北师大版初中数学八年级上册课第四章教案

合集下载

数学八年级上册《函数》教案

数学八年级上册《函数》教案

基于课程标准的学科教学设计义,能根据所给信息确定一次函数表达式.4.能画一次函数的图象,理解一次函数图象的变化情况,并利用一次函数图象解决简单的实际问题.5.在画一次函数的图象、探索一次函数图象的变化情况、利用一次函数的图象解决实际问题等过程,体会数形结合的思想方法与一次函数中k与b的实际意义.3.单元整体教学思路(教学结构图)课时教学设计课题《一次函数》第一课时课型新授课☑章/单元复习课□专题复习课□习题/试卷讲评课□学科实践活动课□其它1.课程标准分析1.体验从具体情境中抽象出数学符号的过程,理解函数的概念;探索具体问题中的数量关系和变化规律,掌握用函数进行表述的方法.2.通过用函数表述数量关系的过程,体会建模思想,建立符号意识;能独立思考,体会数学的基本思想和思维方式.6.学习活动设计教师活动学生活动环节一:创设情境、导入新课教的活动1播放洋葱数学有关函数的数学史。

学的活动1观看洋葱数学有关函数的数学史。

活动意图说明:承接上一学期变量关系的学习,让学生感受到变量之间关系的是通过多种形式表现出来的,感受研究函数的必要性。

环节二:展现背景,提供概念抽象的素材教的活动1问题 1.你去过游乐园吗?你坐过摩天轮吗?你能描述一下坐摩天轮的感觉吗?当人坐在摩天轮上时,人的高度随时间在变化,那么变化有规律吗?摩天轮上一点的高度h与旋转时间t之间有一定的关系,右图就反映了时间t(分)与摩天轮上一点的高度h(米)之间的关系.你能从上图观察出,有几个变化的量吗?当t分别取3,6,10时,相应的h是多少?给定一个t值,你都能找到相应的h值吗?问题2.在平整的路面上,某型号汽车紧急刹车后仍将滑行S米,一般地有经验公式2300vs ,其中v表示刹车前汽车的速度(单位:千米/时).(1)公式中有几个变化的量?计算当v分别为50,60,100时,相应的滑行距离s是多少?学的活动1畅所欲言,分享体验。

举手回答:摩天轮上一点的高度h与旋转时间t之间的关系。

北师大版八年级数学上册第四章一次函数4

北师大版八年级数学上册第四章一次函数4
2.从教材课后习题中选取以下题目进行巩固练习:
(1)第4题:已知一次函数的图像经过点(2,3)和(4,7),求该一次函数的表达式。
(2)第6题:一次函数的图像与坐标轴交于点A(-3,0)和点B(0,2),求该一次函数的表达式。
(3)第8题:已知一次函数的图像与坐标轴交于点(-2,0)和点(0,4),求该一次函数图像上y值大于0时的x取值范围。
3.运用数形结合的方法,培养学生通过图像分析问题、解决问题的能力,提高学生的几何直观和逻辑思维能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的积极性,使其认识到数学在生活中的重要性。
2.培养学生勇于探索、积极思考的良好学习习惯,使其在面对问题时具有独立思考和解决问题的能力。
二、学情分析
八年级学生在前两年的数学学习中,已经掌握了基本的代数知识和几何知识,具备了一定的数学思维能力和解决问题的能力。在此基础上,学生对一次函数的概念和性质已有初步了解,但对于将一次函数应用于实际问题的解决,仍需进一步引导和培养。此外,学生在小组合作、交流讨论等方面的能力有待提高,需要教师在教学过程中给予关注和指导。因此,本章节教学应结合学生的实际情况,注重启发式教学,引导学生主动探究,提高其数学应用能力和团队合作意识。同时,针对学生在数学学习中可能存在的恐惧心理,教师应关注学生的情感态度,鼓励学生积极参与,培养其自信心和自主学习能力。
1.请同学们运用一次函数的知识,解决以下实际问题:
(1)某商品的原价为x元,商场进行打折促销,打八折后的价格为y元。请列出y关于x的一次函数表达式。
(2)小明计划坐出租车去机场,出租车的起步价为10元,行驶3公里后,每公里收费2元。如果小明要行驶12公里,他需要支付多少车费?

北师大初中八年级数学上册《第四章一次函数》教案

北师大初中八年级数学上册《第四章一次函数》教案

第四章一次函数第一课时函数教学目标:1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。

2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。

3、会对一个具体实例进行概括抽象成为数学问题。

教学重点:掌握、并理解函数概念。

判断两个变量之间的关系是否可看作函数。

能把实际问题抽象概括为函数问题。

教学过程:一、创设问题情境,导入新课『师』:同学们,你们看下图上面那个像车轮状的物体是什么?当你坐在摩天轮上时,人的高度随时在变化,那么变化是否有规律呢?分析有道理。

摩天轮上一点的高度h与旋转时间t之间有一定的关系。

请看下图,反映了旋转时间t(分)与摩天轮上一点的高度h(米)之间的关系。

大家从图上可以看出,每过6分钟摩天轮就转一圈。

高度h完整地变化一次。

而且从图中大致可以判断给定的时间所对应的高度h。

下面根据图5-1进行填表:生活中充满着许许多多变化的量,你了解这些变量之间的关系吗?如:弹簧的长度与所挂物体的质量,路程的距离与所用时间……了解这些关系,可以帮助我们更好地认识世界。

下面我们就去研究一些有关变量的问题。

二、新课学习 做一做(1)瓶子或罐子盒等圆柱形的物体,常常如下图那样堆放,随着层数的增加,物体的总数是如何变化的? 填写下表:『师』:在这个问题中的变量有几个?分别师什么? 『生』:变量有两个,是层数与圆圈总数。

(2)在平整的路面上,某型号汽车紧急刹车后仍将滑行S 米,一般地有经验公式3002V S ,其中V 表示刹车前汽车的速度(单位:千米/时)①计算当fenbie 为50,60,100时,相应的滑行距离S 是多少?②给定一个V值,你能求出相应的S值吗?议一议在上面我们研究了三个问题。

下面大家探讨一下,在这三个问题中的共同点是什么?不同点又是什么?不同点是:在第一个问题中,是以图象的形式表示两个变量之间的关系;第二个问题中是以表格的形式表示两个变量间的关系;第三个问题是以关系式来表示两个变量间的关系的。

北师大版八年级数学上册第4章教案(教学设计)

北师大版八年级数学上册第4章教案(教学设计)

第四章一次函数教案第四章一次函数1. 函数一、学生起点分析在七年级上期学习了用字母表示数,体会了字母表示数的意义,学会了探索具体事物之间的关系和变化的规律,并用符号进行了表示;在七年级下期又学习了“变量之间的关系”,使学生在具体的情境中,体会了变量之间的相依关系的普遍性,感受了学习变量之间的关系的必要性和重要性,并且积累了一定的研究变量之间关系的一些方法和初步经验,为学习本章的函数知识奠定了一定的基础。

二、教学任务分析《函数》是义务教育课程标准北师大版实验教科书八年级(上)第四章《一次函数》第一节的内容。

教材中的函数是从具体实际问题的数量关系和变化规律中抽象出来的,主要是通过学生探索实际问题中存在的大量的变量之间关系,进而抽象出函数的概念。

与原传统教材相比,新教材更注重感性材料,让学生分析了大量的问题,感受到在实际问题中存在两个变量,而且这两个变量之间存在一定的关系,它们的表示方式是多样地,如可以通过列表的方法表示,可以通过画图像的方法表示,还可以通过列解析式的方法表示,但都有着共性:其中一个变量依赖于另一个变量。

本节内容是在七年级知识的基础上,继续通过对变量间的关系的考察,让学生初步体会函数的概念,为后续学习打下基础。

同时,函数的学习可以使学生体会到数形结合的思想方法,感受事物是相互联系和规律的变化。

一次本节课教学目标定位为:1.初步掌握函数概念,能判断两个变量间的关系是否可以看成函数;2.根据两个变量之间的关系式,给定其中一个量,相应的会求出另一个量的值;3.了解函数的三种表示方法。

4.通过函数概念的学习,初步形成学生利用函数观点认识现实世界的意识和能力;5.在函数概念形成的过程中,培养学生联系实际、善于观察、乐于探索和勤于思考的精神对学生来讲本节课的难点在于对函数概念的理解;四、教学过程设计本节课设计了六个教学环节:第一环节:创设情境、导入新课;第二环节:展现背景,提供概念抽象的素材;第三环节:概念的抽象;第四环节:概念辨析与巩固;第五环节:课时小结;第六环节:布置作业第一环节:创设情境、导入新课内容:展示一些与学生实际生活有关的图片,如心电图片,天气随时间的变化图片,抛掷铅球球形成的轨迹,k线图等,提请学生思考问题。

北师大初中数学八上《第四章一次函数》教案

北师大初中数学八上《第四章一次函数》教案

一次函数教学目标:知识与技能了解一次函数的概念,掌握一次函数的图象和性质,能正确画出一次函数的图象,并能根据图象探索函数的性质.过程与方法经历函数、一次函数等概念的抽象过程,体会函数的模型思想,进一步发展符号意识情感、态度与价值观在画一次函数的图象、探索一次函数图象的变化情况,体会数形结合的思想方法与一次函数y=kx+b 中k与b的实际意义。

教学重点:,掌握一次函数的图象和性质教学难点:能正确画出一次函数的图象,并能根据图象探索函数的性质教学方法:归纳总结,数形结合教学过程:一、回顾与小结1、变量:数值发生变化的量.常量:数值始终不变的量.2、函数定义:在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.3、函数的图象:对于一个函数,如果把自变量与函数的每对对应值分别作为点的横坐标和纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。

4、描点法画图象的步骤:列表、描点、连线。

5、函数的三种表示方法:1)解析法,2)列表法,3)图象法.6、自变量的取值范围(1)分母不为0,(2)开偶次方的被开方数大于等于0,(3)使实际问题有意义。

7、练一练1、求下列函数中自变量x的取值范围(1)y= x(x+3);(2)y=1 2 x二、一次函数的概念1、一次函数的概念:函数y=_______(k、b为常数,k______)叫做一次函数。

当b_____时,函数y=____(k____)叫做正比例函数。

★注意点:(1)、解析式中自变量x的次数是___次,⑵、比例系数_____。

2、、正比例函数y=kx(k≠0)的图象是过点(_____)的_________。

3、一次函数y=kx+b(k≠0)的图象是过点(0,___),(____,0)的__________。

3、.下列函数关系式中,那些是一次函数?哪些是正比例函数?(1)y= - x - 4 (2)y=x2(3)y=2πx (4)y=1/x(5)y=x/2 (6) y=5x-3一次函数有:正比例函数是:4、画函数图象的步骤1.列表 2.描点 3.连线例:画出y=3x+3的图象解:列表得:X 0 -1 Y3描点,连线如图 5.一次函数的性质 函数解析式 自变量的取值范围 图 像性质正比例函数y=kx (k ≠0)全体 实数k >0 k <0当k >0时,y 随x 的增大而增大;当k <0时, y 随x 的增大而减少.一次函数y=kx+b (k ≠0) 全体 实数k >0 k <0b >0b =0b <0b >0b =0b <0一次函数y=kx+b 的图象是一条直线,其中k 决定直线增减性,b 决定直线与y 轴的交点位置. k 和b 决定了直线所在的象限.正比例函数是特殊的一次函数。

数学第四章菱形教案(北师大版八年级上)

数学第四章菱形教案(北师大版八年级上)

第四章四边形性质探索3.菱形一、学生起点分析学生在学习菱形之前,已具有简单图形旋转的知识和平行四边形的知识,学生完全能借助等腰三角形的旋转直观的理解菱形及菱形的判定和性质。

二、教学任务分析教科书基于学生上述认识的根底上,提出了本课的具体学习任务:知识目标1.理解菱形的定义。

2. 经历探索菱形的性质和判别条件的过程,进一步了解和体会说理的根本方法.1.在操作活动过程中,加深师生的情感.培养学生的观察能力,并提高学生的学习兴趣.2.在学习过程中,体会数学美。

三、教学过程设计本节课分成五个环节:第一环节:创设情境,引入菱形的概念;第二环节:讲授新课,包括菱形的性质和判定;第三环节:通过练习,应用和稳固知识;第四环节:小结;第五环节:布置作业。

第一环节设情境问题,引入课题观察一组图片:越王勾践剑、一个衣帽架以及其他学生熟悉的实物图片。

这些图片中有你熟悉的图形吗〔邻边相等的平行四边形.顺势给出菱形的定义,进而主题〕我们把这样的平行四边形叫做菱形.这节课我们就来探讨一下菱形.第二环节新课主要环节〔1〕根据图片中所反映出的图形的特点,请学生尝试给菱形下定义。

〔一组邻边相等的平行四边形叫做菱形.〕〔3〕从对称的角度对菱形进行再认识〔包含菱形的画法和判定〕。

目的:1.培养学生的观察能力。

让学生观察图形,从直观上把握图形的性质和特点,从而给出菱形的定义。

2.因为菱形是特殊的平行四边形,所以在平行四边形性质的根底上,通过问题,具体的讨论菱形所具有的特殊性质。

3.对于〔2〕、〔3〕大体过程如下:画一个菱形,然后答复以下问题如图,在菱形ABCD中,AB=AD,对角线AC,BD相交于点O(1)图中有哪些线段是相等的哪些角是相等的(2)图中有哪些等腰三角形、直角三角形(3)两条对角线AC,BD有什么特定的位置关系〔同学们讨论分析答复〕因为菱形是特殊的平行四边形,所以它除具有平行四边形的所有性质外,还有平行四边形所没有的特殊性质:1.菱形的四条边都相等.2.菱形的两条对角线互相垂直平分,每一条对角线平分一组对角。

八年级数学北师大版上册 第4章《4.4 一次函数的应用》教学设计 教案

八年级数学北师大版上册 第4章《4.4 一次函数的应用》教学设计 教案

第四章第四节一次函数的应用(2)一、教材分析本节课内容选自义务教育课程标准实验教科书北京师范大学版的数学教材八年级上册的第四章第四节,课题为《一次函数图象的应用》。

本节课为第2课时。

其主要内容是学生已经学习掌握了一次函数的意义、一次函数的图象及其性质、确定一次函数的表达式的基础之上,通过开展经历体验探究活动,进行应用一次函数的图象解决简单的实际问题并发现一元一次方程与一次函数之间关系的过程。

使学生体会到数学学习过程中“数形结合”思想的重要性。

在整个函数知识体系中,对于图象的感受、解读、分析特别是应用函数的图象解决问题是极其重要的内容,而一次函数图象的应用是学生在整个学习生涯中所接触的第一个相关内容,对于后续其它函数图象应用的学习将积累宝贵的学习经验和经历,因此本节课内容的重要性不言而喻。

二、教学目标及分析知识与能力目标:(1)能通过函数图象获取信息,发展形象思维。

(2)能利用函数图象解决简单的实际问题,发展学生的数学应用能力。

过程与方法目标:(1)在亲身的经历与实践探索过程中体会数学问题解决的办法。

(2)初步体会方程与函数的关系,体会数形结合思想。

情感态度与价值观目标:(1)进一步体会数学知识与现实生活的密切联系,丰富数学情感。

(2)树立良好的环境保护意识,引发热爱自然、热爱家乡的情感。

重点:利用函数图象解决简单的实际问题,提高数学的应用意识和能力。

难点:体会函数与方程的关系,发展“数形结合”的思想”。

三、教学对象分析学生已学习了一次函数及其图象,认识了一次函数的性质。

在现实生活中也见识过大量的函数图象,所以具备了从函数图象中获取信息,并借助这些信息分析问题、解决问题的基础。

但由于初中学生的年龄特点,他们认识事物还不够全面、系统,所以还需通过具体实例来培养他们这方面的能力。

四、教法学法根据本节课的特点、目标要求及学生的实际情况,在教法上主要采用探究式教学法,引导学生进行观察探索、合作交流、归纳总结等学习活动。

北师大版八年级数学上册第四章《一次函数》教案

北师大版八年级数学上册第四章《一次函数》教案

第四章一次函数1 函数1.认识变量、常量,并学会用含一个变量的代数式表示另一个变量.逐步感知变量之间的关系.2.了解函数的三种表达方式.3.经历观察、分析、思考等数学活动,发展合情推理,有条理、清晰地阐述自己的观点.4.让学生积极参与数学活动,对数学产生好奇心和求知欲,形成实事求是的态度以及独立思考的习惯.【教学重点】认识变量、常量,用式子表示变量间的关系.【教学难点】用含有一个变量的式子表示另一个变量.一、创设情境,导入新课教材第75页内容.【教学说明】用学习身边熟悉的娱乐活动引入,提出问题引发思考,激发了学生强烈的求知欲望.二、思考探究,获取新知函数的概念.做一做并思考:教材第76页“做一做”.【教学说明】学生通过观察、思考、探究的形式,体会当一个变量变化,另一个量也随之发生变化的过程,为下面理解函数的概念做了充分准备.【归纳结论】在上面的案例中,都有两个变量,给定其中某一个变量的值,相应地就确定了另一个变量的值.一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数,其中x是自变量.函数的表示方法一般有:列表法、关系式法和图象法.讨论:上述问题中,自变量能取哪些值?【教学说明】不同的学生可能答案不一样.但是这是一个实际问题,自变量要符合本题的实际意义,不能认为是任意实数.【归纳结论】对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a的函数值.三、运用新知,深化理解1.现将500本笔记本捐助给贫困学生,每人5本,写出余下的笔记本数y(本)和学生数x(名)之间的关系式为,自变量x的取值范围是.2.某型号的汽车在路面上的制动距离s=v2/256,其中变量是()A.s,vB.s,v2C.sD.v3.写出下列问题中满足的关系式,并指出各个关系式中哪些是常量,哪些是变量?(1)用总长为6m的篱笆围成长方形场地,求长方形的面积S与另一边长x 之间的关系式;(2)用总长为l的篱笆围成长方形场地,长方形的面积为60m2,求l与x之间的关系式.【教学说明】让学生独立做,加强对函数及有关概念的理解,教师通过学生反馈的信息了解他们掌握知识的情况,及时处理学生中的疑难问题并加强训练.【答案】1.y=500-5x,0≤x≤100且x为整数;2.A3.(1)S=x(3-x)=3x-x2,其中3是常量,x、S是变量;(2)l=2(60/x+x),其中60、2是常量,l、x是变量.四、师生互动,课堂小结1.师生共同回顾函数、变量、常量、函数值等概念.2.通过本节课的学习,谈谈你有什么收获?还有哪些不足?请与同学交流.【教学说明】教师引导学生回顾本课有关知识点,学生大胆发言,对知识进行归纳整理,有助于消化理解.1.布置作业:习题4.1第1、2题.2.完成练习册中本课时相应练习.函数是学生接触的最新鲜的事物,不容易理解.在教学的过程中,要通过案例不断让学生去体会函数的意义,便于今后的实际运用.2 一次函数与正比例函数1.掌握一次函数与正比例函数的一般形式并学会判断.2.知道一次函数与正比例函数之间的关系,能利用一次函数和正比例函数解决实际问题.3.通过实例让学生经历思考,分析问题中量与量之间的关系,提高学生的归纳概括能力和辨别能力.4.利用学生独立思考、合作探究的学习形式培养学生科学的思维方法和良好的学习习惯.【教学重点】一次函数与正比例函数的概念【教学难点】利用一次函数与正比例函数的关系式解决实际问题.一、创设情境,导入新课教材第79页“做一做”上方的内容.【教学说明】从跟物理学有关的问题入手,体现了各学科之间是相互联系相互渗透的.同时也让学生认识到数学与现实生活是密不可分的,人们的需要产生了数学,调动他们学习数学的积极性.二、思考探索,获取新知1.一次函数和正比例函数的概念.做一做并思考:教材第79页“做一做”.【教学说明】由这些简单的实例让学生分析问题中各个量之间的关系,从现实生活中抽象出数学模型,找到建立数学关系的方法,也为导出一次函数与正比例函数的概念做好铺垫.你能利用我们刚学的知识解决下面的问题吗?请看:教材第79~80页例1【教学说明】通过对具体实例的分析,既消化了学生对一次函数和正比例函数的理解,又能为今后运用他们解决稍复杂的实际问题打下基础,同时也加强了它们之间的联系和区别.2.一次函数的实际应用.教材第80页例2.【教学说明】教师可以引导学生完成,让学生学习已知自变量的值求对应的函数值和已知函数值求自变量的值的方法.体现了一次函数与一元一次方程的密切联系,为后面的学习奠定了基础.三、运用新知,深化理解1.下列函数中,是一次函数但不是正比例函数的是()2.函数y=(2m-1)x n+3+(m-5)是一次函数的条件是()A.m≠12且n≠-3B.n=-2C.m≠12且n=-2D.m≠12且m≠5,n=-23.若每上6个台阶就升高1m,则上升高度h(m)与上的台阶数m之间的函数关系式为.h是m的函数.4.滑车以每分1.5米的速度匀速从轨道的一端滑向另一端,已知轨道的长为50米.(1)求滑车滑行轨道剩下的路程S(米)和滑行时间t(分)之间的关系式.(2)如果滑行时间为12分钟,求剩下的路程.(3)若剩下的路程为20米,那么它滑行的时间为多少分钟?【教学说明】让学生独立完成,加深对一次函数和正比例函数的理解,同时也对所学的知识也是个检验,教师及时纠正并有针对性地加强训练.【答案】1.C. 2.C. 3.h=m/6(m),一次(或正比例).4.解:(1)S=50-1.5t;(2)32(米);(3)20(分).四、师生互动,课堂小结1.师生共同回顾一次函数与正比例函数的一般形式.2.本节课学了哪些内容?你认为最重要的是什么?还有什么疑问?请与大家交流.【教学说明】让学生参与小结并允许学生发表各自的见解,增加了学生的积极性和主动性,培养他们对所学知识的回顾思考的习惯;同时也强调了本节课的重点,巩固了学习内容.1.布置作业:习题4.2第1、2、3题2.完成练习册中本课时相应练习..通过学生反馈的情况来看,绝大部分学生掌握得较好,但对于正比例函数是特殊的一次函数这种情况容易忽略.同时还有极少部分同学运用一次函数的一般形式解决实际问题不是相当熟练.在今后的教学中要花一定的时间不断完善提高.3 一次函数的图象第1课时正比例函数的图象和性质1.会利用描点法或两点法画出正比例函数的图象.2.掌握正比例函数的性质.3.通过对应描点来研究正比例函数的图象,经历知识的归纳、探究过程和利用正比例函数的图象归纳函数性质,体验数形结合的方法.4.通过画函数的图象,并借助图象研究函数的性质,体验数与形的内在联系,感受函数图象的简洁美.【教学重点】正比例函数的图象和性质.【教学难点】由正比例函数的图象归纳得出正比例函数的性质及对性质的理解.一、创设情境,导入新课把一个函数自变量的每一个值与对应的函数值分别作为点的横坐标和纵坐标,在直角坐标系内描出相应的点,所有这些点组成的图形叫做该函数的图象(graph).前面第1节就是摩天轮上一点的高度h(m)与旋转时间t(min)之间函数关系的图象.正比例函数y=kx的图象是怎样的呢?它具有哪些性质呢?下面,我们一起去研究吧!【教学说明】给出函数图象的定义,学生一目了然,结合实例便于学生理解它的含义,为下面学习画函数图象指明了方向.二、思考探究,获取新知1.正比例函数图象的画法:思考:(1)你准备来用什么方法画出正比例函数y=2x的图象?(2)画出函数图象的一般步骤有哪些?【教学说明】让学生经历列表、描点、连线等画函数图象的具体过程,既可以加深对图象意义的认识,了解图像上点的横、纵坐标与自变量值、函数值之间的对应关系,又为学习如何画函数图象及对用描点法画函数图象的一般步骤进行归纳做了准备.【归纳结论】画函数图象的一般步骤:列表、描点、连线.做一做:(1)画出正比例函数y=-3x的图象.(2)在所画的图象上任意取几个点,找出它们的横坐标和纵坐标,并验证他们是否都满足关系式y=-3x.讨论:①满足关系式y=-3x的x,y所对应的点(x,y)都在正比例函数y=-3x 的图象上吗?②正比例函数y=-3x的图象上的点(x,y)都满足关系式y=-3x吗?③正比例函数y=kx的图象有何特点?你是怎样理解的?【教学说明】加强学生用描点法画正比例函数图象的方法,体会函数图象上的点都满足函数关系式,并通过观察得出正比例函数图象的特点.【归纳结论】正比例函数y=kx的图象是一条经过原点(0,0)的直线.因此,画正比例函数图象时,只需要再确定一个点,过这点和原点画直线就可以了.2.正比例函数图象的性质做一做:在同一直角坐标系内画出正比例函数y=x,y=3x,y=-12x和y=-4x的图象.思考:上述四个函数中,随着x值的增大,y的值分别如何变化?【教学说明】利用正比例函数的图象学生很直观地归纳出正比例函数的增减性.注意不要受算术中正比例概念的影响,片面地认为正比例函数总是随着自变量的增加而增加,它的增或减是由k的正或负决定的.【归纳结论】在正比例函数y=kx中,当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小.讨论:(1)正比例函数y=x和y=3x中,随着x值的增大,y的值都增加了,其中哪一个增加得更快?你能解释其中的道理吗?(2)类似地,正比例函数y=-12x 和y=-4x 中,随着x 值的增大,y 的值都减小了,其中哪一个减小得更快?你是如何判断的?【教学说明】通过图象让学生进一步体会正比例函数增减的快慢是由|k |决定的,加深了对正比例函数图象性质的理解.三、运用新知,深化理解1.若函数y=232()m m x -- 是正比例函数,则m= .2.若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是 .3.已知点P (1,m )在正比例函数y=4x 的图象上,那么点P 的坐标是( ).A.(1,4)B.(-1,-4)C (1,-4)D.(-1,4)4.已知正比例函数y=kx (k ≠0)的图象经过第二、四象限,则( )A.y 随x 的增大而增大B.y 随x 的增大而减小C.当x <0时,y 随x 的增大而增大;当x >0时,y 随x 的增大而减小.D.无论x 如何变化,y 不变.5.小刚以2千米/时的速度匀速从甲地行走到乙地,甲乙两地的距离为12千米.(1)求小刚行走的路程s (千米)与时间t (小时)之间的关系式以及自变量t 的取值范围.(2)画出图象.(3)根据图象说明当t 增大时,s 增大还是减小?【教学说明】教师让学生自主完成,加强对正比例函数图象和性质的理解和反馈学生对知识的掌握情况,便于及时矫正强化.【答案】1.-2;2.m >12;3.A ;4.B5.解:(1)s与t的关系式为s=2t,自变量t的取值范围是0≤t≤6.(2)是以O(0,0)和(6,12)为端点的一条线段.(3)由图象可知当t增大时,s也增大.四、师生互动,课堂小结1.师生共同回顾正比例函数图象的画法以及它的性质.2.本节课你掌握了哪些知识?还有哪些疑问?请与大家交流.【教学说明】引导学生回顾本课所学知识,对知识进行归纳整理,找出不足便于教师及时调整,做到当堂消化.1.教材习题4.3第1、2、3、4题.2.完成练习册中本课时相应练习..本节课通过实际操作了解正比例函数图象的画法及利用图象说明其性质,并掌握图象特征与关系式的联系规律,经过思考讨论知道了正比例函数不同表现形式的转化方法和图象的简单画法,为后面学习一次函数奠定了基础.第2课时一次函数的图象和性质1.理解直线y=kx+b与直线y=kx之间的位置关系.2.会利用两个合适的点画出一次函数的图象.3.掌握一次函数的性质.4.通过一次函数图象和性质的研究,体会数形结合法在问题解决中的作用,并能运用性质、图象及数形结合法解决相关函数问题.5.在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神.【教学重点】一次函数的图象和性质.【教学难点】由一次函数的图象归纳得出一次函数的性质及对性质的理解.一、创设情境,导入新课我们知道正比例函数y=-2x的图象是过原点的一条直线,那么一次函数y=-2x+1的图象又是怎样的呢?它们之间有什么位置关系?下面一起研究一次函数y=kx+b的图象.【教学说明】利用所学知识“最近发展区”——正比例函数的图象及性质,为类比、探究一次函数的图象及其性质作好铺垫.二、思考探究,获取新知1.一次函数的图象.(1)你能用描点法画出一次函数y=-2x+1的图象吗?(2)通过上面画一次函数的图象想一想一次函数y=kx+b的图象有什么特点,对此你是怎样理解的?【教学说明】在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出一次函数的图象,可以说是得心应手,减轻了学生心理上的压力.【归纳结论】一次函数y=kx+b的图象是一条直线,因此画一次函数图象时,只要确定两个点画直线就可以了.一次函数y=kx+b的图象也称为直线y=kx+b.2.一次函数的性质.做一做:在同一直角坐标系内分别画出一次函数y=2x+3,y=-x,y=-x+3和y=5x-2的图象.讨论:(1)上述四个函数中,随着x值的增大,y的值分别如何变化?相应图象上点的变化趋势如何?(2)直线y=-x与y=-x+3的位置关系如何?你能通过适当的移动将直线y=-x 变为直线y=-x+3吗?一般地,直线y=kx+b与y=kx又有怎样的位置关系呢?(3)直线y=2x+3与直线y=-x+3有什么共同点?一般地,你能从函数y=kx+b 的图象上直接看出b的数值吗?【教学说明】进一步巩固一次函数图象的画法,并为探究一次函数的性质做准备.让学生利用图象观察体验y=kx与y=kx+b两者之间的位置关系,从而得出函数y=kx+b的图象实际上是对直线y=kx上的所有点进行平移的结果,同时还让学生明白b的值就是图象与y轴交点的纵坐标.【归纳结论】一次函数y=kx+b的图象经过点(0,b).当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小.三、运用新知,深化理解1.已知一次函数y=mx+|m+1|的图象与y轴交于点(0,3),且y随x值的增大而增大,则m的值为.2.一次函数y=3x-4的图象不经过().A.第一象限B.第二象限C.第三象限D.第四象限3.下列一次函数中,y随x值的增大而减小的是().A.y=2x-1B.y=3-4xx+2D.y=(5-2)x4.一次函数y=(3a-1)x+5图象上两点A(x1,y1),B(x2,y2),当x1<x2时,y1>y2,则a的取值范围是().A.a>0B.a<0C.a>1 3D.a<1 35.如图,将直线OA向上平移2个单位,得到一个一次函数的图象,求这个一次函数的表达式.【教学说明】让学生独立完成,加强对所学知识的理解,及时反馈教学效果,查漏补缺.对有困难的学生给予鼓励和帮助,并进行强化.【答案】1.2 2.B 3.B 4.D5.解:设直线OA的关系式为y=kx,把(-2,4)代入得k=-2,所以y=-2x,将直线OA向上平移2个单位之后一次函数的表达式为:y=-2x+2.四、师生互动,课堂小结1.师生共同回顾一次函数图象的性质和它与正比例函数图象之间的关系.2.本节课你掌握了哪些知识?觉得哪些是大家需要注意的?与同学们分享.【教学说明】教师引导学生回顾本课知识点,加强理解各知识点之间的联系,不断进行归纳总结.让学生大胆交流,力求让每一个人在数学上得到一定的发展.1.布置作业:习题4.4第1、2、3、4题.2.完成练习册中本课时相应练习..本节课学习了用两点法画一次函数图象,进而利用数形结合的探究讨论的方法寻求出一次函数图象的特征与关系式的相互联系,使我们对一次函数知识的理解与掌握更透彻,也体会到数学思想在数学研究中的重要性.4 一次函数的应用第1课时确定一次函数的表达式1.了解两个条件确定一次函数,一个条件确定正比例函数.2.能由两个条件求出一次函数的表达式,并解决有关实际问题.3.经历用两个已知条件确定一次函数表达式的应用过程,提高学生研究数学问题的技能,体验数形结合,逐步学习利用这一思想分析解决问题.4.具体感知数形结合的思想在一次函数中的应用价值.【教学重点】根据所给信息确定一次函数的表达式.【教学难点】灵活运用一次函数的有关知识解决相关问题.一、创设情境,导入新课我们前面学习了有关一次函数的一些知识,掌握了其关系式的特点及图象特征,并学会了已知关系式画出其图象的方法以及分析图象特征与关系式之间的联系规律.如果反过来,告诉我们有关一次函数图象的某些特征或实际问题,能否确实关系式呢?这将是我们这节课要解决的主要问题,大家可有兴趣?【教学说明】利用一次函数图象的特征和关系式的相互转化,加强学生对知识的理解.通过提问,引发同学分析思考、寻求解决问题的办法,激起学生探求知识的欲望.二、思考探究,获取新知确定一次函数的表达式.教材第89页“想一想”上面的内容.思考:确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?【教学说明】通过思考分析解决由图象到关系式转化的方法过程,总结归纳一次函数关系式与图象之间的转化规律,增强数形结合的思想在函数中重要性的理解.采用上面类似的方法,你能解决日常生活中的实际问题吗?请看例题:例见教材第89页例1【教学说明】一次函数的应用实质就是确定一次函数的关系式,这就需要充分挖掘题中所给的已知条件,分析量与量之间的关系,从而找到求关系式的方法.然后利用关系式解决有关问题.三、运用新知,深化理解1.一个正比例函数的图象经过点A(3,-2),B(a,3),则a= .2.如图,直线l是一次函数y=kx+b的图象.填空:(1)当x=30时,y= .(2)当y=30时,x= .第2题图第3题图3.如图,一次函数的图象过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为().A.y=-x+2B.y=x+2C.y=x-2D.y=-x-24.如图,直线l是一次函数y=kx+b的图象,求l与两坐标轴所围成的三角形的面积.【教学说明】教师让学生独立完成,加深对所学知识的理解和检查学生对一次函数的实际应用的掌握程度,并有针对性地加强辅导.【答案】1. -92;2. 22,42;3.B;4.解:由图象可知b=2,图象又过点(2,-2),则有2k+b=-2,所以b=2,k=-2,这个一次函数的解析为y=-2x+2,当y=0时,解得x=1,l与两坐标轴所围成的三角形的面积为y=12×1×2=1.四、师生互动,课堂小结通过本节课的学习,你已经掌握了哪些知识?还有什么疑难问题需要解决的?与同学交流.【教学说明】学生利用互相交流的方式对知识进行搜集,归纳整理,互相补充,教师及时给予点评.特别是对于解题方法技巧上可以做适当强调,帮助他们加深印象.1.布置作业:习题4.5第1、2、4题.2.完成练习册中本课时相应练习..本节课利用图象或实际背景求一次函数关系式和利用关系式解决相关的实际问题,让学生从中体会求解关系式的方式方法.与此同时,在教学中要把图象和关系式有机结合起来,讨论它们之间的相互转化很有必要,培养学生全面认识事物的观点.第2课时一个一次函数的应用1.能利用一次函数解决简单的实际问题.2.了解一次函数与一元一次方程之间的关系.3.通过生活的实例结合一次函数的图象解决问题,继续体会数形结合的思想所起的重要作用.4.让学生深刻体会到数学知识来源于实际生产、生活的需求,反之,又服务于生产、生活的实际.【教学重点】利用一次函数解决简单的实际问题.【教学难点】根据一次函数图象去分析解决问题.一、创设情境,导入新课教材第91页例2上面的内容【教学说明】从生活中的实际问题出发,采用提问引发思考的方式引入,激发学生探求知识的兴趣.二、思考探究,获取新知简单的一次函数的实际应用教师引导学生完成教材第91页例2.【教学说明】让学生体会利用一次函数的图象解决实际问题的方法.如果从图象上不能很明显得出结论,还需要求出一次函数的表达式在进行求解.做一做:教材第92页“做一做”.【教学说明】巩固加深根据一次函数图象求直线表达式,同时体会当函数值为零时自变量的取值,为下面学习一元一次方程与一次函数的关系打下了基础.讨论:一元一次方程0.5x+1=0与一次函数y=0.5x+1有什么联系?【教学说明】充分体会一元一次方程与一次函数之间的转化关系,帮助学生从数形结合的角度进一步认识一次函数与一元一次方程的密切联系.【归纳结论】一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解.从图象上看,一次函数y=kx+b的图象与x轴交点的横坐标就是方程kx+b=0的解.三、运用新知,深化理解1.直线y=3x+6与x轴的交点的横坐标x的值是方程2x+a=0的解,则a的值是.2.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所有的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是().A.12分钟B.15分钟C.25分钟D.27分钟3.某服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装80套.已知做一套M型号的时装需要A种布料0.6m,B种布料0.9m,可获利润45元;做一套N型号的时装需要A种布料1.1m,B种布料0.4m,可获利润50元.若设生产N型号的时装套数x,用这批布料生产这两种型号的时装所获得总利润为y元.(1)求y与x的函数关系式,并求出自变量x的取值范围;(2)该服装厂在生产这批时装中,当生产N型号的时装多少套时,所获利润最大?最大利润是多少?【教学说明】让学生独立完成,加深对新学知识的理解和检验学生掌握情况,便于教师查漏补缺,及时解决学生的疑难问题.【答案】1.4;2.B;3.解:(1)y=5x+3600(40≤x≤44);(2)当生产N型号的时装44套时,所获利润最大,最大利润是3820元.四、师生互动,课堂小结通过本节课的学习,你会利用一次函数图象解决有关问题吗?你有哪些收获?请与大家共同分享.【教学说明】教师引导学生回顾所学知识点,对知识不断归纳整理,特别有时需要利用图象求出关系式再去解决问题更准确.1.布置作业:习题4.6中的第1、2题.2.完成练习册中本课时相应练习..本节课从实际生活背景出发,利用一次函数及图象解决问题,让学生体会一次函数的应用价值和一次函数与一元一次方程的密切关系,体验应用知识的成就感和学习教学更加热爱生活.。

八年级数学北师大版上册 第4章《4.2 一次函数与正比例函数》教学设计 教案

八年级数学北师大版上册 第4章《4.2 一次函数与正比例函数》教学设计 教案

《一次函数与正比例函数》教案一、教材分析(一)教材的地位和作用《一次函数与正比例函数》八年级上册第四章第二节的内容,一次函数是初中阶段研究的较为简单、应用较为广泛的函数,它的研究方法具有一般性和代表性,为后面的二次函数、反比例函数的学习都奠定了基础。

同时,在整个初中阶段,一元一次方程、一元一次不等式都存在于一次函数中。

三者相互依存,紧密联系,也为方程、不等式、函数解法的补充提供了新的途径。

(二)教学目标知识与技能目标:(1)理解一次函数和正比例函数的概念;(2)能根据所给条件写出简单的一次函数表达式.过程与方法目标:(1)经历一次函数概念的抽象过程,体会模型思想,从实际问题中得到函数关系式,并感受它们之间的一种依存关系。

(2)能根据所给的实际生活背景,列出简单的一次函数关系式。

情感态度与价值观目标:通过具体问题的解决,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.在探索过程中体验成功的喜悦,树立学习的自信心.教学重点、难点:重点:从具体情境中列出相应的一次函数表达式,从而抽象出一次函数的概念。

难点:根据具体情境所给的信息确定一次函数的表达式二、教法与学法:在本节课的教学中我准备采用的教学方法主要是引导——自学交流的方式。

根据学生的理解能力和生理特征,一方面运用现实生活实例,引发学生的兴趣,使他们的注意力集中到解决现实生活问题上,另一方面通过学生小组合作交流、展示,尽可能充分发挥学生的主动性。

通过本节课的学习,使学生学会在独立思考的基础上与同伴进行交流、讨论,培养学生的合作意识,感受数学源于生活有应用于生活。

三、教学过程设计下面是我说课的重点,也就是教学过程的设计,整节课我共设为六个环节:第一个环节是复习回顾:1、什么叫函数:在某个变化过程中,有两个 x和y,如果给定一个x值,相应地就确定一个y值,那么我们称y是x的函数,其中x是 ,y是 .2、函数的三种表达方式有:、、。

3、已知一个长方形的面积为y,长为5,宽为x,则长方形的面积表示为y= . 设计意图:复习函数的概念及其表达方式。

北师大版八年级数学上册:第四章《一次函数》教案

北师大版八年级数学上册:第四章《一次函数》教案

第四章 一次函数1 函 数1.了解函数产生的背景和函数的概念,能判断两个变量间的关系是否属于函数关系.2.通过对函数概念的探索,初步培养学生利用函数的观点认识现实世界的意识和能力.3.让学生主动地从事观察、操作、交流、归纳等探索活动,从而使学生形成自己对数学知识的理解和有效的学习模式.重点掌握函数的概念,会判断两个变量之间的关系是否属于函数关系.难点能把实际问题抽象概括为函数问题.一、情境导入课件出示教材第75页图4-1及相关问题,并由学生讨论完成题目.师:在现实生活中一个量随另一个量的变化而变化的现象大量存在.函数就是研究一些量之间确定性依赖关系的数学模型.(板书课题)二、探究新知函数的相关概念.(1)课件出示教材第76页“做一做”第1题.师:层数n和物体总数y之间是什么关系?引导学生得出:只要给定层数,就能求出物体总数.(2)课件出示教材第76页“做一做”第2题.师:在关系式T=t+273中,两个变量中若知道其中一个,是否可以确定另外一个?一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数,其中x是自变量.表示函数的方法一般有:列表法、关系式法和图象法.对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a时的函数值.理解函数概念时应注意:(1)在某一变化过程中有两个变量x与y.(2)这两个变量互相联系,当变量x取一个确定的值时,变量y的值就随之确定.(3)对于变量x的每一个值,变量y都有唯一的一个值与它对应,如在关系式y2=x(x>0)中,当x=9时,y对应的值为3或-3,不唯一,则y不是x的函数.师:上述问题中,自变量能取哪些值?指出要根据实际问题确定自变量的取值范围.三、练习巩固教材第77页“随堂练习”.四、小结函数的概念包含以下三方面:(1)两个变量;(2)两个变量之间唯一确定的对应关系;(3)当一个变量取一个确定的值时,另一个变量有唯一的值与它对应.五、课外作业教材第77~78页习题4.1第1~4题.本节课是函数学习的起始课,因此理解函数的基本思想和表达方式是本节课的重点.通过生活实例中对变量的提取,帮助学生比较深刻地领悟了函数的意义.教材安排的实际问题,旨在让学生通过直观感知,领悟相关概念,这些问题不宜单纯作为教师讲解的例题,要注意引导学生观察其中数量之间的相互关系、鼓励学生发表意见,可以根据学生交流的情况,鼓励学生举出自己熟悉的实例,穿插在几个问题的讨论之中.2 一次函数与正比例函数1.理解一次函数和正比例函数的概念,以及两者之间的关系.2.能够根据所给条件写出简单的一次函数表达式,并利用它解决实际问题.3.经历利用一次函数解决实际问题的过程,发展学生的数学应用能力.重点一次函数、正比例函数的概念.会根据已知信息写出一次函数的表达式.难点一次函数知识的运用.一、情境导入师:生活中充满着许许多多变化的量,你了解这些变量之间的关系吗?如弹簧的长度(在弹性限度内)与所挂物体的质量,输液时间与相应时间内水滴数目……了解这些关系,可以帮助我们更好地认识世界.函数是刻画变量之间关系的常用模型,其中最为简单的是一次函数,那么什么是一次函数?用一次函数可以解决哪些问题呢?你想了解这些吗?一起进入这节课的学习吧!二、探究新知一次函数的相关概念.(1)课件出示教材第79页“做一做”上面的题目.分析:当不挂物体时,弹簧长度为3 cm,当挂1 kg物体时,增加0.5 cm,总长度为3.5 cm,增加1 kg物体,即所挂物体为2 kg时,弹簧又增加0.5 cm,总共增加1 cm,由此可见,所挂物体为x kg时,弹簧就伸长0.5x cm,则弹簧总长为原长加伸长的长度,即y=3+0.5x.(2)课件出示教材第79页“做一做”.解:①如下表所示:汽车行驶050100150200300路程x/km耗油量y/L0612182436②y=6·x.③z=60-x.若两个变量x,y间的对应关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数.例如y=2x+1, y=x-1等都是一次函数.特别地,当b=0时,称y是x的正比例函数.例如,y=2x,y=-3x等都是正比例函数.正比例函数是一次函数的特例,一次函数包含正比例函数.正比例函数与一次函数的关系如图所示.三、举例分析1.课件出示教材第79页例1.由学生交流讨论完成.师:两个变量之间存在函数关系,它们之间一定是一次函数或正比例函数关系吗?2.课件出示教材第80页例2.此题对于现阶段的学生有一定难度,由教师讲解.分析:一次函数y =kx +b(k ,b 为常数,k ≠0)中,自变量的取值范围是全体实数,但是在实际问题中,要根据具体情况来确定该一次函数的自变量的取值范围.本例题的关键是确定问题当中的x 的取值范围.四、练习巩固教材第80~81页“随堂练习”第1~2题.五、小结正比例函数――→定义形如y =kx (k ≠0)的函数一次函数――→定义 形如y =kx +b (k ,b 是常数,k ≠0)的函数六、课外作业教材第82页习题4.2第1~4题.教学时从学生熟悉的实际问题入手,旨在让学生直观感知领悟相关概念,通过学生的合作交流得到一次函数和正比例函数的定义,引导学生把新学习的函数知识与实际问题联系起来.在教学过程中要适当增加习题,设计不同层次的习题,让不同层次的学生得到不同程度的练习,以提高学生的解题能力和对一次函数与正比例函数的理解和掌握.3 一次函数的图象1.理解函数图象的概念,经历作图过程,初步了解作函数图象的一般步骤.理解一次函数的关系式与图象之间的对应关系,并熟练作出一次函数的图象.2.了解正比例函数y=kx的图象的特点,会作正比例函数图象,理解一次函数及其图象的有关性质;进一步培养学生数形结合的意识和能力.重点能熟练地作出一次函数的图象,归纳作函数图象的一般步骤.难点理解一次函数的关系式与图象之间的对应系.一、情境导入课件出示题目:已知A,B两人在一次百米赛跑中,路程s(m)与赛跑时间t(s)的关系如图所示,你知道A,B两人所跑的路程s(m)与时间t(s)之间属于哪种函数关系吗?师:通过这节课的学习,同学们一定会有所了解. (板书课题)二、探究新知把一个函数自变量的每一个值与对应的函数值分别作为点的横坐标和纵坐标,在直角坐标系内描出相应的点,所有这些点组成的图形叫做该函数的图象.一次函数y=kx+b的图象是怎样的呢?我们先研究较为简单的正比例函数的图象.1.正比例函数的图象.某地1千瓦时电费为0.8元,表示电费y(元)与所用电量x(千瓦时)之间的函数关系式是________,你能画出这个函数的图象吗?解:(1)确定自变量的取值范围.根据题意可知y=0.8x,这是个实际问题,自变量的取值要使实际问题有意义,所以x≥0.(2)列表.取自变量x的一些值,算出相应的函数值,列成表格如下:师:x012345…y00.8 1.6 2.4 3.24…(3)描点.建立平面直角坐标系,以x的取值为横坐标,相应的函数值为纵坐标,描出点O,A,B,C,D,E,…,如图所示.(4)连线.观察描出的这几个点,它们的位置关系是怎样的?学生观察这些点会得出这些点在一条直线上,由于自变量的取值范围是x≥0,因此我们猜想这个函数的图象是以原点为端点的一条射线,数学上已经证明这个猜想是正确的,于是这个函数的图象如下图所示.注意:因为两点可以确定一条直线,因此,画正比例函数的图象时只需过原点(0,0)和点(1,k)画一条直线即可.2.正比例函数的性质.学生画出图象后,引导学生分析:正比例函数y=kx(k≠0)的图象是一条经过原点(0,0)的直线,我们称它为直线y=kx.当k>0时,经过第一、三象限,从左往右升,即y 的值随x值增大而增大;当k<0时,经过第二、四象限,即y的值随x值的增大而减小.课件出示教材第85页“随堂练习”.学生独立完成,让学生根据图象说说这两个正比例函数的性质.3.一次函数的图象.正比例函数y=-2x的图象是过原点的一条直线,那么一次函数y=-2x+1的图象又是怎样的呢?下面我们研究一次函数y=kx+b的图象.(1)课件出示教材第86页例2.师:①直线y=-2x和直线y=-2x+1是什么位置关系?②一次函数y=kx+b的图象有什么特点?你是怎样理解的?③根据上面的函数图象,怎样比较简单地画出一次函数y=-2x+3的图象?一次函数y=kx+b的图象是一条直线,因此画一次函数图象时,只要确定两个点,再过这两点画直线就可以了.一次函数y=kx+b的图象也称为直线y=kx+b.(2)课件出示教材第86页“做一做”.注意:画图象时让学生表示出所画函数的关系式,以便于区分.(3)课件出示教材第87页“议一议”.解:①函数y=2x+3和y=5x-2都是y随x的增大而增大,相应图象上点的位置逐渐升高.函数y=-x和y=-x+3都是y随x的增大而减小,相应图象上点的位置逐渐降低.②直线y=-x与直线y=-x+3互相平行,将直线y=-x向上平移3个单位长度就变为直线y=-x+3了.当k≠0,b≠0或k=0,b≠0时,直线y=kx+b与y=kx平行;当k≠0,b=0或k=0,b=0时,直线y=kx+b与y=kx重合.③直线y=2x+3和直线y=-x+3与y轴相交于同一点(0,3).直线y=kx+b与y轴交点的纵坐标就是b的值,一般能从函数y=kx+b的图象上直接看出b的数值.总结:一次函数y=kx+b的图象经过点(0,b).当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小.拓展:(1)直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)的位置关系:①直线y=kx+b平行于直线y=kx;②当b>0时,把直线y=kx向上平移b个单位长度,可得直线y=kx+b;③当b<0时,把直线y=kx向下平移|b|个单位长度,可得直线y=kx+b.(2)一次函数y1=k1x+b1与y2=k2x+b2中:若k1=-k2,b1=b2,则两直线关于y轴对称;若k1=-k2,b1=-b2,则两直线关于x轴对称;若k1=k2,b1≠b2,则两直线平行.三、练习巩固教材第87页“随堂练习”第1~3题.四、小结1.正比例函数y=kx(k≠0)的图象是经过原点的一条直线.通常画正比例函数y=kx(k≠0)的图象时,只取一点(1,k),然后过原点和这一点画直线即可.2.正比例函数y=kx(k≠0)的性质.k的取值k<0k>0图象图象特征过点(0,0)和(1,k)的直线变化规律y随x的增大而减小y随x的增大而增大3.一次函数y=kx+b的图象经过点(0,b),当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小.五、课外作业1.教材第85页习题4.3第1~4题.2.教材第87~88页习题4.4第1~5题.本节课利用数形结合的思想引入新课,通过学生的自主探索与合作交流得到正比例函数的图象和性质,使学生易于接受新知识.通过例题的讲解,加深了学生对正比例函数的图象和性质的理解,提高了学生应用正比例函数的图象和性质解题的能力.一次函数的图象和性质是在正比例函数的基础上进行学习的,研究一次函数的图象和性质,除了借助图象本身去分析外,还应该注重引导学生思考k值对函数的图象和性质的影响,只有深刻领会k值的影响,才能从更深层次理解一次函数的图象及性质.4 一次函数的应用第1课时 一次函数的表达式1.了解两个条件确定一个一次函数,一个条件确定一个正比例函数.2.能由两个条件求出一次函数的表达式,由一个条件求出正比例函数的表达式,并解决有关实际问题.重点根据所给信息确定一次函数的表达式.难点用一次函数的关系式解决有关实际问题.一、情境导入课件出示:小红同学受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作.师:你能根据以上信息求出放入小球后量筒中水面的高度与小球个数之间的关系吗?学了本节内容后,你就能轻松解决了.二、探究新知1.一次函数的表达式.课件出示题目:某物体沿一个斜坡下滑,它的速度v (m/s)与其下滑时间t (s)的关系如图所示.(1)写出v与t之间的关系式;(2)下滑3 s时物体的速度是多少?分析:要求v与t之间的关系式,首先应观察图象,确定它是正比例函数的图象,还是一次函数的图象,然后设出函数关系式,再把已知的坐标代入关系式,求出待定系数即可.2.确定表达式所需的条件.课件出示教材第89页“想一想”.学生讨论得出:确定一次函数的表达式需要两个条件,确定正比例函数的表达式只需要一个条件.说明:①一次函数的表达式y=kx+b有两个常数k,b,要求出k和b的值需要两个条件,而正比例函数中b=0,只需求k,所以只需一个条件.②因为一次函数的图象是一条直线,两点确定一条直线.所以需要两个条件,而正比例函数的图象是经过原点的一条直线.所以只需要一点就可以确定这条直线.三、举例分析课件出示教材第89页例1.分析:因为一次函数的图象是一条直线,两点确定一条直线,所以需要两个条件,而正比例函数的图象是经过原点的一条直线,所以只需要确定另外一点坐标就可以确定这条直线的关系式.拓展:利用待定系数法确定一次函数的关系式,其步骤为:一设:根据题意,先设出函数关系式为y =kx +b(k ≠0);二代:确定两对对应值或图象上两个点的坐标,分别代入函数关系式,得到关于k ,b 的两个方程;三解:求出k ,b 的值(暂时可以通过等量代换的方式去求两个未知数);四定:最后确定函数关系式.四、练习巩固1.教材第89~90页“随堂练习”1~3题.2.补充练习:(1)一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,燃烧后剩下的长度y cm 与燃烧时间x h 的函数关系用图象表示为下图中的( )(2)一次函数y =kx +b 的图象如图所示,那么k ,b 的值分别是( )A .k =-1,b =1B .k =-2,b =1C .k =1,b =1D .k =2 ,b =1(3)一个正比例函数的图象经过点(2,-3),则其表达式是( )A .y =-xB .y =-x32C .y =2x D .y =-3x(4)已知直线l 经过点(0,3)和点(3,0),求直线l 的函数表达式.五、小结确定一次函数表达式的方法:由问题的实际意义直接确定出函数表达式的一般形式:若为正比例函数,则设其表达式为y =kx(k ≠0),代入一个除原点以外的点的坐标,求出k 的值,即可确定函数表达式;若为一般的一次函数,则设其表达式为y =kx +b(k ≠0),代入两个点的坐标,求出k ,b 的值,从而确定一次函数的表达式.六、课外作业教材第90页习题4.5 第1~4题.确定函数表达式看似简单,但学生在刚刚接触到这个问题的时候往往无从下手.本节课正是基于这点认识,借助引例,首先从方法上指导学生确定函数表达式,即从判断类型、确定k值(或k和b的值)两个方面确定函数表达式.由于学生此时尚没有学到二元一次方程组,对于确定一次函数表达式存在一定的困难,教师可以建议学生用“代换”的方式,转化为一元一次方程,以此求出一次函数表达式当中的两个未知数,进而确定一次函数的表达式.第2课时 单一一次函数图象的应用1.能通过单一一次函数图象获取信息,进一步训练学生的识图能力.2.能利用单一一次函数图象解决简单的实际问题,进一步发展学生的数学应用能力.重点单一一次函数图象的应用.难点从函数图象中正确读取信息.一、复习导入师:在前几节课里,我们分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛,和我们日常生活密切相关,因此本节课我们一起来学习一次函数图象的应用.二、探究新知1.单一一次函数图象的应用.(1)课件出示教材第91页图4-7和题目.分析:①原蓄水量就是图象与纵轴交点的纵坐标.②求干旱持续10天时的蓄水量,也就是求t等于10时所对应的V的值.当t=10时,V约为1 000万m3.同理可知当t为23时,V约为750万m3.③当蓄水量小于400万m3时,即V小于400万m3,所对应的t值约为40天.④水库干涸也就是V为0,函数图象与横轴交点的横坐标即为所求.当V为0时,所对应的t的值约为60天.(2)课件出示教材第91页例2.分析:①函数图象与x轴交点的横坐标即为摩托车行驶的最长路程,与y轴交点的纵坐标即为最多储油量.②x从0增加到100时,y从10开始减少,减少的数量即为行驶100 km消耗的油量.③当y<1时,摩托车将自动报警.2.一次函数与一元一次方程.(1)课件出示教材第92页“做一做”.学生独立完成.(2)课件出示教材第92页“议一议”.可以从“数”和“形”的方面引导学生讨论.生:函数y=0.5x+1与x轴交点的横坐标即为方程0.5x+1=0的解.总结:一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解.从图象上看,一次函数y=kx+b的图象与x轴交点的横坐标就是方程kx+b=0的解.三、练习巩固教材第92页习题4.6第1题.四、小结一次函数图象的应用:(1)准确读图,找到图象与x轴、y轴的交点,根据这些关键点解题.(2)在实际问题中,注意自变量的取值范围,在画图和读图时也要注意.五、课外作业教材第93页习题4.6第2~3题.函数和我们的生活密切相关,函数图象可以直观地反映一些规律,对函数图象的理解,其关键是弄清函数图象上的点的意义,即横坐标与纵坐标的意义,渗透数形结合的数学思想.本节课采取学生通过小组合作交流获取信息,应用所学的知识解决有关一次函数的问题的方式进行.教学时还可以根据学生的实际情况,结合函数图象提出相应的实际问题.第3课时 两个一次函数图象在同一坐标系中的应用1.通过观察函数图象,能够从两个一次函数图象中获取信息,理解函数图象交点的实际意义.2.通过函数图象,解决实际问题.重点利用图象解决实际问题.难点从函数图象中提炼出有用的信息.一、情境导入课件出示题目:学校每月的复印任务原来由甲复印社承接,按每100页40元计费.现乙复印社表示:若学校先按月付给一定数额的承包费,则可按每100页15元收费.两复印社每月收费情况如图所示.根据图象回答:(1)乙复印社每月的承包费是多少?(2)当每月复印多少页时,两复印社实际收费相同?(3)如果每月复印页数在1 200页左右,那么应选择哪个复印社?师:我们能不能运用一次函数解决一些比较复杂的问题呢?二、探究新知两个一次函数图象在同一坐标系中的应用.(1)课件出示教材第93页图4-10和题目.师:横轴和纵轴分别表示的实际意义是什么?生:横轴表示销售量,纵轴表示销售收入和销售成本.师:l1对应的一次函数y=k1x+b1中,k1和b1的实际意义各是什么?l2对应的一次函数y=k2x+b2中,k2和b2的实际意义各是什么?学生小组讨论,根据图象加以说明:l1对应的函数关系式是y=1 000x,1 000表示每销售1 t,销售收入是1 000元,这里的“b=0”,说明该产品没销售时无收入;l2对应的函数关系式是y=500x+2 000,这里500表示的是销售量每增加1 t,销售成本增加500元,没销售时成本是2 000元.(2)课件出示教材第94页例3.独立尝试,并在小组内交流自己的结论.师:对学生的结果进行全班讲评,并让学生思考:通过刚才的观察,你有哪些认识?各抒己见,互相补充.师:观察图象解答问题时要明确坐标轴所表示的含义,要注意两直线的交点的意义,在横轴上的一定取值范围内,位于上方图象的函数值要比位于下方图象的函数值大.分析:本例题主要通过对函数图象的分析解决问题,首先要准确判断l1和l2哪个代表A,哪个代表B.从A和B的速度角度看,l1较陡,l2较平,这说明l1的速度快.如果l1和l2有交点,交点的坐标就能反映出追赶上的时间和距离海岸的距离.根据图中的坐标,可以求出两条直线的表达式,通过表达式就能正确解决问题.三、练习巩固1.如图所示,OA,BA分别表示甲、乙两名学生运动的一次函数图象,图中s和t分别表示运动路程和时间,根据图象快者的速度比慢者的速度每秒快( )A.2.5 m B.2 m C.1.5 m D.1 m2.小明骑自行车从A地去B地,一段时间后小刚骑摩托车也从A地出发追赶小明,两人走的路程s(km)与小明骑行时间t(h)的关系如图所示.(1)________表示小明行驶的路程与时间的关系(填“l1”或“l2”);(2)小刚比小明晚出发________小时;(3)v小刚=________,v小明=________;(4)小刚出发________小时后追上小明.五、小结利用函数图象解决问题注意三个点:与x轴交点、与y轴交点、两直线的交点.六、课外作业教材第95~96页习题4.7第1~3题.本节课的教学重点是借助一个坐标系中两个函数图象去分析问题,难点是只根据函数图象而不是通过计算去解决问题.学生习惯于通过计算去解决问题,通过函数图象去解决问题的机会比较少.本节课正是基于上述原因,在教学的过程中围绕教材中设立的问题,给学生扩充了问题或者提示,较好地解决了学习过程中的难点问题.。

2024年北师大版八年级上册数学第四章教案

2024年北师大版八年级上册数学第四章教案

2024年北师大版八年级上册数学第四章教案一、教学内容二、教学目标1. 理解一元二次方程的定义,掌握其一般形式。

2. 学会使用直接开平方法、配方法、公式法解一元二次方程。

3. 能够将实际问题转化为一元二次方程,并解决实际问题。

三、教学难点与重点教学难点:一元二次方程的解法,尤其是配方法的应用。

教学重点:一元二次方程的定义及其解法。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:练习本、草稿纸、计算器。

五、教学过程1. 实践情景引入:通过一个关于面积的实际问题,引导学生思考如何求解一元二次方程。

2. 讲解一元二次方程的定义,举例说明其一般形式。

3. 讲解直接开平方法、配方法、公式法的具体步骤,通过例题进行讲解。

4. 随堂练习:让学生尝试使用三种方法解一元二次方程,教师巡回指导。

6. 课堂作业:布置一些一元二次方程的题目,让学生当堂完成。

六、板书设计1. 一元二次方程的定义及一般形式。

2. 直接开平方法、配方法、公式法的步骤。

3. 例题及解题过程。

4. 课堂小结。

七、作业设计1. 作业题目:(1)求解方程:x^2 5x + 6 = 0(2)求解方程:2x^2 4x 6 = 0(3)实际问题:一个长方形的长是宽的两倍,面积为24平方厘米,求长方形的长和宽。

2. 答案:(1)x1 = 3, x2 = 2(2)x1 = 3, x2 = 1(3)长:6厘米,宽:3厘米八、课后反思及拓展延伸1. 反思:关注学生在解题过程中的困难和问题,分析原因,为下一节课做好准备。

2. 拓展延伸:让学生尝试研究一元二次方程的根与系数的关系,为后续学习打下基础。

重点和难点解析1. 一元二次方程的解法,尤其是配方法的应用。

2. 实践情景引入的设计,以激发学生兴趣和思考。

3. 板书设计,特别是解题步骤的呈现。

4. 作业设计,确保作业题目的典型性和答案的准确性。

一、一元二次方程解法中的配方法配方法是解一元二次方程的一种重要方法,尤其在求解无理方程时具有优势。

八年级数学北师大版上册 第4章《4.2 一次函数与正比例函数》教学设计 教案

八年级数学北师大版上册 第4章《4.2 一次函数与正比例函数》教学设计 教案

八年级的学生好奇、好动、好表现,应尽量让学生发表自己的想法。

因此本节课既要考虑学生的认知思维特点,也要积极关注学生的已有知识储备。

就现阶段的学生而言,已经掌握了两个变量的关系,能列出变量间的关系表达式,但是借助生活情境,正确将实际问题抽象为函数模型是有一定困难的,因此需要积极引导学生学习好的数学方法,进一步体会变量和函数之间的关系更多说课稿因此在教学过程中教师要充分借助具体情境来激发学生学习兴趣的同时设置问题来引发学生思考,类比观察、探究规律,巧妙地建立概念。

四、教学过程一、情境导入复习上节课学习的函数,教师提出问题:(1)什么是函数?(2)函数有哪些表示方式?(3)在现实生活中有许多问题都可以归结为函数问题,大家能不能举一些例子呢? 意图:为了激发学生的求知欲望,吸引同学们的注意力,这里采用了“复习旧知识,诱导新内容”的引入方法.问题(1)(2)复习上节课的内容,问题(3)是让学生把所学知识运用于实际生活,提高学生的运用意识。

二、探索过程(一)活动一某辆汽车油箱有汽油100L,汽车每行驶50km耗油9L.(1)完成下表:0 50 100 150 200 300汽车行驶路程x/km油箱剩余汽油量y/L(2)你能写出x与y之间的关系式吗?(3)汽车行驶的路程x可以无限增大吗?有没有一个取值范围?剩余油量y呢?答案 (1) 100、91、82、73、64、46;(2) x与y之间的关系式为;kx b (,k b 为常数,当0b 时,则汽车油箱中的余油量从实际问题中抽象出一次函数和正比例函数的概念.效果:从两个具体问题的函数表达式出发,互相讨论,教师在教学上恰当地设疑立障总结出一次函数的定义,3x ,(2)5x ,(3)4x ,(4)223x x , 2x (6)12y x 中是一次函数的是_____,是正比例函数的是意图:对本节知识进行巩固练习。

效果:学生基本能交好的独立完成练习题,收到了较好的教学效果。

北师大版八年级上册数学第四章教案

北师大版八年级上册数学第四章教案

北师大版八年级上册数学第四章教案一、教学内容本节课我们将要学习北师大版八年级上册数学第四章《一元一次不等式与不等式组》的内容,具体包括:4.1不等式及其解集,4.2不等式的性质,4.3一元一次不等式的求解,4.4一元一次不等式组及其解集。

二、教学目标1. 理解不等式的概念,掌握不等式的表示方法及其解集。

2. 掌握不等式的性质,并能运用性质解决实际问题。

3. 学会一元一次不等式的求解方法,并能解决实际问题。

三、教学难点与重点教学难点:一元一次不等式的求解方法,不等式组的解集。

教学重点:不等式的概念,不等式的性质,一元一次不等式的求解。

四、教具与学具准备1. 教具:PPT,黑板,粉笔。

2. 学具:练习本,笔。

五、教学过程1. 实践情景引入:通过生活中的实例,如温度、身高、体重等,引出大于、小于、大于等于、小于等于等概念,从而引出不等式的概念。

2. 教学内容讲解:(1)4.1不等式及其解集a. 不等式的定义及表示方法b. 不等式的解集(2)4.2不等式的性质a. 性质1:若a>b,则a+c>b+cb. 性质2:若a>b,c>d,则a+c>b+dc. 性质3:若a>b,且c>0,则ac>bc(3)4.3一元一次不等式的求解a. 不等式的移项b. 不等式的合并同类项c. 不等式的系数化(4)4.4一元一次不等式组及其解集a. 不等式组的定义b. 不等式组的解集3. 例题讲解:结合上述知识点,讲解相关例题,如不等式的求解,不等式组的解集等。

4. 随堂练习:让学生进行课堂练习,巩固所学知识。

六、板书设计1. 不等式及其解集2. 不等式的性质3. 一元一次不等式的求解4. 一元一次不等式组及其解集七、作业设计1. 作业题目:\[\begin{cases}2x3>5 \\3x+4<7\end{cases}\]2. 答案:(1)x>4(2)不等式组无解八、课后反思及拓展延伸1. 反思:通过本节课的学习,让学生掌握不等式的概念、性质及求解方法,培养他们解决问题的能力。

北师大八年级上数学第四章教案(精选5篇)

北师大八年级上数学第四章教案(精选5篇)

北师大八年级上数学第四章教案(精选5篇)北师大八年级上数学第四章教案(精选5篇)数学精神,试图决定性地影响人类的物质、道德和社会生活;试图回答有关人类自身存在提出的问题;这里给大家分享一些关于北师大八年级上数学第四章教案,供大家参考学习。

北师大八年级上数学第四章教案(篇1)课时目标1.掌握分式、有理式的概念。

2.掌握分式是否有意义、分式的值是否等于零的识别方法。

教学重点正确理解分式的意义,分式是否有意义的条件及分式的值为零的条件。

教学难点:正确理解分式的意义,分式是否有意义的条件及分式的值为零的条件。

教学时间:一课时。

教学用具:投影仪等。

教学过程:一.复习提问1.什么是整式?什么是单项式?什么是多项式?2.判断下列各式中,哪些是整式?哪些不是整式?①+m2 ②1+x+y2-③④⑤⑥⑦二.新课讲解:设问:不是整工式子中,和整式有什么区别?小结:1.分式的概念:一般地,形如的式子叫做分式,其中A和B均为整式,B中含有字母。

练习:下列各式中,哪些是分式哪些不是?(1)、、(2)、(3)、(4)、(5)x2、(6)+4强调:(6)+4带有是无理式,不是整式,故不是分式。

2.小结:对整式、分式的正确区别:分式的分子和分母都是整式,分子可以含有字母,也可以不含有字母,而分母中必须含有字母,这是分式与整式的根本区别。

练习:课后练习P6练习1、2题设问:(让学生看课本上P5“思考”部分,然后回答问题。

)例题讲解:课本P5例题1分析:各分式中的分母是:(1)3x(2)x-1(3)5-3b (4)x-y。

只要这引起分母不为零,分式便有意义。

(板书解题过程。

)3.小结:分式是否有意义的识别方法:当分式的分母为零时,分式无意义;当分式的分母不等于零时,分式有意义。

增加例题:当x取什么值时,分式有意义?解:由分母x2-4=0,得x=±2。

∴当x≠±2时,分式有意义。

设问:什么时候分式的值为零呢?例:解:当①分式的值为零北师大八年级上数学第四章教案(篇2)一、教学目标1.灵活应用勾股定理及逆定理解决实际问题.2.进一步加深性质定理与判定定理之间关系的认识.二、重点、难点1.重点:灵活应用勾股定理及逆定理解决实际问题.2.难点:灵活应用勾股定理及逆定理解决实际问题.3.难点的突破方法:三、课堂引入创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法.四、例习题分析例1(P83例2)分析:⑴了解方位角,及方位名词;⑵依题意画出图形;⑶依题意可得PR=12×1。

北师大版八年级上册数学第4章《一次函数》教案

北师大版八年级上册数学第4章《一次函数》教案

第四章一次函数1函数【学习目标】1.初步掌握函数的概念,能判断两个变量间的关系是否可以看成函数.2.会根据函数关系式,求出函数值.【学习重点】函数的概念,判断两个变量之间是否是函数关系.【学习难点】将实际问题抽象为函数问题.一、情景导入生成问题教师引导学生阅读教材第75页的内容.【说明】用身边熟悉的娱乐活动引入,提出问题引发思考,激发了学生强烈的求知欲望.二、自学互研生成能力知识模块一函数的概念自学自研教材第76页“做一做”的内容.【说明】学生通过观察、思考、探究的形式,体会当一个变量变化,另一个量也随之发生变化的过程,为下面理解函数的概念作了充分准备.【归纳结论】在上面的案例中,都有两个变量,给定其中某一个变量的值,相应地就确定了另一个变量的值.一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数,其中x是自变量.函数的表示方法一般有:列表法、关系式法和图象法.与同伴合作完成教材第76页“想一想”的学习与探究.讨论:上述问题中,自变量能取哪些值?【说明】不同的学生可能答案不一样,但是这是一个实际问题,自变量要符合本题的实际意义,不能认为是任意实数.【归纳结论】对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a的函数值.知识模块二列函数关系式,求函数值师生合作共同完成下面例题的学习.典例讲解:例:某蓄水池蓄水120m3,出水管每小时放水10m3.(1)填写下表:放水时间/小时24681012池内剩水量/m3(2)设放水时间为t(小时),池内剩水量为Q(m3),Q与t之间有怎样的关系?Q能看成t的函数吗?(3)当放水时间为3小时时,池内剩水量为多少?经过多少小时,池内水刚好放完?解:(1)感受变量之间的关系,出水管每小时放水10m3,则2小时可放水20m3,3小时可放水30m3,t小时可放水10t m3,因此池内剩水为(单位:m3):100,80,60,40,20,0;(2)池内剩水量=蓄水池原有的水量-放水量,因此,Q=120-10t,Q能看成t的函数;(3)当t=3时,Q=120-10×3=90(m3);令Q=0,得120-10t=0,解得t=12.三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一函数的概念知识模块二列函数关系式,求函数值四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________2一次函数与正比例函数【学习目标】1.理解一次函数和正比例函数的概念,以及它们之间的关系.2.能根据所给条件写出简单的一次函数表达式.【学习重点】一次函数与正比例函数的概念.【学习难点】利用一次函数与正比例函数的关系式解决实际问题.一、情景导入生成问题阅读教材第79页“做一做”上方的内容,并完成课本中设置的表格题目,初步了解一次函数的一般形式.【说明】从跟物理学有关的问题入手,体现了各学科之间是相互联系相互渗透的.同时也让学生认识到数学与现实生活是密不可分的,人们的需要产生了数学,调动他们学习数学的积极性.二、自学互研生成能力知识模块一一次函数与正比例函数的概念先自学自研教材第79页“做一做”的内容,然后再与同伴进行交流.【说明】由这些简单的实例让学生分析问题中各个量之间的关系,从现实生活中抽象出数学模型,找到建立数学关系的方法,也为导出一次函数与正比例函数的概念作好铺垫.【归纳结论】若两个变量x,y间的对应关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x 的一次函数.特别地,当b=0时,称y是x的正比例函数.知识模块二列一次函数关系式先自学自研教材第79页的例1,然后再与同伴进行交流.【说明】通过对具体实例的分析,既加强了学生对一次函数和正比例函数的理解,又能为今后运用它解决稍复杂的实际问题打下基础,同时也加强了它们之间的联系和区别.知识模块三一次函数的实际应用师生合作完成教材第80页例2的学习与探究.【说明】教师可以引导学生完成,让学生学习已知自变量的值求对应的函数值和已知函数值求自变量的值的方法.体现了一次函数与一元一次方程的密切联系,为后面的学习奠定了基础.三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一一次函数与正比例函数的概念知识模块二列一次函数关系式知识模块三一次函数的实际应用四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________3一次函数的图象第1课时正比例函数的图象和性质【学习目标】1.会作正比例函数的图象.2.通过作图归纳正比例函数图象的性质.【学习重点】作正比例函数图象.【学习难点】正比例函数图象和性质及应用.一、情景导入生成问题把一次函数自变量的每一个值与对应的函数值分别作为点的横坐标和纵坐标,在直角坐标系内描出相应的点,所有这些点组成的图形叫做该函数的图象.前面第1节就是摩天轮上一点的高度h(m)与旋转时间t(min)之间函数关系的图象.正比例函数y=kx的图象是怎样的呢?它具有哪些性质呢?下面,我们一起去研究吧!【说明】给出函数图象的定义,学生一目了然,结合实例便于学生理解它的含义,为下面学习画函数图象指明了方向.二、自学互研生成能力知识模块一正比例函数图象的画法先阅读教材第83页例1及解答过程.思考:(1)你准备用什么方法画出正比例函数y =2x 的图象? (2)画出函数图象的一般步骤有哪些?【说明】 让学生经历列表、描点、连线等画函数图象的具体过程,既可以加深对图象意义的认识,了解图象上点的横、纵坐标与自变量值、函数值之间的对应关系,又为学习如何画函数图象及对用描点法画函数图象的一般步骤进行归纳做了准备.【归纳结论】 画函数图象的一般步骤:列表、描点、连线.与同伴合作交流完成教材第83页“做一做”的学习与探究. 做一做:(1)画出正比例函数y =-3x 的图象.(2)在所画的图象上任意取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系式y =-3x . 讨论:(1)满足关系式y =-3x 的x ,y 所对应的点(x ,y )都在正比例函数y =-3x 的图象上吗? (2)正比例函数y =-3x 的图象上的点(x ,y )都满足关系式y =-3x 吗? (3)正比例函数y =kx 的图象有何特点?你是怎样理解的?【归纳结论】 正比例函数y =kx 的图象是一条经过原点(0,0)的直线.因此,画正比例函数图象时,只需要确定一个点,过这点和原点画直线就可以了.知识模块二 正比例函数图象的性质做一做:在同一直角坐标系内画出正比例函数y =x ,y =3x ,y =-12x 和y =-4x 的图象.思考:上述四个函数中,随着x 值的增大,y 的值如何变化?【说明】 利用正比例函数的图象,学生很直观地归纳出正比例函数的增减性,注意不要受算术中正比例概念的影响,片面地认为正比例函数总是随着自变量的增加而增加,它的增或减是由k 的正或负决定的.【归纳结论】 在正比例函数y =kx 中,当k >0时,y 的值随着x 值的增大而增大;当k <0时,y 的值随着x 值的增大而减小.讨论:(1)正比例函数y =x 和y =3x 中,随着x 值的增大,y 的值都增加了,其中哪一个增加得更快?你能解释其中的道理吗?(2)类似地,正比例函数y =-12x 和y =-4x 中,随着x 的增大,y 的值都减小了,其中哪一个减小得更快?你是如何判断的?【说明】 通过图象让学生进一步体会正比例函数增减的快慢是由|k |决定的,加深了对正比例函数图象性质的理解.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一正比例函数图象的画法知识模块二正比例函数图象的性质四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________第2课时一次函数的图象和性质【学习目标】1.会作一次函数的图象.2.通过作图归纳一次函数图象的性质.【学习重点】作一次函数图象.【学习难点】一次函数的图象和性质.一、情景导入生成问题我们知道正比例函数y=-2x的图象是过原点的一条直线,那么一次函数y=-2x+1的图象又是怎样的呢?它们之间有什么位置关系?下面一起研究一次函数y=kx+b的图象.【说明】利用所学知识“最近发展区”——正比例函数的图象及性质,为类比、探索一次函数的图象及其性质作好铺垫.二、自学互研生成能力知识模块一一次函数的图象先阅读教材第86页例2及其解答过程,然后完成下面的问题.(1)你能用描点法画出一次函数y=-2x+1的图象吗?(2)通过上面画一次函数的图象想一想一次函数y=kx+b的图象有什么特点,对此你是怎样理解的?【说明】在学生已经知道正比例函数的图象是一条直线的基础上,通过对应描点法来画出一次函数的图象,可以说是得心应手,减轻了学生心理上的压力.【归纳结论】一次函数y=kx+b的图象是一条直线,因此画一次函数图象时,只要确定两个点画直线就可以了.一次函数y=kx+b的图象也称为直线y=kx+b.知识模块二一次函数的性质与同伴合作完成下面问题的学习与探究.做一做:在同一直角坐标系内分别画出一次函数y=2x+3,y=-x,y=-x+3和y=5x-2的图象.讨论:(1)上述四个函数中,随着x值的增大,y的值分别如何变化?相应图象上点的变化趋势如何?(2)直线y=-x与y=-x+3的位置关系如何?你能通过适当的移动将直线y=-x变为直线y=-x+3吗?一般地,直线y=kx+b与y=kx又有怎样的位置关系呢?(3)直线y=2x+3与直线y=-x+3有什么共同点?一般地,你能从函数y=kx+b的图象上直接看出b的数值吗?【说明】进一步巩固一次函数图象的画法,并为探究一次函数的性质作准备.让学生利用图象观察体验y =kx与y=kx+b两者之间的位置关系,从而得出函数y=kx+b的图象实际上是对直线y=kx上的所有点进行平移的结果,同时还让学生明白b的值就是图象与y轴交点的纵坐标.【归纳结论】一次函数y=kx+b的图象经过点(0,b).当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小.三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一一次函数的图象知识模块二一次函数的性质四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________4一次函数的应用第1课时确定一次函数的表达式【学习目标】1.能根据所给信息利用待定系数法确定一次函数表达式.2.能通过求一次函数表达式来解决简单的实际问题.【学习重点】根据所给信息确定一次函数的表达式.【学习难点】灵活运用一次函数的有关知识解决相关问题.一、情景导入生成问题我们前面学习了有关一次函数的一些知识,掌握了其关系式的特点及图象特征,并学会了已知关系式画出其图象的方法以及分析图象特征与关系式之间的联系规律.如果反过来,告诉我们有关一次函数图象的某些特征或实际问题,能否确定关系式呢?这将是我们这节课要解决的主要问题,大家可有兴趣?【说明】利用一次函数图象的特征和关系式的相互转化,加强学生对知识的理解.通过提问,引发同学分析思考、寻找解决问题的办法,激起学生探求知识的欲望.二、自学互研生成能力知识模块一建立模型,确定一次函数表达式先阅读教材第89页“想一想”上面的内容,然后完成下面的问题: 思考:确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?【说明】 通过思考分析解决由图象到关系式转化的方法过程,总结归纳一次函数关系式与图象之间的转化规律,增强对数形结合的思想在函数中重要性的理解.采用上面类似的方法,你能解决日常生活中的实际问题吗? 例:见教材第89页例1.知识模块二 利用待定系数法确定一次函数的表达式师生合作完成下面例题的学习与探究. 典例讲解:例:已知:一次函数y =kx +b 的图象经过M(0,2),(1,3)两点. (1)求k ,b 的值;(2)若一次函数y =kx +b 的图象与x 轴交于点A(a ,0),求a 的值.解:(1)由题意得⎩⎪⎨⎪⎧b =2, ①k +b =3, ②将①代入②,得k =1.所以k =1,b =2;(2)将k =1,b =2代入y =kx +b ,得y =x +2.因为点A(a ,0)在y =x +2的图象上,所以0=a +2,即a =2.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 建立模型,确定一次函数表达式 知识模块二 利用待定系数法确定一次函数的表达式四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________第2课时 简单一次函数的应用【学习目标】1.能利用一次函数解决简单的实际问题. 2.了解一次函数与一元一次方程之间的关系. 【学习重点】利用一次函数解决简单的实际问题. 【学习难点】根据一次函数图象分析解决问题.一、情景导入 生成问题引导学生阅读教材第91页例2上面的内容.【说明】 从生活中的实际问题出发,采用提问引发思考的方式引入,激发学生探求知识的兴趣.二、自学互研 生成能力知识模块一 利用函数图象获得信息1.教师引导学生完成教材第91页例2的学习与探究.【说明】 让学生体会利用一次函数的图象解决实际问题的方法.如果从图象上不能很明显得出结论,还需要求出一次函数的表达式再进行求解.2.师生合作完成教材第92页“做一做”的学习与探究.【说明】 巩固加深根据一次函数图象求直线表达式,同时体会当函数值为零时自变量的取值,为下面学习一元一次方程与一次函数的关系打下了基础.知识模块二 一次函数与一元一次方程的关系师生合作完成教材第92页“议一议”的学习与探究.讨论:一元一次方程0.5x +1=0与一次函数y =0.5x +1有什么联系?【说明】 充分体会一元一次方程与一次函数之间的转化关系,帮助学生从数形结合的角度进一步认识一次函数与一元一次方程的密切联系.【归纳结论】 一般地,当一次函数y =kx +b 的函数值为0时,相应的自变量的值就是方程kx +b =0的解.从图象上看,一次函数y =kx +b 的图象与x 轴交点的横坐标就是方程kx +b =0的解.知识模块三 利用一次函数图象解决实际问题典例讲解:例:科学家通过实验探究出,一定质量的某气体在体积不变的情况下,压强P(千帕)随温度t(℃)变化的函数关系是P =kt +b ,其图象如图.(1)根据图象求出上述气体的压强P 与温度t 的函数关系式; (2)当压强P 为200千帕时,求上述气体的温度.解:(1)因为函数P =kt +b 的图象经过点(0,100),(25,110)所以,⎩⎪⎨⎪⎧b =100, ①25k +b =110, ②把①代入②得,k =25,故所求函数关系式为P =25t +100(t ≥0);(2)当P =200时,由(1)得25t +100=200,解得t =250.即当压强为200千帕时,气体的温度是250℃.仿例:某种拖拉机的油箱可储油40升,加满油并开始工作后,油箱中的余油量y (升)与工作时间x (小时)之间为一次函数关系如图.(1)求y 与x 之间的函数关系式; (2)一箱油可供拖拉机工作几小时? 解:(1)设y =kx +b ,根据题意,得⎩⎪⎨⎪⎧30=2k +b ,40=b ,∴⎩⎪⎨⎪⎧k =-5,b =40,∴y =-5x +40; (2)8小时.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 利用函数图象获得信息 知识模块二 一次函数与一元一次方程的关系 知识模块三 利用一次函数图象解决实际问题四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________第3课时 复杂一次函数的应用【学习目标】1.进一步提高识图能力,通过函数图象获取信息. 2.能利用函数图象解决较复杂的实际问题. 【学习重点】两个一次函数图象的应用. 【学习难点】通过函数图象解决实际问题.一、情景导入 生成问题教师引导学生研读教材第93页习题4.6下方的内容.【说明】 让学生在同一题中利用图象体会两个一次函数中量与量之间的关系,找到解决问题的方法,为下面的学习奠定基础.思考:图4-10中,l1对应的一次函数y=k1x+b1中,k1和b1的实际意义各是什么?l2对应的一次函数y=k2x+b2中,k2和b2的实际意义各是什么?二、自学互研生成能力知识模块一两个一次函数图象在同一坐标系中的应用师生合作完成教材第94页例3的学习与探究.【说明】教师引导学生完成,给学生创造展示自己的机会,通过相互讨论达成共识,得出结果,充分发挥学生的主体作用.想一想:你能用其他方法解决上面的例题(1)~(5)吗?【说明】给学生充分的思考空间,让他们采用多种方法解决同一个问题,从而体会一题多解给大家的学习带来的快乐.知识模块二最佳方案问题典例讲解:例:某单位急需用车,但不准备买车,他们准备和一个个体车主或一国有出租车公司中的一家签订合同,设汽车每月行驶xkm,应付给个体车主的月租费是y1元,应付给国有出租车公司的月租费是y2元,y1、y2分别与x 之间的函数关系的图象(两条射线)如图所示,观察图象,回答下列问题.(1)分别写出y1,y2与x之间的函数关系式;(2)每月行驶的路程在什么范围内时,租国有公司的车合算?(3)每月行驶的路程等于多少时,租两家车的费用相同?(4)如果这个单位估计平均每月行驶的路程为2300km,那么这个单位租哪家的合算?解:(1)由图象可知,设y1=k1x+b(k1,b为常数,k≠0),y2=k2x(k≠0).∵y1,y2都经过点(1000,2000),∴2000=1000k2,∴k2=2.将点(0,1000)代入y1中可求得b=1000,再将点(1000,2000)代入y1中可得k1=1,∴y1=x+1000(x≥0),y2=2x(x≥0);(2)当y2<y1时,有2x<x+1000,∴x<1000,∴每月行驶路程小于1000km时,租国有公司的车合算;(3)当y2=y1时,有2x=x+1000,∴x=1000,∴每月行驶的路程等于1000km时租两家车的费用相同;(4)当y2>y1时,有2x>x+1000,∴x>1000,∴每月行驶的路程大于1000km时,租个体车主的车比较合算.∴当x=2300km时,这个单位租个体车主的车比较合算.仿例:如图是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时甲家的合算;④买乙家的1件售价约为3元,其中正确的说法是(D)A .①②B .②③④C .②③D .①②③三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 两个一次函数图象在同一坐标系中的应用知识模块二 最佳方案问题四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________本章复习小结【学习目标】1.掌握本章重要知识,能灵活运用一次函数的图象和性质解决实际问题.2.通过梳理本章知识,借助实际问题情境,由具体到抽象地认识函数,应用函数举例,体现数学建模和数形结合的思想方法.【学习重点】理解函数的概念,特别是一次函数和正比例函数的概念,掌握一次函数的图象及性质,会利用待定系数法求一次函数的关系式,利用函数图象解决实际问题,初步体会方程和函数之间的关系.【学习难点】利用一次函数图象解决实际问题.一、情景导入 生成问题引导学生回顾本章知识点,展示结构图,让学生系统地了解本章知识及它们之间的相互关系.边回顾边构建知识结构图,便于巩固加深.函数⎩⎪⎪⎪⎨⎪⎪⎪⎧概念:如果在一个变化过程中有两个变量x 和y ,并且对于x 的每一个值, 变量y 都有唯一的值与它对应,则称y 是x 的函数,其中x 是自变量.表示方法:列表法、关系式法和图象法(列表、描点、连线)一次函数⎩⎪⎪⎨⎪⎪⎧表达式⎩⎪⎨⎪⎧y =kx +b (k ,b 为常数,k ≠0)正比例函数y =kx (k ≠0)性质:⎩⎪⎨⎪⎧当k >0时,y 随x 的增大而增大当k <0时,y 随x 的增大而减小k 、b 的取值决定图象所在象限表达式的确定⎩⎪⎨⎪⎧正比例函数需一个条件一次函数需两个条件应用⎩⎪⎨⎪⎧与一元一次方程的关系实际应用二、自学互研 生成能力知识模块一知识清单加深理解1.函数的概念判断函数的关系时,要依据函数的概念抓住以下几点:①有两个变量x和y;②y随x的变化而变化;③对于x的每一个值,y都有唯一的值与之对应.2.自变量的取值范围确定自变量的取值范围时考虑不周,易漏掉某些情况或某些条件中的分界点,对于具有实际意义的函数关系,易漏掉隐含条件,做题时要全面考虑,特别注意实际问题中变量的实际意义.3.一次函数的概念一次函数的关系式y=kx+b,它是关于x的一次二项式,其中一次项系数k≠0,b为任意实数,特别地,当b=0时,该一次函数为正比例函数.其中k≠0容易忽略.知识模块二典例引路全面复习例:已知直线l1和直线l2在同一平面直角坐标系中的位置如图所示,点P1(x1,y1)在直线l1上,点P3(x3,y3)在直线l2上,点P2(x2,y2)为直线l1、l2的交点,其中x2<x1,x2<x3,则(A)A.y1<y2<y3B.y3<y1<y2C.y3<y2<y1D.y2<y1<y3分析:由于题设中没有具体给出两个一次函数的解析式,因此解答本题只能借助于图象,观察直线l1知,y 随x的增大而减小,因为x2<x1,所以y2>y1;观察直线l2知,y随x的增大而增大,因为x2<x3,所以y2<y3,故y1<y2<y3.变例:某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,图中表示公司每月付给推销员推销费的两种方案,看图回答下列问题:(1)求y1与y2的解析式;(2)解释图中表示的两种方案是如何付推销费的;(3)如果你是推销员,应如何选择付费方案?分析:两直线交于点(30,600),说明当推销产品30件时,两种方案所得推销费相同;当x>30时,y1图象处于y2上方,说明选择y1所得推销费多;当x<30时,y2图象位于y1上方,说明选择y2所得推销费多.解:(1)y1=20x;y2=10x+300;(2)y1是不推销产品没有推销费,每推销一件产品得推销费20元;y2是保底工资为300元,每推销1件产品再提成10元;(3)若业务能力强,平均每月能保证推销多于30件产品,就选择y1的付费方案,否则,选择y2的付费方案.三、交流展示生成新知。

北师大版八年级数学上册:4.2《一次函数与正比例函数》教案

北师大版八年级数学上册:4.2《一次函数与正比例函数》教案

北师大版八年级数学上册:4.2《一次函数与正比例函数》教案一. 教材分析《一次函数与正比例函数》是北师大版八年级数学上册第4章的内容,主要包括一次函数和正比例函数的定义、性质和图象。

这一部分内容是学生学习函数的基础,对于培养学生的数学思维和解决问题的能力具有重要意义。

二. 学情分析八年级的学生已经学习了初中数学的一些基本概念和运算,对于图象和方程有一定的认识。

但是一次函数和正比例函数的概念和性质可能对学生来说较为抽象,需要通过具体例子和实际问题来帮助学生理解和掌握。

三. 教学目标1.理解一次函数和正比例函数的定义和性质。

2.学会绘制一次函数和正比例函数的图象。

3.能够运用一次函数和正比例函数解决实际问题。

四. 教学重难点1.一次函数和正比例函数的定义和性质。

2.绘制一次函数和正比例函数的图象。

3.运用一次函数和正比例函数解决实际问题。

五. 教学方法采用问题驱动法和案例教学法,通过实际问题和具体例子引导学生理解和掌握一次函数和正比例函数的概念和性质,通过绘制图象和解决实际问题来巩固知识。

六. 教学准备1.教学PPT或者黑板。

2.教学案例和实际问题。

3.绘图工具,如直尺、圆规等。

七. 教学过程1.导入(5分钟)通过一个实际问题引入一次函数和正比例函数的概念,例如:某商品的原价是100元,打8折后的价格是多少?引导学生思考如何用数学模型来解决这个问题。

2.呈现(15分钟)通过PPT或者黑板,呈现一次函数和正比例函数的定义和性质,结合实际例子进行解释和说明。

引导学生积极参与,提出问题和困惑。

3.操练(15分钟)让学生分组合作,通过绘制一次函数和正比例函数的图象来加深对概念和性质的理解。

可以给出一些具体的函数表达式,让学生根据性质来判断图象的形状和位置。

4.巩固(10分钟)通过解决一些实际问题,让学生运用一次函数和正比例函数的知识。

可以设置一些选择题、填空题或者解答题,检查学生对知识的掌握情况。

5.拓展(10分钟)引导学生思考一次函数和正比例函数的应用场景,例如:经济学中的成本和收益模型、物理学中的速度和时间模型等。

北师大版初二上册第四章函数教案

北师大版初二上册第四章函数教案

北师大版初二上册第四章4教学目标知识与技能:了解函数产生的背景和函数的概念,能判定两个变量间的关系是否属于函数关系.过程与方法:通过对函数概念的探究,初步培养学生利用函数的观点认识现实世界的意识和能力.情感态度与价值观:1.经历函数概念的抽象概括过程,体会函数的模型思想.2.让学生主动地从事观看、操作、交流、归纳等探究活动,从而使学生形成自己对数学知识的明白得和有效的学习模式.教学重难点【重点】1.把握函数的概念.2.会判定两个变量之间的关系是否属于函数关系.3.能把实际问题抽象概括为函数问题.【难点】1.明白得函数的概念.2.能把实际问题抽象概括为函数问题.教学预备【教师预备】教材图投影图片.【学生预备】预习内容.教学过程一、导入新课导入一:长春市某天的气温随时刻变化的曲线如图所示.这条曲线反映了气温与时刻之间如何样的关系?从这条曲线中又能获得哪些信息呢?导入二:我们生活在一个变化的世界中,时刻、温度,还有你的身高、体重等都在悄悄地发生变化.从数学的角度研究变化的量,讨论它们之间的关系,将有助于我们更好地了解自己、认识世界和推测以后.观看下图,你能大致地描述男孩和女孩平均身高的变化情形吗?你的身高在平均身高之上依旧之下?你能估量自己18岁时的身高吗?在现实生活中一个量随另一个量的变化而变化的现象大量存在.函数确实是研究一些量之间确定性依靠关系的数学模型.二、新知构建(1)感知函数出示教材图及相关问题,并由学生讨论完成题目.(1)依照上图填表:t/min 0 1 2 3 4 5 …h/m …(2)关于给定的时刻t,相应的高度h确定吗?[设计意图]由于我们已初步接触过这方面知识,因此答案较易得出.在那个地点要注意时刻和高度这两个变量之间的关系.(2)做一做1.罐头盒等圆柱形的物体常常如下图那样堆放.随着层数的增加,物体的总数是如何变化的?填写下表:层数n 1 2 3 4 5 …物体总数y…【摸索】层数n和物体总数y之间是什么关系?2.一定质量的气体在体积不变时,假若温度降低到-273 ℃,则气体的压强为零.因此,物理学中把-273 ℃作为热力学温度的零度.热力学温度T(K)与摄氏温度t(℃)之间有如下数量关系:T=t+273,T≥0.(1)当t分别为-43 ℃,-27 ℃,0 ℃,18 ℃时,相应的热力学温度T是多少?(2)给定一个大于-273 ℃的t值,你都能求出相应的T值吗?【摸索】在关系式T=t+273中,两个变量中若明白其中一个,是否能够确定另外一个?(3)函数的相关概念一样地,假如在一个变化过程中有两个变量x和y,同时关于变量x的每一个值,变量y都有唯独的值与它对应,那么我们称y是x的函数(function),其中x是自变量.表示函数的方法一样有:列表法、关系式法和图象法.关于自变量在可取值范畴内的一个确定的值a,函数有唯独确定的对应值,那个对应值称为当自变量等于a时的函数值.[知识拓展]明白得函数概念时应注意:(1)在某一变化过程中有两个变量x与y.(2)这两个变量互相联系,当变量x取一个确定的值时,变量y的值就随之确定.(3)关于变量x的每一个值,变量y都有唯独的一个值与它对应,如在关系式y2=x(x>0)中,当x=9时,y对应的值为3或-3,不唯独,则y不是x的函数.三、课堂总结四、课堂练习1.(1)汽车在公路上匀速行驶,速度为每小时30千米,则汽车行驶的路程s (千米)与行驶的时刻t(时)之间的关系式为.(2)圆的面积S与半径R的关系式为.答案:(1)s=30t(2)S=πR22.一样地,在某个变化过程中,有个变量x,y.假如给定一个x值,相应地就了一个y值,那么我们称y是x的函数.其中是自变量,是因变量.答案:两确定x y3.关于两个变量之间的函数关系,能够采纳不同的表达方式:,,.答案:列表法关系式法图象法4.圆的周长公式C=2πR中,有个变量,是.答案:两R,C5.某30层的大厦底层高4米,以上每层高3米,从底层数起,则前n层的高度h(米)与n的函数关系式为.答案:h=3n+1五、板书设计4.1函数1.感知函数.2.做一做.3.函数的相关概念.六、布置作业(1)、教材作业【必做题】教材习题4.1第1,2题.【选做题】教材习题4.1第3题.(2)、课后作业【基础巩固】1.下列变量间的关系不是函数关系的是()A.长方形的宽一定,其长与面积B.正方形的周长与面积C.等腰三角形的底边长与面积D.圆的周长与半径2.下列是关于变量x和y的四个关系式:①y=x;②y2=x;③2x2=y;④y2=2x.其中y是x的函数的有()A.1个B.2个C.3个D.4个3.弹簧挂上物体后伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:物体的质量/kg 0 1 2 3 4 5弹簧的长度/cm 10 12.5 15 17.5 20 22.5下列说法错误的是()A.没挂物体时,弹簧的长度为10 cmB.弹簧的长度随所挂物体的质量的变化而变化,物体的质量是因变量,弹簧的长度是自变量C.在弹簧的弹性限度内,假如物体的质量为m kg,那么弹簧的长度y cm 能够表示为y=2.5m+10D.当物体的质量为4 kg时,弹簧的长度为20 cm4.下列各题中,哪些是函数关系?哪些不是函数关系?(1)匀速运动所走的路程和速度;(2)在安静的湖面上投入一粒石子,泛起的波浪的周长与半径;(3)x+3与x;(4)正方形的面积和梯形的面积;(5)水管中水流的速度和水管的长度.【能力提升】5.如图(1)所示,在长方形ABCD中,动点E从点B动身,沿BADC方向运动至点C处停止.设点E运动的路程为x,ΔBCE的面积为y,假如y关于x的函数图象如图(2)所示,则当x=7时,点E应运动到()A.点C处B.点D处C.点B处D.点A处6.如下图所示的是桂林冬季某一天的气温随时刻的变化图象,请依照图填空:时气温最低,最低气温为℃,当天最高气温为℃,这一天的温差为℃.(所有的结果都取整数)【拓展探究】7.如图所示,正方形ABCD的边长为1,E是CD的中点,P 为正方形ABCD边上一个动点,动点P从点A动身,沿A→B→C→E运动.若点P通过的路程为x,ΔAPE的面积为y,则当y=时,求x的值.【答案与解析】1.C(解析:A.长=;B.面积=;C.高不能确定,共有三个变量;D.周长=2π·半径.故选C.)2.B(解析:①③是y关于x的函数.)3.B(解析:因为表中的数据要紧涉及弹簧的长度和所挂物体的质量,因此反映了所挂物体的质量和弹簧的长度之间的关系,所挂物体的质量是自变量,弹簧的长度是因变量,故选项B错误,符合题意.故选B.)4.解:(1)匀速运动所走的路程和速度符合s=vt,是函数关系.(2)在安静的湖面上投入一粒石子,泛起的波浪的周长L与半径r符合L=2πr,是函数关系.(3)x+3与x,设y=x+3,即可得出是函数关系.(4)正方形的面积和梯形的面积没有关系,因此不是函数关系.(5)水管中水流的速度和水管的长度没有关系,因此不是函数关系.因此(1)(2)(3)是函数关系,(4)(5)不是.5.B(解析:当E在AB上运动时,ΔBCE的面积不断增大,当E在AD上运动时,面积不变,当E在DC上运动时,ΔBCE的面积不断减小,因此当x=7时,点E应运动到点D处.故选B.)6.4-210127.解:①当点P在AB上运动时,如图(1)所示,y=x(0≤x<1).当y=时,x=.②当点P在BC上运动时,如图(2)所示,y=1-×1×(x-1)-(2-x)-×1,整理得y=-x(1≤x<2).当y=时,-x,解得x=.③当点P在CE上运动时,如图(3)所示,EP=-x,y=×1×,即y=-x(2≤x≤2.5).当y=时,-x,解得x=.因为不在2≤x≤2.5内,因此此情形不符合要求.因此当y=时,x的值为或.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版初中数学八年级上册课第四章教案一:课题:《平行四边形的性质》二:教学目标:1经历探索平行四边形有关概念和性质的过程,使学生理解平行四边形的概念和性质。

2探索并掌握平行四边形的对边相等,对角相等的性质。

3在进行探索的活动过程中发展学生的探究意识和合作交流的习惯。

三:教学知识点:1平行四边形的概念2平行四边形的性质四:教学重点:探索平行四边形的性质教学难点:通过操作升化出结论五:教学方法:探索归纳法六:教材分析这节内容通过拼图引出平行四边形的定义,让学生经历探索、探究研究、讨论的过程,对平行四边形的概念及性质有本质性的理解,同时通过自己动手操作发现平行四边形的很多性质,教师在教学过程中,结合具体的背景适时的提出问题,满足学生多样化的要求,这节内容对以后的菱形、矩形内容的引入埋下伏笔。

七:过程设计:(一)设置问题情境,引入课题。

1、 让学生进行如下操作后,思考以下问题:(幻灯片展示)将一张纸对折,剪下两张叠放的三角形纸片,设法找到某一边的中点,记作点 将上层的三角形纸片绕点 旋转180度,下层的三角形纸片保持不动,此时:两张纸片是平行四边形吗?是一个怎样的四边形?观察它还有什么特征?(学生思考、操作后,教师用Z+Z 教育平台展示)答:(1)AB=CD ,AD=CB(2)∠1=∠3 ,∠2=∠4,∠B=∠D(3)AD//BC ,AB//CD B C D A 12342、针对学生指出 AD//BC,AD//CD分析究其原因。

让学生分析,分小组讨论。

得出结论:∠1和∠3 是内错角,∠2和∠4是内错角,依据“内错角相等,两直线平行”2、平行四边形的定义,即“两组对边分别平行的四边形是平行四边形”(二)、传授新课1、请学生举出自己身边存在的平行四边形的例子。

例如:汽车的防护链,折叠衣架,篱笆格子(用幻灯打出实物的照片)2、将实物转化为几何图形。

(用Z+Z 教育平台展示)3、介绍平行四边形的书写方式及对角线。

(用Z+Z 教育平台展示)4、学生动手画一个平行四边形,同时用几何语言表示平行四边形的定义。

5、做一做(出示幻灯片)用一张半透明的纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180度,你能平移该纸片,使它与你画的平行四边形ABCD 重合吗?由此,你能得到哪些结论?四边形ABCD 相对的边。

相对的角分别有什么关系?能用别的方法验证你的结论吗?(让学生实际动手操作,可分组讨论结论)6、教师用Z+Z 教育平台展示整个旋转变化过程。

7、学生分析总结出:平行四边形的对边相等 平行四边形的对角相等(三)、课内总结通过大家以上的操作,分析,讨论我们已对平行四边形的这一概念及性质有所了解,下面我们把它用到练习中去。

(四)、达标小测(幻灯片展示)1、如图四边形ABCD 是平行四边形求(1)∠ADC 和∠BCD 的度数。

B CDA 5603025(2)边AB和BC 的长度。

2、自制平行四边形已知一个角,求其他三个角的度数。

(让一名学生到台前利用教育平台自制平行四边形,并按要求做出题目)(五)、课后反思这节课,通过学生们自己动手操作,自己推导,自己发现从而得到平行四边形的有关知识,充分发挥学生们的探究意识和合作交流习惯。

§4.1平行四边形的性质(二)教学目标:1. 经历探索平行四边形有关概念和性质的过程,在进行探索的活动过程中发展学生的探究意识。

2. 探索并掌握平行四边形的对角线互相平分的性质,掌握平行线之间的距离处处相等的结论并了解其简单的应用。

3.在探索中培养学生的合作交流习惯。

4.掌握解决平行四边形问题的基本思路是化为三角形问题来处理,渗透转化思想。

教学重点:1.平行四边形的对角线互相平分。

2.掌握平行线之间的距离处处相等教学难点:正确理解两条平行线之间的距离的概念。

教学方法:引导学生发现规律,启发诱导法。

教具准备:投影片、多媒体教学过程设计:一、 设置问题情境,引入课题:上节课我们学习了平行四边形的性质,现在来回忆一下:如图,四边形ABCD 是平行四边形,请同学们说出它的性质。

在平行四边形中,除边和角外,还有对角线,那么对角线有什么性质呢?如图,在□ABCD 中,对角线AC 、BD 相交于点O ,(1)图中哪些三角形是全等的?有哪些线A D AD段是相等的?(2) 能设法验证你的想法吗?二、 讲授新课:从上面讨论中,我们可以发现平行四边形的对角线具有什么性质?试用文字语言叙述一下。

平行四边形的对角线互相平分。

用几何语言表示如下:在□ABCD 中,对角线AC 、BD 相交于点O ,==﹥ OA=OC ,OB=OD下面我们通过例题来熟悉平行四边形的性质:例1:如图,四边形ABCD 是平行四边形,AB=8,AD=10。

AC ⊥AB ,求CD 、BC 及OC 的长。

想一想:在笔直的铁轨上,夹在两根铁轨之间的枕木是否一样长?A BD a b A B CD夹在两条平行线之间的平行线段相等。

如图,直线a ∥b ,AB ∥CD ,则 AB=CD 下面我们应用平行四边形的性质来解决一题:例2:已知,直线a ∥b ,过直线a 上任意两点A 、B 分别向直线b 作垂线,交直线b 于点C 、D 。

(1)线段AC 、BD 所在的直线有怎样的位置关系?(2)比较线段AC 、BD 的长短。

三、 议一议举例说出生活中的几个实例,反映“平行线之间的距离处处相等”的几何事实。

四、 课堂练习:1、课本第88页的随堂练习2、在□ABCD 中,对角线AC 、BD 相交于点O ,OA 、OB 、AB 的长度分别是3cm ,4cm ,5cm ,求其他各边以及两条对角线的长。

五、 课堂小结: a b A B CD A D这节课学习了平行四边形的另一性质:平行四边形的对角线互相平分。

和平行线之间的距离处处相等。

六、课后作业:课本第88页的习题4.2 1、2、3平行四边形的判别(1)教学目标:经历平行四边形判别条件的探索过程,在有关活动中发展学生的和情推理意识,主动探究的习惯,使学生逐步掌握说理的基本方法。

教学重点:掌握平行四边形判别条件(1),(2)教学难点:应用平行四边形判别条件(1),(2)来解决问题复习提问:1. 什么叫平行四边形?2 .判断三角形全等的方法有几种?分别是什么?导入新课小实验:有一块平行四边形的玻璃片,假如不小心碰碎了一部分(如图所示),同学们想想看,有没有办法把原来的平行四边形重新画出来?(让学生思考讨论,再各自画图,画好后互相交流画法,教师巡回检查。

对个别差生稍加点拨,最后请学生回答画图方法)学生可能想到的画法有:⑴ 分别过A、C作DC、DA的平行线,两平行线相交于B;⑵延长AD到E,做∠DAB=∠EDC,过C做CB∥AD;⑶ 分别以A、C为圆心,以DC、DA的长为半径画弧,两弧相交于B,连结AB、CB。

(4)连结AC,取AC的中点O,再连结DO,并延长DO至B,使BO=DO,连结AB、CD。

(见课件)上面作出的四边形是否都是平行四边形呢?请同学们猜一猜。

生答后师指出这就是今天所要研究的问题“平行四边形的判定”(板书课题)。

一。

探索平行四边形的判别方法实践:动手操作一1。

每人准备两根牙签(或火柴)(长短不定)AC、BD。

将AC、BD 的中点重叠并固定,(如图1)将A、B、C、D顺次连接,猜想四边形ABCD是平行四边形吗?D学生讨论后,由代表发言总结1)利用三角形全等(见课件) C B2)利用量角器度量四边形的四个内角的度数,推出两组同旁内角互补。

(见课件)平行四边形判定方法一两条对角线互相平分的四边形是平行四边形。

2。

应用练习:1.如图,在□ABCD中,AC,BD相交于点O,点E,F在对角线AC上,且OE=OF. AD(1)OA与OC,OB与OC是相等? E(2)四边形BFDE是平行四边形吗? O FBC2。

如图,在□ABCD中,O是AC,BD的交点,点E,F,G,H分别是AO,BO,CO,DO的中点,四边形EFGH是平行四边形吗?说说你的理由。

BFGCD实践:动手操作二1。

每人准备四根牙签(或火柴),将两根同样长的木条AB,CD 平行放置,再用木条AD,BC加固,得到的四边形ABCD是平行四边形吗?请说明理由。

学生对照自己的图形讨论。

1)利用三角形全等(见课件)2)利用量角器度量四边形的四个内角的度数,推出两组同旁内角互补,从而得出两组对边平行。

(见课件)平行四边形判定方法二一组对边平行且相等的四边形是平行四边形。

2。

应用练习:1。

如图AC∥ED,点B在 AC上且 AB=ED=BC。

找出图中的平行四边形。

EDA B C2。

在□ABCD中,点E,F分别在AB,CD上,DF=BE。

四边形DEBF是平行四边形吗?说说你的理由。

能力升级1.如图,□ABCD,AE,CF分别C与直线 DB相交于E和 F,且AE∥CF。

BAF则CE∥AF吗?同类变形如图,在□ABCD中,BM垂直CC于M,DN垂直AC于N,四边形BMDN是平行四边形吗? AB五、课堂小结1.今天这节课我们学了什么?平行四这形的判定有哪些方法?试列举之。

平行四边形的判定方法。

平行四边形的定义;平行四边形判别条件(1),(2)2.这些平行四边形的判定方法中最基本的是哪一条?平行四边形的定义3.平行四边形的判定定理和性质有什么关系?同一个证明题中应注意什么地方用判定,什么地方性质?平行四边形的判定定理和性质是互逆的关系;同一个证明题中应注意如果不知道是平行四边形时用判定,已经知道是平行四边形时用性质。

作业:第四章练习三菱形的认识教学内容P5~6 /菱形教学目标⑴认识菱形及它的特征。

⑵知道菱形是特殊的平行四边形。

⑶知道菱形是以对角线为对称轴的轴对称图形。

分层目标A、认识菱形及它的特征;知道菱形是特殊的平行四边形又是以对角线为对称轴的轴对称图形。

B、知道菱形及它的特征;理解菱形是特殊的平行四边形又是以对角线为对称轴的轴对称图形。

C、掌握菱形及它的特征;掌握菱形是特殊的平行四边形又是以对角线为对称轴的轴对称图形。

教学重点认识菱形的特征。

教学难点菱形是轴对称图形。

教具准备投影、小黑板教学过程一、导入阶段1、复习平行四边形特征、特性?2、直观演示把平行四边形较长的一组对边,缩短到和较短的一组对边相等时,这样的图形又有了一个新的名字。

3、揭示课题“菱形”二、建立概念阶段(一)自学课本 P5~61、读:2、讲:说说你学到了什么?3、议:(1)剪一个菱形。

(2)认识菱形的特征。

边: 4条对边平行四边相等角: 4个角对角相等对角线互相垂直平分轴对称图形(3)四人小组讨论想: 四个图形之间的关系是怎样的?4、结: 菱形的特征正方形都具有。

而正方形的四个角都是直角,菱形就不具备。

可见正方形是特殊的菱形。

而长方形和菱形对边都相等,对角也相等,但长方形的四个角都是直角,菱形都不具备。

相关文档
最新文档