偏振光法 在两张影像的投影光路中,放置两 个偏振平面相互垂直的偏振器,在承影面 上就能得到光波波动方向相互垂直的两组 偏振光影像。 偏振光可用于彩色影像的立体观察, 获得彩色的立体模型。
2 像对立体观察的效果 进行像对立体观察时,在满足上述条件的情况下,如果像 片像对眼镜安放的位置不同,可以得到不同的立体效果。 即可能产生正立体、反立体和零立体效应。 2.1 正立体 正立体是指观察立体像对时形成的与实地景物起伏相一 致的立体感觉。 2.2 反立体 反立体是指观察立体像对时产生的与实地景物起伏相反 的一种感觉。 2.3 零立体 像对立体观察中形成的原景物起伏消失了的一种效应, 称为零立体效应。
L L σ L = γ = be b 2 fe
2 M 2 M
点深度位移
取△L/LM作为判断点深度位移的相对误差, 要提高判断能力: 一是采取间接地增大眼基线 二是使眼的生理视差的分辨率增大。
摄影测量中,正是根据人眼的立体视觉,对 同一个地区要在两个不同摄站点上拍摄两张像片, 构成一个立体像对,进行立体观察与量测。 那么,人的双眼为什么能观察景物的远近呢? 那么,人的双眼为什么能观察景物的远近呢? 由于两点在眼中构像存在着生理视差 σ,此种由交会角不同而引起的生理视差, 通过人的大脑就能作出物体远近的判断。
两眼视线的交会角称为交向角。 注视点M到眼基线的距离L 注视点M到眼基线的距离L与交向角 γ be γ之间的关系: tan =
2 2L
当角γ为小值时,上式可简化为: L=be/γ 眼的最适宜的交向角相当于L为明视距离下 的情况,为13度~15度。
由于网膜窝的视场角为1 度左右,在注视点M的视场范 围内设有另一点K,那么在两 眼的网膜窝处也将得到K的影 像,k1,k2,于是在网膜窝处得 到弧m1k1和m2k2,设点K和M于 眼基线在同一个平面内,弧 m1k1和m2k2之差称为生理视差 σ,即 σ=m1k1-m2k2 以注视点构像m1和m2为准,点 k1和k2 在注视点的左侧时弧 长取正号。若σ>0,表示点K 较注视点M近一些。

摄影测量学考试重点

摄影测量学考试重点

名词解释、简答题、论述题、证明题第二章 影像获取1、像主点:物方主平面和像方主平面与光轴的交点分别称为物方主点和像方主点2、摄影机主距:航空摄影机物镜中心至底片面的距离,称为摄影机的主距,通常用f 表示第三章 摄影测量基础知识1、 摄影比例尺与摄影航高摄影比例尺又称为像片比例尺,其严格定义为:航摄相片上一线段为l 的影像与地面上相应线段的水平距离L 之比,即Hl m =1,f 为摄影机主距 当取摄区内的平均高程面作为摄影基准面时,摄影机的物镜中心至该面的距离称为摄影航高,一般用H 表示。

2、重叠度(重点看)为了满足测图的需要,在同一条航线上,相邻两像片应有一定范围的影像重叠,称为航向重叠,相邻航线也应有足够的重叠,称为旁向重叠。

重叠反映在航摄片上的同名影像是以像幅尺寸的百分数表示,航向重叠一般要求为p%=60%~65%,最小不得小于53%;旁向重叠要求为q%=30%~40%,最小不得小于15%。

3、像片倾角在摄影瞬间摄影机轴发生了倾斜,摄影机轴与铅直方向的夹角α称为像片的倾角。

一般要求倾角不大于2º,最大不超过3º4、航线弯曲受技术和自然条件限制,飞机往往不能按预定航线飞行而陈胜航线弯曲,造成漏摄或旁向重叠过小从而影响内业成图。

一般要求航摄最大偏距与全航线长之比不得大于3%5、像片旋角相邻像片的主点连线与像幅沿航线方向两框标连线间的夹角称为像片旋角,以κ表示,一般要求κ角不超过6º,最大不超过8º6、中心投影与正射投影若投影光线会聚于一点,称为中心投影,若投影光线相互平行且垂直于投影面,称为正射投影。

(此部分注重理解,最好翻看P26页,与图形结合)6、航摄像片上特殊的点、线、面,及之间的几何关系 (了解) 详见P28、297、.摄影测量常用哪些坐标系?各坐标系又是如何定义的?摄影测量中常用坐标系有两大类:一类是用于描述像点的位置,称为像方坐标系;另一类是描述地面点的位置,称为物方坐标系。

摄影测量与遥感考试要点

摄影测量与遥感考试要点

第一章绪论1.摄影测量的三个阶段:模拟、解析、数字。

2.摄影测量的主要特点:①无需接触被摄物体本事获得其信息;②有二维影像重建三维目标;③面采集数据形式;④同时提取物体的几何与物理特征。

3.摄影测量按用途可分为:地形和非地形测量。

4.传统的摄影测量与数字摄影测量的区别:传统的摄影测量是利用光学摄影机提取像片,通过像片来研究和确定被摄物体的形状、大小、位置和相互关系的一门科学技术。

数字摄影测量是利用所采集的数字化影像,在计算机上进行各种数值、图形和影像处理,研究目标的几何和物理特性,从而获得各种形式的数字产品和可视化产品。

区别点原始资料投影方式操作方式产品传统光学像片物理投影人工操作模拟产品数字数字化影像数字投影自动化+人工干预数字产品第二章影像获取1.框标的作用:建立像片的直角框标坐标系。

2.摄影机主距(f):航空摄影机物镜中心至底片面的距离是固定值,称为摄影机主距。

它与物镜焦距基本一致,因物镜畸变等因素而有少许差异。

3.常用的遥感数据有:美国陆地卫星(Landsat)TM和MSS遥感数据,法国SPOT卫星遥感数据。

4.量测型相机与非量测型相机的区别:是否有框标。

第三章摄影测量基础知识1.绝对航高:摄影瞬间摄影机物镜中心相对于平均海水面的航高。

2.相对航高:摄影瞬间摄影机物镜中心相对于其他某一基准面或某一点的高度。

3.影像方位元素:方位元素:确定摄影时摄影物镜(摄影中心S )、像片与地面三者之间相关位置的参数。

即摄影瞬间摄影中心S 、像片在地面设定的空间坐标系中的位置与姿态。

①内方位元素:摄影物镜中心S 相对于影像位置关系的参数(x 0 ,y 0 f )。

②外方位元素:确定影像或摄影光束在摄影瞬间的空间位置和姿态的参数(Xs, Ys, Zs,φ,ω,κ )。

获取方法:①单像空间后方交会求解;②GPS 测定(一台,Xs, Ys, Zs,三台φ,ω,κ );③POS 系统测定,GPS+惯导系统。

4.R 阵为旋转矩阵,正交矩阵。

第4章 双像立体测图基础与立体测图

第4章  双像立体测图基础与立体测图

1)立体镜观察法
桥式立体镜:简单但观察的范围小
在一个桥架上安置两个相同的简单透镜 透镜光轴平行,间距约为眼基距,高度等于透镜主距
反光立体镜
扩大眼基线,可对大像幅进行立体观察
①立体镜
竖直夸大
fc / f
fc: 像片距人眼的距离 f: 航摄像片的主距
竖直夸大有利于对高程差的判识,而对量测无影响。
2.立体量测
测标:一对光点 移动测标 固定测标
立体量测原理 量测的内容:
双测标量测法
像点坐标量测、左右视差量测、左右视差较量测、上下 视差量测。借助于有测量标志的量测工具或仪器进行。
测标的作用
测标的种类
4.2
立体像对与双像立体测图
1、立体像对的定义(Stereo Pair) 由不同摄站获取的,具有一定影像 重叠的两张像片。
所有同名光线对对相交,即同名点的上下视差为 零时,则相对定向完成。
2.投影器的微小运动对承影面上投影点位的影响
投影器距承影面的高度为H。 假设像片近似水平,选取像片上的九个像点来考 察投影点位的变化规律。 点位分布如下:
像主点
(1)微动 bu 的影响
Hale Waihona Puke dbu SS’ Y
X
总位移
X方向位移
Y方向位移
一、立体像对的相对定向与相对定向元素 确定一个立体像对两张像片相对位置和 姿态的元素称为相对定向元素。
相对定向只能确定两张像片的相对位置
立体像对中,确定两像空系之间方位关系 所需的元素。
完成相对定向的唯一标准是两像片上同 名光线对对相交。
2、两种相对方位元素系统 • 以左像空系为基础的相对方位元素系统 • 以基线坐标系为基础的相对方位元素系统

第四章 立体测图

第四章 立体测图

3、影像数字化立体测图 、
是目前正在发展的一种方法。 是目前正在发展的一种方法。所用的仪器 称为数字摄影测量系统,由数字化仪、计算机、 称为数字摄影测量系统,由数字化仪、计算机、 输出设备及摄影测量软件等组成。 输出设备及摄影测量软件等组成。利用数字相 关技术代替人眼观察, 关技术代替人眼观察,自动寻找同名像点并量 测坐标;采用解析计算方法建立数字立体模型, 测坐标;采用解析计算方法建立数字立体模型, 由此建立数字高程模型,自动绘制等高线, 由此建立数字高程模型,自动绘制等高线,制 作正射影像图。 作正射影像图。 特点:整个过程除少量人机交互外, 特点:整个过程除少量人机交互外,全部 自动化。
(3)双目镜观测光路的立体观察 ) 用两条分开的观测光路将来自左右像片 的光线分别传送到观测者的左右眼睛中, 的光线分别传送到观测者的左右眼睛中, 每条观测光路由物镜、 每条观测光路由物镜、目镜和其他光学 装置组成。 装置组成。
2、立体量测 、 摄影测量中,不仅需要建立立体模型, 摄影测量中,不仅需要建立立体模型,还要对 立体模型进行量测。一般用一个可以在立体表 立体模型进行量测。 测标来进行量测 点状或 面游动的测标来进行量测,测标一般为点状 面游动的测标来进行量测,测标一般为点状或 线状,目的是可以更准确地判断测标是否切准 线状,目的是可以更准确地判断测标是否切准 立体模型表面。 立体模型表面。 立体量测时,大多采用双测标法。双测标法是 立体量测时,大多采用双测标法。 双测标法 利用放入光路中的两个单独的实测标分别切准 立体像对上的同名像点进行立体量测。 同名像点进行立体量测 立体像对上的同名像点进行立体量测。
人用双眼观察景物可判断其远近,得到景物的立体 效应,这种现象称为人眼的天然立体视觉。 生理视差是产生天然立体 感觉的根本原因。

2013摄影测量考试重点

2013摄影测量考试重点

第一章、 绪论1、从摄影测量学得发展来看,可划分为三个阶段:模拟摄影测量、解析摄影测量和数字摄影测量。

第二章、影像获取2、航空摄影机和普通摄影机的区别(即航空摄影机的主要特征):航空摄影机具有框标标志。

包括光学框标和机械框标,用以建立框标坐标系。

3、像幅:像场内,圆内接(或外切)正方形(矩形)。

尺寸:18cm ×18cm ,23cm ×23cm 。

30cm ×30cm 。

第三章、摄影测量基础知识4、摄影比例尺(像片比例尺):航摄像片上一线段为l 与地面上相应线段的水平距L 之比。

摄影比例尺是像片的平均比例尺。

公式:1/m=l/L=f/H ,其中f 为摄影机主距,H 为航高。

5、摄影基线的定义:摄影的曝光过程是飞机在飞行中瞬间完成的,在这一瞬间时刻,摄影机物镜所在的空间位置称为摄站点,航线方向相邻两摄站点间的空间距离称为摄影基线,用B 表示。

6、像片重叠:①航向重叠:同一航线内相邻像片上具有同一地区影像的部分。

一般情况下,要求航向重叠度最小不能少于53%,最好为p%=60%-65%。

②旁向重叠:相邻航线的相邻像片上具有同一地区影像的部分。

一般情况下,旁向重叠度不得少于15%,保持在q%=30%-40%之间。

③要求像片重叠的目的:①便于像片立体观察与量测;②便于像片拼接。

7、投影:中心投影和平行投影。

平行投影:斜投影和正射投影。

航片是中心投影,地图属于正射投影。

8、航摄像片上特殊的点、线、面:P28图①透视变换中的重要的点:像主点—地主点 、像底点—地底点 、二重点(迹点)、等角点、合点、主合点、遁点。

②重要的线:摄影机轴(摄影方向,主光轴)、透视轴、主垂线、主纵线、基本方向线、真水平线(合线)、等比线、主横线。

③重要的面:主垂面、真水平面(合面)。

9、透视变换作图:画图。

P29(见后面的图)10、摄影测量常用的坐标系统(五个):①像平面坐标系;②像空间坐标系;③像空间辅助坐标系;④地面测量坐标系;⑤地面摄影测量坐标系。

双眼立体视觉实验探索双眼立体视觉的成像原理

双眼立体视觉实验探索双眼立体视觉的成像原理
视差范围分析
对视差图中的数据进行统计分析,可以得到视差的范围和 分布情况。一般来说,近距离物体的视差较大,远距离物 体的视差较小。
视差与深度的关系
根据视差的大小,可以推断出物体在三维空间中的深度信 息。视差越大,物体距离观察者越近;视差越小,物体距 离观察者越远。
深度感知能力评估
深度感知阈值测定
通过实验测定观察者对深度感知的最小视差变化量,即深 度感知阈值。该指标能够反映观察者的深度感知能力。
数据收集与整理
数据收集
收集被试的双眼视差测量结果、深度感知测试 结果以及相关信息。
数据整理
对收集到的数据进行整理、分类和统计分析, 提取有用信息。
结果呈现
将实验结果以图表、数据表等形式呈现出来,以便后续分析和讨论。
05
实验结果与分析
双眼视差数据分析
视差图生成
通过图像处理技术,将左右眼图像进行匹配和比较,生成 视差图。视差图能够直观地展示双眼视差的大小和分布。
06
结论与展望
实验结论总结
双眼立体视觉基于视差原 理
实验证实,双眼立体视觉主要依赖于左右眼 接收到的略微不同的图像,通过大脑处理形 成三维立体感知。
融合机制重要性
双眼图像在视觉皮层中的融合是立体视觉形成的关 键步骤,该机制确保了空间深度和物体形状的准确 感知。
影响因素多样性
实验发现,立体视觉的感知受到多种因素影 响,包括光线条件、物体距离、观察角度以 及个体生理差异等。
双眼融合形成单一图像
1 2 3
对应点融合
大脑通过一种称为对应点融合的机制,将左、右 眼视网膜上的图像融合在一起,形成一个单一的 、具有立体感的视觉图像。
融合范围
双眼融合的范围是有限的,通常在一定角度内的 物体能够被有效地融合。超出这个范围,物体可 能被视为重影或无法融合。

摄影测量学复习资料

摄影测量学复习资料

摄影测量学复习资料第一章绪论1、摄影测量的定义、任务定义:摄影测量与遥感是从非接触成像和其他传感器系统,通过记录、量测、分析与表达等处理,获取地球及其环境和其他物体可靠信息的工艺,科学与技术。

其中摄影测量侧重于提取几何信息,遥感侧重于物理信息。

任务:(1)测绘各种比例尺地形图。

(2)建立数字地面模型(地形数据库)。

2、摄影测量学:是对研究的对象进行摄影,根据所得的构象信息,从几何方面和物理方面加以分析研究,从而对所摄对象的本质提供各种资料的一门学科。

3、解决的基本问题:几何定位和影像解译。

4、摄影测量的三个发展阶段及其特点。

(了解)5、摄影测量的分类方法及其分类(了解):(1)按距离远近可分为航天摄影测、航空摄影测量、地面摄影测量、近景摄影测量和显微摄影测量;(2)按用途可分为地形摄影测量和非地形摄影测量;(3)按处理手段可分为模拟摄影测量、解析摄影测量和数字摄影测量;(4)根据摄影机平台位置的不同可分为航天摄影测量、航空摄影测量、地面摄影测量和水下摄影测量。

第二章影像的获取1、航空影像和遥感影像的获取方式航空影像:飞机等航空平台搭乘航摄仪(或数码相机)摄影成像;一般航空影像分为专业航摄仪(航空摄影机)获取的标准航片和非量测摄影机(普通摄影机)获取的非标准航片。

遥感影像:卫星等航天平台利用各类传感器(阵列扫描、推扫)获取遥感影像。

例如SPOT、QB、TM、IKONOS、World View等影像。

2、量测摄影机与非量测摄影机的区别(1)量测摄影机的主距是一个固定的已知值(2)量测摄影机的承片框上具有框标,即固定不变的承片框上,四个边的中点各安置一个机械标志;框标,其目的是建立像片的直角,框标坐标系。

(3)量测摄影机的内方位元素是已知值。

3、航向重叠:摄影时飞机沿相邻影像之间必须保持一定的重叠度。

一般P=50%~65%;P值最小不能小于53%。

旁向重叠:完成一条航线的摄影后,飞机进入另一条航线进行测量摄影,相邻航线影像之间也必须有一定的重叠。

立体测图

立体测图


像片数字化仪+计算机+输出设备+摄影测量软件
3)类型: Leica公司的Helava扫描仪DSw300与工作站DPW770。
武汉测绘科技大学VirtuoZo。 德,阿克曼,数字表面模型自动量测系统。 中国测绘科学院,Jx-4
数字摄影测量系统
数字摄影测量工作
站的功能
自建
动立
空数
影 像 数 字 化
2 、 Intergraph 公 司 的 扫 描 仪 AS1 与 工 作 站 Intergraphstation;(SPOT)
3、Zeium, 扫 描 速 度 1 兆 像 素 / 秒 ) , 工 作 站 PHODIS;
4 、 Vision International 公 司 的 工 作 站 Microsoft;
1)概念:

像片经数字化后,变成数字影象,利用数字相
关技术代替人眼立体观察,自动寻找同名点并量测
像点坐标,在计算机上解析解算,建立立体模型,
在此模型上建立数字高程模型,自动绘制等高线,
制作正射影象,等。
2)设备:
机助测图:立体测图仪+计算机
机控测图:立体坐标量测仪+计算机
摄影测量工作站:
3、特点:
外业工作----室内完成,减少天气、地形对测图影 响,提高工作效率;
使测绘工作数字化、自动化。
立体测图的方法:
1、模拟法立体测图: 1)概念: 利用两个光学或机械投影器,或光学—机械投影
器,将透明航片装在投影器中,用灯光照射,模拟 摄影过程,重建一个与实地相似的缩小的立体模型, 在此立体模型上量测即相当于对原物体的量测,所 得结果可通过机械或齿轮传动方式直接在绘图桌上 绘出各种地形图或专题地图。

第四章双像立体测图基础与立体测图

第四章双像立体测图基础与立体测图
2
单独法相对定向元素: 1 , 1 ,2,2,2
二、
绝对定向元素
Zt O
Xt
Z0
Y0 X0
Yt
绝对定向元素: ,X0 , Y0 , Z0 ,, ,
三、三维空间相似变换原理
X tp Ytp Ztp
R
Xp Yp Zp
X0 Y0 Z0
Ztp M
XY0tpY0 Z0 Xtp
相似变换参数: ,X0 , Y0 , Z0 ,, ,
一、相对定向元素
像片外方位元素:
Xs1,Ys1,Zs1,1,1,1 Xs2,Ys2,Zs2,2,2,2
z1
y1 x1
S1
Z
a1(x1,y1)
z2
y2
S2 a2(x2,y2)
x2
A(X,Y,Z) Y
X
描述立体像对中两张像片相对位置和姿态关系的参数
连续法相对定向元素
Z1
Y1
B
Bx
ቤተ መጻሕፍቲ ባይዱS1
X1
y1
Z2 Y2
一、立体像对的重要点线面
摄影基线
相邻两摄站的连线
l1
p2
p1 S2
同名核线
S1
核面与左右像 片面的交线
同名像点
同名光线在左右 像片上的构像
同名光线
同一地面点发出 的两条光线
核面
A
摄影基线与某一地面 点组成的平面
P1
P2
P1
P2

S1
S2
S1
S2
P2
P1
S1
S2

E
像 理想像对
正直像对
E
E
竖直像对
对 相邻两像
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.2 立体像对与双像立体测图
双像立体测图 是以一个立体像片对为量测单元。
航空摄影获取的立体像对
地面摄影获取的立体像对
是立体像对吗?为什么?
一、立体像对的重要点线面
摄影基线 相邻两摄站的连 线
p1
同名核线 核面与左右 像片面的交 线
l1
p2 S2
同名像点 同名光线在左右 像片上的构像
S1
同名光线 同一地面点发出 的两条光线—— S1A,S2A
通过光学系统---如立体反光镜
左眼 右眼
反光镜
左影像 右影像
像 对 的 立 体 观 察 方 法
叠影影像立体观察
互补色法
在投影器中插入互补色滤光片 (品红色、蓝绿色) 观测者双眼分别带上同色镜片
互补色 ——— 如 红绿眼镜
像 对 的 立 体 观 察 方 法
叠映影像立体观察
光闸法
在两投影光路中各安装一光闸 (一个打开、一个关闭) 观测者双眼分别带上与投影器 光闸同步的光闸眼镜
利用像对重建并量测立体模型的测绘方 式,实质上是将外业测绘工作搬到室内 进行。摄影测量双像立体测图方法有如 下三种:
• 1.模拟法立体测图
• 2.解析法立体测图
• 3.影像数字化立体测图
• 航测立体测图的方法有: 模拟法立体测图 以立体像对为单元,根据摄影过程几何反转 原理,在模拟测图仪上重建和摄区相似的立体 模型。 解析法立体测图 利用解析测图仪测图,核心是计算机。 数字化测图 利用数字摄影测量系统。采用数字影像或 数字化影像,利用数字相关技术,自动寻找同 名像点并量测坐标。采用解析计算方法,建立 数字立体模型。
ZS
Yt
基本公式
a1a2 a3 U X S X Y b b b V Y 1 2 3 S Z W c1c2 c3 ZS
绝对定向元素:
—模型缩放比例因子
像片外方位元素: Xs1,Ys1,Zs1,1,1,1
w1
v1
S1 Z u1
w2 v2
Xs2,Ys2,Zs2,2,2,2
S2 a1(x1,y1)
a2(x2,y2)
u2
完成相对定向的 唯一标准是像片 上同名像点的投 影光线对对相交
Y
A(X,Y,Z)
X
描述立体像对中两张像片相对位置和姿态关系的参数
《摄影测量学》第四章
双像立体测图基础与立体测图
4.1 人眼的立体视觉原理与立体量测 4.2 立体像对与双像立体测图 4.3 立体像对的相对定向元素与模型的绝 对定向元素 4.4 模拟法立体测图 4.5 解析法立体测图
• 双象立体测图是指利用一个立体像对(即在 两摄站点对同一地面景物摄取有一定影像重 叠的两张像片)重建地面立体几何模型,并 对该几何模型进行量测,直接给出符合规定 比例尺的地形图,获取地理基础信息。 • 使用一个立体像对构建地面立体模型的方法 称为立体摄影测量。
A
核面 摄影基线与某一 地面点组成的平 面
核线
核线
核点 核点
• 核点:基线的延长线与左右像片面的交点。
• 核线:核面与像片的交线,核线会聚于核点
k1、k2
k1a1、k2 a2
在倾斜像片上诸核线汇聚于核点。 同名核线,同名像点在同名核线上 • 主核面:通过像主点的核面。一般情况下,通过 左右像片主点的两个主核面不重合,成为左主核 面和右主核面。 • 垂核面:通过像底点的核面。一个像对只有一个 垂核面。
必须说明
摄影测量 利用这种 “人造视觉立体” 进行量测,但是 它不是摄影测量, 不是摄影测量要建立的 三维空间的几何立体
如右:利用左、右摄得 得两张影像,原则上就 能获得“人造视觉立体”
摄影测量 二维影像 三维空间立体
上面
正面
下面
2 3
右面 左面
问题 ?
如何利用
影像
建立
空间三维立体模型
相对定向元素是描述立体像对中两张像 片的相对位置和姿态关系的元素,因此, 可以把两张像片各自相对于选定的同一个 像空间辅助坐标系来讨论相对定向元素。 为便于讨论,仿照外方位元素的定义,引 入“相对方位元素’概念将像片在选定的 像空间辅助坐标系中的位置(摄影中心S的 坐标,用 X S , YS , Z S 表示 ,和姿态 (像片的姿态角,用 , , k 表示) 定义为像片的相对方位元素.
单眼能够判别最小物体的能力称单眼分辨力
人 眼 分 辨 力
用单眼所能观察出两点间的最小距离称第一分辨力
用单眼所能观察出两平行线间的最小距离称第二分辨力
0.0035 第一分辨力 = 45 17 第二分辨力 20
双眼观察精度比单眼提高
2倍
人用双眼观察景物可判断其远近,得到景物的立体效应, 这种现象称为人眼的立体视觉
改变投影器的 相对位置,使
所有光线
-交叉Biblioteka 光线相交对对相交相对定向:
5 个元素
它只确定两个影像的相对位置,但 是不能确定它们的绝对位置
例如


(b) 绝对定向--确定模型在空间的绝对位置
由相对定向 建立的 地面模型
实际的
地面模型
5 个元素 绝对定向: 7 个元素 12
相对定向: 两张像片的外方位元素
浮游测标量测法 用一个在立体表面游动的测标来进行 量测,用测标切准立体模型表面。 形状:点状或线状
双测标量测法
是用两个刻有量测标 记的测标进行量测。
同名像点:地面上一点在 相邻两张像片上的构像
左右测标分别切准左 右同名像点
两单测标相当于同名 像点,构成立体测标T T与立体模型表面M点 重合
像空间辅助坐标系: U轴:摄影基线; V轴:垂直于左主核 面; W轴:位于左主核面;
左像片: 右像片:
U S1 VS1 WS1 0
U s 2 bu b,Vs 2 0,Ws1 0
1 ,
1 0, 1
单独法相对定向元素:
2 , 2 , k2
1 , 1 ,2,2,2
1、立体观测方法 人造立体视觉产生的方法,主要是“分像” --左眼看左像、右眼看右像 满足这一条件的方法很多
⑴立体镜观察法 ⑵叠影影像的立体观察 ⑶双目镜观测光路的立体观察
像 对 的 立 体 观 察 方 法
立体镜观察
桥式立体镜
在一个桥架上安置两个相同的简单透镜
透镜光轴平行,间距约为眼基距,高度等于透镜主距
人 眼 立 体 视 觉
生理视差=ab ab
二、人造立体视觉
A B
P a
b
a’ b’
P’
左眼
右眼
人眼的立体视觉是立体测图的基础
人 造 立 体 观 察 的 条 件

立体像对 分像条件 两像片上相同景物(同名像点)的连线
与眼基线应大致平行

两像片的比例尺应相近(差别<15%)
立体效应
, , —模型旋转因子
X S , YS , ZS —坐标原点平移量
借助地面控制点,恢复或计算这七个参数,就 完成绝对定向。
建立“空间几何立体模型”
(a) 相对定向
确定两张影像的 相对位置
如何 确定两张影像的 相对位置? 光线在空间 对对相交
相对定向的过程
初始状态 中间状态 最终状态
投影光线 不相交
左像片:
U s1 Vs1 Ws1 0
1 1 k1
右像片:
2 , 2 , k 2
连续法相对定向元素: bv , bw ,,,
U s 2 bu ,Vs 2 bv ,Ws1 bw
2.单独法相对定向元素
在以左摄影中心 为原点、左主核 面为 UW 平面、 摄影基线为 U 轴的右手空间直 角坐标系中,左 右像片的相对方 位元素
二、像对摄影过程的几何反转
方法两种: 恢复像片的内、外方位元素 像对的相对定向和绝对定向 模拟法测图通过模拟测图仪上的机械装置的运动来实现。
步骤:
内定向:恢复像片的内方位元素,建立与摄影光束相似的投影光束 。
相对定向:恢复两张像片的相对方位,建立与地面相似的立体模型。
双目镜观测光路的立体观察
像 对 的 立 体 观 察 方 法
通过双筒望远镜观察 每个望远镜像面有一固定的测标 像片可在两个相互垂直方向共同移动,也可一张像片相对于另一 张像片移动
可以分别对左右像片进行调焦、亮度调节及必要旋转,观测系统 放大倍率可调节
2.立体量测 • 在摄影测量中不仅需要用像对进行立体 观察,建立立体模型,而且还需要对立 体模型进行量测。
依附于像空间辅助坐标系,选取的像空间辅助 坐标系不同就有不同形式的相对定向元素。 一般确定两像片的相对位置有两种方法: 其一:将左像片置平或将其位置固定不 变——连续法像对相对定向系统。 其二:将摄影基线固定水平——独立法 像对相对定向系统
1.连续法相对定向元素
以左像空间 坐标系为基 础,右像片 相对于左像 片的相对方 位元素
三、模型的绝对定向元素
相对定向后模型的大小和空间位置是任意的
描述立体像对在摄影瞬间的绝对位置和姿态的 参数称~即恢复模型的大小和空间位置的元素 通过将相对定向建立的立体模型进行缩放 、旋转和平移,使其达到绝对位置
绝对定向元素
绝对定向元素:
,XS, YS, ZS,, ,

Zt
YS O
Xt
XS
二、立体摄影测量的基本原理
立体摄影测量(双像立体测图):
是利用一个立体像片对,在恢复它们的 内、外方位元素后,重建与地面相似的几何模 型,并对该模型进行量测的一种摄影测量方法。
空中对地面的摄影过程
二、立体摄影测量的基本原理
摄影过程的几何反转:
相关文档
最新文档