上海市沪教版八年级数学上下册知识点梳理教学文稿
沪科版八年级上册数学知识提纲
沪科版八年级上册数学知识提纲想提高初中的数学成果首先我们需要认真学习,且认真完成老师每节课布置的作业,这样子才能跟上学习进度。
下面我给大家共享一些沪科版〔八年级〕上册数学提纲,希望能够关怀大家,欢迎阅读!沪科版八年级上册数学学问提纲1、全等三角形的对应边、对应角相等2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等5、边边边公理(SSS)有三边对应相等的两个三角形全等6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等7、定理1在角的平分线上的点到这个角的两边的距离相等8、定理2到一个角的两边的距离相同的点,在这个角的平分线上9、角的平分线是到角的两边距离相等的全部点的集合10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边12、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合13、推论3等边三角形的各角都相等,并且每一个角都等于60°14、等腰三角形的判定定理假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)15、推论1三个角都相等的三角形是等边三角形16、推论2有一个角等于60°的等腰三角形是等边三角形17、在直角三角形中,假如一个锐角等于30°那么它所对的直角边等于斜边的一半18、直角三角形斜边上的中线等于斜边上的一半19、定理线段垂直平分线上的点和这条线段两个端点的距离相等20、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上21、线段的垂直平分线可看作和线段两端点距离相等的全部点的集合22、定理1关于某条直线对称的两个图形是全等形23、定理2假如两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线24、定理3两个图形关于某直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上25、逆定理假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称26、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^227、勾股定理的逆定理假如三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形28、定理四边形的内角和等于360°29、四边形的外角和等于360°30、多边形内角和定理n边形的内角的和等于(n-2)×180°31、推论任意多边的外角和等于360°32、平行四边形性质定理1平行四边形的对角相等33、平行四边形性质定理2平行四边形的对边相等34、推论夹在两条平行线间的平行线段相等35、平行四边形性质定理3平行四边形的对角线互相平分36、平行四边形判定定理1两组对角分别相等的四边形是平行四边形37、平行四边形判定定理2两组对边分别相等的四边形是平行四边形38、平行四边形判定定理3对角线互相平分的四边形是平行四边形39、平行四边形判定定理4一组对边平行相等的四边形是平行四边形40、矩形性质定理1矩形的四个角都是直角提高数学成果的〔方法〕重视构建学问网络要学会构建学问网络,数学概念是构建学问网络的出发点,也是数学中考考查的重点。
2024年沪科版八年级数学上册知识点总结
2024年沪科版八年级数学上册知识点总结一、有理数的加减乘除运算1. 有理数的加法运算:同号相加,异号相减。
将分子分母化为最简整数形式,要注意约分。
2. 有理数的减法运算:减去一个数等于加上这个数的相反数。
3. 有理数的乘法运算:同号得正,异号得负。
将分子分母化为最简整数形式,要注意约分。
4. 有理数的除法运算:除以一个数等于乘以这个数的倒数。
5. 有理数的四则运算综合运用。
二、平方根与立方根1. 平方根:给定一个非负实数a,且a≥0,开根号的结果称为a的平方根。
记作√a。
2. 整数的平方根:如果一个整数的平方等于一个非负整数,那么这个非负整数就是该整数的平方根;否则,这个整数没有平方根。
3. 立方根:给定一个实数a,开立方根的结果称为a的立方根。
记作3√a。
三、带有根号的计算1. 同底数的相加相减:进行根号运算时,同底数的根号可以相加相减,底数不变。
2. 同底数的乘方:进行根号运算时,同底数的根号可以进行乘方运算,即合并同底数的指数。
3. 分数的根号运算:分子分母同时进行根号运算,然后约分,也可以先约分再进行根号运算。
四、代数式1. 代数式的定义:用字母表示数的式子,包含一个或多个字母和常数、运算符号组成。
2. 代数式的值:为了求代数式的值,需要给字母赋予特定的数值,将字母用数代替,然后进行计算。
3. 代数式的运算:常用的代数式运算有加法、减法、乘法和除法。
五、线性方程与方程的解1. 线性方程:只含有一次幂的方程称为线性方程。
2. 化简与解方程:对于方程要进行化简,恢复原来的形式,再解方程。
3. 解方程的方法:常用的解方程的方法有相加相减法、代入法、等式交换法和系数分离法。
六、百分数1. 百分数的概念:以分号“%”表示,百分数等于百分数的百分之一。
2. 百分数与小数的互相转化:将百分数转化为小数,就是将百分号去掉,除以100;将小数转化为百分数,就是乘以100再加上百分号。
3. 百分数的应用:常用的百分数应用有百分数的简化、比较大小和求百分数。
沪科版数学八年级上册全册教案及单元知识点总结
4.通过这节课的学习,你还有哪些疑惑,大家交流.
【教学说明】引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.
1.课本第5页练习1、2、3.
2.完成练习册中相应的作业.
基于本节课内容的特点和学生的心理及思维发展的特征,在教学中选择激趣法、讨论法和总结法相结合.通过学习使学生理解和掌握平面直角坐标系的有关知识,领会其特征,经历现实生活中有关有序实数对的例子,让学生充分体会平面直角坐标系是构建有序实数对的平台,体会现实生活中的坐标的应用价值,激发学习的兴趣.
2.教师归纳
利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:
(1)建立直角坐标系,选择一个适当的参照为原点,确定x轴、y轴的正方向.
(2)依据具体问题确定适当的比例尺,在坐标轴上标出单位长度.
(3)在坐标平面的内部画出这些点,写出各点的坐标和各个地点的名称.
二、问题牵引,引入研究
【问题】如图,△ABC在坐标平面上平移后得到新图形△A1B1C1.
A.第一象限B.第二象限
C.第三象限D.第四象限
2.在平面直角坐标系中,若点P(a-3,a+1)在第二象限,则a的取值范围为()
A.-1<a<3B.a>3
C.a<-1D.a>-1
3.如图为九嶷山风景区的几个景点的平面图,以舜帝陵为坐标原点,建立平面直角坐标系,则玉王宫岩所在位置的坐标为.
4.写出图中点A、B、C、D、E、F的坐标.(注:每小格的长度代表单位“1”.)
【教学说明】学生通过思考问题,复习旧知识,为新知识建立铺垫.
2.问题提出.
提问:请同学们观看屏幕投影片,你发现了什么?
初二数学沪科版上册知识点梳理
初二数学沪科版上册学问点梳理学习需要制定具体的打算,打算本身对大家有较强的约束和督促作用,打算对学习既有指导作用,又有推动作用。
制定好的〔学习打算〕,是提高工作效率的重要手段。
下面是我给大家整理的一些初二数学的学问点,期望对大家有所关怀。
初二数学学问点位置与坐标1、确定位置在平面内,确定一个物体的位置一般需要两个数据。
2、平面直角坐标系①含义:在平面内,两条相互垂直且有公共原点的数轴组成平面直角坐标系。
②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点。
③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示。
④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做其次象限,第三象限,第四象限,坐标轴上的点不在任何一个象限。
⑤在直角坐标系中,对于平面上任意一点,都有的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上的一点与它对应。
3、轴对称与坐标转变关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。
〔八班级〕上册数学复习资料【一次函数】20.1一次函数的概念1.一般地,解析式形如ykxb(kb是常数,k0)的函数叫做一次函数;一次函数的定义域是一切实数2.一般地,我们把函数yc(c为常数)叫做常值函数20.2一次函数的图像1.列表、描点、连线2.一条直线与y轴的交点的纵坐标叫做这条直线在y轴上的截距,简称直线的截距3.一般地,直线ykxb(kb是常数,k0)与y轴的交点坐标是(0,b),直线的截距是b4.一次函数ykxb(b≠0)的图像可以由正比例函数ykx的图像平移得到当b0时,向上平移b个单位,当b0时,向下平移b的确定值个单位5.一元一次不等式与一次函数之间的关系(看图)20.3一次函数的性质1.一次函数ykxb(kb是常数,k?0)具有以下性质:当k0时,函数值y随自变量x的值增大而增大当k0时,函数值y随自变量x的值增大而减小①如下图,当k0,b0时,直线经过第一、二、三象限(直线不经过第四象限);②如下图,当k0,b﹥O时,直线经过第一、三、四象限(直线不经过其次象限);③如下图,当k﹤O,b0时,直线经过第一、二、四象限(直线不经过第三象限);④如下图,当k﹤O,b﹤O时,直线经过其次、三、四象限(直线不经过第一象限).20.4一次函数的应用1.利用一次函数及图像解决实际问题初二数学〔复习〔方法〕〕按部就班数学是环环相扣的一门学科,哪一个环节脱节都会影响整个学习的进程。
沪科版初二数学知识点总结
沪科版初⼆数学知识点总结知识是⼀座宝库,⽽实践就是开启宝库的钥匙。
学习任何学科,不仅需要⼤量的记忆,还需要⼤量的练习,从⽽达到巩固知识的效果。
下⾯是⼩编给⼤家整理的⼀些初⼆数学的知识点,希望对⼤家有所帮助。
初⼆上学期数学知识点归纳分式⽅程⼀、理解定义1、分式⽅程:含分式,并且分母中含未知数的⽅程——分式⽅程。
2、解分式⽅程的思路是:(1)在⽅程的两边都乘以最简公分母,约去分母,化成整式⽅程。
(2)解这个整式⽅程。
(3)把整式⽅程的根带⼊最简公分母,看结果是不是为零,使最简公分母为零的根是原⽅程的增根,必须舍去。
(4)写出原⽅程的根。
“⼀化⼆解三检验四总结”3、增根:分式⽅程的增根必须满⾜两个条件:(1)增根是最简公分母为0;(2)增根是分式⽅程化成的整式⽅程的.根。
4、分式⽅程的解法:(1)能化简的先化简(2)⽅程两边同乘以最简公分母,化为整式⽅程;(3)解整式⽅程;(4)验根;注:解分式⽅程时,⽅程两边同乘以最简公分母时,最简公分母有可能为0,这样就产⽣了增根,因此分式⽅程⼀定要验根。
分式⽅程检验⽅法:将整式⽅程的解带⼊最简公分母,如果最简公分母的值不为0,则整式⽅程的解是原分式⽅程的解;否则,这个解不是原分式⽅程的解。
5、分式⽅程解实际问题步骤:审题—设未知数—列⽅程—解⽅程—检验—写出答案,检验时要注意从⽅程本⾝和实际问题两个⽅⾯进⾏检验。
⼋年级上册数学知识点沪科版1、全等三⾓形的对应边、对应⾓相等2、边⾓边公理(SAS)有两边和它们的夹⾓对应相等的两个三⾓形全等3、⾓边⾓公理(ASA)有两⾓和它们的夹边对应相等的两个三⾓形全等4、推论(AAS)有两⾓和其中⼀⾓的对边对应相等的两个三⾓形全等5、边边边公理(SSS)有三边对应相等的两个三⾓形全等6、斜边、直⾓边公理(HL)有斜边和⼀条直⾓边对应相等的两个直⾓三⾓形全等7、定理1在⾓的平分线上的点到这个⾓的两边的距离相等8、定理2到⼀个⾓的两边的距离相同的点,在这个⾓的平分线上9、⾓的平分线是到⾓的两边距离相等的所有点的集合10、等腰三⾓形的性质定理等腰三⾓形的两个底⾓相等(即等边对等⾓)11、推论1等腰三⾓形顶⾓的平分线平分底边并且垂直于底边12、等腰三⾓形的顶⾓平分线、底边上的中线和底边上的⾼互相重合13、推论3等边三⾓形的各⾓都相等,并且每⼀个⾓都等于60°14、等腰三⾓形的判定定理如果⼀个三⾓形有两个⾓相等,那么这两个⾓所对的边也相等(等⾓对等边)15、推论1三个⾓都相等的三⾓形是等边三⾓形16、推论2有⼀个⾓等于60°的等腰三⾓形是等边三⾓形17、在直⾓三⾓形中,如果⼀个锐⾓等于30°那么它所对的直⾓边等于斜边的⼀半18、直⾓三⾓形斜边上的中线等于斜边上的⼀半19、定理线段垂直平分线上的点和这条线段两个端点的距离相等20、逆定理和⼀条线段两个端点距离相等的点,在这条线段的垂直平分线上21、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合22、定理1关于某条直线对称的两个图形是全等形23、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线24、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上25、逆定理如果两个图形的对应点连线被同⼀条直线垂直平分,那么这两个图形关于这条直线对称26、勾股定理直⾓三⾓形两直⾓边a、b的平⽅和、等于斜边c的平⽅,即a^2+b^2=c^227、勾股定理的逆定理如果三⾓形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三⾓形是直⾓三⾓形初⼆数学复习⽅法按部就班数学是环环相扣的⼀门学科,哪⼀个环节脱节都会影响整个学习的进程。
上海沪教版八年级数学上下册知识点梳理完整版
上海沪教版八年级数学上下册知识点梳理 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】上海市沪教版八年级数学上下册知识点梳理第十六章 二次根式第一节 二次根式的概念和性质二次根式1.二次根式的概念: 式子)0(≥a a 叫做二次根式.注意被开方数只能是正数或0。
2.二次根式的性质 ①⎩⎨⎧≤-≥==)0()0(2a a a a a a ; ②)0()(2≥=a a a ③)0,0(≥≥⋅=b a b a ab ; ④)0,0(>≥=b a ba b a 最简二次根式与同类二次根式1. 被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.2.化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式二次根式的运算1.二次根式的加减:先把各个二次根式化成最简二次根式,再把同类三次根式分别合并.2.二次根式的乘法:等于各个因式的被开方数的积的算术平方根,即 ).0,0(≥≥=⋅b a ab b a3.二次根式的和相乘,可参照多项式的乘法进行.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式.4.二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.二次根式的运算法则:(c ≥0)=a ≥0,b>0)n =≥0)第十七章 一元二次方程一元二次方程的概念1.只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程2.一般形式y=ax2+bx+c (a ≠0),称为一元二次方程的一般式,ax 叫做二次项,a 是二次项系数;bx 叫做一次项,b 是一次项系数;c 叫做常数项一元二次方程的解法1.特殊的一元二次方程的解法:开平方法,分解因式法2.一般的一元二次方程的解法:配方法、求根公式法3.求根公式2b x a -±=:1222b b x x a a-+--= , = ; △=24b ac -≥0一元二次方程的判别式1.一元二次方程20(0)ax bx c a ++=≠:△>0时,方程有两个不相等的实数根△=0时,方程有两个相等的实数根△<0时,方程没有实数根2.反过来说也是成立的一元二次方程的应用1.一般来说,如果二次三项式2ax bx c ++(0a ≠)通过因式分解得2ax bx c ++=12()()a x x x x --;1x 、2x 是一元二次方程20(0)ax bx c a ++=≠的根2.把二次三项式分解因式时;如果24b ac -≥0,那么先用公式法求出方程的两个实数根,再写出分解式如果24b ac -<0,那么方程没有实数根,那此二次三项式在实数范围内不能分解因式3.实际问题:设,列,解,答第十八章 正比例函数和反比例函数.函数的概念1.在问题研究过程中,可以取不同数值的量叫做变量;保持数值不变的量叫做常量2.在某个变化过程中有两个变量,设为x 和y ,如果在变量x 的允许取之范围内,变量y 随变量x 的变化而变化,他们之间存在确定的依赖关系,那么变量y 叫做变量x 的函数,x 叫做自变量3.表达两个变量之间依赖关系的数学是自称为函数解析式()y f x =4.函数的自变量允许取之的范围,叫做这个函数的定义域;如果变量y 是自变量x 的函数,那么对于x 在定义域内去顶的一个值a ,变量y 的对应值叫做当x=a 时的函数值正比例函数1. 如果两个变量每一组对应值的比是一个不等于零的常数,那么就说这两个变量成正比例2.正比例函数:解析式形如y=kx (k 是不等于零的常数)的函数叫做正比例函数,气质常数k 叫做比例系数;正比例函数的定义域是一切实数3.对于一个函数()y f x =,如果一个图形上任意一点的坐标都满足关系式()y f x =,同时以这个函数解析式所确定的x 与y 的任意一组对应值为坐标的点都在图形上,那么这个图形叫做函数()y f x =的图像4.一般地,正比例函数y kx =(0)k k ≠是常数且的图像时经过原点O (0,0)和点(1,k )的一条直线,我们把正比例函数y kx =的图像叫做直线y kx =5. 正比例函数y kx =(0)k k ≠是常数且有如下性质:(1)当k <0时,正比例函数的图像经过一、三象限,自变量x 的值逐渐增大时,y 的值也随着逐渐增大(2)当k <0时 ,正比例函数的图像经过二、四象限,自变量x 的值逐渐增大时,y 的值则随着逐渐减小反比例函数1.如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例2.解析式形如(0)k y k k x=≠是常数,的函数叫做反比例函数,其中k 也叫做反比例系数反比例函数的定义域是不等于零的一切实数3.反比例函数(0)k y k k x=≠是常数,有如下性质: (1)当k >0时,函数图像的两支分别在第一、三象限,在每一个象限内,当自变量x 的值逐渐增大时,y 的值则随着逐渐减小(2)当k <0时 ,函数图像的两支分别在第二、四象限,在每一个象限内。
沪教版八年级数学知识点
沪教版八年级数学知识点初二上学期数学知识点归纳三角形知识概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8、多边形的内角:多边形相邻两边组成的角叫做它的内角。
9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
13、公式与性质:(1)三角形的内角和:三角形的内角和为180°(2)三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
(3)多边形内角和公式:边形的内角和等于?180°(4)多边形的外角和:多边形的外角和为360°(5)多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。
②边形共有条对角线。
初二数学知识点总结分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
沪科版八年级数学(上)基础知识总结-八上沪科版数学知识点
沪教版八年级数学上册复习要点制作人:金勇第十一章平面直角坐标系小结一、平面内点的坐标特征1、各象限内点P(a ,b)的坐标特征:第一象限:a>0,b>0;第二象限:a<0,b>0;第三象限:a<0,b<0;第四象限:a>0,b<0(说明:一、三象限,横、纵坐标符号相同,即ab>0;二、四象限,横、纵坐标符号相反即ab<0。
)2、坐标轴上点P(a ,b)的坐标特征:x轴上:a为任意实数,b=0;y轴上:b为任意实数,a=0;坐标原点:a=0,b=0(说明:若P(a ,b)在坐标轴上,则ab=0;反之,若ab=0,则P(a ,b)在坐标轴上。
)3、两坐标轴夹角平分线上点P(a ,b)的坐标特征:一、三象限:a=b;二、四象限:a=-b二、对称点的坐标特征点P(a ,b)关于x轴的对称点是(a ,-b);关于y轴的对称点是(-a ,b);关于原点的对称点是(-a ,-b)三、点到坐标轴的距离点P(x ,y)到x轴距离为∣y∣,到y轴的距离为∣x∣四、(1)横坐标相同的两点所在直线垂直于x轴,平行于y轴;(2)纵坐标相同的两点所在直线垂直于y轴,平行于x轴。
五、点的平移坐标变化规律坐标平面内,点P(x ,y)向右(或左)平移a个单位后的对应点为(x+a,y)或(x-a,y);点P(x ,y)向上(或下)平移b个单位后的对应点为(x,y+b)或(x,y-b)。
(说明:左右平移,横变纵不变,向右平移,横坐标增加,向左平移,横坐标减小;上下平移,纵变横不变,向上平移,纵坐标增加,向下平移,纵坐标减小。
简记为“右加左减,上加下减”)第十二章一次函数一、确定函数自变量的取值范围1、自变量以整式形式出现,自变量的取值范围是全体实数;2、自变量以分式形式出现,自变量的取值范围是使分母不为0的数;3、自变量以偶次方根形式出现,自变量的取值范围是使被开方数大于或等于0(即被开方数≥0)的数;自变量以奇次方根形式出现,自变量的取值范围是全体实数。
(完整word版)上海市沪教版八年级数学上下册知识点梳理
上海市沪教版八年级数学上册知识点梳理第十六章 二次根式第一节 二次根式的概念和性质16.1 二次根式1. 二次根式的概念: 式子)0(≥a a 叫做二次根式.注意被开方数只能是正数或0。
2. 二次根式的性质 ①⎩⎨⎧≤-≥==)0()0(2a a a a a a ; ②)0()(2≥=a a a ③)0,0(≥≥⋅=b a b a ab ; ④)0,0(>≥=b a b a b a 16.2 最简二次根式与同类二次根式1. 被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.2.化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式16.3 二次根式的运算1.二次根式的加减:先把各个二次根式化成最简二次根式,再把同类三次根式分别合并.2.二次根式的乘法:等于各个因式的被开方数的积的算术平方根,即 ).0,0(≥≥=⋅b a ab b a3.二次根式的和相乘,可参照多项式的乘法进行.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式.4.二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.二次根式的运算法则:≥0) ).0,0(≥≥=⋅b a ab b a=a ≥0,b>0) n ≥0)第十七章 一元二次方程17.1 一元二次方程的概念1.只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程2.一般形式y=ax ²+bx+c (a ≠0),称为一元二次方程的一般式,ax 叫做二次项,a 是二次项系数;bx 叫做一次项,b 是一次项系数;c 叫做常数项17.2 一元二次方程的解法1.特殊的一元二次方程的解法:开平方法,分解因式法2.一般的一元二次方程的解法:配方法、求根公式法3.求根公式2b x a -±=:1222b b x x a a---= , = ;△=24b ac -≥0 17.3 一元二次方程的判别式1.一元二次方程20(0)ax bx c a ++=≠:△>0时,方程有两个不相等的实数根△=0时,方程有两个相等的实数根△<0时,方程没有实数根2.反过来说也是成立的17.4 一元二次方程的应用1.一般来说,如果二次三项式2ax bx c ++(0a ≠)通过因式分解得2ax bx c ++=12()()a x x x x --;1x 、2x 是一元二次方程20(0)ax bx c a ++=≠的根2.把二次三项式分解因式时;如果24b ac -≥0,那么先用公式法求出方程的两个实数根,再写出分解式如果24b ac -<0,那么方程没有实数根,那此二次三项式在实数范围内不能分解因式3. 实际问题:设,列,解,答第十八章 正比例函数和反比例函数18.1.函数的概念1.在问题研究过程中,可以取不同数值的量叫做变量;保持数值不变的量叫做常量2.在某个变化过程中有两个变量,设为x 和y ,如果在变量x 的允许取之范围内,变量y 随变量x 的变化而变化,他们之间存在确定的依赖关系,那么变量y 叫做变量x 的函数,x 叫做自变量3.表达两个变量之间依赖关系的数学是自称为函数解析式()y f x =4.函数的自变量允许取之的范围,叫做这个函数的定义域;如果变量y 是自变量x 的函数,那么对于x 在定义域内去顶的一个值a ,变量y 的对应值叫做当x=a 时的函数值18.2 正比例函数1. 如果两个变量每一组对应值的比是一个不等于零的常数,那么就说这两个变量成正比例2.正比例函数:解析式形如y=kx (k 是不等于零的常数)的函数叫做正比例函数,气质常数k 叫做比例系数;正比例函数的定义域是一切实数3.对于一个函数()y f x =,如果一个图形上任意一点的坐标都满足关系式()y f x =,同时以这个函数解析式所确定的x 与y 的任意一组对应值为坐标的点都在图形上,那么这个图形叫做函数()y f x =的图像4.一般地,正比例函数y kx =(0)k k ≠是常数且的图像时经过原点O (0,0)和点(1,k )的一条直线,我们把正比例函数y kx =的图像叫做直线y kx =5. 正比例函数y kx =(0)k k ≠是常数且有如下性质:(1)当k <0时,正比例函数的图像经过一、三象限,自变量x 的值逐渐增大时,y 的值也随着逐渐增大(2)当k <0时 ,正比例函数的图像经过二、四象限,自变量x 的值逐渐增大时,y 的值则随着逐渐减小18.3 反比例函数1.如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例2.解析式形如(0)k y k k x=≠是常数,的函数叫做反比例函数,其中k 也叫做反比例系数 反比例函数的定义域是不等于零的一切实数 3.反比例函数(0)k y k k x =≠是常数,有如下性质: (1)当k >0时,函数图像的两支分别在第一、三象限,在每一个象限内,当自变量x 的值逐渐增大时,y 的值则随着逐渐减小(2)当k <0时 ,函数图像的两支分别在第二、四象限,在每一个象限内。
沪教版八年级上册数学(全册知识点考点梳理、重点题型分类巩固练习)(提高版)(家教、补习、复习用)
沪教版初二数学上册知识点梳理重点题型(常考知识点)巩固练习二次根式的概念和性质(提高)知识讲解【学习目标】1、理解二次根式的概念,了解被开方数是非负数的理由.2、理解并掌握下列结论:,,,并利用它们进行计算和化简.3、理解并掌握同类二次根式和最简二次根式的概念,能运用二次根式的有关性质进行化简.【要点梳理】要点一、二次根式及代数式的概念1.二次根式:一般地,我们把形如 (a≥0)•的式子叫做二次根式,“”称为二次根号.要点诠释:二次根式的两个要素:①根指数为2;②被开方数为非负数.2.代数式:形如5,a,a+b,ab,,x3,这些式子,用基本的运算符号(基本运算包括加、减、乘、除、乘方、开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式.要点二、二次根式的性质1、;2.;3..要点诠释:1.二次根式 (a≥0)的值是非负数。
一个非负数可以写成它的算术平方根的形式,即.2.与要注意区别与联系:1).的取值范围不同,中≥0,中为任意值.2).≥0时, ==; <0时,无意义, =.要点三、最简二次根式(1)被开方数不含有分母;(2)被开方数中不含能开得尽方的因数或因式.满足这两个条件的二次根式叫最简二次根式.要点诠释:二次根式化成最简二次根式主要有以下两种情况:(1) 被开放数是分数或分式;(2)含有能开方的因数或因式.要点四、同类二次根式1.定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.要点诠释:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关.2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变(合并同类二次根式的方法与整式加减运算中的合并同类项类似).要点诠释:(1)根号外面的因式就是这个根式的系数;(2)二次根式的系数是带分数的要变成假分数的形式.【典型例题】类型一、二次根式的概念1.(2016春•天津期末)已知y=+﹣4,计算x﹣y2的值.【思路点拨】根据二次根式有意义的条件可得:,解不等式组可得x的值,进而可求出y的值,然后代入x﹣y2求值即可.【答案与解析】解:由题意得:,解得:x=,把x=代入y=+﹣4,得y=﹣4,当x=,y=﹣4时x﹣y2=﹣16=﹣14.【总结升华】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.举一反三【变式】方程,当时,的取值范围是()A. B.≥2 C. D.≤2【答案】 C.类型二、二次根式的性质2.根据下列条件,求字母x的取值范围:(1); (2).【答案与解析】(1)(2)【总结升华】二次根式性质的运用.举一反三【变式】(2014春•铁东区校级月考)问题探究:因为,所以,因为,所以请你根据以上规律,结合你的以验化简下列各式:(1);(2).【答案】解:(1)==;(2)==.3. (2015•罗平县校级模拟)已知,1≤x≤3,化简: =_______.【思路点拨】由题意1≤x≤3,可以判断1﹣x≤0;x﹣3≤0,然后再直接开平方进行求解.【答案】2.【解析】解:∵1≤x≤3,∴1﹣x≤0,x﹣3≤0,∴=x﹣1+3﹣x=2.【总结升华】此题主要考查二次根式的性质和化简,计算时要仔细,是一道基础题.【:高清: 381279:经典例题4】4.已知为三角形的三边,则=.【答案】.【解析】为三角形的三边, ,即原式==.【总结升华】重点考查二次根式的性质:的同时,复习了三角形三边的性质.类型三、最简二次根式5.已知0<<,化简.【答案与解析】原式===.【总结升华】成立的条件是>0;若<0,则.类型四、同类二次根式6. 如果两个最简二次根式和是同类二次根式,那么、的值是( ) A. =2, =1 B. =1, =2 C. =1, =-1 D. =1, =1 【答案】 D.【解析】根据题意,得,解之,得,故选D.【总结升华】同类二次根式必须满足两个条件:(1)根指数是2;(2)被开方数相同;由此可以得到关于a、b的二元一次方程组,此类问题都可如此.举一反三【变式】若最简根式与根式是同类二次根式,求、的值.【答案】同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;•事实上,根式不是最简二次根式,因此把化简==|b|×由题意得,∴,∴=1,b=1.沪教版初二数学上册知识点梳理重点题型(常考知识点)巩固练习二次根式的概念和性质(提高)巩固练习【巩固练习】一、选择题1.(2016•贵港)式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥12.使式子有意义的未知数x有( )个A.0 B.1 C.2 D.无数3. 把根号外的因式移到根号内,得().A. B. C. D.4.(2015•蓬溪县校级模拟)下列四个等式:①;②(﹣)=16;③()=4;④.正确的是()A.①②B.③④C.②④D.①③5. 若,则等于()A.B. C. D.6.将中的移到根号内,结果是()A. B. C. D.二. 填空题7. 若最简二次根式与是同类二次根式,则.8. (2015•江干区一模)在,,,﹣,中,是最简二次根式的是_________.9.已知,求的值为____________.10.若,则化简的结果是__________.11. 观察下列各式:,,,……请你探究其中规律,并将第n(n≥1)个等式写出来________________.12.(2016•乐山)在数轴上表示实数a的点如图所示,化简+|a﹣2|的结果为.三. 综合题13. 已知,求的值.14. 若时,试化简.15. (2015春•武昌区期中)已知a、b、c满足+|a﹣c+1|=+,求a+b+c的平方根.【答案与解析】一、选择题1.【答案】C.【解析】依题意得:x﹣1>0,解得x>1.2.【答案】B.3.【答案】C.4.【答案】D.【解析】解:①==4,正确;②=(﹣1)2=1×4=4≠16,不正确;③=4符合二次根式的意义,正确;④==4≠﹣4,不正确.①③正确.故选:D.5.【答案】D.【解析】因为=,即.6.【答案】 A.【解析】因为≤0,所以=.二、填空题7.【答案】1;1.【解析】,所以.8.【答案】.9.【答案】.【解析】,即,,即原式=.10.【答案】3.【解析】因为原式==.11.【答案】 .12.【答案】 3.【解析】由数轴可得:a﹣5<0,a﹣2>0,则+|a﹣2|=5﹣a+a﹣2=3.三、解答题13.【解析】因为,所以2x-1≥0,1-2x≥0,即x=,y=则.14.【解析】因为,所以原式==.15.【解析】解:由题意得,b﹣c≥0且c﹣b≥0,所以,b≥c且c≥b,所以,b=c,所以,等式可变为+|a﹣b+1|=0,由非负数的性质得,,解得,所以,c=2,a+b+c=1+2+2=5,所以,a+b+c的平方根是±.沪教版初二数学上册知识点梳理重点题型(常考知识点)巩固练习二次根式的运算(提高)知识讲解【学习目标】1、理解并掌握二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;2、掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的乘除运算;3、会利用运算律和运算法则进行二次根式的混合运算.【要点梳理】要点一、二次根式的加减二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.要点诠释:(1)在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.(2)二次根式加减运算的步骤:1)将每个二次根式都化简成为最简二次根式;2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;要点二、二次根式的乘法及积的算术平方根1.乘法法则:(≥0,≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘.要点诠释:(1).在运用二次根式的乘法法则进行运算时,一定要注意:公式中a、b都必须是非负数;(在本章中,如果没有特别说明,所有字母都表示非负数).(2).该法则可以推广到多个二次根式相乘的运算:≥0,≥0,…..≥0).(3).若二次根式相乘的结果能写成的形式,则应化简,如.2.积的算术平方根:(≥0,≥0),即积的算术平方根等于积中各因式的算术平方根的积.要点诠释:(1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足≥0,≥0,才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了; (2)二次根式的化简关键是将被开方数分解因数,把含有形式的a移到根号外面.要点三、二次根式的除法及商的算术平方根1.除法法则:(≥0, >0),即两个二次根式相除,根指数不变,把被开方数相除.。
上海八年级全册数学知识点
上海八年级全册数学知识点全文记录了上海八年级全册重要的数学知识点,帮助学生系统地学习和掌握数学知识,是一份极具参考价值和实用性的文章。
一、有理数1.有理数的定义有理数指的是可以表示为两个整数之比的数。
例如:1、-2、=0.5、0、-3.8等都是有理数。
2.有理数的加减乘除有理数之间可以进行加减乘除等基本运算。
例如:(1)有理数加减法:同号相加、异号相减。
(2)有理数乘法:符号相同为正,符号相异为负。
(3)有理数除法:分子分母同号为正,分子分母异号为负。
3.有理数的绝对值有理数的绝对值是它到0点的距离,可以用符号|a|表示。
例如:|2|=2,|-3.5|=3.5。
4.有理数的大小比较(1)同号比大小:绝对值大的数大。
(2)异号比大小:正数大于负数。
(3)0与其他数比大小:0不是最大的数,0与正整数比大小时,0小于正整数,0与负整数比大小时,0大于负整数。
二、代数式1.代数式的定义代数式是由数字、字母和运算符号等符号组成的,类似数学问题的“代表式”。
例如:3x+5、2x²-3x、abc-4d。
2.常见代数式的展开与因式分解(1)二项式的平方:(a+b)²=a²+2ab+b²(b-a)²=b²-2ab+a²(2)多项式的乘法:(a+b)(c+d)=ac+ad+bc+bd(3)整式的除法:3x+5÷2=1.5x+2.5(4)多项式的加减法:将同类项合并即可。
(5)整式的因式分解:ax2+bx+c=(mx+n)(px+q)三、方程式1.方程式的定义方程式是两个代数式用“=”连接起来的数学式子。
例如:2x+3=9。
2.方程式的解法(1)加减消元法将方程式两边加减同样的数。
(2)化简法将方程式变形为易于解的形式。
(3)代入法将已知数值代入方程式求解。
(4)等式交换法将方程式两边的代数式互换,仍然是一个等价的方程式。
四、平面图形1.正方形正方形是一种特殊的矩形,四边相等,且每个角都是直角。
沪教版八年级下册数学知识点梳理 复习提纲
沪教版八年级下册数学知识点梳理复习提纲第二十章一次函数20.1 一次函数的概念一次函数的解析式一般形如 y = kx + b,其中 k 和 b 是常数,且k ≠ 0.一次函数的定义域是所有实数。
另外,我们把函数 y = c(c 为常数)称为常值函数。
20.2 一次函数的图像我们可以通过列表、描点、连线的方式绘制一次函数的图像。
一条直线与 y 轴的交点的纵坐标称为这条直线在 y 轴上的截距,简称直线的截距。
对于一般形式的直线 y = kx + b(k ≠ 0),其与 y 轴的交点坐标为 (0.b),截距为 b。
一次函数 y = kx + b(b ≠ 0)的图像可以由正比例函数 y = kx 的图像平移得到。
当 b。
0 时,向上平移 b 个单位;当 b < 0 时,向下平移 |b| 个单位。
此外,一元一次不等式与一次函数之间存在一定的关系,具体可以通过图像来观察。
20.3 一次函数的性质一次函数 y = kx + b(k ≠ 0)具有以下性质:当 k。
0 时,函数值 y 随自变量 x 的值增大而增大;当 k < 0 时,函数值 y 随自变量 x 的值增大而减小。
对于一般形式的直线 y = kx + b(k ≠ 0),其截距 b 的正负值以及 k 的正负值不同,会影响直线经过的象限。
具体可以通过图像来观察。
20.4 一次函数的应用我们可以利用一次函数及其图像来解决实际问题。
第二十一章代数方程21.1 一元整式方程一元整式方程的一般形式为 ax = 12(a 是正整数),其中x 是未知数,a 是已知数。
在项 ax 中,字母 a 是项的系数,我们把 a 叫做字母系数。
如果方程中只有一个未知数且两边都是关于未知数的整式,那么这个方程就叫做一元整式方程。
如果经过整理后,一元整式方程中含未知数的项的最高次数是 n(n 是正整数),那么这方程就叫做一元 n 次方程。
其中,次数 n 大于 2 的方程统称为一元高次方程。
沪教版上海初二(上册)数学知识点总结
《数学》(八年级上册)知识点总结第一章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数值,如sin60o等 二、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
表示方法:记作“a ”,读作根号a 。
性质:正数和零的算术平方根都只有一个,零的算术平方根是零。
2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。
表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。
性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
开平方:求一个数a 的平方根的运算,叫做开平方。
0≥a注意:a 的双重非负性:a ≥03、立方根一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。
表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
三、二次根式计算1、含有二次根号“”;被开方数a 必须是非负数。
2、性质:(1))0()(2≥=a a a)0(≥a a(2)==a a 2)0(<-a a(3))0,0(≥≥•=b a b a ab ()0,0(≥≥=•b a ab b a )(4))0,0(>≥=b a bab a ()0,0(>≥=b a baba ) 3、化简二次根式:把二次根式被开方数的完全平方因式移到根号外。
沪教版八年级数学知识点
沪教版八年级数学知识点知识是一座宝库,而实践就是开启宝库的钥匙。
学习任何学科,不仅需要大量的记忆,还需要大量的练习,从而达到巩固知识的效果。
下面是小编给大家整理的一些八年级数学的知识点,希望对大家有所帮助。
初二上学期数学知识点归纳三角形知识概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8、多边形的内角:多边形相邻两边组成的角叫做它的内角。
9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
13、公式与性质:(1)三角形的内角和:三角形的内角和为180°(2)三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
(3)多边形内角和公式:边形的内角和等于?180°(4)多边形的外角和:多边形的外角和为360°(5)多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。
②边形共有条对角线。
初二数学知识点总结分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
沪教版初二下数学知识点归纳总结
沪教版初二下数学知识点归纳总结初二下学期数学知识点繁多,但是只要我们按照章节进行总结和分类,就能够更好地理解和掌握这些知识。
下面是对初二下数学知识点的一个归纳总结。
第一章:图形的认识与绘制在这一章中,我们学习了各种基本图形的性质和绘制方法。
包括点、线、线段、射线、角、平行线、垂直线等概念的理解和运用。
我们需要掌握图形的命名方法和图形之间的关系,以及如何正确地使用尺规进行绘图。
第二章:平面直角坐标系这一章主要介绍了平面直角坐标系的建立和使用。
我们学习了如何根据图形的坐标来判断图形的位置和性质,并且学会了如何计算两点之间的距离和斜率。
同时,我们还需要掌握如何在平面直角坐标系中绘制和分析线性函数的图像。
第三章:方程与不等式在这一章中,我们学习了一元一次方程、一元一次不等式和二元一次方程的解法和运用。
我们需要掌握通过加减消元、代入法和图解法来解方程和不等式的方法。
此外,我们还需要了解方程的应用领域,比如生活中的应用问题和几何问题。
第四章:比例与相似比例与相似是初中数学的重要内容,主要涉及到比例的计算和相似三角形的性质。
我们需要掌握如何求解两个量的比例、如何利用比例关系解决实际问题,并且了解相似三角形的判定和运用方法。
第五章:数与式这一章主要介绍了数的分类、数的运算和一元一次方程的应用。
我们需要掌握整数、分数、小数的性质和运算法则,以及如何利用数式解决实际问题。
第六章:实数与有理数在这一章中,我们学习了实数与有理数的概念和性质。
需要了解有理数的分类、有理数的四则运算、开方及其性质,并且学习如何利用有理数解决实际问题。
第七章:平面与立体图形这一章主要介绍了平面图形和立体图形的性质和计算方法。
需要掌握各种平面图形的面积和周长的计算方法,以及立体图形的体积和表面积的计算方法。
同时,我们还需要掌握如何运用平面与立体图形的性质解决实际问题。
第八章:统计与概率统计与概率是数学中的实际应用领域,主要涉及到数据的收集和整理以及概率的计算与应用。
上海市沪教版八年级数学上下册知识点梳理
上海市沪教版八年级数学上下册知识点梳理第十六章 二次根式第一节 二次根式的概念与性质16、1 二次根式1. 二次根式的概念: 式子)0(≥a a 叫做二次根式.注意被开方数只能就是正数或0。
2. 二次根式的性质 ①⎩⎨⎧≤-≥==)0()0(2a a a a a a ; ②)0()(2≥=a a a ③)0,0(≥≥⋅=b a b a ab ; ④)0,0(>≥=b a ba b a 16、2 最简二次根式与同类二次根式1、 被开方数所含因数就是整数,因式就是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.2、化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式16、3 二次根式的运算1、二次根式的加减:先把各个二次根式化成最简二次根式,再把同类三次根式分别合并.2、二次根式的乘法:等于各个因式的被开方数的积的算术平方根,即 ).0,0(≥≥=⋅b a ab b a3、二次根式的与相乘,可参照多项式的乘法进行.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式.4、二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.二次根式的运算法则:≥0)).0,0(≥≥=⋅b a ab b a=≥0,b>0)n =≥0)第十七章 一元二次方程17、1 一元二次方程的概念1.只含有一个未知数,且未知数的最高次数就是2的整式方程叫做一元二次方程2.一般形式y=ax ²+bx+c(a ≠0),称为一元二次方程的一般式,ax 叫做二次项,a 就是二次项系数;bx 叫做一次项,b 就是一次项系数;c 叫做常数项17、2 一元二次方程的解法1.特殊的一元二次方程的解法:开平方法,分解因式法2.一般的一元二次方程的解法:配方法、求根公式法3.求根公式2b x a -±=:1222b b x x a a--= , = ; △=24b ac -≥017、3 一元二次方程的判别式1.一元二次方程20(0)ax bx c a ++=≠:△>0时,方程有两个不相等的实数根△=0时,方程有两个相等的实数根△<0时,方程没有实数根2.反过来说也就是成立的17、4 一元二次方程的应用1.一般来说,如果二次三项式2ax bx c ++(0a ≠)通过因式分解得2ax bx c ++=12()()a x x x x --;1x 、2x 就是一元二次方程20(0)ax bx c a ++=≠的根2.把二次三项式分解因式时;如果24b ac -≥0,那么先用公式法求出方程的两个实数根,再写出分解式如果24b ac -<0,那么方程没有实数根,那此二次三项式在实数范围内不能分解因式3. 实际问题:设,列,解,答 第十八章 正比例函数与反比例函数18、1.函数的概念1.在问题研究过程中,可以取不同数值的量叫做变量;保持数值不变的量叫做常量2.在某个变化过程中有两个变量,设为x 与y,如果在变量x 的允许取之范围内,变量y 随变量x 的变化而变化,她们之间存在确定的依赖关系,那么变量y 叫做变量x 的函数,x 叫做自变量3.表达两个变量之间依赖关系的数学就是自称为函数解析式()y f x =4.函数的自变量允许取之的范围,叫做这个函数的定义域;如果变量y 就是自变量x 的函数,那么对于x 在定义域内去顶的一个值a,变量y 的对应值叫做当x=a 时的函数值18、2 正比例函数1. 如果两个变量每一组对应值的比就是一个不等于零的常数,那么就说这两个变量成正比例2.正比例函数:解析式形如y=kx(k 就是不等于零的常数)的函数叫做正比例函数,气质常数k 叫做比例系数;正比例函数的定义域就是一切实数3.对于一个函数()y f x =,如果一个图形上任意一点的坐标都满足关系式()y f x =,同时以这个函数解析式所确定的x 与y 的任意一组对应值为坐标的点都在图形上,那么这个图形叫做函数()y f x =的图像4.一般地,正比例函数y kx =(0)k k ≠是常数且的图像时经过原点O(0,0)与点(1,k)的一条直线,我们把正比例函数y kx =的图像叫做直线y kx =5. 正比例函数y kx =(0)k k ≠是常数且有如下性质:(1)当k <0时,正比例函数的图像经过一、三象限,自变量x 的值逐渐增大时,y 的值也随着逐渐增大(2)当k <0时 ,正比例函数的图像经过二、四象限,自变量x 的值逐渐增大时,y 的值则随着逐渐减小18、3 反比例函数1.如果两个变量的每一组对应值的乘积就是一个不等于零的常数,那么就说这两个变量成反比例2.解析式形如(0)k y k k x=≠是常数,的函数叫做反比例函数,其中k 也叫做反比例系数 反比例函数的定义域就是不等于零的一切实数 3.反比例函数(0)k y k k x =≠是常数,有如下性质: (1)当k >0时,函数图像的两支分别在第一、三象限,在每一个象限内,当自变量x 的值逐渐增大时,y 的值则随着逐渐减小(2)当k <0时 ,函数图像的两支分别在第二、四象限,在每一个象限内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市沪教版八年级数学上下册知识点梳理上海市沪教版八年级数学上下册知识点梳理第十六章 二次根式第一节 二次根式的概念和性质16.1 二次根式1.二次根式的概念: 式子)0(≥a a 叫做二次根式.注意被开方数只能是正数或0。
2.二次根式的性质 ①⎩⎨⎧≤-≥==)0()0(2a a a a a a ; ②)0()(2≥=a a a ③)0,0(≥≥⋅=b a b a ab ; ④)0,0(>≥=b a ba b a 16.2 最简二次根式与同类二次根式1. 被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.2.化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式16.3 二次根式的运算1.二次根式的加减:先把各个二次根式化成最简二次根式,再把同类三次根式分别合并.2.二次根式的乘法:等于各个因式的被开方数的积的算术平方根,即 ).0,0(≥≥=⋅b a ab b a3.二次根式的和相乘,可参照多项式的乘法进行.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式.4.二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.二次根式的运算法则:≥0)).0,0(≥≥=⋅b a ab b a=a ≥0,b>0)n =≥0)第十七章 一元二次方程17.1 一元二次方程的概念1.只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程2.一般形式y=ax ²+bx+c (a ≠0),称为一元二次方程的一般式,ax 叫做二次项,a 是二次项系数;bx 叫做一次项,b 是一次项系数;c 叫做常数项17.2 一元二次方程的解法1.特殊的一元二次方程的解法:开平方法,分解因式法2.一般的一元二次方程的解法:配方法、求根公式法3.求根公式x =:12x x ==; △=24b ac -≥017.3 一元二次方程的判别式1.一元二次方程20(0)ax bx c a ++=≠:△>0时,方程有两个不相等的实数根△=0时,方程有两个相等的实数根△<0时,方程没有实数根2.反过来说也是成立的17.4 一元二次方程的应用1.一般来说,如果二次三项式2ax bx c ++(0a ≠)通过因式分解得2ax bx c ++=12()()a x x x x --;1x 、2x 是一元二次方程20(0)ax bx c a ++=≠的根2.把二次三项式分解因式时;如果24b ac -≥0,那么先用公式法求出方程的两个实数根,再写出分解式 如果24b ac -<0,那么方程没有实数根,那此二次三项式在实数范围内不能分解因式3.实际问题:设,列,解,答第十八章 正比例函数和反比例函数18.1.函数的概念1.在问题研究过程中,可以取不同数值的量叫做变量;保持数值不变的量叫做常量2.在某个变化过程中有两个变量,设为x 和y ,如果在变量x 的允许取之范围内,变量y 随变量x 的变化而变化,他们之间存在确定的依赖关系,那么变量y 叫做变量x 的函数,x 叫做自变量3.表达两个变量之间依赖关系的数学是自称为函数解析式()y f x =4.函数的自变量允许取之的范围,叫做这个函数的定义域;如果变量y 是自变量x 的函数,那么对于x 在定义域内去顶的一个值a ,变量y 的对应值叫做当x=a 时的函数值18.2 正比例函数1. 如果两个变量每一组对应值的比是一个不等于零的常数,那么就说这两个变量成正比例2.正比例函数:解析式形如y=kx (k 是不等于零的常数)的函数叫做正比例函数,气质常数k 叫做比例系数;正比例函数的定义域是一切实数3.对于一个函数()y f x =,如果一个图形上任意一点的坐标都满足关系式()y f x =,同时以这个函数解析式所确定的x 与y 的任意一组对应值为坐标的点都在图形上,那么这个图形叫做函数()y f x =的图像4.一般地,正比例函数y kx =(0)k k ≠是常数且的图像时经过原点O (0,0)和点(1,k )的一条直线,我们把正比例函数y kx =的图像叫做直线y kx =5. 正比例函数y kx =(0)k k ≠是常数且有如下性质:(1)当k <0时,正比例函数的图像经过一、三象限,自变量x 的值逐渐增大时,y 的值也随着逐渐增大(2)当k <0时 ,正比例函数的图像经过二、四象限,自变量x 的值逐渐增大时,y 的值则随着逐渐减小18.3 反比例函数1.如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例2.解析式形如(0)k y k k x =≠是常数,的函数叫做反比例函数,其中k 也叫做反比例系数反比例函数的定义域是不等于零的一切实数3.反比例函数(0)k y k k x=≠是常数,有如下性质: (1)当k >0时,函数图像的两支分别在第一、三象限,在每一个象限内,当自变量x 的值逐渐增大时,y 的值则随着逐渐减小(2)当k<0时,函数图像的两支分别在第二、四象限,在每一个象限内。
自变量x的值逐渐增大时,y的值也随着逐渐增大18.4函数的表示法1.把两个变量之间的依赖关系用数学式子来表达------解析法2.把两个变量之间的依赖关系用图像来表示------图像法3.把两个变量之间的依赖关系用表格来表示------列表法第十九章几何证明19.1 命题和证明1.我们现在学习的证明方式是演绎证明,简称证明2.能界定某个对象含义的句子叫做定义3.判断一件事情的句子叫做命题;其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题4.数学命题通常由题设、结论两部分组成5.命题可以写成“如果……那么……”的形式,如果后是题设,那么后是结论19.2 证明举例1.平行的判定,全等三角形的判定19.3 逆命题和逆定理1.在两个命题中,如果第一个命题的题设是第二个命题的结论,二第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题,如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题2.如果一个定理的逆命题经过证明也是定理,那么这两个定理叫做互逆定理,其中一个叫做另一个的逆定理19.4线段的垂直平分线1.线段的垂直平分线定理:线段垂直平分线上的任意一点到这条线段两个端点的距离相等。
2、逆定理:和一条线段的两个端点距离相等的点,在这条线段的垂直平分线上。
19.5 角的平分线1、角的平分线定理:在角的平分线上的点到这个角的两边距离相等。
2、逆定理:在一个角的内部(包括顶点)且到角的两边距离相等的点在这个角的平分线上。
19.6 轨迹1、和线段两个端点距离相等的点的轨迹是这条线段的垂直平分线2、在一个叫的内部(包括顶点)且到角两边距离相等的点的轨迹是这个角的平分线3、到定点的距离等于定长的点的轨迹是以这个定点为圆心、定长为半径的圆19.7 直角三角形全等的判定1.定理1:如果直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等(简记为H.L)2.其他全等三角形的判定定理对于直角三角形仍然适用19.8 直角三角形的性质1.定理2:直角三角形斜边上的中线等于斜边的一半2.推论1:在直角三角形中,如果一个锐角等于30o,那么它所对的直角边等于斜边的一半3.推论2:在直角三角形中,如果一条之骄傲便等于斜边的一般,那么这条直角边所对的角等于30o19.9 勾股定理1.定理:在直角三角形中,斜边大于直角边2.勾股定理:直角三角形两条直角边的平方和,等于斜边的平方3.勾股定理的逆定理:如果三角形的一条边的平方等于其他两条边的平方和,那么这个三角形是直角三角形19.10 两点间距离公式1.如果直角坐标平面内有两点11(,)A x y 、22(,)B x y ,那么A 、B 两点的距离AB =八年级 下册第二十章 一次函数20.1 一次函数的概念1.一般地,解析式形如(0)y kx b k b k =+⋅≠是常数,的函数叫做一次函数; 一次函数的定义域是一切实数2.一般地,我们把函数y c =(c 为常数)叫做常值函数20.2一次函数的图像1.列表、描点、连线2.一条直线与y 轴的交点的纵坐标叫做这条直线在y 轴上的截距,简称直线的截距3.一般地,直线(0)y kx b k b k =+⋅≠是常数,与y 轴的交点坐标是(0,b ),直线的截距是b4.一次函数y kx b =+(b ≠0)的图像可以由正比例函数y kx =的图像平移得到 当b >0时,向上平移b 个单位,当b <0时,向下平移b 的绝对值个单位5.一元一次不等式与一次函数之间的关系(看图)20.3一次函数的性质1. 一次函数(0)y kx b k b k =+⋅≠是常数,具有以下性质:当k >0时,函数值y 随自变量x 的值增大而增大当k <0时,函数值y 随自变量x 的值增大而减小2. 一次函数()0y kx b k =+≠0b > 0b = 0b <0k >0k <限);②如图所示,当k >0,b ﹥O 时,直线经过第一、三、四象限(直线不经过第二象限);③如图所示,当k ﹤O ,b >0时,直线经过第一、二、四象限(直线不经过第三象限);④如图所示,当k ﹤O ,b ﹤O 时,直线经过第二、三、四象限(直线不经过第一象限).20.4一次函数的应用1.利用一次函数及图像解决实际问题第二十一章 代数方程21.1一元整式方程1.12ax =(a 是正整数),x 是未知数,a 是用字母表示的已知数。
于是,在项ax 中,字母a 是项的系数,我们把a 叫做字母系数,我们把a 叫做字母系数,这个方程是含字母系数的一元一次方程2.如果方程中只有一个未知数且两边都是关于未知数的整式, 那么这个方程叫做一元整式方程3.如果经过整理的一元整式方程中含未知数的项的最高次数是n (n 是正整数),那么这方程就叫做一元n 次方程;其中次数n 大于2的方程统称为一元高次方程,本章简称高次方程21.2二项方程1.如果一元n 次方程的一边只有含未知数的一项和非零的常数项,另一边是零,那么这样的方程就叫做二项方程;一般形式为0n ax b +=(0,0a b ≠≠,n 是正整数)2.解一元n (n >2)次二项方程,可转化为求一个已知数的n 次方根3.对于二项方程0n ax b +=(0,0a b ≠≠)当n 为奇数时,方程有且只有一个实数根当n 为偶数时,如果ab <0,那么方程有两个实数根,且这两个根互为相反数;如果ab >0,那么方程没有实数根21.3可化为一元二次方程的分式方程1.解分式方程,可以通过方程两边同乘以方程中各分式的最简公分母,约去分母,转化为正式方程来解2.注意将所得的根带入最简公分母中检验是否为增根(也可带入方程中)3.换元法可将某些特殊的方程化繁为简,并且在解分式方程的过程中,避免了出现解高次方程的问题,起到降次的作用21.4无理方程1.方程中含有根式,且被开方数是含有未知数的代数式,这样的方程叫做无理方程2.整式方程和分式方程统称为有理方程3.有理方程和无理方程统称为初等代数方程,简称代数方程4.解简单的无理方程,可以通过去根号转化为有理方程来解,解简单无理方程的一般步骤5.注意无理方程的检验必须带入原方程中检验是否为增根21.5二元二次方程和方程组1.仅含有两个未知数,并且含有未知数的项的最高次数是2的整式方程,叫二元二次方程2.关于x 、y 的二元二次方程的一般形式是:220ax bxy cy dx ey f +++++= (a 、b 、c 、d 、e 、f 都是常数,且a 、b 、c 中至少有一个不是零;当b 为零时,a 与d 以及c 与e 分别不全为零)3.仅含有两个未知数,各方程是整式方程,并且含有未知数的项的最高次数为2。