高等数学第六章向量代数与空间解析几何习题

合集下载

向量代数与空间解析几何习题详解

向量代数与空间解析几何习题详解

坐标平面所围成; ( 3 ) z = 0, z = a(a > 0) , y = x,x 2 + y 2 = 1 及 x
z x 2 y 2 , z 8 x 2 y2 所围 .
0 在 第 一 卦 限 所 围 成 ;( 4 )
解:(1 )平面 3x 4 y 2z 12 0 与三个坐标平面围成一个在第一卦限的四面体;
,化为 y
1
3 cos t (0 t 2 ) ;
2
99
z 3 sin t
x 1 3 cos
( 2) y 3 sin
(0
z0
2 ).
x a cos 6、 求螺旋线 y a sin 在三个坐标面上的投影曲线的直角坐标方程 .
zb
x2 y2 解:
z0
a2
z y a sin
z x a cos

b;
b.
x0
y0
第六章 向量代数与空间解析几何
习 题 6—3
1、 已知 A(1,2,3) , B(2, 1,4) ,求线段 AB 的垂直平分面的方程 .
解 :设 M ( x, y, z) 是所求平面上任一点,据题意有 | MA | | MB |,
x 12 y 2 2 z 32
x 2 2 y 12 z 4 2,
化简得所求方程 2x 6 y 2 z 7 0 .这就是所求平面上的点的坐标所满足的方程
6、 设平面过原点及点 (1,1,1) ,且与平面 x y z 8 垂直,求此平面方程 .
解: 设所求平面为 Ax By Cz D 0, 由平面过点 (1,1,1) 知平 A B C D 0, 由
r 平面过原点知 D 0 , Q n {1, 1,1},
A B C 0 A C, B 0 ,所求平面方程为

向量代数与空间解析几何(18)

向量代数与空间解析几何(18)

m
n
p
s {m, n, p},
: Ax By Cz D 0, n {A, B,C},
(s^,n)
2
(s^,n)
2
sin
cos
2
cos
2
.
20
sin
| Am Bn Cp | A2 B2 C 2 m2 n2 p2
直线与平面的夹角公式
直线与平面的位置关系:
y
x
• ••
L
24
旋转曲面方程
总之,位于坐标面上的曲线C,绕其上的 一个 坐标轴转动,所成的旋转曲面方程可以 这样得到 :
曲线方程中与旋转轴相同的变量不动, 而用另两个的变量的平方和的平方根(加正、 负号)替代曲线方程中另一个变量即可.
25
如 yOz坐标面上的已知曲线f ( y, z) 0 绕z轴旋转一周的 旋转曲面方程:
第六章 向量代数与空间解析 几何(二)
主要内容 典型例题 堂上练习题
小结
1
一、主要内容
第4节 平面的方程
关键确定平面的法向量
一、平面的点法式方程
经过点 M 0 (x0 , y0 , z0 ) 法向量为 n {A, B, C} 的平面的点法式方程为:
A(x x0 ) B( y y0 ) C(z z0 ) 0
z
O
y
x
28
z
5. 椭球面
x2 a2
y2 b2
z2 c2
1
O
6. 单叶双曲面
x
x2 a2
y2 b2
z2 c2
1
7. 双z叶双曲面
x2 y2 z2 a2 b2 c2 1
x
y
z

第六章向量代数与空间解析几何(424).

第六章向量代数与空间解析几何(424).
);
4、设有三向量
B—
4
r rr
b、c满足关系a
1, 2,1点关于原点对称点是
1,2, 1
B 1,
2,
、向量a与三坐标轴的夹角分别为
A cos cos cos 1
C cos2cos2
cos2
、两个非零向量a和b平行,则
A其必要条件是a b0
C充分必要条件是a b
);
r
0时必有
);
);
1,
2,
1,2,1
、选择题
第六章
向量代数与空间解析几何
习题
1、向量a与三坐标轴的夹角分别为
,则
);
A cos cos cos 1
B cos2
cos2
cos2
C cos2
cos2
cos2
f 2D cos
2cos
2
COS
2、两个非零向量a和b平行,则
();
r r r
A其必要条件是a b 0
其必要条件是
r r
C充分必要条件是a b0
垂直的平面
y z0
相交,试求它们的交线在
xoy坐标平面上的投影方程。
五、证明题
r
已知a 3,
r
2, a
习题
」、选择题
ir
1、已知a =2,
rJ—r r
b =J2,ago 2,则
);
B2^2
2、二次曲面z
笃与平面z h相截,b
其截痕是空间中的
();
A抛物线
B双曲线
C椭圆
直线
3、直线L1:x
2y
间的夹角为
,则
2
cos2

高等数学 空间解析几何与向量代数练习题与答案(优选.)

高等数学 空间解析几何与向量代数练习题与答案(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改空间解析几何与矢量代数小练习一 填空题 5’x9=45分1、 平行于向量)6,7,6(-=a 的单位向量为______________.2、 设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模_________________, 方向余弦_________________和方向角_________________3、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________.4、方程0242222=++-++z y x z y x 表示______________曲面.5、方程22x y z +=表示______________曲面.6、222x y z +=表示______________曲面.7、 在空间解析几何中2x y =表示______________图形.二 计算题 11’x5=55分1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程.3、求过点(1,2,3)且平行于直线51132-=-=z y x 的直线方程.4、求过点(2,0,-3)且与直线⎩⎨⎧=+-+=-+-012530742z y x z y x 垂直的平面方5、已知:k i OA 3+=,k j OB 3+=,求OAB ∆的面积。

参考答案一 填空题1、⎩⎨⎧⎭⎬⎫-±116,117,1162、21M M =2,21cos ,22cos ,21cos ==-=γβα,3,43,32πγπβπα=== 3、14)2()3()1(222=++-+-z y x4、以(1,-2,-1)为球心,半径为6的球面5、旋转抛物面6、 圆锥面7、 抛物柱面二 计算题1、04573=-+-z y x2、029=--z y3、531221-=-=-z y x 4、065111416=---z y x5 219==∆S最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改赠人玫瑰,手留余香。

高等数学第06章 向量代数与空间解析几何习题详解

高等数学第06章 向量代数与空间解析几何习题详解



ab AC 2 AM 即 (ab) 2 MA 于是 MA 1 (ab) 2 因为 MC MA 所以




MC 1 (ab) 又因ab BD 2 MD 所以 MD 1 (ba) 2 2
2 2
M1M 3 (4 5)2 (3 2)2 (1 3)2 6 ,即 M1M 3 M 2 M 3 , 因此结论成立.
11、 在 yoz 坐标面上,求与三个点 A(3, 1, 2), B(4, -2, -2), C(0, 5, 1)等距离的点的坐标. 解:设 yoz 坐标面所求点为 M (0, y, z ) ,依题意有 | MA || MB || MC | ,从而
14 14 ,故所求点为 (0,0, ) . 9 9
13、 求 使向量 a { ,1,5} 与向量 b {2,10,50} 平行.
2
第六章 向量代数与空间解析几何习题详解
解:由 a // b 得

2

1 5 1 得 . 10 50 5
14、 求与 y 轴反向,模为 10 的向量 a 的坐标表达式. 解: a = 10 ( j ) 10 j = {0, 10,0} .
7、已知点 A(a, b, c), 求它在各坐标平面上及各坐标轴上的垂足的坐标(即投影点的坐
1
第六章 向量代数与空间解析几何习题详解
标). 解:分别为 (a, b,0), (0, b, c), (a,0, c), (a,0,0), (0, b,0), (0,0, c) .
8、过点 P(a, b, c) 分别作平行于 z 轴的直线和平行于 xOy 面的平面,问它们上面的点的 坐标各有什么特点? 解:平行于 z 轴的直线上面的点的坐标: x a, y b,z R ;平行于 xOy 面的平面上的 点的坐标为 z c, x, y R . 9、求点 P(2,-5,4)到原点、各坐标轴和各坐标面的距离 . 解:到原点的距离为 3 5 ,到 x 轴的距离为 41 ,到 y 轴的距离为 2 5 ,到 z 轴的距离 为 29 .

高数AII第6章答案

高数AII第6章答案
x1 c a b [abc ] 0 x2 x3 y1 y2 y3 z1 z2 0 . z3
(二)曲面与曲线
1.空间曲面方程 a.一般方程: F ( x, y, z ) 0 ;b.显式方程: z f ( x, y ) ;
x x (u , v ) c.参数方程 y y (u , v ) ,其中 (u , v) D , D 为 uv 平面上某一区域. z z (u , v )
3
直线的方向向量. 直线的上述 3 种方程可互相转化. 2.点、直线、平面之间的关系 (1)两条直线之间的关系: x x1 y y1 z z1 x x2 y y 2 z z 2 设直线 l1 : , l2 : ,且其方向向量分别为 m1 n1 p1 m2 n2 p2 s1 (m1 , n1 , p1 ) 和 s2 (m2 , n2 , p2 ) ,两直线的夹角是指两直线的方向向量 s1 、 s2 之间的夹 角(取锐角)记为 .则 |s s | | m1 m2 n1 n2 p1 p2 | π (0≤ ≤ ) . cos 1 2 2 2 2 2 2 2 | s1 | | s2 | 2 m1 n1 p1 m2 n2 p2 由此可知: a.两直线平行(含重合) : l1 // l2
第六章
向量代数与空间解析几何 一、内容提要
(一)向量
1.方向角与方向余弦 若 a = ( x, y, z ) , 则有 cos 2.向量的线性运算及其性质 (1)加减法运算: 向量加法运算遵循平行四边形法则或三角形法则. 设 a ( x1 , y1 , z1 ) , b ( x2 , y2 , z2 ) ,则 a b ( x1 x2 , y1 y2 , z1 z2 ) . (2)数乘运算: 向量 a 与实数 的乘积,记为 a .设 a ( x, y, z ) ,则 a ( x, y, z ) ,

(完整版)高等数学空间解析几何与向量代数练习题与答案.doc

(完整版)高等数学空间解析几何与向量代数练习题与答案.doc

空间解析几何与矢量代数小练习一填空题 5 ’x9=45 分1、平行于向量a(6,7, 6) 的单位向量为______________.2、设已知两点M1( 4, 2 ,1)和 M 2 (3,0,2) ,计算向量M1M2的模_________________,方向余弦 _________________和方向角 _________________3、以点 (1,3,-2) 为球心,且通过坐标原点的球面方程为__________________.4、方程x2 y 2 z 2 2x 4 y 2z 0 表示______________曲面.5、方程x2 y2 z 表示______________曲面.6、x2 y2 z2 表示 ______________曲面 .7、在空间解析几何中y x2 表示 ______________图形 .二计算题11 ’x5=55 分1、求过点 (3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程.2、求平行于x 轴且过两点 (4,0,-2)和(5,1,7)的平面方程.3、求过点 (1,2,3) 且平行于直线xy 3z 1的直线方程 .2 1 54、求过点 (2,0,-3)x 2 y 4z 7 0且与直线5 y 2z 1垂直的平面方3x 05、已知:OA i 3k ,OB j 3k ,求OAB 的面积。

1参考答案一 填空题1、6 ,7 ,611 11 112、 M 1 M 2 =2, cos1,cos2,cos1 ,2 ,3 ,2223433、 ( x 1) 2( y3) 2 ( z2) 2144、以 (1,-2,-1) 为球心 , 半径为6 的球面5、旋转抛物面6、 圆锥面7、 抛物柱面二 计算题1、 3x 7y 5 z 4 0 2 、 9 y z 2 0 3、x 1y 2 z34、 16x 14y 11z 65 02155 S1OA OB 19222。

线代习题

线代习题

<向量代数与空间解析几何>习题1. 求点),,(c b a 的关于(1)各坐标面;(2)各坐标轴的对称点的坐标.2. 设(3,,2)B(124)A x --与,,点间的距离为29,试求x .3. 在yoz 平面上,求与三个已知点(3,1,2)B(422)051A C --、,,和(,,)等距离的点.4. 求平行于向量}6,7,6{-的单位向量.5. 已知两点(1,3,3)B(421)A --与,,,求向量AB 的模与方向余弦.6. 已知||122||,10||βαβαβα⨯=⋅==,求,.7. 求与)1,0,1(M 110M )0,1,1(M 321)、,,(、三点所在平面垂直的单位向量.8. 求过点012-5z 7y -3x (3,0,-1)=+且与平面平行的平面方程.9. 一平面过点(2,-1,3)4,1,5),x 2y 3z 50+++=和(且垂直于平面,求此平面方程.10. 将平面的一般式方程012-3z y -2x =+化为截距式方程.11.指出下列各平面的特殊位置:(1)04-2y =(2)0z -2y 3x =+(3)4y -2x =(4)02z 3y =+12. 求平面0D Cz By Ax 1=+++与平面0D Cz By Ax 2=+++的距离.13. 一平面过z 轴且与平面07-z 5-y 2x =+成3π角,求此平面方程.14. 已知点,121-xA(5,1,4)zy L ==:及直线求: (1)求过A 且与L 平行的直线;(2)求过点A 且与L 及向量}1,4,3{--=AB 垂直的直线;(3)求过点A 且与直线247035210x y z x y z -+-=⎧⎨+-+=⎩平行的直线.15.求直线123121-x -+=+=z y 与平面0z y 23x =++的交点.16.求直线3211-x zy ==在平面01-z y 4x =+-上的投影直线方程.17.求下列旋转曲面方程:(1)平面z x o 内抛物线x =2z 绕x 轴旋转;(2)平面y x o 内双曲线164x 22=-y 分别绕x 轴及y 轴旋转.18.判断11462x 222=-+-++z y x z y 是否表示球面方程,若是,求出球心坐标及球半径.19.指出下面方程所表示的曲面的名称,并作出草图:(1);1941x 222=++z y (2)04x 222=-+z y ;(3)22x 20y z -+=.20.指出下列方程所表示的曲线:(1)⎩⎨⎧==++325222x z y x (2)⎩⎨⎧==++13694222y z y x21.求曲线C :)0(,0,222222>⎩⎨⎧=-+=++a ax y x a z y x 在y x o 平面和z x o 平面上的投影曲线方程.<矩阵及其初等变换>习题1. 当。

《高等数学》第六章 向量代数与空间解析几何(电子讲稿)

《高等数学》第六章 向量代数与空间解析几何(电子讲稿)

205第六章 向量代数与空间解析几何在平面解析几何中,通过平面直角坐标系建立了平面上的点与二元有序实数对之间的一一对应关系,从而可以用代数方法来研究几何问题,这为一元微积分学提供了直观的几何背景.空间解析几何也是按照类似的方法建立起来的,并为研究多元函数微积分学提供直观的几何背景.本章先引进向量的概念,根据向量的线性运算建立空间直角坐标系,然后利用坐标讨论向量的运算,并利用向量工具讨论空间中的平面和直线、空间曲线和曲面的有关内容.第一节 向量及其线性运算一、向量的概念在研究力学以及其他应用科学时,常会遇到这样一类量,它们既有大小,又有方向.例如力、力矩、位移、速度、加速度等,这一类量叫做向量(或矢量).在数学上,用一条有方向的线段(称为有向线段)来表示向量.有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.以A 为起点、B 为终点的有向线段所表示的向量记作AB −−→(图6-1).向量也可用黑粗体字母表示,也可在字母上加箭头表示,例如,a ,r ,F 或a →,→r ,→F .由于一切向量的共性是它们都有大小和方向,所以在数学上我们只研究与起点无关的向量,并称这种向量为自由向量,简称向量.因此,如果向量a 和b 的大小相等,且方向相同,则说向量a 和b 是相等的,记为=a b .相等的向量经过平移后可以完全重合.向量的大小叫做向量的模.向量a ,→a ,AB −−→的模分别记为||a ,||→a ,||AB −−→.模等于1的向量叫做单位向量.模等于0的向量叫做零向量,记作0或→0.零向量的起点与终点重合,它的方向可以看作是任意的.与a 的模相等而方向相反的向量,称为a 的负向量,记作-a .设a 和b 为非零向量,在空间中任取一点O ,作OA −−→=a ,OB b −−→=,规定不超过π的AOB ∠(即0AOB ≤∠≤π)称为向量a 和b 的夹角(图6-2),记作(,)∧a b 或(,)∧b a .如果a 和b 中有一个为零向量,规定它们的夹角可在0与π之间任意取值.若(,)0∧=a b 或π,即向量a 和b 的方向相同或相反,则称这两个向量平行,记作a //b .可认为零向量与任何向量都平行.若(,)∧=a b 2π,则称向量a 与b 垂直,记作a ⊥b .也可认为零向量与任何向量都垂直.当两个平行向量的起点放在同一点时,它们的终点和公共的起点在一条直线上.因此,两向量平行又称两向量共线.206 类似还有向量共面的概念,设有(3)k k ≥个向量,当把它们的起点放在同一点时,如果k 个终点和公共起点在一个平面上,就称这k 个向量共面.二、向量的线性运算1.向量的加法向量的加法运算规定如下:设有两个向量a 与b ,任取一点A ,作AB −−→=a ,再以B 为起点,作BC −−→=b ,连接AC ,(图6-3),那么向量AC −−→=c 称为向量a 与b 的和,记作+a b ,即=+c a b .上述作出两向量之和的方法叫做向量加法的三角形法则.向量加法还满足如下平行四边形法则(图6-4):当向量a 与b 不平行时,平移向量a ,使a 与b 的起点重合,以a ,b 为邻边作一平行四边形,从公共起点到对角的顶点C 的向量等于向量a 与b 的和+a b .向量的加法满足下列运算规律: (1)交换律 +=+a b b a ;(2)结合律 ()()++=++a b c a b c .由于向量的加法符合交换律与结合律,故n 个向量12,,n a a a (3)n ≥相加可写成12+++n a a a ,并按向量相加的三角形法则,可得n 个向量相加的法则如下:使前一向量的终点作为次一向量的起点,相继作向量12,n a a a ,再以第一向量的起点为起点,最后一向量的终点为终点作一向量,这个向量即为所求的和.我们规定两个向量b 与a 的差为()-=+-b a b a (图6-5). 特别地,当=b a 时,有()-=+-=a a a a 0.显然,任给向量AB −−→及点O ,有AB AO OB OB OA −−→−−→−−→−−→−−→=+=-,因此,若把向量a 与b 移到同一起点O ,则从a 的终点A 向b 的终点B 所引向量AB −−→便是向量b 与a 的差-b a .由三角形两边之和大于第三边的原理,有+≤+a b a b 及 -≤+a b a b , 其中等号在b 与a 同向或反向时成立.2.向量与数的乘法向量a 与实数λ的乘积记作λa ,规定λa 是一个向量,它的模为207λλ=a a .当0λ>时,向量λa 与a 的方向相同,当0λ<时,向量λa 与a 的方向相反.当0λ= 时,0λ=a ,即λa 为零向量,这时它的方向可以是任意的. 特别地,当1λ=±时,有1,(1)=-=-a a a a . 向量与数的乘积运算满足下列运算规律:(1)结合律 ()()()λμμλλμ==a a a ; (2)分配律 ()λμλμ+=+a a a ;()λλλ+=+a b a b .向量加法与数乘运算统称为向量的线性运算.●●例1 化简13525-⎛⎫-+-+ ⎪⎝⎭b a a b b . 解 13525-⎛⎫-+-+ ⎪⎝⎭b a a b b 51(13)1525⎛⎫=-+--+⋅ ⎪⎝⎭a b 522=--a b . ●●例2 设在平面上给了一个四边形ABCD ,点K 、L 、M 、N 分别是边AB 、BC 、CD 、DA 的中点,求证:KL NM −−→−−→=.证 如图6-6所示,连结AC ,则在BAC ∆中,KL −−→=12AC −−→;在DAC ∆中,NM −−→=12AC −−→.所以KL NM −−→−−→=. 设≠0a ,则向量||aa 是与a 同方向的单位向量,记为a e .于是||=a a a e .由向量的数乘运算知向量λa 与a 平行,因此有如下定理:设向量≠0a ,那么,向量b 平行于a 的充分必要条件是:存在唯一的实数λ,使λ=b a .证 条件的充分性是显然的,下面证明条件的必要性.设b //a .取||a b ||||=λ,当b 与a 同向时λ取正值;当b 与a 反向时λ取负值,即λ=b a .这是因为此时b 与a 同向,且λλ===ba a ab a. 再证明实数λ的唯一性.设λ=b a ,又设μ=b a ,两式相减,得()λμ-=0a ,即 0λμ-=a .因0≠a ,故0λμ-=,即λμ=.定理获证.定理1是建立数轴的理论依据,我们知道,给定一个点及一个单位向量就确定了一条数轴.设点O 及单位向量i 确定了数轴Ox ,对于数轴上任一点P ,对应一个向量OP −−→,由OP //i ,根据定理1,必有唯一的实数x ,使OP x −−→=i ,(实数x 叫做数轴上有向线段OP −−→的值),并知OP −−→与实数x 一一对应.于是点P向量OP x −−→=i 实数x ,从而数轴上的点P 与实数x 有一一对应的关系.据此,定义实数x 为数轴上点P 的坐标.208 由此可知,数轴上点P 的坐标为x 的充分必要条件是OP x −−→=i .三、空间直角坐标系在空间取定一点O 和3个两两垂直的单位向量i ,j ,k ,就确定了3条都以O 为原点的两两垂直的数轴,依次记为x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴),统称为坐标轴.它们构成一个空间直角坐标系,称为Oxyz 坐标系或[];,,O i j k 坐标系.通常把x 轴和y 轴配置在水平面上,而z 轴则是铅垂线,它们的正向通常符合右手规则,即用右手握住z 轴,其余四指从正向x 轴以π2角度转向正向y 轴时,大拇指所指的方向为z 轴的正向,如图6-7所示.在空间直角坐标系中,任意两个坐标轴可以确定一个平面,这种平面称为坐标面.x 轴及y 轴所确定的坐标面叫做xOy 面,另两个由y 轴及z 轴和z 轴及x 轴所确定的坐标面分别叫做yOz 面和zOx 面.3个坐标面把空间分成八个部分,每一部分叫做卦限,含有3个正半轴的卦限叫做第一卦限,在xOy 面的上方,按逆时针方向排列着第二卦限、第三卦限和第四卦限.在xOy 面的下方,与第一卦限对应的是第五卦限,按逆时针方向分别是第六卦限、第七卦限和第八卦限.八个卦限分别用字母I ,II ,III ,IV ,V ,VI ,VII ,VIII 表示(图6-8).设M 为空间一点,过点M 作3个平面分别垂直于x 轴、y 轴和z 轴,它们与x 轴、y 轴、z 轴的交点依次为P 、Q 、R (图6-9),这3点在x 轴、y 轴、z 轴上的坐标依次为x ,y ,z .于是空间点M 就唯一地确定了一个有序数组(,,)x y z .反之,若已知一个有序数组(,,)x y z ,我们可以在x 轴上取坐标为x 的点P ,在y 轴上取坐标为y 的点Q ,在z 轴上取坐标为z 的点R ,然后通过P ,Q ,R 分别作与x 轴、y 轴、z 轴垂直的平面,由这3个平面得到唯一的交点M (图6-9).用上述方法,我们建立了空间点与三元有序数组之间的一一对应关系.这组数,,x y z 叫做点M 的坐标,并依次称,x y 和z 为点M 的横坐标、纵坐标和竖坐标.点M 通常记作(,,)M x y z .记OM −−→=r ,则=r OM OP PN NM OP OQ OR −−→−−→−−→−−→−−→−−→−−→=++=++,设OP x −−→=i ,OQ y −−→=j ,OR z −−→=k ,则OM x y z −−→==++r i j k .上式称为向量r 的坐标分解式,x i ,y j ,z k 称为向量r 沿3个坐标轴方向的分向量.有序数,,x y z 称为向量r 在坐标系Oxyz 中的坐标,记作r (,,)x y z =.向量OM −−→=r 称为点M 关于原点O 的向径.上述定义表明,一个点与该点的向径有相同209的坐标.记号(,,)x y z 既表示点M ,又表示向量OM −−→.究竟何时表示点,何时表示向量要看具体的情况.坐标面上和坐标轴上的点,其坐标各有一定的特征.例如:点M 在xOy 面上,则0=z ;类似地,点M 在yOz 面上,则0=x ;点M 在zOx 面上,则0=y .如果点M 在x 轴上,则0==y z ;同样,点M 在y 轴上,有0z x ==;点M 在z 轴上,有0x y ==.如果点M 为原点,则x =y 0z ==.四、利用坐标作向量的线性运算利用向量的坐标,可得向量的加法、减法以及向量与数的乘法的运算如下:设(,,)x y z a a a =a ,(,,)x y z b b b =b ,即x y z a a a =++a i j k , x y z b b b =++b i j k ,则加法:()()()x x y y z z a b a b a b +=+++++a b i j k ; 减法:()()()x x y y z z a b a b a b -=-+-+-a b i j k ; 数乘:()()()x y z a a a λλλλ=++a i j k (λ为实数) 或(,,)x x y y z z a b a b a b +=+++a b , (,,)x x y y z z a b a b a b -=---a b ,(,,)x y z a a a λλλλ=a .由此可见,对向量进行加、减及与数相乘,只需对向量的各个坐标分别进行相应的数量运算就行了.由定理1可知:若≠0a 时,向量//b a 相当于λ=b a (λ为实数),即(,,)(,,),x y z x y z b b b a a a λ= 也相当于向量的对应坐标成比例,即.y x zx y zb b b a a a == ●●例3 求解以向量为未知元的线性方程组53,32-=⎧⎨-=⎩x y a x y b ,其中(2,1,2)=a ,(1,1,2)=--b .解 如同解二元一次线性方程组,可得23,35=-=-x a b y a b .以a 、b 的坐标表示式代入,即得2(2,1,2)3(1,1,2)(7,1,10)x =---=-, 3(2,1,2)5(1,1,2)(11,2,16)=---=-y .●●例4 已知两点111(,,)A x y z 和222(,,)B x y z 以及实数1λ≠-,在直线AB 上求一点M ,使AM MB λ−−→−−→=.解法1 如图6-10所示,由于AM OM OA −−→−−→−−→=-,MB OB OM −−→−−→−−→=-,因此 ()OM OA OB OM λ−−→−−→−−→−−→-=-,210 从而 1()1OM OA OB λλ−−→−−→−−→=++ 121212( , , )111x x y y z z λλλλλλ+++=+++,这就是点M 的坐标.解法2 设所求点为(,,)M x y z ,则111(, , )AM OM OA x x y y z z −−→−−→−−→=-=---,222(, , )MB OB OM x x y y z z −−→−−→−−→=-=---.依题意有AM MB λ−−→−−→=,即111222(,,)(,,)λ---=---x x y y z z x x y y z z , 则有111222(,,)(,,)(,,)(,,)λλ-=-x y z x y z x y z x y z ,故) , ,(11) , ,(212121z z y y x x z y x λλλλ++++=,从而 λλ++=121x x x ,121y y y λλ+=+,λλ++=121z z z .点M 叫做有向线段AB −−→的λ分点,当1λ=时,点M 是有向线段AB −−→的中点,其坐标为221x x x +=,221y y y +=,221z z z +=.五、向量的模、方向角、投影1.向量的模与两点间的距离公式设向量r =(,,)x y z ,作OM −−→=r (图6-9),则OM OP OQ OR −−→−−→−−→−−→==++r ,按勾股定理可得||||OM −−→==r因为OP x −−→=i ,OQ y −−→=j ,OR z −−→=k ,所以||,||,||OP x OQ y OR z −−→−−→−−→===,于是得向量模的坐标表示式222||z y x ++=r .设有点111(,,)A x y z ,222(,,)B x y z , 则222111212121 (,,)(,,)(,,)−−→−−→−−→=-=-=---AB OB OA x y z x y z x x y y z z ,于是A 、B 两点间的距离为||||AB AB −−→==●●例5 求证:以(1,2,3)A ,(2,1,4)B ,(4,2,1)C --为顶点的三角形是直角三角形. 证 因为2222(21)(12)(43)3AB =-+-+-=, 2222(41)(22)(13)41AC =-+--+--=, 2222(42)(21)(14)38BC =-+--+--=,211所以,2233841AB BC +=+=,又因为241AC =,根据勾股定理可知,ABC ∆是直角三角形.●●例6 设点P 在x轴上,它到点1P 的距离为到点2(0,1,1)P -的距离的两倍,求点P 的坐标.解 因为点P 在x 轴上,故可设点P 的坐标为(,0,0)x ,则1PP =,2PP =由于122PP PP=,即,解之得1x =±.从而所求点P 的坐标为(1,0,0)或(1,0,0)-.●●例7 已知两点(1,0,3)A 和(3,1,1)B ,求与AB −−→方向相同的单位向量e . 解 因为 (3,1,1)(1,0,3)(2,1,2)AB OB OA −−→−−→−−→=-=-=-,所以,||3AB −−→=,从而 =e 1(2,1,2)3||ABAB −−→−−→=-. 2.方向角与方向余弦非零向量r =(,,)x y z 分别与x 轴、y 轴、z 轴的夹角αβγ、、称为向量r 的方向角(图6-11).c o s,c o s ,c o s αβγ称为向量r 的方向余弦.则||cos ,||cos ,||cos x y z αβγ===r r r .cos ||x α=r ,cos ||y β=r ,cos ||zγ=r .从而1(cos , cos , cos )||r αβγ==r e r . 上式表明,以向量r 的方向余弦为坐标的向量就是与r 同方向的单位向量r e ,而且有222cos cos cos 1αβγ++=.●●例8 已知两点A )和 (1, 3, 0)B ,求向量AB −−→的模、方向余弦和方向角. 解因为(12, 32, 0(1, 1, AB −−→=---=-, 所以||2)2AB −−→=,从而(cos , cos , cos )||ABAB αβγ−−→−−→=,即 1cos 2α=-,1cos 2β=,cos γ=,故 α=23π,β=3π,γ= 34π.212 ●●例9 设向量12P P −−→与x 轴和y 轴的夹角分别为3π和4π,而且122|PP |−−→=,如果点1P 的坐标为(1,0,3),求点2P 的坐标.解 设点2P 的坐标为(,,)x y z ,则12P P −−→的坐标为(1,0,3)x y z ---,又设向量12P P −−→的方向角为α、β、γ,由题设可得α=3π,1cos 2α=,β=4π,cos β= 因为222cos cos cos 1αβγ++=,所以1cos 2γ=±.即γ=3π或γ=23π.由121cos x |PP |α−−→-= 可得12x -12=,解之得2x =,由120cos y |PP |β−−→-= 可得02y-=y = 由123cos z |PP |γ−−→-=可得32z -12=±,解之得4z =或2z =. 故点2P的坐标为或.3.向量在轴上的投影设点O 及单位向量e 确定u 轴(图6-12).任给向量r ,作OM −−→=r ,再过点M 作与u 轴垂直的平面交u 轴于点M '(点M '叫作点M 在u 轴上的投影),则向量OM −−→'称为向量r 在u 轴上的分向量.设OM −−→'λ=e ,则数λ称为向量r 在u 轴上的投影,记作Pr j u r 或()u r . 按此定义,向量a 在直角坐标系Oxyz 中的坐标,,x y z a a a 就是a 在3条坐标轴上的投影,即Pr j ,Pr j ,Pr j x x y y z z a a a ===a a a .投影的性质:性质1 ()cos u a a ϕ=(即Pr j cos u a a ϕ=),其中ϕ为向量a 与u 轴的夹角. 性质2 ()()()u u u a b a b +=+(即Pr j ()Pr j Pr j u u u a b a b +=+).性质3 ()()u u a a λλ=(即Pr j ()Pr j u u a a λλ=).习 题 6-11.在平行四边形ABCD 中,设a −−→=AB ,AD −−→=b ,试用a 和b 表示向量MA −−→、MB −−→、MC −−→、MD −−→,其中M 是平行四边形对角线的交点.2.若四边形的对角线互相平分,用向量方法证明它是平行四边形.2133.求起点为(1,2,1)A ,终点为(19,18,1)B --的向量AB −−→与12AB -的坐标表达式.4.求平行于(1,1,1)=a 的单位向量.5.在空间直角坐标系中,指出下列各点在哪个卦限?(1,1,1),(1,1,1),(1,1,1),(1,1,1)A B C D ------6.求点(,,)M x y z 与x 轴,xOy 平面及原点的对称点坐标.7.已知点(,,)A a b c ,求它在各坐标平面上及各坐标轴上的垂足的坐标(即投影点的坐标).8.过点(,,)P a b c 分别作平行于z 轴的直线和平行于xOy 面的平面,问它们上面的点的坐标各有什么特点?9.求点(2,5,4)P -到原点、各坐标轴和各坐标面的距离.10.求证以1(4,3,1)M 、2(7,1,2)M 、3(5,2,3)M 3点为顶点的三角形是一个等腰三角形. 11.在yOz 坐标面上,求与三个点(3,1,2),(4,2,2),(0,5,1)A B C --等距离的点的坐标. 12.z 轴上,求与点(4,1,7)-A ,点(3,5,2)-B 等距离的点. 13.求λ使向量(,1,5)λ=a 与向量(2,10,50)=b 平行. 14.求与y 轴反向,模为10的向量a 的坐标表达式.15.求与向量(1,5,6)=a 平行,模为10的向量b 的坐标表达式. 16.已知向量6410=-+a i j k ,349=+-b i j k ,试求: (1)2+a b ; (2)32-a b .17.已知两点A ,(3,0,4)B ,求向量AB −−→的模、方向余弦和方向角.18.设向量的方向角为α,β,γ.若已知π3α=,2π3β=.求γ.19.已知3点(1,0,0)A =,(3,1,1)B ,(2,0,1)C ,求:(1)BC −−→与CA −−→及其模;(2)BC −−→的方向余弦、方向角;(3)与BC −−→同向的单位向量. 20.设23=++m i j k ,23=+-n i j k ,34=-+p i j k ,求向量23=+-a m n p 在x 轴上的投影和在y 轴上的分向量.21.一向量的终点为点(2,1,4)B --,它在x 轴,y 轴和z 轴上的投影依次为3,-3和8, 求这向量起点A 的坐标.22.已知向量a 的两个方向余弦为2cos 7α=,3cos 7β=,且a 与z 轴的方向角是钝角.求cos γ.23.设有三个力12=-F i k ,2234=-+F i j k ,3=+F j k 作用于同一质点,求合力的大小和方向角.214 第二节 数量积 向量积 混合积*一、向量的数量积1.数量积的定义设一物体在常力F 作用下沿直线从点1M 移动到点2M ,以s 表示位移12M M −−→. 由物理学知道, 力F 所作的功为cos θ=W F s , 其中θ为F 与s 的夹角(图6-13).在现实生活中还有很多问题的求解都归结于求两个向量a 和b 的模||a 、||b 及它们的夹角θ的余弦的乘积,我们称之为向量a 和b 的数量积,记作a b ⋅(图6-14),即cos θ⋅=a b a b .由数量积的定义可以知道,力F 所作的功是力F 与位移s 这两个向量的数量积,即W =⋅F s ,下面我们来讨论数量积的一些性质.2.数量积的性质性质 1 当a ≠0时,Pr j ⋅=a a b a b ;当b ≠0时,Pr j ⋅=b a b b a .这就是说,两向量的的数量积等于其中一个向量的模和另一个向量在这个向量上的投影的乘积.由向量投影的定义即可证明,证明略.性质2 2⋅=a a a .证 因为向量a 与自身的夹角0θ=,所以 2cos θ⋅==a a a a a .性质3 两个向量a 与b 垂直的充要条件是0⋅a b =.证 若向量a 与b 中至少有一个为零向量时,由于零向量的方向可以看作是任意的,故可以认为零向量与任何向量都垂直,上述结论显然成立.如果向量a 与b 均不为零向量时,则a 与b 均不为零,故当0⋅=a b 时一定有cos 0θ=,从而θ=π2,即a ⊥b ; 反之,如果a ⊥b ,那么π2θ=,cos 0θ=,于是cos 0θ⋅==a b a b . 3.数量积满足的运算规律(1) 交换律 a b b a ⋅=⋅.(2) 分配律 ()a b c a c b c +⋅=⋅+⋅.(3) 结合律 ()()a b a b λλ⋅=⋅, ()()()a b a b λμλμ⋅=⋅ (λ、μ 为常数). 证 下面只证明分配律()a b c a c b c +⋅=⋅+⋅,余下的证明留给读者. 当0c =时,上式显然成立,当0c ≠时,由性质1及投影的性质有()P r ()(P r P r )c c c j j j +⋅=+=+a b c c a b c ab Pr Prc c j j =+=⋅+⋅c a c b a c b c .●●例1 试用向量证明三角形的余弦定理.215证 设在ABC ∆中,BCA θ∠=,=BC a ,CA b =,AB c =(图6-15),要证2222cos θ=+-c a b ab .记CB −−→=a ,CA −−→=b ,AB −−→=c , 则有 =-c a b ,从而2()()2=⋅=-⋅-=⋅+⋅-⋅c c c a b a b a a b b a b222cos(,).=+-a b a b a b即2222cos θ=+-c a b ab .4.数量积的坐标表示设 ()x y z a ,a ,a a =,()x y z b ,b ,b =b ,则按数量积的运算规律可得()()x y z x y z x x x y x z y x y y y z z x z y z z a a a b b b a b a b a b a b a b a b a b a b a b ⋅=++⋅++=⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅a b i j k i j ki i i j i k j i j j j k k i k j k k因为i j k 、、是两两互相垂直的单位向量,所以0⋅=⋅=⋅=⋅=⋅=⋅=i j j i j k k j k i i k ,1⋅=⋅=⋅=i i j j k k .从而a b ⋅=++x x y y z z a b a b a b .这就是两个向量的数量积的坐标表示式.5.两向量夹角的余弦的坐标表示设(,)θ∧=a b 则当,≠≠00a b 时, 由数量积的定义cos θ⋅=⋅a b a b 有cos ||||a b a b a b θ++⋅==⋅a ba b . ●●例2 已知(1,1,4)=-a ,(1,2,2)=-b ,求(1)⋅a b ; (2)a 与b 的夹角; (3)a 在b 上的投影. 解 (1)⋅a b 111(2)(4)2=⋅+⋅-+-⋅9.=-(2)因为cos a b a b a b θ++==θ=3π4. (3)因为||Prj ⋅=b a b b a ,所以 P rj 3||⋅==-b a ba b . 二、向量的向量积1.向量积的定义在研究物体转动问题时,不但要考虑这物体所受的力,还要分析这些力所产生的力矩. 设O 为一根杠杆L 的支点,有一个力F 作用于这杠杆上P 点处. F 与OP −−→的夹角为θ(图6-16).由力学规定,力F 对支点O 的力矩是一向量M , 它的模sin |||OP |||θ−−→=M F , 而M 的方向垂直于OP −−→与F 所决定的平面, M 的指向是按右手规则从OP −−→以不超过π的角转向F 来确定的(图6-17).216设向量c 是由两个向量a 与b 按下列方式定出:(1)c 的模:sin θ=c a b ,其中θ为a 与b 间的夹角;(2)c 的方向:垂直于a 与b 所决定的平面,c 的指向按右手规则从a 转向b 来确定(图6-18).那么,向量c 叫做向量a 与b 的向量积,记作⨯a b ,即=⨯c a b.根据向量积的定义,力矩M 等于OP −−→与F 的向量积,即OP −−→=⨯M F .2.向量积的性质性质1 ×0a a =.性质2 两个向量//a b 的充要条件是×0a b =.证 若向量a 与b 中至少有一个为零向量时,由于零向量的方向可以看作是任意的,故由于可以认为零向量与任何向量都平行,上述结论显然成立.如果向量a 与b 均不为零向量时,则a 与b 均不为零,故当×0a b =时一定有sin 0θ=,从而0θ=或πθ=,即//a b ;反之,如果//a b ,那么0θ=或πθ=,则sin 0θ=,于是×0a b =.3.向量积的运算规律(1)反交换律 ⨯=-⨯a b b a .(2)分配律 ()+⨯=⨯+⨯a b c a c b c .(3)结合律 ()()()λλλ⨯=⨯=⨯a b a b a b (λ为数).4.向量积的坐标表示设x y z a a a =++a i j k ,x y z b b b b =i +j +k , 按向量积的运算规律可得()()x y z x y z x x x y x z y x y y y z z x z y z z a a a b b b a b a b a b a b a b a b a b a b a b ⨯=++⨯++=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯a b i j k i j k i i i j i k j i j j j k k i k j k k由于⨯=⨯=⨯=0i i j j k k ,,,⨯=⨯=⨯=i j k j k i k i j ---⨯⨯⨯,j i =k,k j =i,i k =j ,所以()()()y z z y z x x z x y y x a b a b a b a b a b a b ⨯=-+-+-a b i j k .217为了帮助记忆, 利用三阶行列式, 上式可写成x yz x yza a ab b b ⨯=i jk a b . ●●例3 设向量2a i j k =+-,23b j k =+.计算a b ⨯,并计算以a ,为b 邻边的平行四边形的面积.解 121023i j ka b ⨯=-211112230302i j k --=-+832i j k =-+.根据向量积的模的几何意义,a b ⨯的模在数值上就是以a ,b 为邻边的平行四边形的面积.因而其面积S 为S ||=⨯a b●●例4 求同时垂直于向量(=-a解 记368(803)010,,=⨯=-=--i j kb a j ,故同时垂直于向量a 与y 轴的单位向量为803),,±=--b b . ●●例5 用向量方法证明:三角形的正弦定理sin a A =sin bB =sin c C. 证 如图6-19所示,在ABC ∆中,设−−→=BC a ,CA −−→=b ,−−→=AB c ,且=a a ,b =b ,c =c , 则0++=a b c ,从而()=-+c a b ,因此()⨯=-+⨯=-⨯=⨯0c a a b a b a a b ,同理可得⨯=⨯b c a b ,所以⨯=⨯=⨯b c c a a b .故 ⨯=⨯=⨯b c c a a b ,即 sin sin sin bc A ca B ab C ==,于是sin a A =sin bB =sin c C. 三、向量的混合积*1.向量的混合积的定义已知3个向量a 、b 、c ,向量a b ⨯与向量c 的数量积()⨯⋅a b c 称为这3个向量的混合积,记为[]abc .2.混合积的坐标表示设 (,,)x y z a a a =a ,(,,)x y z b b b =b ,(,,)x y z c c c =c ,因为218 xy z x y za a ab b b ⨯=ij ka b yz x yx zyz x yx z a a a a a a b b b b b b =-+i j k . 再按两向量的数量积的坐标表达式可得[]()=⨯⋅abc a b c yz x yx zxy zy z x yx za a a a a a c c cb b b b b b =-+xy zx y z x y za a ab b bc c c =. 由上述坐标表达式不难验证 []()()()=⨯⋅=⨯⋅=⨯⋅a b ca b c b c a c a b . 3.向量的混合积的几何意义向量的混合积[]()=⨯⋅abc a b c 的绝对值表示以向量,,a b c 为棱的平行六面体的体积.如果向量,,a b c 组成右手系(即c 的指向按右手规则从a 转向b 来确定),那么混合积的符号是正的;如果向量,,a b c 组成左手系(即c 的指向按左手规则从a 转向b 来确定),那么混合积的符号是负的.下面我们来解释这一问题.一方面,设−−→OA =a ,−−→OB =b ,−−→OC =c ,按向量积的定义,向量积a b f ⨯=是一个向量,它的模在数值上等于向量a 和b 为边所作的平行四边形OADB 的面积,它的方向垂直于这平行四边形的平面,且当,,a b c 组成右手系时,向量f 与向量c 朝着这平面的同侧(图6-20);当,,a b c 组成左手系时,向量f 与向量c 朝着这平面的异侧.所以,如设f 与c 的夹角为α,那么当,,a b c 组成右手系时,α为锐角;当,,a b c 组成左手系时,α为钝角.由于[]()cos α=⨯⋅=⨯abc a b c a b c .所以当,,a b c 组成右手系时,[]abc 为正;当,,a b c 组成左手系时,[]abc 为负.另一方面,以向量,,a b c 为棱的平行六面体的底(平行四边形OADB )的面积S 在数值上等于a b ⨯,它的高h 等于向量c 在向量f 上的投影的绝对值,即h Prj cos α==f c c ,所以平行六面体的体积==V Sh []cos α⨯=a b c abc .由上述混合积的几何意义可知,若混合积[]0abc ≠,则能以,,a b c 三向量为棱构成平行六面体,从而,,a b c 三向量不共面;反之,若,,a b c 三向量不共面,则必能以,,a b c 为棱构成平行六面体,从而[]0abc ≠.于是有下述结论:三向量,,a b c 共面的充分必要条件是它们的混合积[]0abc =,即0x y zx y z xyza a ab b bc c c =. ●●例6 已知[]2=abc ,计算[()()]()+⨯+⋅+a b b c c a .解 [()()]()+⨯+⋅+a b b c c a [)]()=⨯+⨯+⨯+⨯⋅+a b a c b b b c c a219()()()0=⨯⋅+⨯⋅+⋅+⨯⋅a b c a c c c b c c ()()()0+⨯⋅+⨯⋅+⋅+⨯⋅a b a a c a a b c a 2()=⨯⋅a b c 2[]=abc 4=.●●例7 已知(1,1,2)A -,(5,6,2)B -,(1,3,1)C -,(,,)D x y z 4点共面,试求D 点的坐标所满足的关系式.解 A B C D 、、、 四点共面相当于−−→AB 、−−→AC 、AD −−→三个向量共面,而(450)−−→=-,,AB ,(043)−−→=-,,AC ,(112)−−→=-+-,,AD x y z ,由3个向量共面的充要条件可知:1124500043-+--=-x y z . 即 151216350++-=x y z 为所求的关系式.习 题 6-21.已知向量(112),,=a ,(010),,=b ,(0,0,1)=c ,求(1)⋅a b ,⋅a c ,⋅b c ;(2)⨯a a ,⨯a b ,⨯a c ,⨯b c .2.已知向量(100),,=a ,(221),,=b ,求⋅a b ,⨯a b 及a 与b 的夹角余弦.3.已知π5,2,(,)3∧===a b a b ,求23a b -.4.证明下列问题:(1)证明向量(101),,=a 与向量(-111),,=b 垂直; (2)证明向量c 与向量()()a c b b c a ⋅-⋅垂直.5.求点(1M 的向径OM −−→与坐标轴之间的夹角. 6.求与=++a i j k 平行且满足1⋅=a x 的向量x .7.求与向量324=-+a i j k ,2=+-b i j k 都垂直的单位向量.8.在顶点为(1,-1,2)A 、(5,-6,2)B 和(1,3,-1)C 的三角形中,求三角形ABC 的面积以及AC 边上的高BD .9.已知向量2222, , ||||||().≠≠⨯=-⋅00证明a b a b a b a b10.证明:如果++=0a b c ,那么⨯=⨯=⨯b c c a a b ,并说明它的几何意义. 11.已知向量23,3=-+=-+a i j k b i j k 和2=-c i j ,计算下列各式:(1)()()⋅-⋅a b c a c b ; (2)()()+⨯+a b b c ; (3)()⨯⋅a b c ; (4)⨯⨯a b c .第三节 曲面及其方程一、曲面方程的概念类似于在平面解析几何中把平面曲线看作是动点的运动轨迹,在空间解析几何中,任何曲面都可以看作点的几何轨迹.在这样的意义下, 如果曲面S 与三元方程(,,)0F x y z = (1)220 有下述关系:(1) 曲面S 上任一点的坐标都满足方程(1),(2) 不在曲面S 上的点的坐标都不满足方程(1), 那么,方程(,,)0F x y z =就叫做曲面S 的方程,而曲面S 就叫做方程(1)的图形(图6-21).下面我们来建立几个常见的曲面的方程.●●例1 建立球心在0000()M x ,y ,z 、半径为R 的球面的方程. 解 设(,,)M x y z 是球面上的任一点(图6-22),那么0M M =R ,即R或 2222000()()()R x x y y z z -+-+-=. (2) 这就是球面上的点的坐标所满足的方程.而不在球面上的点的坐标都不满足这个方程. 特别地,如果球心在原点,那么球面方程为2222x y z R ++=.●●例2 求与原点O 及0(2,3,4)M 的距离之比为1:2的点的全体所组成的曲面方程.解 设(,,)M x y z 是曲面上任一点,根据题意有0||1||2MO MM =,即12=, 整理得: 22224116(1)339x y z ⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭.与方程(2)比较可知,该方程表示球心在点24,1,33⎛⎫--- ⎪⎝⎭求球面上的点的坐标所满足的方程,而不在此球面上的点的坐标都不满足这个方程,所以这个方程就是所求球面的方程.以上表明作为点的几何轨迹的曲面可以用它的点的坐标间的方程来表示,反之,变量x 、y 和z 间的方程通常表示一个曲面.因此在空间解析几何中关于曲面的研究,有下列两个基本问题:(1) 已知一曲面作为点的几何轨迹时,建立这曲面的方程;图6-22图6-21221(2) 已知坐标x 、y 和z 间的一个方程时,研究这方程所表示的曲面的形状. 上述两个例子是从已知曲面建立其方程的例子,下面举一个由已知方程研究它所表示的曲面的例子.●●例3 方程222240x y z x y ++-+=表示怎样的曲面? 解 通过配方,原方程可化为222(1)(2)5x y z -+++=,与方程(2)比较可知,原方程表示球心在点0(1,2,0)M -、半径为R = 一般地,设有三元二次方程2220x y z Dx Ey Fz G ++++++=,这个方程的特点是缺xy ,yz ,zx 各项,而且平方项系数相同,如果能将方程经过配方化成2222000()()()x x y y z z R -+-+-=的形式,那么它的图形就是一个球面.下面,我们来讨论一些特殊的曲面.二、旋转曲面以一条平面曲线绕其所在平面上的一条直线旋转一周所成的曲面叫做旋转曲面,旋转曲线和定直线分别叫做旋转曲面的母线和轴.设在yOz 坐标面上有一已知曲线:(,)0C f y z =,把该曲线绕z 轴旋转一周,就得到一个以z 轴为轴的旋转曲面(图6-23),下面求该旋转曲面的方程.设111(0,,)M y z 为曲线C 上的任一点,那么有11(,)0=f y z , (3)当曲线C 绕z 轴旋转时,点1M 也绕z 轴旋转到另一点(,,)M x y z ,这时1z z =保持不变,且点M 到z 轴的距离1d y .将1z z =,1y =3)式,即得旋转曲面的方程为()0f z =,即将曲线C 的方程(,)0f y z =中的y改成,便得曲线C 绕z 轴旋转所成的旋转曲面的方程.同理yOz 坐标面上的已知曲线(,)0f y z =绕y 轴旋转一周的旋转曲面方程为(0f y,=.同理xOy 坐标面上的已知曲线(,)0=f x y 绕x 轴旋转一周的旋转曲面方程为(,0f x =.●●例4 直线L 绕另一条与L 相交的直线旋转一周,所得旋转曲面叫圆锥面.两直线的交点叫圆锥面的顶点,两直线的夹角π(0)2αα<<叫圆锥面的半顶角.试建立顶点在坐标原点,旋转轴为z 轴,半顶角为α的圆锥面(图6-24)222 的方程.解 yOz 面上直线L 的方程为cot z y α=,因为z 轴为旋转轴,L 为母线,所以只要将方程cot z y α=中的y改成即可得到所要求的圆锥面方程z α=或 2222()z a x y =+,其中cot a α=.显然,圆锥面上任一点M 的坐标一定满足此方程.如果点M 不在圆锥面上,那么直线OM 与z 轴的夹角就不等于α,于是点M 的坐标就不满足此方程.三、柱面给定一曲线C 和一定直线L (L 不在曲线C 所在的平面内),如果一动直线平行于定直线L 并沿着曲线C 平行移动所生成的曲面叫做柱面,其中,曲线C 叫做柱面的准线,动直线叫做柱面的母线.下面仅讨论母线平行于坐标轴的柱面.设准线C 为xOy 面内的一条曲线,其方程为(,)0F x y =,沿C 作母线平行于z 轴的柱面(图6-25).在柱面上任取一点(,,)M x y z ,过M 点作一条与z 轴平行的直线,则该直线与xOy 平面的交点为0(,,0)M x y ,由于0M 在准线C 上,所以有(,)0F x y =.即M 点的坐标应满足方程 (,)0F x y =. 反之,如果空间一点000(,,)M x y z 满足方程(,)0F x y =,即00(,)0F x y =,则000(,,)M x y z 必在过准线C 上一点00(,)x y 而平行于z 轴的直线上,于是点000(,,)M x y z 必在柱面上.所以,方程(,)0F x y =在空间就表示母线平行于z 轴的柱面.例如方程222x y R +=表示母线平行于z 轴,准线是xOy 平面上以原点为圆心、以R 为半径的圆的柱面(图6-26),称其为圆柱面,类似地,曲面222x z R +=、222y z R +=都表示圆柱面.方程22y x =表示母线平行于z 轴,以xOy 坐标面上的抛物线22y x =为准线的柱面,该柱面叫做抛物柱面(图6-27).一般地,只含,x y 而缺z 的方程(,)0F x y =,在空间直角坐标系中表示母线平行于z 轴的柱面,其准线为xOy 面上的曲线C :(,)0F x y =.类似地,只含,x z 而缺y 的方程(,)0G x z =和只含,y z 而缺x 的方程(,)0=H y z 分别表示母线平行于y 轴和x 轴的柱面.223图6-29例如,方程0-=x z 表示母线平行于y 轴的柱面,其准线是xOz 面上的直线0-=x z ,所以它是过y 轴的平面.四、二次曲面与平面解析几何中介绍的二次曲线相类似,我们把三元二次方程所表示的曲面叫做二次曲面.把平面叫做一次曲面.怎样了解三元方程(,,)0F x y z =所表示的曲面的形状呢? 方法之一是用坐标面和平行于坐标面的平面与曲面相交,考察其交线的形状,然后加以综合,从而了解曲面的形状.这种方法叫做截痕法.另外一种常见的方法是所谓的伸缩变形的方法,即通过把空间图形伸缩变形形成新的曲面的方法:设S 是一个曲面,其方程为(,,)0F x y z =,S '是将曲面S 沿x 轴方向伸缩λ倍所得的曲面,显然,若(,,)x y z S ∈,则(,,)x y z S λ'∈;若(,,)x y z S '∈,则1,,x y z S λ⎛⎫∈ ⎪⎝⎭.因此,对于任意的(,,)x y z S '∈,有1,,0λ⎛⎫= ⎪⎝⎭F x y z ,即1,,0F x y z λ⎛⎫= ⎪⎝⎭是曲面S '的方程.下面我们来介绍几种典型的二次曲面.1.椭圆锥面由方程22222x y z a b+=所表示的曲面称为椭圆锥面(图6-28).我们先用截痕法来讨论其图形.以垂直于z 轴的平面z t =截此曲面,当0t =时得一点(0,0,0);当0t ≠时,得平面z t =上的椭圆1)()(2222=+bt y at x .当t 变化时, 上式表示一族长短轴比例不变的椭圆,当||t 从大到小并变为0时,这族椭圆从大到小并缩为一点.综合上述讨论,可得椭圆锥面. 另外,我们也可以用伸缩变形的方法来讨论其图形.把圆锥面2222x y a z +=沿y 轴方向伸缩a b倍,也可得到椭圆锥面的方程为2222()a x y a z b +=,即 22222x yz a b+=.2.椭球面由方程2222221x y z a b c++=所表示的曲面称为椭球面(图6-29).把xOz 面上的椭圆22221x z a c +=绕z 轴旋转一周所得的曲面称 为旋转椭球面,其方程为222221x y z=a c ++,再把旋转椭球面沿y 轴 方向伸缩a b 倍,便得椭球面2222221x y z a b c++=.另外,把球面2222x y z a ++=沿z 轴方向伸缩a c 倍,得旋转椭球面222221x y z a c++=,再沿y 轴方向伸缩a b倍,也可得椭球面2222221x y z a bc++=.。

【高等数学 东南大学】第六章《向量代数 空间解析几何》习题课

【高等数学 东南大学】第六章《向量代数 空间解析几何》习题课

6。
2.设一平面过原点及 A(6,3, 2) ,且与平面4x y 2z 8 垂直,则此平面方程为 2x 2y 3z 0 。
解: OA {6,3, 2} , 已知平面的法向量为n1 {4, 1, 2} , 取所求平面的法向量为 OA n1 {4,4, 6} 2 {2, 2, 3} , 故所求平面的方程为 2(x 0) 2( y 0) 3(z 0) 0 , 即 2x 2y 3z 0 。
点P 作垂直于直线 L 的平面。 该平面的方程为: 2(x 0) 0( y 1) (z 1) 0 ,
即2x z 1 0 。
解方程组
x
y2 0 2z 7 0

2x z 1 0
得平面与直线 L 的交点:Q(1, 2, 3) 。
(1)点 P 和点 Q 的距离为 d (1 0)2 (2 1)2 (3 1)2 6 。
第六章《向量代数 空间解析几何》习题课
一、选择题
1.已知
a
2
,b
2
,且a
b
2
,则
a
b

A

(A)2 ; (B)2 2 ; (C) 2 ; (1 D) 。
2
解:∵
a
b
a
b cos(a, b ) 2
2
cos(a,
b)
2


cos (a, b )
2
,(a,
b)


ab
a
2 b sin(a, b )
6.过点(1, 2, 3) ,垂直于直线 x y z 且平行于平面 456
x 1
7x 8y 9z 10 0 的直线方程为 1
y2 2
z 3

空间解析几何与向量代数复习题答案

空间解析几何与向量代数复习题答案

空间解析几何与向量代数复习题答案间解析几何与向量代数1. 2. 3. 4. 5. 、选择题已知 A(1,0,2), 设 a = (1,-1,3 (-1,1,5 ). 设 a = (1,-1,3 -i -2 j +5k B B(1,2,1)求两平面x 2y已知空间三点是空间两点,向量AB 的模是 (A ),b= (2,-1,2 ),求 c=3a-2b 是(B )(-1,-1,5 ) . C (1,-1,5 ).D (-1,-1,6 ),b= (2, 1,-2 -i -j +3k C z 3 0和2x),求用标准基i , j , k 表示向量c=a-b 为(A-i -j +5k D -2i - j +5ky z 5 0的夹角是(C )M(1,1,1) 、A(2,2,1) 和 B (2, 1, 2),求/ AMB 1( C )6.求点M (2, 1,10)到直线L :1 z 21的距离是:(A )A 138B ,118 158 Dr r r r r2i 3j k,求 a b 是:(D )A -i -2j +5kB - i -j +3kC - i -j +5kC x+y+1=011、设a,b 为非零向量,a b ,则必有(C )A a b | |a | |baba8.设/ ABC 的顶点为 A(3,0,2), B(5,3,1), C(0, 1,3), 求三角形的面积是:(A ) 9.求平行于z 轴, 且过点 M 1(1,0,1)和 M 2(2, 1,1)的平面方程是:(D ) A 2x+3y=5=0x-y+1=010、若非零向量a,b 满足关系式,则必有(C );12、已知 a= 2, 1,2 ,b = 1, 3,2,则 Prj b a =);A5;5■■ 14 ?7.设 a i k,D 3i -3j+3ka b| |a | |b13、直线y 1 Z 1与平面2x y z 4 0的夹角为(B )1 0 1A-;B7C D634214点(1,1,1)在平面x 2y z 10的投影为(A )、(A) 丄,0,3;(B) 丄,0,3;(C) 1, 1,0 ; (D) 1 1 12 222 2 215向量a与b的数量积a b= ( C).、A a rj b a ;B a rj a b ;C a rj a b;D b rj a b .16、非零向量a,b满足a b0,则有(C ).A a // b;B a b (为实数);C a b;D a b 0.17、设a与b为非零向量,则a b 0是(A ).A a // b的充要条件;B a丄b的充要条件;C a b的充要条件;D a // b的必要但不充分的条件.18、设a 2i 3j 4k,b 5i j k,则向量c 2a b在y轴上的分向量是(B).A 7B 7 jC - 1;D -9 k2 2 .219、方程组2x y 4z 9表示(B ).x 1A 椭球面;B x 1平面上的椭圆;C 椭圆柱面;D 空间曲线在x 1平面上的投影.20、方程x 2 y 2 0在空间直角坐标系下表示(C )A 坐标原点(0,0,0);B xoy 坐标面的原点(0,0);C z 轴;D xoy 坐标面.22、设空间三直线的方程分别为A L 1 // L 2 ;B L 1 // L 3 ;C L 2 L 3 ;D L 1 L 2 .23、直线 J $ 4 Z 与平面4x 2y 2z 3的关系为(A ). 273A 平行但直线不在平面上;B 直线在平面上;C 垂直相交;D 相交但不垂直.24、已知 a 1,b.2,且(a,b )-,贝 U a b = ( D ).4A 1 ;B 1 2 ;C 2 ;D 5 .25、下列等式中正确的是(C )21、设空间直线的对称式方程为0 I 2则该直线必A 过原点且垂直于x 轴;B 过原点且垂直于y 轴;C 过原点且垂直于z 轴;D 过原点且平行于x 轴.3tL i;x 2y z 100,则必有(Dy2 7t、计算题解:由题设知的投影及在y 轴上的分向量。

向量代数与空间解析几何相关概念和例题

向量代数与空间解析几何相关概念和例题

空间解析几何与向量代数向量及其运算目的:理解向量的概念及其表示;掌握向量的运算,了解两个向量垂直、平行的条件;掌握空间直角坐标系的概念,能利用坐标作向量的线性运算;重点与难点重点:向量的概念及向量的运算。

难点:运算法则的掌握过程:一、向量既有大小又有方向的量称作向量通常用一条有向线段来表示向量,有向线段的长度表示向量的大小.有向线段的方向表示向量的方向•向量的表示方法有两种:a、AB向量的模:向量的大小叫做向量的模,向量a、AB的模分别记为|a'|、|AB| .单位向量:模等于1的向量叫做单位向量.零向量:模等于0的向量叫做零向量.记作0规定:0方向可以看作是任意的,相等向量:方向相同大小相等的向量称为相等向量平行向量(亦称共线向量):两个非零向量如果它们的方向相同或相反.就称这两个向量平行记作a // b规定:零向量与任何向量都平行,二、向量运算向量的加法向量的加法:设有两个向量a与b.平移向量使b的起点与a的终点重合.此时从a 的起点到b的终点的向量c称为向量a与b的和.记作a+b .即c=a+b .当向量a与b不平行时.平移向量使a与b的起点重合.以a、b为邻边作一平行四边形从公共起点到对角的向量等于向量a与b的和a b向量的减法:设有两个向量a与b .平移向量使b的起点与a的起点重合.此时连接两向量终点且指向被减数的向量就是差向量。

T T T T TAB =AO OB =0B -CA .2、向量与数的乘法向量与数的乘法的定义:向量a与实数,的乘积记作 a .规定■ a是一个向量.它的模它的方向当■ >0时与a相同.当■ <0时与a相反,(1) 结合律,(七)=±a)=C;L)a ;(2) 分配律(kj a = 'a;'(a b) =■ a …b例1在平行四边形ABCD中.设AB =a . AD二b试用a和b表示向量MA’、MB’、MC‘、MD .其中M是平行四边形对角线的交点----- ■> ----- i ---- i A解:a 〜b = AC = 2 AM 于是MA = (a 亠b),因为MC —MA” .所以MC =1(a b).又因 T b = BD =2 MD .所以MD =2(b_a).由于MB =—MD“ .所以MB‘=2(a—b).定理1设向量a式0.那么.向量b平行于a的充分必要条件是:存在唯一的实数,.使b二,a,三、空间直角坐标系过空间一个点O,作三条互相垂直的数轴,它们都以O为原点。

向量代数与空间解析几何知识题详解

向量代数与空间解析几何知识题详解

第六章 向量代数与空间解析几何习 题 6—31、已知)3,2,1(A ,)4,1,2(-B ,求线段AB 的垂直平分面的方程. 解:设),,(z y x M 是所求平面上任一点,据题意有|,|||MB MA =()()()222321-+-+-z y x ()()(),412222-+++-=z y x化简得所求方程26270x y z -+-=.这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程,所以这个方程就是所求平面的方程.2、 一动点移动时,与)0,0,4(A 及xOy 平面等距离,求该动点的轨迹方程.解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则(,,)M x y z C MA z ∈⇔= 亦即z z y x =++-222)4( 0)4(22=+-∴y x 从而所求的轨迹方程为0)4(22=+-y x .3、 求下列各球面的方程:(1)圆心)3,1,2(-,半径为6=R ; (2)圆心在原点,且经过点)3,2,6(-; (3)一条直径的两端点是)3,1,4()5,32(--与;(4)通过原点与)4,0,0(),0,3,1(),0,0,4(- 解:(1)所求的球面方程为:36)3()1()2(222=-+++-z y x(2)由已知,半径73)2(6222=+-+=R ,所以球面方程为49222=++z y x(3)由已知,球面的球心坐标1235,1213,3242=-=-=+-==+=c b a , 球的半径21)35()31()24(21222=++++-=R ,所以球面方程为: 21)1()1()3(222=-+++-z y x(4)设所求的球面方程为:0222222=++++++l kz hy gx z y x因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以⎪⎪⎩⎪⎪⎨⎧=-=++=+=08160621008160k h g g l 解之得⎪⎪⎩⎪⎪⎨⎧=-=-==2210k g h l∴所求的球面方程为0424222=+--++z y x z y x .4、将yOz 坐标面上的抛物线22y z =绕z 旋转一周,求所生成的旋转曲面的方程. 解:222x y z +=(旋转抛物面) .5、将zOx 坐标面上的双曲线12222=-cz a x 分别绕x 轴和z 轴旋转一周,求所生成的旋转曲面的方程.解: 绕x 轴旋转得122222=+-c z y a x 绕z 轴旋转得122222=-+cz a y x . 6、指出下列曲面的名称,并作图:(1)22149x z +=;(2)22y z =;(3)221x z += ;(4)22220x y z x ++-=; (5)222y x z +=;(6)22441x y z -+=;(7)221916x y z ++=; (8)222149x y z -+=-;(9)1334222=++z y x ;(10)2223122z y x +=+.解: (1)椭圆柱面;(2) 抛物柱面;(3) 圆柱面;(4)球面;(5)圆锥面;(6)双曲抛物面;(7)椭圆抛物面;(8)双叶双曲面;(9)为旋转椭球面;(10)单叶双曲面. 7、指出下列方程在平面解析几何和空间解析几何中分别表示什么图形? (1)1+=x y;(2)422=+yx ;(3)122=-y x ;(4)22x y =.解:(1)1+=x y 在平面解析几何中表示直线,在空间解析几何中表示平面;(2)422=+y x 在平面解析几何中表示圆周,在空间解析几何中表示圆柱面; (3)122=-y x 在平面解析几何中表示双曲线,在空间解析几何中表示双曲柱面;(4)y x22=在平面解析几何中表示抛物线,在空间解析几何中表示抛物柱面.8、 说明下列旋转曲面是怎样形成的?(1)1994222=++z y x ;(2)14222=+-z y x (3)1222=--z y x ;(4)222)(y x a z +=- 解:(1)xOy 平面上椭圆19422=+y x 绕x 轴旋转而成;或者 xOz 平面上椭圆22149+=x z 绕x 轴旋转而成(2)xOy 平面上的双曲线1422=-y x 绕y 轴旋转而成;或者 yOz 平面上的双曲线2214-=y z 绕y 轴旋转而成(3)xOy 平面上的双曲线122=-y x 绕x 轴旋转而成;或者 xOz 平面上的双曲线221x z -=绕x 轴旋转而成(4)yOz 平面上的直线a y z +=绕z 轴旋转而成或者 xOz 平面上的直线z x a =+绕z 轴旋转而成.9、 画出下列各曲面所围立体的图形:(1)012243=-++z y x 与三个坐标平面所围成;(2)42,42=+-=y x x z 及三坐标平面所围成;(3)22=0,(0)=1z z =a a >,y =x,x +y 及0x =在第一卦限所围成;(4)2222,8z x y z x y =+=--所围.解:(1)平面012243=-++z y x 与三个坐标平面围成一个在第一卦限的四面体; (2)抛物柱面24z x =-与平面24x y +=及三坐标平面所围成;(3)坐标面=0z 、0x =及平面(0)z =a a >、y=x 和圆柱面22=1x +y 在第一卦限所围成;(4)开口向上的旋转抛物面22z x y =+与开口向下的抛物面228z x y =--所围.作图略.习 题 6—41、画出下列曲线在第一卦限内的图形(1)⎩⎨⎧==21y x ;(2)⎪⎩⎪⎨⎧=---=0422y x y x z ;(3)⎪⎩⎪⎨⎧=+=+222222a z x ay x解:(1)是平面1x =与2y =相交所得的一条直线; (2)上半球面z 0x y -=的交线为14圆弧; (3)圆柱面222x y a +=与222x z a +=的交线.图形略.2、分别求母线平行于x 轴及y 轴而且通过曲线⎪⎩⎪⎨⎧=-+=++0162222222y z x z y x 的柱面方程.解:消去x 坐标得16322=-z y ,为母线平行于x 轴的柱面;消去y 坐标得:162322=+z x ,为母线平行于y 轴的柱面.3、求在yOz 平面内以坐标原点为圆心的单位圆的方程(任写出三种不同形式的方程).解:⎩⎨⎧==+0122x z y ;⎩⎨⎧==++01222x z y x ; ⎪⎩⎪⎨⎧=+=++1122222z y z y x .4、试求平面20x -=与椭球面222116124x y z ++=相交所得椭圆的半轴与顶点.解:将椭圆方程22211612420x y z x ⎧++=⎪⎨⎪-=⎩化简为:221932y z x ⎧+=⎪⎨⎪=⎩,可知其为平面2=x 上的椭圆,半轴分别为3,3,顶点分别为)3,0,2(),3,0,2(),0,3,2(),0,3,2(--.5 、将下面曲线的一般方程化为参数方程 (1)2229x y z y x ⎧++=⎨=⎩;(2)⎩⎨⎧==+++-04)1()1(22z z y x解:(1)原曲线方程即:⎪⎩⎪⎨⎧=+=199222z x xy ,化为⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤≤==tz t t y t x sin 3)20(cos 23cos 23π;(2))20(0sin 3cos 31πθθθ≤≤⎪⎪⎩⎪⎪⎨⎧==+=z y x .6、求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解:⎩⎨⎧==+0222z a y x ;⎪⎩⎪⎨⎧==0sin x b z a y ;⎪⎩⎪⎨⎧==0cosy b z a x .7、指出下列方程所表示的曲线(1)222253⎧++=⎨=⎩x y z x (2)⎩⎨⎧==++13094222z z y x ;(3)⎩⎨⎧-==+-3254222x z y x ; (4)⎩⎨⎧==+-+408422y x z y ; (5)⎪⎩⎪⎨⎧=-=-0214922x z y . 解:(1)圆; (2)椭圆; (3)双曲线; (4)抛物线; (5)双曲线.8、 求曲线⎩⎨⎧==-+30222z x z y 在xOy 面上的投影曲线方程,并指出原曲线是何种曲线.解:原曲线即:⎩⎨⎧=-=3922z x y ,是位于平面3=z 上的抛物线,在xOy 面上的投影曲线为⎩⎨⎧=-=0922z x y9、 求曲线 ⎪⎩⎪⎨⎧==++211222z z y x 在坐标面上的投影. 解:(1)消去变量z 后得,4322=+y x 在xOy 面上的投影为,04322⎪⎩⎪⎨⎧==+z y x 它是中心在原点,半径为23的圆周. (2)因为曲线在平面21=z 上,所以在xOz 面上的投影为线段.;23||,21≤⎪⎩⎪⎨⎧==x y z(3)同理在yOz 面上的投影也为线段..23||,21≤⎪⎩⎪⎨⎧==y x z10、 求抛物面x z y =+22与平面 02=-+z y x 的交线在三个坐标面上的投影曲线方程.解: 交线方程为⎩⎨⎧=-+=+0222z y x x z y ,(1)消去z 得投影,04522⎩⎨⎧==-++z x xy y x(2)消去y 得投影2252400x z xz x y ⎧+--=⎨=⎩,(3)消去x 得投影2220y z y z x ⎧++-=⎨=⎩.习 题 6—51、写出过点()3,2,10M 且以{}1,2,2=n 为法向量的平面方程. 解:平面的点法式方程为()()()032212=-+-+-z y x .2、求过三点()()()01,0,0,1,0,0,0,1C B A 的平面方程.解:设所求平面方程为0=+++d cz by ax ,将C B A ,,的坐标代入方程,可得d c b a -===,故所求平面方程为1=++z y x .3、求过点()1,0,0且与平面1243=++z y x 平行的平面方程. 解:依题意可取所求平面的法向量为}2,4,3{=n ,从而其方程为()()()0120403=-+-+-z y x 即 2243=++z y x .4、求通过x 轴和点(4, -3, -1)的平面的方程.解:平面通过x 轴, 一方面表明它的法线向量垂直于x 轴,即A =0; 另一方面表明它必通过原点, 即D =0. 因此可设这平面的方程为By +Cz =0.又因为这平面通过点(4, -3,-1), 所以有-3B -C =0, 或C =-3B . 将其代入所设方程并除以B (B ≠0), 便得所求的平面方程为y -3z =0.5、求过点)1,1,1(,且垂直于平面7=+-z y x 和051223=+-+z y x 的平面方程. 解:},1,1,1{1-=n }12,2,3{2-=n 取法向量},5,15,10{21=⨯=n n n所求平面方程为化简得: .0632=-++z y x6、设平面过原点及点)1,1,1(,且与平面8x y z -+=垂直,求此平面方程.解: 设所求平面为,0=+++D Cz By Ax 由平面过点)1,1,1(知平0,A B C D +++=由平面过原点知0D =,{1,1,1},n ⊥- 0A B C ∴-+=,0A C B ⇒=-=,所求平面方程为0.x z -=7、写出下列平面方程:(1)xOy 平面;(2)过z 轴的平面;(3)平行于zOx 的平面;(4)在x ,y ,z 轴上的截距相等的平面.解:(1)0=z ,(2)0=+by ax (b a ,为不等于零的常数), 、(3)c y = (c 为常数), (4) a z y x =++ (0)a ≠.习 题 6—61、求下列各直线的方程:(1)通过点)1,0,3(-A 和点)1,5,2(-B 的直线; (2) 过点()1,1,1且与直线433221-=-=-z y x 平行的直线. (3)通过点)3,51(-M 且与z y x ,,三轴分别成︒︒︒120,45,60的直线; (4)一直线过点(2,3,4)-A ,且和y 轴垂直相交,求其方程.(5)通过点)2,0,1(-M 且与两直线11111-+==-z y x 和01111+=--=z y x 垂直的直线; (6)通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线. 解:(1)所求的直线方程为:015323-=-=++z y x 即:01553-=-=+z y x ,亦即01113-=-=+z y x . (2)依题意,可取L 的方向向量为{}4,3,2=s ,则直线L 的方程为413121-=-=-z y x . (3)所求直线的方向向量为:{}⎭⎬⎫⎩⎨⎧-=︒︒︒21,22,21120cos ,45cos ,60cos ,故直线方程为: 132511--=+=-z y x . (4)因为直线和y 轴垂直相交,所以交点为),0,3,0(-B 取{2,0,4},BA s −−→==所求直线方程.440322-=+=-z y x (5)所求直线的方向向量为:{}{}{}2,1,10,1,11,1,1---=-⨯-,所以,直线方程为:22111+==-z y x . (6)所求直线的方向向量为:{}5,3,6--,所以直线方程为: 235635x y z -++==--.2、求直线1,234x y z x y z ++=-⎧⎨-+=-⎩的点向式方程与参数方程.解 在直线上任取一点),,(000z y x ,取10=x ,063020000⎩⎨⎧=--=++⇒z y z y 解2,000-==z y .所求点的坐标为)2,0,1(-,取直线的方向向量{}{}3,1,21,1,1-⨯=s k j i kj i 34312111--=-=,所以直线的点向式方程为:,321041-+=--=-z y x 令102,413x y z t --+===--则所求参数方程: .3241⎪⎩⎪⎨⎧--=-=+=tz t y tx3、判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面,如果相交时请求出夹角的余弦.(1)⎩⎨⎧=-+=+-0623022y x z y x 与⎩⎨⎧=-+=--+01420112z x z y x ;(2)⎪⎩⎪⎨⎧--=+==212t z t y tx 与142475x y z --+==-. 解:(1)将所给的直线方程化为标准式为:4343223z y x =-=--43227-=--=-z y x 234234-==-- ∴二直线平行.又点)0,43,23(与点(7,2,0)在二直线上,∴向量⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧--0,45,2110,432,237平行于二直线所确定的平面,该平面的法向量为:{}{}19,22,50,45,2114,3,2--=⎭⎬⎫⎩⎨⎧⨯-,从而平面方程为:0)0(19)2(22)7(5=-+---z y x ,即 0919225=++-z y x .(2)因为121475-≠≠-,所以两直线不平行,又因为0574121031=--=∆,所以两直线相交,二直线所决定的平面的法向量为{}{}{}1,1,35,7,412,1--=-⨯-,∴二直线所决定的平面的方程为:330x y z -++=.设两直线的夹角为ϕ,则cos ϕ==4、判别下列直线与平面的相关位置: (1)37423z y x =-+=--与3224=--z y x ;(2)723zy x =-=与8723=+-z y x ; (3)⎩⎨⎧=---=-+-01205235z y x z y x 与07734=-+-z y x ;(4)⎪⎩⎪⎨⎧-=+-==4992t z t y t x 与010743=-+-z y x .解(1) 0)2(3)2()7(4)2(=-⨯+-⨯-+⨯-,而017302)4(234≠=-⨯--⨯-⨯,所以,直线与平面平行.(2) 0717)2(233≠⨯+-⨯-⨯,所以,直线与平面相交,且因为772233=--=,∴直线与平面垂直.(3)直线的方向向量为:{}{}{}1,9,51,1,22,3,5=--⨯-, 0179354=⨯+⨯-⨯,所以直线与平面平行或者直线在平面上;取直线上的点)0,5,2(--M ,显然点在)0,5,2(--M 也在平面上(因为4(2)3(5)70⨯--⨯--=),所以,直线在平面上.(4)直线的方向向量为{}9,2,1-, 097)2(413≠⨯+-⨯-⨯∴直线与平面相交但不垂直.复习题A一 、判断正误:1、 若c b b a ⋅=⋅且≠0b ,则c a =; ( ⨯ ) 解析 c b b a ⋅-⋅=)(c a b -⋅=0时,不能判定=b 0或c a =.例如i a =,j b =,k c =,有⋅=⋅=0a b b c ,但c a ≠.2、 若c b b a ⨯=⨯且≠0b ,则c a =; ( ⨯ ) 解析 此结论不一定成立.例如i a =,j b =,)(j i c +-=,则k j i b a =⨯=⨯,k j i j c b =+-⨯=⨯)]([,c b b a ⨯=⨯,但c a ≠.3 、若0=⋅c a ,则=0a 或=0c ; ( ⨯ )解析 两个相互垂直的非零向量点积也为零.4、 a b b a ⨯-=⨯. ( √ ) 解析 这是叉积运算规律中的反交换律.二、选择题:1 、 当a 与b 满足( D )时,有b a b a +=+;(A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ; (D)⋅=a b a b .解析 只有当a 与b 方向相同时,才有a +b =a +b .(A)中a ,b 夹角不为0,(B),(C)中a ,b 方向可以相同,也可以相反.2、下列平面方程中,方程( C )过y 轴;(A) 1=++z y x ; (B) 0=++z y x ; (C) 0=+z x ; (D) 1=+z x . 解析 平面方程0=+++D Cz By Ax 若过y 轴,则0==D B ,故选C .3 、在空间直角坐标系中,方程2221y x z --=所表示的曲面是( B );(A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面. 解析 对于曲面2221y x z --=,垂直于z 轴的平面截曲面是椭圆,垂直于x 轴或y 轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.4、空间曲线⎩⎨⎧=-+=5,222z y x z 在xOy 面上的投影方程为( C );(A)722=+y x ; (B)⎩⎨⎧==+5722z y x ; (C)⎩⎨⎧==+0722z y x ;(D)⎩⎨⎧=-+=0222z y x z 解析 曲线⎩⎨⎧==+5722z y x 与xOy 平面平行,在xOy 面上的投影方程为⎩⎨⎧==+0722z y x .5 、直线11121-+==-z y x 与平面1=+-z y x 的位置关系是( B ). (A) 垂直; (B) 平行; (C) 夹角为π4; (D) 夹角为π4-.解析 直线的方向向量s ={2,1,-1},平面的法向量n ={1,-1,1},n s ⋅=2-1-1=0,所以,s ⊥n ,直线与平面平行.三、填空题:1、若2=b a ,π()2=a,b ,则=⨯b a 2 ,=⋅b a 0 ; 解 =⨯b a b a sin()a,b π22=2,=⋅b a b a cos()a,b π22=0.2、与平面062=-+-z y x 垂直的单位向量为 }2,1,1{66-±; 解 平面的法向量 n ={1,-1,2}与平面垂直,其单位向量为0n =411++=6,所以,与平面垂直的单位向量为}2,1,1{66-±.3、过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 057=-+z y ;解 已知平面平行于x 轴,则平面方程可设为 0=++D Cz By ,将点 (-3,1,-2)和(3,0,5)代入方程,有{20,50,B C D C D -+=+= ⇒ 7,51,5B D C D ⎧=-⎪⎨⎪=-⎩得 05157=+--D Dz Dy ,即 057=-+z y .4、过原点且垂直于平面022=+-z y 的直线为z yx -==20; 解 直线与平面垂直,则与平面的法向量 n ={0,2,-1}平行,取直线方向向量s =n ={0,2,-1},由于直线过原点,所以直线方程为z yx -==20 .5、曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为⎩⎨⎧==+.0,1222z y x 解: 投影柱面为 1222=+y x ,故 ⎩⎨⎧==+0,1222z y x 为空间曲线在xOy 平面上的投影曲线方程.四、解答题:1、 已知}1,2,1{-=a ,}2,1,1{=b ,计算(a) b a ⨯; (b) ()()-⋅+2a b a b ; (c)2b a -;解: (a) b a ⨯=211121-kj i 1,3}5,{--=. (b) {2,4,2}{1,1,2}{1,5,0}2a b -=--=-,1,3}{2,{1,1,2}2,1}{1,-=+-=+b a , 所以()()-⋅+2a b a b 7}3,1,2{}0,5,1{=-⋅-=.(c) 1}3,{0,{1,1,2}2,1}{1,--=--=-b a ,所以2b a -10)19(2=+=.2、已知向量21P P 的始点为)5,2,2(1-P ,终点为)7,4,1(2-P ,试求:(1)向量21P P 的坐标表示; (2)向量21P P 的模;(3)向量21P P 的方向余弦; (4)与向量21P P 方向一致的单位向量.解:(1)}2,6,3{}57),2(4,21{21-=-----=P P ;74926)3(222==++-=;(3)21P P 在z y x ,,三个坐标轴上的方向余弦分别为362cos ,cos ,cos 777αβγ=-==;(4)k j i k j i 7276737263)(21++-=++-==P P. 3、设向量{}1,1,1=-a ,{}1,1,1=-b ,求与a 和b 都垂直的单位向量.解: 令{}1110,2,2111=⨯=-=-ij kc a b,01⎧==⎨⎩c cc ,故与a、b 都垂直的单位向量为0⎧±=±⎨⎩c .4、向量d垂直于向量]1,3,2[-=a和]3,2,1[-=b,且与]1,1,2[-=c的数量积为6-,求向量d解: d 垂直于a 与b,故d 平行于b a ⨯,存在数λ使()b a d⨯=λ⨯-=]1,3,2[λ]3,2,1[-]7,7,7[λλλ--=因6-=⋅c d,故6)7(1)7()1(72-=-⨯+-⨯-+⨯λλλ, 73-=λ]3,3,3[-=∴d .5、求满足下列条件的平面方程:(1)过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P ;(2)过x 轴且与平面025=++z y x 的夹角为π3. 解 (1)解1: 用三点式.所求平面的方程为0241003211201210=---------z y x ,即01345=+--z y x .解2: }1,1,1{-=}2,1,3{-=,由题设知,所求平面的法向量为k j i kj in 452131113121--=--=⨯=P P P P , 又因为平面过点)2,1,0(1P ,所以所求平面方程为0)2(4)1(5)0(=-----z y x ,即01345=+--z y x .解3: 用下面的方法求出所求平面的法向量},,{C B A =n ,再根据点法式公式写出平面方程也可.因为3121,P P P P ⊥⊥n n ,所以{0,320,A B C A B C +-=-+=解得A C A B 4,5-=-=,于是所求平面方程为0)2(4)1(5)0(=-----z A y A x A ,即 01345=+--z y x .(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在x 轴上的投影0=A ,又平面过原点,所以可设它的方程为0=+Cz By ,由题设可知0≠B (因为0=B 时,所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为π1cos32=≠=,所以0≠B),令CBC'=,则有0='+zCy,由题设得22222212)5(112153cos++'++⨯'+⨯+⨯=πCC,解得3='C或13C'=-,于是所求平面方程为03=+zy或03=-zy.6、一平面过直线⎩⎨⎧=+-=++4,05zxzyx且与平面01284=+--zyx垂直,求该平面方程;解法1:直线⎩⎨⎧=+-=++4,05zxzyx在平面上,令x=0,得54-=y,z=4,则(0,-54,4)为平面上的点.设所求平面的法向量为n=},,{CBA,相交得到直线的两平面方程的法向量分别为1n={1,5,1},2n={1,0,-1},则直线的方向向量s=1n⨯2n=11151-kji={-5,2,-5},由于所求平面经过直线,故平面的法向量与直线的方向向量垂直,即⋅ns={-5,2,-5}•},,{CBA=CBA525-+-=0,因为所求平面与平面01284=+--zyx垂直,则}8,4,1{},,{--⋅CBA=CBA84--=0,解方程组{5250,480,A B CA B C-+=--=⇒2,5,2A CB C=-⎧⎪⎨=-⎪⎩所求平面方程为0)4()54(25)0(2=-++---zCyCxC,即012254=+-+zyx.解法2:用平面束(略)7、求既与两平面1:43x zπ-=和2:251x y zπ--=的交线平行,又过点(3,2,5)-的直线方程.解法1:{}11,0,4=-n ,{}22,1,5=--n ,{}124,3,1s =⨯=---n n ,从而根据点向式方程,所求直线方程为325431x y z +--==---,即325431x y z +--==. 解法2:设{},,s m n p =,因为1⊥s n ,所以40m p -=;又2⊥s n ,则250m n p --=,可解4,3m p n p ==,从而0p ≠.根据点向式方程,所求直线方程为32543x y z p p p +--==,即325431x y z +--==. 解法3:设平面3π过点(3,2,5)-,且平行于平面1π,则{}311,0,4==-n n 为3π的法向量,从而3π的方程为1(3)0(2)4(5)0x y z ⋅++⋅--⋅-=,即4230x z -+=.同理,过已知点且平行于平面2π的平面4π的方程为25330x y z --+=.故所求直线的方程为423025330x z x y z -+=⎧⎨--+=⎩.8、 一直线通过点)1,2,1(A ,且垂直于直线11231:+==-z y x L ,又和直线z y x ==相交,求该直线方程;解: 设所求直线的方向向量为{,,}m n p =s ,因垂直于L ,所以320m n p ++=;又因为直线过点)1,2,1(A ,则所求直线方程为pz n y m x 121-=-=-,联立121,①,②320,③x y z m n p x y z m n p ---⎧==⎪⎨==⎪++=⎩由①,令λ=-=-=-p z n y m x 121,则有⎪⎩⎪⎨⎧+=+=+=,1,2,1p z n y m x λλλ代入方程②有{12,11,m n m p λλλλ+=++=+ 可得p m =,代入③解得p n 2-=, 因此,所求直线方程为112211-=--=-z y x .9、 指出下列方程表示的图形名称:(a) 14222=++z y x ;(b) z y x 222=+;(c) 22y x z +=;(d) 022=-y x ;(e) 122=-y x ; (f) ⎩⎨⎧=+=222z y x z .解: (a) 绕y 轴旋转的旋转椭球面.(b) 绕z 轴旋转的旋转抛物面. (c) 绕z 轴旋转的锥面.(d) 母线平行于z 轴的两垂直平面:y x =,y x -=. (e) 母线平行于z 轴的双曲柱面. (f) 旋转抛物面被平行于XOY 面的平面所截得到的圆,半径为2,圆心在(0,0,2)处.10、求曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影并作其图形. 解: 将所给曲面方程联立消去z ,就得到两曲面交线C 的投影柱面的方程122=+y x ,所以柱面与xOy 平面的交线⎩⎨⎧==+'01:22z y x C 所围成的区域221+≤x y 即为曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影(图略).。

专转本高等数学向量代数和空间解析几何随堂练习题含答案

专转本高等数学向量代数和空间解析几何随堂练习题含答案

D 、两个点。
⎧ 2 y2 z2
⎪ 19、⎨
x
4
9
1在空间直角坐标系里表示(
);
⎪⎩ x 1
A、一个点;
B 、平面 x 1 ; C 、椭圆 y2 z2 1 49
D 、椭圆面。
⎧ F (x, y, z) 0
20、空间曲线 ⎨ ⎩
其方程表示式(
G(x, y, z)
);
A、是惟一的; B 、不是惟一的; C 、很难判断双方惟一; D 、应该有两种。

;半径 R 为

25、 yoz 平面上曲线 y z2 绕 z 轴旋转一周的旋转曲面方程为
;绕 y 轴
旋转一周的旋转曲面方程为

26、 x2 0, x2 y2 0, x2 y2 z2 0 和 xyz 0 在空间直角坐标系里分别表示





5
三、计算题
1、 设向量 a 3i k b 2i 4 j k
17、求过原点且垂直于平面1 : x y z 7 0 及 2 : x 2 y 12z 5 0
的平面方程。
18、求过点(1, 3, 4)且垂直于平面1 : z 0 及 2 : 2x 3y z 1的平面方
程。
19、在通过直线 L :
x 1 y 1 z 3 的所有平面中找出一个平面,使它与
2
C 、 ax 1bx, ay 2by , az 3bz (1 2 3 );
D 、 1axbx 2ayby 3azbz 0;
15、单位向量的坐标在数值上就是(
);
A、向量的方向角;
B 、向量的方向余弦;
C 、下向量所在直线的方向数;
D 、向量的模。

第06章 向量代数与空间解析几何习题详解

第06章 向量代数与空间解析几何习题详解

14
14
两边平方得 z = ,故所求点为 (0, 0, )
9
9
13、 求λ 使向量a = {λ ,1, 5} 与向量 b = {2 1, 0 5, 0} 平行.
2
第六章 向量代数与空间解析几何习题详解
a //
λ1 5
1
= = 得λ =
2 10 50
5
14、 求与 y 轴反向,模为 10 的向量 a 的坐标表达式. 解: a =10 ⋅ (− j) = −10 j ={0, − 10,0}
标).
解:分别为 (a , b,0), (0, b, c), (a ,0, c), (a ,0,0), (0, b,0), (0,0, c)
8、 过点P( a, b, c) 分别作平行于 z 轴的直线和平行于 xOy 面的平面,问它们上面的点的
坐标各有什么特点? 解:平行于 z 轴的直线上面的点的坐标: x = a,y = b,z ∈ R;平行于 xOy 面的平面上的
a
± a = ± 1 {1,1, 1}
a
3
5 、 在 空 间 直 角 坐 标 系 中 , 指 出 下 列 各 点 在 哪 个 卦 限 ?A(1,−1,1) , B(1,1,−1) , C (1,−1,−1) , D( −1,−1,1).
解: A:Ⅳ; B:Ⅴ; C:Ⅷ; D:Ⅲ.
) x xOy
6 、 M ( x, 关于 x 轴的对称
的投影和在 y 轴上的分向量. 解: a = 2(i + 2 j + 3k )+ 3 (2i + j − 3k )− (3i − 4 j + k ) = 5i + 11 j − 4k .故向量 a 在 x 轴上的

向量代数与空间解析几何-期末复习题-高等数学下册

向量代数与空间解析几何-期末复习题-高等数学下册

第七章 空间解析几何一、选择题1.在空间直角坐标系中,点(1,— 2, 3 )在[D ]A. 第一卦限B. 第二卦限C.第三卦限D.第四卦限2 22.方程2x y2在空间解析几何中表示的图形为[C ]A.椭圆 B.圆C.椭圆柱面D.圆柱面X —1 y + 1 z +1” _x + y _1 = 03.直线11j与 >2 :— —> 的夹角是[C ]423x+y+z-2=0AJinnA.—B.— C.—D. 04324.在空间直角坐标系中,点(1, 2,3 )关于xoy 平面的对称点是[D ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3)D. (1,2,-3)A. 2 2 2 a b (a ・b)B. a 2 b 2=(a b)2C. 2 2(a 叱)=(a b) 2 2 2 2D.(a *b) (a b) =a b 已知a,b 为不共线向量,则以下各式成立的是 D 5.将xoz 坐标面上的抛物线 z =4x 绕z 轴旋转一周,所得旋转曲面方程是[B ]A. z 2 二 4(x y)B. z 2 _ _4.. x 2 y 2C. y 2 z 2 =4xD.2 2 y z = 4x6.平面2x-2y+z+6=0与xoy 平面夹角的余弦是2 C.3关于 [B ]A 1 1A.B.—337.在空间直角坐标系中,点(B. (1,-2,3) D. (1,2,-3) A. (-1,2,3)C. (-1,-2,3)1,2,3) 2 D.—3yoz 平面的对称点是[A ]2 28.方程—2 弓二z ,a 2b 2表示的是[B ] A.椭圆抛物面 B.椭圆锥面C. 椭球面D.球面9.已知 a ={0, 3, 4}, b ={2, 1, -2},则 proj a b =[ C ]A. 1 3B.3C. -1D. 110.(A)平行于■:[x 2 (B)在二上 (C)垂直于2z(D)与二斜交二 121.双曲线 45 绕z 轴旋转而成的旋转曲面的方程为( A ).[y =0x+y+z = O+心 「x + y + z = O 小 11 •直线h 的方程为,直线12的方程为,则l i 与31x-30^29^030x-31y -30z = 012的位置关系是 DA.异面B.相交C.平行D.重合12 .已知A 点与B 点关于XOY 平面对称,B 点与C 点关于Z 轴对称,那么A 点与C 点是CA.关于XOZ 平面对称B.关于YOZ 平面对称C.关于原点对称D.关于直线x = y z 对称 13. 已知A 点与B 点关于YOZ 平面对称,B 点与C 点关于X 轴对称,那么A 点与C 点CA.关于XOZ 平面对称B.关于XOY 平面对称C.关于原点对称D.关于直线x=y Z 对称14. 下列那个曲面不是曲线绕坐标轴旋转而成的 C A. x 2 y 2z 2 =1 B. X 2 y 2 z = 1 C. x 2 y z = 1 D. x y 2 z 2 = 115. 已知a,b 为不共线向量,则下列等式正确的是 CA. aa=a 2B. a*(a*b)=a 2bC. a ・(b ・b)=ab 2D. a 2b 2 = (a*b)2-(1,2,1), b =(-3,4, -3),那么以a,b 为两边的平行四边形的面积是 B16.已知向量A.20B.10 .2C.10D. 5-217.已知直线 l 方程x 2y 3^0与平面二方程-x z ^0,那么l 与二的位置关系 3x + 4y +5z = 0是CA. l 在二内B. l 垂直于 Ji18.两向量a,b 所在直线夹角一,45B. a,b 夹角——4 Jiab :: 0 , C. l 平行于•:那么下列说法正确的是 D.不能确定JIA. a 'b 夹角4C. a,3兀亠兀b 夹角可能或一4D.以上都不对19.已知|a 尸1, |b ,且(a ,b )■,则 | a b (D4(A) 1(B) 1、2(C) 220.设有直线L: x 3y 2z ^0及平面二I2x —y —10z+3 = 0:4x -2y • z - 2 =0,则直线 L ( C )。

第六章向量代数与空间解析几何(424).

第六章向量代数与空间解析几何(424).

第六章向量代数与空间解析几何(424).第六章向量代数与空间解析几何习题A一、选择题1、向量a 与三坐标轴的夹角分别为 ,,,则();A cos cos cos 1B cos 2c o s 2 cos 2 1 C cos 2cos 2cos 21 D cos 2cos 2cos 2b 的夹角 =(b a 2,0,22,0, 24、平面x 2y 5 0的位置是 );A 平行Z 轴B 通过Z 轴垂直Z 轴 D 平行XOY 平面 5、过点 A 3,0,2 ,B 4,1,6 且平行于Y 轴的平面的法向量 n ();1,1,4 0,1,11,1,4 1,0,0 C 1,1,4 0,1,0 D 1,1,4 0,0,16、向量 a 1,1,2,0, 2,则同时垂直a 及b 的单位向量为n 0();2、两个非零向量a 和b 平行,贝U ();r r rr rA 其必要条件是a b 0 B其必要条件是a b 0r rr r C 充分必要条件是 a b 0 D充分必要条件是a b,(a 4b)(7a 2b),则2,0,2,0,3、设a , b 为非零向量,且满足 (a 3b)(7 a 5b)r o9、过点A 3,0,2 ,B 4,1,6且平行于Y 轴的平面的法向量 n ();4、过点M 1,2,0与平面3x y 2z 7 0垂直的直线方程________________________________5、 xoy 平面上的曲线x 2 3y 2 5绕x 轴旋转一周形成的旋转曲面方程为 _________________6、直线口上Z 3与平面x y z 70的位置关系为;2 1 3x 1 y 1 z 27、过点M 1,2, 2且与直线垂直的平面方程为 _________________ ;23 18、平面xoy 上的曲线y 2 z 2绕轴旋转一周而成的旋转面方程为_____________________ ; 9、方程x 24 y 1 20表示 _______________ ;Ax 1 y z 3 31 1C - x 1 y z 33 118、平面x 2y 5 0的位置是(A 平行 Z 轴B 通过 Z 轴7、过点M 1,0,3且与两平面B 3 x 1 1 y 0 1 z 30 D - 3 x 1 1 y 0 1 z 3 0; C垂直 Z 轴 D 平行XOY 平面 (); A (az)2 4y 2 2z 4B(a x)2 4y 2 x 24z 0x 0-(a z)24y 2 2x 4D/ 、2 ,2 2 ,C(a z)4y z 4x 0二、填空题r r r r1、平仃于向量a 3i4j 5k 的单位向量;10、曲面 x 2 4y 2z 2 4与平面xz a 的交线在yOz 上的投影方程是(2、点 p 3, 1,6 至U 平面 x 2y 2z 1 0的距离为1 :X y 2Z 1 0都平行的直线方程为2:x 2y z 1A 1,1,4 0,1,1B 1,1,4 1,0,0C 1,1,40,1,0D 1,1,40,0,13、设平面x 2y Kz 6与平面 Mx4y z 2平行,则K210、由a 1,2,3 ,b 1,2,4为邻边组成的平行四边形的面积三、计算题1、设a 3, b 5,试确定k 使a kb 垂直于a kb 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

d = M1M0 ⋅ n n
= Ax0 + B y0 + C z0 + D
M0
A2 + B2 + C 2
d
n
Π M1
*(3) 点 M0( x0 , y0 , z0 ) 到直线
L : x − x1 = y − y1 = z − z1
m
n
p
的距离为
L
M 0 (x0 , y0 , z0 ) d
d = M0M1 × s s
曲曲线线
直直 线线
曲曲面面
平平 面面
旋旋转转曲曲面面 柱柱 面面
二二次次曲曲面面
参参数数方方程程 对对称称式式方方程程 点点法法式式方方程程 一一般般方方程程
一、内容小结
1. 向量的乘法运算 1)数量积(点积、内积)
a ⋅ b = | a || b | cosθ = axbx + a yby + azbz
m
n
p
参数式
⎧ ⎪ ⎨
x y
= =
x0 y0
+ +
mt nt
⎪⎩ z = z0 + p t
( x0 , y0 , z0 ) 为直线上一点;
s = ( m , n, p ) 为直线的方向向量.
3). 线面之间的相互关系
面与面的关系
平面 Π1 : A1x + B1 y + C1z + D1 = 0, n1 = ( A1, B1,C1)
cosθ = aib =
axbx + a yby + azbz
| a || b | ax2 + a y2 + az2 bx2 + by2 + bz2
a⊥b
axbx + a yby + azbz = 0
2)、向量积 (叉积、外积)
| c |=| a || b | siபைடு நூலகம்θ 其中θ 为a 与b 的夹角
1) 空间平面
一般式 点法式 截距式
三点式
Ax + By + Cz + D = 0 ( A2 + B2 + C 2 ≠ 0 )
A( x − x0 ) + B( y − y0 ) + C(z − z0 ) = 0
x+ y+z =1 a bc
点 : ( x0 , y0 , z0 ) 法向量 : n = ( A, B , C )
50
50
50
例3. 求过直线L:
⎧ ⎨ ⎩
x+5y+ z = 0 x−z+4=0
且与平面
x − 4y − 8z
+
12
=
0
夹成
π
4
角的平面方程.
提示: 过直线 L 的平面束方程
π
n1 4 n L
(1 + λ )x + 5 y + (1 − λ )z + 4λ = 0
线与线的关系
直线
L1:x
− x1 m1
=
y − y1 = z − z1 ,
n1
p1
直线
L2:x
− x2 m2
=
y − y2 n2
=
z − z2 , p2
s1 = (m1, n1, p1) s2 = (m2 , n2 , p2 )
垂直: s1 ⋅ s2 = 0
m1m2 + n1n2 + p1 p2 = 0
平面 Π2 : A2 x + B2 y + C2z + D2 = 0, n2 = ( A2 , B2 ,C2 )
垂直: n1 ⋅ n2 = 0
A1A2 + B1B2 + C1C2 = 0
平行: n1 × n2 = 0
A1 = B1 = C1 A2 B2 C2
夹角公式: cosθ = n1 ⋅ n2 n1 n2
平行: s1 × s2 = 0
m1 = n1 = p1 m 2 n 2 p2
夹角公式: cosθ = s1 ⋅ s2
s1 s2
面与线间的关系
平面: Ax + By + Cz + D = 0, n = ( A, B , C )
直线: x − x = y − y = z − z , s = (m , n, p)
的方向余弦.
提示: 已知平面的法向量 n1 = (7, − 1, 4) 求出已知直线的方向向量 s = (1 , 1 , 2)
取所求平面的法向量
i jk
n = s × n1= 1 1 2 = 2(3, 5, − 4)
7 −1 4
所求为 cosα = 3 , cos β = 5 , cosγ = − 4
λ1 ( A1x + B1 y + C1z + D1) + λ 2 ( A2 x + B2 y + C2z + D2 ) = 0
( λ 1 ,λ 2 不全为 0 )
( A1x + B1 y + C1z + D1) + λ ( A2 x + B2 y + C2z + D2 ) = 0
(2)点 M0( x0, y0, z0 ) 到平面 Π :A x+B y+C z+D = 0 的距离为
习题课、空间解析几何
一、内容小结 二、实例分析 三、思考与练习 四、作业
(一)向量代数
向向量量的的 表表示示法法
向向量量概概念念
向量的积
向向量量的的 线线性性运运算算
数数量量积积
混混合合积积
向向量量积积
(二)空间解析几何
空空间间直直角角坐坐标标系系
一一般般方方程程 参参数数方方程程 一一般般方方程程
x − x1 y − y1 z − z1
x2 − x1 y2 − y1 z2 − z1 = 0
x3 − x1 y3 − y1 z3 − z1
2) 空间直线
一般式
⎧ ⎨ ⎩
A1 x A2 x
+ +
B1 B2
y y
+ +
C1z C2z
+ +
D1 D2
= =
0 0
对称式 x − x0 = y − y0 = z − z0
m
n
p
垂直: s × n = 0
m=n= p ABC
平行: s ⋅ n = 0
m A+ nB + pC = 0
夹角公式: sinϕ = s ⋅ n
sn
4). 相关的几个问题
(1) 过直线
L:
⎧ ⎨ ⎩
A1 x A2 x
+ +
B1 B2
y y
+ +
C1z C2z
+ +
D1 D2
= =
0 0
的平面束方程
=
1
m2 + n2 + p2
s = (m,n, p) ϕ
M1(x1, y1, z1)
i x1 − x0
m
j y1 − y0
n
k z1 − z0
p
二、实例分析
向量概念题 例1:练习册判断题, 选择题
例2.
设一平面平行于已知直线
⎧ 2x − z = 0
⎨ ⎩
x
+
y

z
+
5
=
0
且垂直于已知平面7 x − y + 4z − 3 = 0, 求该平面法线的
i jk
a × b = ax ay az bx by bz
a// b
ax = ay = az bx by bz
3)、混合积
ax ay az [abc ] = (a × b ) ⋅ c = bx by bz = a ⋅ (b × c)
cx cy cz
a,b,c 共面
(a × b)⋅ c = 0
2. 空间直线与平面的方程
相关文档
最新文档