浙江省2018年中考数学总复习第七章数学思想与开放探索问题第37讲方案设计型问题讲解篇175

合集下载

2018年中考数学总复习第七章数学思想与开放探索问题课后练习37方案设计型问题作业本

2018年中考数学总复习第七章数学思想与开放探索问题课后练习37方案设计型问题作业本

课后练习37 方案设计型问题A组1.(2017·南京模拟)如图,在一张△ABC纸片中,∠C=90°,∠B=60°,DE是中位线,现把纸片沿中位线DE剪开,计划拼出以下三个图形:①邻边不等的矩形;②有一个角为锐角的菱形;③正方形.那么以上图形一定能被拼成的个数为( )第1题图A.0 B.1 C.2 D.32.如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且要求其中一个三角形是等腰三角形.(保留作图痕迹,不要求写作法和证明)第2题图3.认真观察图1的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征.特征1:;特征2:.(2)请在图2中设计出你心中最美丽的图案,使它也具备你所写出的上述特征.第3题图4.(2016·邵阳模拟)一天,数学课外活动小组的同学们,带着皮尺去测量某河道因挖沙形成的“圆锥形坑”的深度,来评估这些坑道对河道的影响,如图所示是同学们选择(确保测量过程中无安全隐患)的测量对象,测量方案如下:①先测出沙坑坑沿的圆周长是34.54m;②甲同学直立于沙坑坑沿的圆周所在的平面上,经过适当调整自己所处的位置,当他位于B时恰好他的视线经过沙坑坑沿圆周上一点A看到坑底S(甲同学的视线起点C与点A,S三点共线),经测量:AB=1.2m,BC=1.6m.根据以上测量数据,求“圆锥形坑”的深度(圆锥的高).(π取3.14,结果精确到0.1m).第4题图5.(2017·杭州模拟)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收费10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一个坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.第5题图B组6.(2015·广安)为了贯彻落实市委市政府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B。

浙江省中考数学总复习第七章数学思想与开放探索问题第40讲实验与动态型问题讲解篇(2021学年)

浙江省中考数学总复习第七章数学思想与开放探索问题第40讲实验与动态型问题讲解篇(2021学年)

浙江省2018年中考数学总复习第七章数学思想与开放探索问题第40讲实验与动态型问题讲解篇编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省2018年中考数学总复习第七章数学思想与开放探索问题第40讲实验与动态型问题讲解篇)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省2018年中考数学总复习第七章数学思想与开放探索问题第40讲实验与动态型问题讲解篇的全部内容。

第40讲实验与动态型问题内容特性动态型问题是指以三角形、四边形、圆等几何图形或函数图象为载体,设计动态变化,并对变化过程中伴随着的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行实验、观察、猜想和归纳,进行推理的一类问题,这类问题信息量大,灵活多变,出现的结果往往有多种情况.涉及到平行线、相似三角形的性质,锐角三角函数,方程、不等式及函数的知识,以及几何变换,数形结合,分类讨论,函数与方程,特殊与一般的思想.解题策略解决此类问题需要运用运动和变化的观点,把握运动和变化的全过程,动中取静,静中求动,抓住运动中的某一瞬间,抓住变化过程中的特殊情形,确定运动变化过程中的数量关系、图形位置关系,从而建立方程、不等式、函数、几何模型,找到解决问题的途径。

基本思想解题时利用方程与函数的思想、转化思想、数形结合思想、分类讨论思想,恰当地使用分析综合法,挖掘题目的隐含条件,将复杂问题分解为基本问题,逐个击破,进一步得到新的结论.类型一由点运动产生的问题错误!(2017·丽水)如图1,在△ABC中,∠A=30°,点P从点A出发以2cm/s的速度沿折线A-C-B运动,点Q从点A出发以a(cm/s)的速度沿AB运动,P,Q两点同时出发,当某一点运动到点B时,两点同时停止运动.设运动时间为x(s),△APQ的面积为y(cm2),y关于x的函数图象由C1,C2两段组成,如图2所示.(1)求a的值;(2)求图2中图象C2段的函数表达式;(3)当点P运动到线段BC上某一段时△APQ的面积大于当点P在线段AC上任意一点时△A PQ的面积,求x的取值范围.【解后感悟】解题的关键是从运动图与描述图中获取信息,根据图象确定x的运动时间与面积的关系,同时关注图象不同情况的讨论.这类问题往往探究点在运动变化过程中的变化规律,如等量关系、图形的特殊位置、图形间的特殊关系等,且体现分类讨论和数形结合的思想.1.(2016·白银)如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是( )2.(1)如图,在平面直角坐标系中,点A在抛物线y=x2-2x+2上运动,过点A作AC⊥x 轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为。

浙江省中考数学总复习第七章数学思想与开放探索问题课后练习34归纳作业本(2021学年)

浙江省中考数学总复习第七章数学思想与开放探索问题课后练习34归纳作业本(2021学年)

浙江省2018年中考数学总复习第七章数学思想与开放探索问题课后练习34归纳作业本编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省2018年中考数学总复习第七章数学思想与开放探索问题课后练习34 归纳作业本)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省2018年中考数学总复习第七章数学思想与开放探索问题课后练习34归纳作业本的全部内容。

课后练习34 归纳、猜想与说理型问题A组1.图1为雅婷左手拿着3张深灰色与2张浅灰色的牌叠在一起的情形.以下是她每次洗牌的三个步骤:步骤一:用右手拿出叠在最下面的2张牌,如图2.步骤二:将右手拿的2张牌依序交错插入左手拿的3张牌之间,如图3.步骤三:用左手拿着颜色顺序已改变的5张牌,如图4.第1题图若依上述三个步骤洗牌,从图1的情形开始洗牌若干次后,其颜色顺序会再次与图1相同,则洗牌次数可能为下列何者?( )A。

18 B.20 C.25 D.27 2.(2017·重庆)下列图形都是由同样大小的菱形按照一定规律所组成的,其中第1个图形中一共有3个菱形,第2个图形中一共有7个菱形,第3个图形中一共有13个菱形,…,按此规律排列下去,第9个图形中菱形的个数为( )第2题图A.73 B.81 C.91 D.1093.(2017·丽水模拟)如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C,Rt△OA4C4…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=…=30°.若点A3的坐标为(3,0),OA1=OC2,OA2=OC3,OA3=OC4…,则依此规律,点A2018的纵坐标为()1第3题图A.0 B.-3×错误!错误! C.(2错误!)2018 D.3×错误!错误!4.请在图中这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形.第4题图5.观察下面的单项式:a,-2a2,4a3,-8a4,…根据你发现的规律,第8个式子是 .6.如图,边长为1的菱形ABCD中,∠DAB=60°.连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60°。

浙江省中考数学总复习第七章数学思想与开放探索问题第35讲方程、函数思想型问题讲解篇(2021学年)

浙江省中考数学总复习第七章数学思想与开放探索问题第35讲方程、函数思想型问题讲解篇(2021学年)

浙江省2018年中考数学总复习第七章数学思想与开放探索问题第35讲方程、函数思想型问题讲解篇编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省2018年中考数学总复习第七章数学思想与开放探索问题第35讲方程、函数思想型问题讲解篇)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省2018年中考数学总复习第七章数学思想与开放探索问题第35讲方程、函数思想型问题讲解篇的全部内容。

第35讲方程、函数思想型问题(建议该讲放第16讲后教学)内容特性1。

在解决问题时,把某一个未知量或几个未知量用字母来表示,根据已知的条件或有关的性质、定理或公式,建立起未知量和已知量之间的等量关系,列出方程或方程组,从而使问题获得解决的思想方法称为方程思想.2.函数思想是指用变量和函数来思考问题的一种方法,借助函数知识来探求变量之间关系的一种思维方式,以生产、生活和学科问题为背景,结合方程、几何图形等知识进行问题解决的一种解题策略,是刻画现实世界的一个有效的数学模型.解题策略(1)解决函数综合问题时,注意数形结合,在函数、方程、不等式之间灵活转化;(2)解决几何综合问题时,常从面积关系,勾股定理、相似性质寻求关系列方程、函数求解;(3)解决生活中应用问题时,从一些常见数量关系模型入手,建立方程、函数求解;(4)对于一个实际问题或数学问题,构建一个相应的函数,抓住事物在运动过程中那些保持不变的规律和性质,运用函数基本性质和方法,从而更快更好地解决问题.基本思想利用方程思想解决问题时,经常涉及函数思想和数形结合思想;利用函数思想解决问题时,充分运用函数数学思想分析问题,经常涉及函数与方程、不等式,函数与图象。

浙江省2018届初三数学中考总复习讲练含答案

浙江省2018届初三数学中考总复习讲练含答案

浙江省2018届初三数学中考总复习目录第1讲实数及其运算 (1)第2讲整式及其运算 (11)第3讲因式分解 (20)第4讲分式及其运算 (25)第5讲二次根式及其运算 (34)第6讲一元一次方程与分式方程及其应用 (43)第7讲二元一次方程组及其应用 (52)第8讲一元二次方程及其应用 (63)第9讲方程(组)的应用 (72)第10讲不等式与不等式组 (82)第12讲函数概念与平面直角坐标系 (99)第13讲一次函数及其图象 (112)第14讲反比例函数及其图象 (126)第15讲二次函数的图象与性质 (141)第16讲函数的应用 (154)第17讲线段、角、相交线和平行线 (168)第18讲三角形与全等三角形 (182)第19讲特殊三角形 (196)第20讲多边形与平行四边形 (222)第21讲矩形、菱形与正方形 (234)第23讲直线与圆的位置关系 (261)第24讲圆的有关计算 (272)第25讲几何作图 (280)第26讲三视图与展开图 (294)第27讲图形与变换 (303)第28讲图形的相似 (326)第29讲锐角三角函数与解直角三角形 (349)第30讲数据的收集与整理 (366)第31讲数据的分析及其应用 (380)第32讲简单事件的概率及其应用 (393)第33讲选择、填空题常用解法问题 (405)第34讲归纳、猜想与说理型问题 (414)第35讲方程、函数思想型问题 (422)第36讲分类讨论型问题 (434)第37讲方案设计型问题 (446)第38讲阅读理解型问题 (457)第39讲开放与探索型问题 (468)第40讲实验与动态型问题 (478)第41讲课本题改编型问题 (489)第1讲 实数及其运算1.实数的分类实数⎩⎪⎪⎨⎪⎪⎧有理数⎩⎪⎨⎪⎧整数⎩⎨⎧⎭⎪⎬⎪⎫正整数 自然数负整数分数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫正分数 有限小数或无限循环小数无理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫正无理数 无限不循环小数 2.实数的有关概念3.科学记数法和近似数4.平方根、算术平方根、立方根5.实数的大小比较6.实数的运算1.(2016·金华)如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm),其中不合格的是( )A .∅45.02B .∅44.9C .∅44.98D .∅45.01 2.(2017·金华)下列各组数中,把两数相乘,积为1的是( )A .2和-2B .-2和12C.3和33 D.3和- 33.(2016·丽水)下列四个数中,与-2的和为0的数是( )A .-2B .2C .0D .-124.(2017·杭州)|1+3|+|1-3|=( )A .1 B. 3 C .2 D .2 3 5.计算:(1)(2016·衢州)计算:|-3|+9-(-1)2+⎝⎛⎭⎫-120;(2)(2017·金华)计算:2cos60°+(-1)2017+|-3|-(2-1)0;(3)(2015·台州)6÷(-3)+|-1|-20150.【问题】在下图的集合圈中,有5个实数.(1)其中最大的数是________;(2)计算其中的有理数的和与无理数的积的差; (3)请你再提出有关实数的几个问题.【归纳】通过开放式问题,归纳、疏理有理数、无理数有关的概念,以及实数的分类;实数的运算法则.类型一 与实数相关的概念例1 数字2,13,π,38,cos 45°,0.32中是无理数的有( )A .1个B .2个C .3个D .4个【解后感悟】对无理数的判定,不能只被表面形式迷惑,而应从最后结果去判断.一般来说,用根号表示的数不一定就是无理数,如38=2是有理数,用三角函数符号表示的数也不一定就是无理数,如sin 30°、tan 45°就是有理数,一个数是不是无理数关键在于不同形式表示的数的最终结果是不是无限不循环小数.1.(1)(2015·上海)下列实数中,是有理数的为( ) A.2B.34C .πD .0(2)(2017·河北)如图为张小亮的答卷,他的得分应是( )姓名__张小亮__ 得分__?__填空(每小题20分,共100分)①-1的绝对值是____.②2的倒数是____.③-2的相反数是____.④1的立方根是____.⑤-1和7的平均数是___.A.100分B.80分C.60分D.40分(3)数轴上有A,B,C,D四个点,其中绝对值相等的点是()A.点A与点D B.点A与点CC.点B与点C D.点B与点D类型二科学记数法与近似值例2(2017·绍兴)研究表明,可燃冰是一种替代石油的新型清洁能源,在我国某海域已探明的可燃冰存储量达150000000000立方米,其中数字150000000000用科学记数法可表示为()A.15³1010B.0.15³1012C.1.5³1011D.1.5³1012【解后感悟】科学记数法的表示形式为a³10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.2.(1)(2017·益阳)目前,世界上能制造出的最小晶体管的长度只有0.00000004m,将0.00000004用科学记数法表示为()A.4³108B.4³10-8C.0.4³108D.-4³108(2)(2017·温州)下列选项中的整数,与17最接近的是()A.3 B.4 C.5 D.6类型三实数的运算例3(2015·绍兴)计算:2cos45°-(π+1)0+14+(12)-1.【解后感悟】实数运算的一般步骤:(1)观察运算种类;(2)确定运算顺序;(3)把握每步运算法则和符号;(4)灵活运用运算律.3.(2016·舟山)13世纪数学家斐波那契的(计算书)中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( )A .42B .49C .76D .77 4.计算:(1)(2015·菏泽)(-1)2015+sin 30°-(π-3.14)0+⎝⎛⎭⎫12-1;(2)(2017·衢州)计算:12+(π-1)0³|-2|-tan 60°;(3)(2015·温州)20150+12+2³⎝⎛⎭⎫-12.类型四 实数的大小比较例4 (2015·丽水)在数-3,-2,0,3中,大小在-1和2之间的数是( ) A .-3 B .-2 C .0 D .3 【解后感悟】实数的大小比较常用以下方法:(1)数轴比较法:将两数表示在数轴上,右边的点表示的数总比左边的点表示的数大. (2)代数表示法:正数大于零;负数小于零;正数大于一切负数;两个负数,绝对值大的数反而小.(3)差值比较法:设a 、b 是两个任意实数,则:a -b>0,a>b ;a -b =0,a =b ;a -b<0,a<b.5.(1)(2016·衢州)在2,-1,-3,0这四个实数中,最小的是()A.2B.-1 C.-3 D.0(2)设a=20,b=(-3)2,c=3-27,d=⎝⎛⎭⎫12-1,则a,b,c,d按由小到大的顺序排列正确的是()A.c<a<d<b B.b<d<a<c C.a<c<d<b D.b<c<a<d【新定义题】定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2³(2-5)+1=2³(-3)+1=-6+1=-5(1)求(-2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在如图所示的数轴上表示出来.【方法与对策】这是一道新运算类的题目,其特点一般是“新”而不“难”,处理的方法一般为:根据新运算的定义,将已知中的数据代入进行运算,易得最终结果;同时利用所学知识解答综合问题是我们应具备的能力,是中考命题方式.【对科学记数法的精确的位数混淆不清;实数运算的顺序、符号处理不当】1.(2017·台州)人教版初中数学教科书共六册,总字数是978000,用科学记数法可将978000表示为()A.978³103B.97.8³104 C.9.78³105D.0.978³1062.(2015·遂宁)计算:-13-27+6sin 60°+(π-3.14)0+|-5|.参考答案第1讲 实数及其运算【考点概要】1.零 负分数 负无理数 2.原点 正方向 单位长度 符号 两侧 距离 乘积为1 1a 3.a ³10n 4.相反数 负数 0 0 正的 负的 5.大于 小于小 小于 6.1 1a p 乘除 加减 括号内【考题体验】1.B 2.C 3.B 4.D 5.(1)6;(2)2;(3)-2. 【知识引擎】【解析】(1)32;(2)首先要弄清有理数和无理数的概念;有理数包括整数和分数;无理数指的是无限不循环小数.正确找到有理数和无理数后,再进行计算即可.有理数是32,-23,它们的和为32+(-23)=9-8=1;无理数是12,π,8,它们的积为12³π³8=2π.∴有理数的和与无理数的积的差等于1-2π.(3)写出其中的负整数;绝对值最小的数等.【例题精析】例1 C 例2 C 例3 原式=2³22-1+12+2=2+32.例4 C 【变式拓展】 1.(1)D (2)B (3)C 2. (1)B (2)B 3.C4.(1)12; (2)2+3; (3)2 3.5.(1)C (2)A 【热点题型】【分析与解】(1)按照定义新运算a ⊕b =a(a -b)+1,求解即可.(-2)⊕3=-2³(-2-3)+1=-2³(-5)+1=10+1=11. (2)先按照定义新运算a ⊕b =a(a -b)+1,得出3⊕x ,再令其小于13,得到一元一次不等式,解不等式求出x 的取值范围,即可在数轴上表示.∵3⊕x<13,∴3(3-x)+1<13,9-3x +1<13,-3x<3,x>-1,数轴表示如图所示【错误警示】1.C2.原式=-1-33+6³32+1+5= 5.第2讲整式及其运算1.整式的相关概念2.整式的运算1.(2017·衢州)下列计算正确的是(A .2a +b =2abB .(-a)2=a 2C .a 6÷a 2=a 3D .a 3²a 2=a 62.(2017·台州)下列计算正确的是( ) A .(a +2)(a -2)=a 2-2 B .(a +1)(a -2)=a 2+a-2 C .(a +b)2=a 2+b 2 D .(a -b)2=a 2-2ab +b 23.(2016·宁波)下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需____________________根火柴棒.4.(2015·嘉兴)化简:a(2-a)+(a +1)(a -1).【问题】(1)计算:(a +3)(a -3)+a(3a -2)-(2a -1)2;(2)完成(1)计算后回答:①此计算过程中,用到了哪些乘法公式和法则; ②此计算过程中,要注意哪些问题.【归纳】通过开放式问题,归纳、疏理实数相关概念、运算法则,以及要注意的问题.类型一 幂的运算例1 计算:(1)(a 2b)3=________;(2)(3a)2²a 5=________; (3)x 5÷x 3=________.【解后感悟】(1)幂的运算法则是进行整式乘除法的基础,要熟练掌握,解题时要明确运算的类型,正确运用法则;(2)在运算的过程中,一定要注意指数、系数和符号的处理.1.(2015·益阳)下列运算正确的是( )A .x 2²x 3=x 6B .(x 3)2=x 5C .(xy 2)3=x 3y 6D .x 6÷x 3=x 2 2.若3x =4,9y =7,则3x -2y的值为( )A .47B .74C .-3D .27类型二 整式的加减运算例2 (1)若mn =m +3,则2mn +3m -5mn +10=________.(2)已知(a -2)2+|b +1|=0,则代数式2a 2b -3ab 2-(a 2b -4ab 2)=________.(3)若代数式5a -3b 的值是-2,则代数式2(a -b)+4(2a -b)+3的值等于________. 【解后感悟】整式的加减,实质上就是,有括号的,先去括号.只要算式中没有同类项,就是最后的结果.3.(1)化简:4a -(a -3b)=____________________.(2)已知a ,b 互为相反数,则(4a -3b)-(3a -4b)=____________________.(3)已知2x +y =-1,则代数式(2y +y 2-3)-(y 2-4x)的值为____________________. (4)(2015·巴中)若单项式2x 2y a +b与-13x a -b y 4是同类项,则a =____________________,b =____________________.类型三 整式的混合运算与求值例3 (1)(2x)3²(-2y 3)÷(-16xy 2)=________;(2)已知x 2-4x +3=0,则(x -1)2-2(1+x)=________; (3)已知m +n =-3,mn =5,则(2-m)(2-n)的值为________;(4)长方形的长为a cm ,宽为b cm ,若长增加了2cm ,面积比原来增加了________cm 2. 【解后感悟】(1)对于整式的加、减、乘、除、乘方运算,要充分理解其运算法则,注意运算顺序,正确应用乘法公式以及整体和分类等数学思想.(2)在应用乘法公式时,要充分理解乘法公式的结构特点,分析是否符合乘法公式的条件.4.(1)先化简,再求值:(4ab 3-8a 2b 2)÷4ab +(2a +b)(2a -b),其中a =2,b =1.(2)化简:2[(m -1)m +m(m +1)][(m -1)m -m(m +1)].若m 是任意整数,请观察化简后的结果,你发现原式表示一个什么数?类型四 乘法公式例4 (1)已知a +b =10,a -b =8,则a 2-b 2=________; (2)若a 2+b 2=2,a +b =3,则ab 的值为________;(3)已知a =1,b =-12,则a(a -3b)+(a +b)2-a(a -b)=________.【解后感悟】对于整式乘法运算,能用乘法公式要充分运用公式;在应用时,要充分理解乘法公式的结构特点,分析是否符合乘法公式的条件.5.(2016·北京)如图中的四边形均为矩形,根据图形,写出一个正确的等式:____________________.6.化简:(1)(2017·舟山)(m +2)(m -2)-m 3³3m ;(2)(2017·温州)(1+a)(1-a)+a(a -2);(3)(2015·益阳)(x +1)2-x(x +1).类型五 整式运算的应用及规律型问题例5 (2016·山西)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有 个涂有阴影的小正方形(用含有n 的代数式表示).【解后感悟】解决整式的规律性问题应充分发挥数形结合的作用,从分析图形的结构入手,分析图形结构的形成过程,从简单到复杂,进行归纳猜想,从而获得隐含的数学规律,并用代数式进行描述.7.(1)(2017·衢州)如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是____________________.(2)一个大正方形和四个全等的小正方形按图1,2两种方式摆放,则图2的大正方形中未被小正方形覆盖部分的面积是____________________(用a、b的代数式表示).【阅读理解题】(2015·舟山)如图,多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形,它的面积S可用公式S=a+12b-1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克定理”.现用一张方格纸共有200个格点,画有一个格点多边形,它的面积S=40.(1)这个格点多边形边界上的格点数b=________(用含a的代数式表示);(2)设该格点多边形外的格点数为c,则c-a=________.【方法与对策】本题需要先通过阅读掌握新定义方法,再利用类似方法解决问题.关键是观察问题,分析问题,解决问题的能力.该题型是中考命题的一种方式.【幂的运算的常见错误】计算:(1)x 3²x 5; (2)x 4²x 4; (3)(a m +1)2;(4)(-2a 2²b)2; (5)(m -n)6÷(n -m)3.参考答案第2讲 整式及其运算【考点概要】1.乘积 字母 数字 指数的 和 次数最高 多项式 相同 相同 同类 2.系数 不改变 改变 a m +n a mn a n b n a m -n 系数 指数 相加 ma +mb +mc 相加 ma +mb +na +nb 指数 相加 a 2-b 2 a 2±2ab +b 2【考题体验】1.B 2.D 3.50 4.2a -1. 【知识引擎】【解析】(1)2a —10;(2)①完全平方公式、平方差公式,去括号、合并同类项等;②去括号时,要注意变号等.【例题精析】例1 (1)a 6b 3;(2)9a 7;(3)x 2 例2 (1)1;(2)-2;(3)-1. 例3 (1)x 2y (2)-4 (3)15 (4)2b例4 (1)80;(2)72;(3)54.例5 由图可得,第1个图案涂有阴影的小正方形的个数为5,第2个图案涂有阴影的小正方形的个数为5³2-1=9,第3个图案涂有阴影的小正方形的个数为5³3-2=13,…,第n 个图案涂有阴影的小正方形的个数为5n -(n -1)=4n +1.故答案为:4n +1.【变式拓展】1.C 2.A 3.(1)3a +3b (2)0 (3)-5 (4)3 1 4.(1)原式=2a(2a -b),将a =2,b =1代入得12.(2)原式=2(m 2-m +m 2+m)(m 2-m -m 2-m)=-8m 3.原式=(-2m)3,表示3个-2m 相乘的数.(答案不唯一) 5.m(a +b +c)=am +bm +cm6.(1)-4; (2)1-2a ; (3)x +1. 7.(1)a +6 (2)ab 【热点题型】【分析与解】(1)∵S =a +12b -1,且S =40,∴a +12b -1=40,整理得:b =82-2a ; (2)∵a是多边形内的格点数,b是多边形边界上的格点数,总格点数为200,∴边界上的格点数与多边形内的格点数的和为b+a=82-2a+a=82-a,∴多边形外的格点数c=200-(82-a)=118+a,∴c-a=118+a-a=118.【错误警示】(1)x3²x5=x3+5=x8;(2)x4²x4=x4+4=x8;(3)(a m+1)2=a(m+1)³2=a2m+2;(4)(-2a2b)2=(-2)2a4b2=4a4b2;(5)(m-n)6÷(n-m)3=(n-m)6÷(n-m)3=(n-m)3.第3讲 因式分解因式分解1.(2015·台州)把多项式2x 2-8分解因式,结果正确的是( ) A .2(x 2-8) B .2(x -2)2 C .2(x +2)(x -2) D .2x(x -4x )2.(2017·台州)因式分解:x 2+6x =____________________. 3.(2017·金华)分解因式:x 2-4=____________________.4.(2016·绍兴)分解因式:a3-9a=.【问题】给出三个多项式:12x2+x-1,12x2+3x+1,12x2-x.(1)请你选择其中两个进行加法运算,并把结果分解因式.(2)结合以上解题的体验,回答因式分解有哪些方法,一般步骤怎样?【归纳】通过开放式问题,归纳、疏理运用多种方法分解因式,其一般顺序是:首先提取公因式,然后再考虑用公式,最后结果一定要分解到不能再分解为止.类型一因式分解的意义例1下列式子从左到右变形是因式分解的是()A.a2+4a-21=a(a+4)-21B.a2+4a-21=(a-3)(a+7)C.(a-3)(a+7)=a2+4a-21D.a2+4a-21=(a+2)2-25【解后感悟】此题主要考查因式分解的意义,正确把握因式分解的意义是解题关键.1.下面的多项式中,能因式分解的是()A.m2+n B.m2-m+1C.m2-n D.m2-2m+12.(2016·滨州)把多项式x2+ax+b分解因式,得(x+1)(x-3),则a,b的值分别是() A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-3类型二因式分解的几何性例2如图,边长为a的正方形中有一个边长为b的小正方形,若将图1的阴影部分拼成一个长方形,如图2,比较图1和图2的阴影部分的面积,你能得到的公式是____________________________.【解后感悟】利用图形的面积来解释代数式的恒等变形,这是数形结合思想的应用,是我们学习过程中,常见的列等量关系的依据.3.利用1个a³a的正方形,1个b³b的正方形和2个a³b的矩形可拼成一个正方形(如图所示),从而可得到因式分解的公式____________________.类型三因式分解的方法例3分解因式:(1)(2017·绍兴)x2y-y=__________.(2)(2017·安徽模拟)ax2-6ax+9a=________.(3)(x-1)2-9=________.(4)(2016·荆门)(m+1)(m-9)+8m=________.【解后感悟】多项式分解因式有公因式首先提取公因式,然后再用公式法或其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.第(4)题利用多项式的乘法运算法则展开整理成一般多项式是解题的关键.4.因式分解:(1)(2017·温州)m2+4m=____________________.(2)(2015·丽水)9-x2=____________________.(3)a3-4a=____________________.(4)(2017·杭州市江干区模拟)a3b-2a2b+ab=____________________.(5)(2015·南京)(a-b)(a-4b)+ab=____________________.类型四因式分解的应用例4(1)已知a+b=2,ab=1,则a2b+ab2的值为________;(2)已知x2-2x-3=0,则2x2-4x的值为________.【解后感悟】此题是因式分解的应用,将所求式子进行适当的变形是解本题的关键.5.(1)(2015·衡阳)已知a +b =3,a -b =-1,则a 2-b 2的值为____________________. (2)(2015·盐城)若2m -n 2=4,则代数式10+4m -2n 2的值为____________________. 6.仔细阅读下面例题,解答问题:例题:已知二次三项式x 2-4x +m 有一个因式是(x +3),求另一个因式以及m 的值. 解:设另一个因式为(x +n),得x 2-4x +m =(x +3)(x +n),则x 2-4x +m =x 2+(n +3)x+3n ,∴⎩⎪⎨⎪⎧n +3=-4m =3n .解得:n =-7,m =-21,∴另一个因式为(x -7),m 的值为-21.问题:仿照以上方法解答下面问题:已知二次三项式2x 2+3x -k 有一个因式是(2x -5),求另一个因式以及k 的值.【阅读理解题】 阅读下列文字与例题:将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法. 例如:(1)am +an +bm +bn =(am +bm)+(an +bn)=m(a +b)+n(a +b)=(a +b)(m +n); (2)x 2-y 2-2y -1=x 2-(y 2+2y +1)=x 2-(y +1)2=(x +y +1)(x -y -1). 试用上述方法分解因式a 2+2ab +ac +bc +b 2=________.【方法与对策】(1)当某项正好为公因式时,提取公因式后,该项应为1,不可漏掉;(2)首项系数为负数时,一般公因式的系数取负数,使括号内首项系数为正;(3)公因式也可以是多项式.该题型是中考命题方向.【忽视提系数的最大公约数、分解不彻底】 因式分解:(1)a 3-16a ; (2)4x 2-16y 2.参考答案第3讲 因式分解【考点概要】乘积 m (a +b +c ) (a +b )(a -b ) (a±b )2 提公因式 公式法 【考题体验】1.C 2.x (x +6) 3.(x +2)(x -2) 4.a (a +3)(a -3) 【知识引擎】【解析】(1)(12x 2+x -1)+(12x 2+3x +1)=x 2+4x =x (x +4);(12x 2+x -1)+(12x 2-x )=x 2-1=(x +1)(x -1);(12x 2+3x +1)+(12x 2-x )=x 2+2x +1=(x +1)2;(2)因式分解的方法:①提公因式法;②公式法.因式分解的步骤:一提、二套、三查.【例题精析】例1 B 例2 a 2-b 2=(a +b)(a -b). 例3 (1)y(x +1)(x -1);(2)a(x -3)2;(3)(x +2)(x -4);(4)(m +3)(m -3).例4 (1)2;(2)6.【变式拓展】 1.D 2. B3.a 2+2ab +b 2=(a +b)24.(1)m(m +4) (2)(3+x)(3-x) (3)a(a +2)(a -2) (4)ab(a -1)2(5)(a -2b)25.(1)-3 (2)186.设另一个因式为(x +a),得2x 2+3x -k =(2x -5)(x +a),则2x 2+3x -k =2x 2+(2a -5)x -5a ,∴⎩⎪⎨⎪⎧2a -5=3-5a =-k ,解得:a =4,k =20,故另一个因式为(x +4),k 的值为20.【热点题型】【分析与解】原式=(a 2+2ab +b 2)+(ac +bc)=(a +b)2+c(a +b)=(a +b)(a +b +c). 【错误警示】(1)a(a +4)(a -4); (2)4(x +2y)(x -2y).第4讲分式及其运算1.分式的概念2.分式的基本性质3.分式的运算1.(2015·丽水)分式-11-x 可变形为( )A .-1x -1B .11+xC .-11+xD .1x -12.(2016·台州)化简x 2-y 2(y -x )2的结果是( )A .-1B .1C .x +y y -xD .x +yx -y3.(2017·湖州)要使分式1x -2有意义,x 的取值应满足______________________________. 4.(2017·舟山)若分式2x -4x +1的值为0,则x 的值为____________________.5.(2015·湖州)计算:a 2a -b -b 2a -b.【问题】(1)从三个代数式:①a 2-2ab +b 2,②3a -3b ,③a 2-b 2中任意选择两个代数式构造成分式,然后进行化简,并求当a =6,b =3时该分式的值.(2)通过对(1)的解答,你能想到与分式相关的哪些信息.【归纳】通过开放式问题,归纳、疏理分式概念,以及分式相关的性质,探究分式化简方法.类型一 分式的概念例1 分式2x +6x 2-9.(1)若分式有意义,则x 的取值范围是________; (2)若分式的值为0,则x 的值为________; (3)把分式化为最简分式________.【解后感悟】分式有意义,首先求出使分母等于0的字母的值,然后让未知数不等于这些值,便可使分式有意义;分式的值为0的条件是:首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0,当它使分母的值不为0时,这就是所要求的字母的值;化为最简分式是分母、分子因式分解,再约分.1.已知分式x 2-4x -2,若分式无意义,则x 的取值范围是____________________;若分式的值为零,则x =____________________.2.(2016·滨州)下列分式中,最简分式是( ) A .x 2-1x 2+1B .x +1x 2-1C .x 2-2xy +y 2x 2-xy D .x 2-362x +12类型二 分式的约分和通分例2 计算:(1)(2016·淄博)1-4a 22a +1=________;(2)2xx -1+x +11-x =________; (3)2x +1-x -2x 2-1=________; (4)1-a -1a -1=________.【解后感悟】分式化简关键是约分,约分的关键是找公因式,若分子和分母有多项式,先将其因式分解,然后将相同的因式约去即可.分式的加减运算关键是通分,通分的关键是找最简公分母.3.(1)(2016·丽水)1a +1b 的运算结果正确的是( )A .1a +bB .2a +b C .a +b abD .a +b (2)(2015·绍兴)化简x 2x -1+11-x 的结果是( )A .x +1B .1x +1C .x -1D .xx -1(3)若a 、b 都是正实数,且1a -1b =2a +b ,则aba 2-b 2=____________________.(4)(2016·荆州)当a =2+1,b =2-1时,代数式a 2-2ab +b 2a 2-b 2的值是 .(5)(2015·台州)先化简,再求值:1a +1-a(a +1)2,其中a =2-1.类型三 分式的运算与求值例3 (1)(2016·内江)化简:⎝⎛⎭⎫a 2a -3+93-a ÷a +3a =________.(2)(2015·黄冈)化简:ba 2-b 2÷⎝⎛⎭⎫1-a a +b =________.(3)(2015·衢州)先化简,再求值:(x 2-9)÷x -3x ,其中x =-1.(4)先化简,再求值:⎝⎛⎭⎫x 2x -1-x +1÷4x 2-4x +11-x ,其中x 满足x 2+x -2=0.【解后感悟】(1)解决这类题关键是把握好通分与约分.分式加减的本质是通分,乘除的本质是约分.(2)熟知分式混合运算的法则是解答此题的关键.化简求值题要将原式化为最简后再代值,从求出x 的两个数中选一个数代入求值,但要注意分式成立的条件.4.(2015·成都)化简:(a a +2+1a 2-4)÷a -1a +2.5.先化简,再求值:x 2-4x +42x ÷x 2-2xx 2+1,在0,1,2,三个数中选一个合适的,代入求值.类型四 与分式有关的变形和应用例4 观察下列等式: 第1个等式:a 1=11³3=12³(1-13);第2个等式:a 2=13³5=12³(13-15); 第3个等式:a 3=15³7=12³(15-17); 第4个等式:a 4=17³9=12³(17-19); …请解答下列问题:(1)按以上规律列出第5个等式:a 5=______=______;(2)用含有n 的代数式表示第n 个等式:a n =________=________(n 为正整数); (3)求a 1+a 2+a 3+a 4+…+a 100的值.【解后感悟】本题是数字变化规律,要求首先分析题意,通过观察、分类归纳、抽象出数列的规律,并进行推导得出答案.6.(1)如图,设k =甲图中阴影部分面积乙图中阴影部分面积(a >b >0),则有( )A .k >2B .1<k <2C .12<k <1 D .0<k <12(2)一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了____________________%.【注:销售利润率=(售价-进价)÷进价】.【探索规律题】(2015·巴中)a 是不为1的数,我们把11-a 称为a 的差倒数,如:2的差倒数为11-2=-1;-1的差倒数是11-(-1)=12;已知a 1=-12,a 2是a 1的差倒数,a 3是a 2的差倒数.a 4是a 3的差倒数,…依此类推,则a 2015=________.【方法与对策】此题是找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,找出规律是解题的关键,该题型是中考的热点.【分式的分母不能为零,除数不能为零】 分式x 2-4x 2-x -2的值是0,则x 的值为________.参考答案第4讲 分式及其运算【考点概要】1.字母 2.公因式 基本性质 同分母 【考题体验】1.D 2.D 3.x ≠2 4.2 5.a +b. 【知识引擎】【解析】(1)答案不唯一.选取①、②得a 2-2ab +b 23a -3b =(a -b )23(a -b )=a -b3,当a =6,b=3时,原式=6-33=1(有6种情况). (2)分式概念、运算法则,注意点等.【例题精析】例1 (1)x ≠±3;(2)无解;(3)2x -3. 例2 (1)1-2a ;(2)1;(3)xx 2-1;(4)a 2-2a +21-a 例3 (1)a ;(2)1a -b ;(3)原式=(x +3)(x -3)·xx -3=x(x +3)=x 2+3x ,当x =-1时,原式=(-1)2+3³(-1)=-2;(4)原式=x 2-(x -1)(x -1)x -1²1-x (2x -1)2=2x -1x -1²1-x(2x -1)2=11-2x .由x 2+x -2=0,解得x 1=-2,x 2=1,∵x ≠1,∴当x =-2时,原式=11-2³(-2)=15. 例4 (1)19³11,12³(19-111); (2)1()2n -1³()2n +1,12³(12n -1-12n +1).(3)a 1+a 2+a 3+a 4+…+a 100=12³(1-13)+12³(13-15)+12³(15-17)+…+12³(1199-1201)=12³⎝⎛⎭⎫1-13+13-15+15-17+…+1199-1201=12³⎝⎛⎭⎫1-1201=12³200201=100201.【变式拓展】 1.x =2 -2 2. A3. (1)C (2)A (3)-12(4)22 (5)1(a +1)2,12. 4. a -1a -2. 5.x 2.当x =1时,原式=12. 6.(1)B (2)40 【热点题型】【分析与解】a 1=-12,a 2是a 1的差倒数,即a 2=11-(-12)=23,a 3是a 2的差倒数,即a 3=11-23=3,a 4是a 3的差倒数,即a 4=11-3=-12,…依此类推,∵2015÷3=671……2,∴a 2015=a 2=23.故答案为:23.【错误警示】当x 2-4x 2-x -2=0时,x 2-4=0且x 2-x -2≠0,∴x =-2.故答案为-2.第5讲二次根式及其运算1.二次根式的有关概念2.二次根式的性质3.二次根式的运算1.(2015·湖州)4的算术平方根是( )A .±2B .2C .-2D . 22.(2017·宁波)要使二次根式x -3有意义,则x 的取值范围是( ) A .x ≠3 B .x >3 C .x ≤3 D .x ≥3 3.(2016·杭州)下列各式变形中,正确的是( ) A .x 2²x 3=x 6 B .x 2=|x|C .⎝⎛⎭⎫x 2-1x ÷x =x -1 D .x 2-x +1=⎝⎛⎭⎫x -122+144.(2017·宁波)实数-8的立方根是____________________.5.(2017·湖州)计算:2³(1-2)+8.【问题】下列各式已给出计算结果:①8-2=6; ②(-3)2=-3;③2³3=6; ④8÷2=4 (1)其中正确的是____________; (2)对于错误的结果,请给出正确答案;(3)通过以上的解答,联想二次根式有哪些性质、运算法则?【归纳】通过开放式问题,归纳、疏理二次根式的性质和运算法则,以及注意的问题.类型一 平方根、算术平方根、立方根例1 (1)(2015·黄冈)9的平方根是( ) A .±3 B .±13C .3 D .-3(2)(2017·黄冈)16的算术平方根是________. (3)(2016·宁波)实数-27的立方根是________.【解后感悟】一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根;注意算术平方根易与平方根的概念混淆而导致错误;开立方和立方互为逆运算是解题的关键.1.(1)(2016·唐山模拟)下列式子中,计算正确的是( ) A .- 3.6=-0.6 B .(-13)2=-13 C .36=±6 D .-9=-3(2)如果一个正数的两个平方根为a +1和2a -7,则这个数为____________________.类型二 二次根式的有关概念与性质例2 (1)式子2x +1x -1有意义的x 的取值范围是________; (2)(2017·邵阳模拟)将45化成最简二次根式是________. (3)计算:(1-2)2=________.【解后感悟】(1)此类有意义的条件问题主要是根据:①二次根式的被开方数大于或等于零;②分式的分母不为零列不等式组,转化为求不等式组的解集.(2)此题根据二次根式的性质化简,是解本题的关键.2.(1)(2017·荆州)下列根式是最简二次根式的是( ) A .13B .0.3C .3D .20 (2)k 、m 、n 为三个整数,若135=k 15,450=15m ,180=6n ,则下列有关于k 、m 、n 的大小关系,何者正确( )A .k <m =nB .m =n <kC .m <n <kD .m <k <n(3)(2016·金华)能够说明“x 2=x 不成立”的x 的值是____________________(写出一个即可).(4)若实数a 、b 满足||a +2+b -4=0,则a 2b=____________________.(5)若整数x 满足|x|≤3,则使7-x 为整数的x 的值是____________________(只需填一个).类型三 二次根式的运算与求值例3 (1)(2017·滨州)下列计算:(1)(2)2=2,(2)(-2)2=2,(3)(-23)2=12,(4)(2+3)(2-3)=-1,其中结果正确的个数为( )A .1B .2C .3D .4 (2)计算:8-312+2=______; (3)化简:3(2-3)-24-|6-3|=________.【解后感悟】(1)二次根式的加减运算,关键是掌握二次根式的化简及同类二次根式的合并;(2)二次根式的混合运算,正确化简二次根式是解题关键.3.(1)下列计算正确的是()A.43-33=1 B.2+3= 5C.212=2D.3+22=5 2(2)算式(6+10³15)³3之值为()A.242B.125C.1213D.18 24.(1)计算(10-3)2018²(10+3)2017=____________________;(2)(2016·聊城)计算:27²83÷12=.类型四二次根式的大小比较例4已知甲、乙、丙三数,甲=5+15,乙=3+17,丙=1+19,则甲、乙、丙的大小关系,下列何者正确()A.丙<乙<甲B.乙<甲<丙C.甲<乙<丙D.甲=乙=丙【解后感悟】比较两个二次根式大小时要注意:(1)负号不能移到根号内;(2)根号外的正因数要平方后才能从根号外移到根号内.5.(1)(2015·河北)在数轴上标注了四段范围,如图,则表示8的点落在()A.段①B.段②C.段③D.段④(2)(2015·杭州)若k<90<k+1(k是整数),则k=()A.6 B.7 C.8 D.9(3)(2017·白银)估计5-12与0.5的大小关系是:5-12____________________0.5.(填“>”、“=”、“<”)类型五二次根式的综合型问题例5(1)已知实数x,y满足||x-4+y-8=0,则以x,y的值为两边长的等腰三角形的周长是________.(2)在日常生活中,取款、上网都需要密码,有的人把自己的出生年月作为密码,有的人把生活中的重要数字或自己认为吉利的数字作为密码,这样很容易被知情人窃用.有一种用二次根式法产生的密码,如:对于二次根式121,计算的结果是11,取被开方数和计算结果,再在中间加一个数字0,于是就得到一个六个数字的密码“121011”.对于二次根式0.81,用上述方法产生的密码是________.【解后感悟】常见的非负数有三种形式:|a|,a,a2;若几个非负数的和等于零,则这几个数都为零.6.(1)矩形相邻两边长分别为2,8,则它的周长是____________________,面积是____________________.(2)观察分析下列数据,寻找规律:0,3,6,3,23,…,那么第10个数据应是____________________.(3)若y=3x-6+6-3x+x3,则10x+2y的平方根为____________________.7.已知x=3+1,y=3-1,求下列各式的值:(1)x2+2xy+y2;(2)x2-y2.【探索规律题】如图,以O(0,0)、A(2,0)为顶点作正△OAP1,以点P1和线段P1A的中点B为顶点作正△P1BP2,再以点P2和线段P2B的中点C为顶点作△P2CP3,…,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P6的坐标是________.【方法与对策】根据O(0,0),A(2,0)为顶点作△OAP1,再以P1和P1A的中点B为顶点作△P1BP2,再以P2和P2B的中点C为顶点作△P2CP3,…,如此继续下去,结合图形求出点P6的坐标.本题由特殊到一般的规律解题是关键,这类题型是中考的热点.【二次根式的化简符号不明确】下列各式中,正确的是()A.(-3)2=-3B.-32=-3C.(±3)2=±3D.32=±3参考答案第5讲 二次根式及其运算【考点概要】 1.a ≥0 2. ≥0 a -a 3.最简二次根式 相同 abab乘除 【考题体验】 1.B 2. D 3. B 4. -25.原式=2-22+22=2. 【知识引擎】【解析】(1)③; (2)①8-2=2,②(-3)2=3,④8÷2=2; (3)主要从二次根式性质、运算法则方面去思考.【例题精析】例1 (1)A ;(2)4;(3)-3 例2 (1)根据题意得,2x +1≥0且x -1≠0,解得x ≥-12且x ≠1.(2)35;(3)2-1. 例3 (1)D ;(2)原式=22-322+2=322,故答案为:322;(3)3(2-3)-24-|6-3|=6-3-26-(3-6)=-6.故答案为:-6.例4 ∵3=9<15<16=4, ∴8<5+15<9,∴8<甲<9.∵4=16<17<25=5,∴7<3+17<8,∴7<乙<8.∵4=16<19<25=5,∴5<1+19<6,∴5<丙<6.∴丙<乙<甲.故选A . 例5 (1)由||x -4+y -8=0得,x -4=0,y -8=0,即x =4,y =8.若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形.若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20;即等腰三角形的周长是20.(2)0.81=0.9,所以得到一个六个数字的密码081009.【变式拓展】1.(1)D (2)9 2.(1)C (2)D (3)-1 (4)1(5)-2 3. (1)C (2)D 4.(1)10-3 (2)12 5.(1)C (2)D (3)> 6.(1)62 4 (2)33(3)±67.(1)因为x =3+1,y =3-1,所以x +y =23,x -y =2.则(1)x 2+2xy +y 2=(x +y)2=(23)2=12. (2)x 2-y 2=(x +y)(x -y)=4 3.【热点题型】【分析与解】每一个正三角形的边长都是上个三角形的边长的12,第六个正三角形的边长是116,故顶点P 6的横坐标是6332,P 5纵坐标是3-34-38=538,P 6的纵坐标为538+332=21332,故答案为:(6332,21332).【错误警示】(-3)2=9=32=3,选项A 错误;(±3)2=9=32=3,选项C 错误;32=3,选项D 错误.故选B .。

浙江省中考数学总复习第七章数学思想与开放探索问题第37讲方案设计型问题讲解篇

浙江省中考数学总复习第七章数学思想与开放探索问题第37讲方案设计型问题讲解篇

第37讲方案设计型问题方案设计型问题是指运用数学基础知识建模的方法,按题目所体现的要求进内容行计算、论证、选择、判断、设计的一种数学试题.方案设计波及问题的多特征解性,以函数、方程等思想的指导,利用最优化方法解决问题.解题成立数学模型,如方程模型、不等式模型、函数模型和几何模型等,依照所策略成立的数学模型求解,进而设计方案.基本运用方程思想、函数思想和数形联合解决方程或不等式方案设计问题,函数思想方案设计问题,几何方案设计问题.种类一利用计算和判断比较的方案设计例1 某学校举行演讲竞赛,选出了10名同学担当评委,并预先制定从以下4个方案中选择合理的方案来确立每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的均匀数;方案2:在所有评委所给分中,去掉一个最高分和一个最低分,而后再计算其余所给分的均匀数;方案3:所有评委所给分的中位数;方案4:所有评委所给分的众数.为了研究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下边是这个同学的得分统计图:1分别按上述4个方案计算这个同学演讲的最后得分;依据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.【解后感悟】经过计算得出各个方案的数值,逐个比较;学会采用适合的统计量剖析问题.1.一家特点煎饼店供给厚度相同、直径不一样的两种煎饼,甲种煎饼直径20厘米卖价10元,乙种煎饼直径 30厘米卖价15元,请问:买哪一种煎饼划算?()A.甲B.乙C.相同D.没法确立种类二利用方程(组)的方案设计例2某乳制品厂现有鲜牛奶10吨,若直接销售,每吨可赢利500元;若制成酸奶销售,每吨可赢利1200元;若制成奶粉销售,每吨可赢利2000元.该工厂的生产能力是:若制成酸奶,每日可加工鲜牛奶3吨;若制成奶粉,每日可加工鲜牛奶1吨(两种加工方式不可以同时进行).受气温条件限制,这批鲜牛奶一定在4天内所有销售或加工达成.为此该厂设计了以下两种可行方案:方案一:4时节间所有用来生产奶粉,其余直接销售鲜奶;方案二:将一部分制成奶粉,其余制成酸奶,并恰巧4天达成.你以为哪一种方案赢利最多,为何?2【解后感悟】本题是一元一次方程的应用,注意认真理解两种方案的内容,在求解方案二的赢利时,要设出未知数,利用方程思想求解.2.某班组织班团活动,班委会准备用15元钱所有用来购置笔录本和中性笔两种奖品,已知笔录本2元/本,中性笔1元/支,且每种奖品起码买1件.若设购置笔录本x本,中性笔y支,写出y与x之间的关系式;有多少种购置方案?请列举所有可能的结果;从上述方案中任选一种方案购置,求买到的中性笔与笔录本数目相等的概率.种类三利用不等式的方案设计例3 (2016·资阳)某大型公司为了保护环境,准备购置A、B两种型号的污水办理设施共8台,用于同时治理不一样成分的污水,若购置A型2台、B型3台需54万元,购置A型4台、B型2台需68万元.求出A型、B型污水办理设施的单价;(2)经核实,一台A型设施一个月可办理污水220吨,一台B型设施一个月可办理污水190吨,假如该公司每个月的污水办理量不低于1565吨,请你为该公司设计一种最省钱的购买方案.【解后感悟】本题是一元一次不等式的应用,依据已知得出不等式求出所有方案是解题重点.3.(2017·绍兴模拟)某电器商场销售每台进价分别为200元、170元的A、B两种型号的电电扇,下表是近两周的销售状况:销售时段销售数目销售收入3A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,收益=销售收入-进货成本)求A、B两种型号的电电扇的销售单价;(2)若商场准备用不多于5400元的金额再采买这两种型号的电电扇共30台,求A种型号的电电扇最多能采买多少台?(3)在(2)的条件下,商场销售完这30台电电扇可否实现收益为1400元的目标?若能,请给出相应的采买方案;若不可以,请说明原因.种类四利用函数的方案设计例4某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每日的销售量为250件,销售单价每上升1元,每日的销售量就减少10件.写出商场销售这类文具,每日所得的销售收益w(元)与销售单价x(元)之间的函数关系式;求销售单价为多少元时,该文具每日的销售收益最大;商场的营销部联合上述状况,提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超出30元;方案B:每日销售量许多于10件,且每件文具的收益起码为25元.请比较哪一种方案的最大收益更高,并说明原因.【解后感悟】本题是二次函数的应用,最大销售收益的问题常利用函数的增减性来解答,我们第一要吃透题意,确立变量,成立函数模型,而后联合实质选择最优方案.此中要注意应当在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不必定在x=-b2a时获得.4.(2017·衢州)“五·一”时期,小明一家乘坐高铁前去某市旅行,计划次日租用4新能源汽车自驾出游.依据以上信息,解答以下问题:(1)设租车时间为x小时,租用甲公司的车所需花费为y1元,租用乙公司的车所需花费为y2元,分别求出y1,y2对于x的函数表达式;请你帮助小明计算并选择哪个出游方案合算.5.(2015·泸州)某小区为了绿化环境,计区分两次购进A、B两栽花草,第一次分别购进A、B两栽花草30棵和15棵,共花销675元;第二次分别购进A、B两栽花草12棵和5棵.两次共花销940元(两次购进的A、B两栽花草价钱均分别相同).(1)A、B两栽花草每棵的价钱分别是多少元?(2)若购置A、B两栽花草共31棵,且B栽花草的数目少于A栽花草的数目的2倍,请你给出一栽花费最省的方案,并求出该方案所需花费.种类五利用图形的方案设计例5某校数学研究性学习小组准备做丈量旗杆的数学实践活动,到达旗杆下,发现旗杆AB顶端A垂下一段绳索ABC如图.经研究发现,本来拟订的一系列丈量方案,在此都不需要.现在只借助垂下的绳索和一根皮尺,在不攀登旗杆的状况下,丈量有关数据,就能够计算出旗杆的高度.5请你给出详细的丈量方案,并写出计算旗杆高度的过程;推断这个数学研究性学习小组本来拟订的一系列丈量旗杆的方案是什么?【解后感悟】对于物体的丈量是一个实质问题,所以一定考虑实质环境,联合实质环境,充足运用所学知识拟订方案,拟订方案时要按照可操作性强、简单易行原则.第2个问题的丈量方案还可有其余的,有兴趣的同学可自前进一步商讨.对于以上2种丈量方案的有关计算方法,请同学们自己给出.6.(2017·镇江模拟)在棋盘中成立以下图的直角坐标系,三颗棋子A,O,B的地点如图,它们的坐标分别是(-1,1),(0,0),(1,0).如图2,增添棋子C,使四颗棋子A,O,B,C成为一个轴对称图形,请在图中画出该图形的对称轴;在其余格点地点增添一颗棋子P,使四颗棋子A,O,B,P成为轴对称图形,请直接写出棋子P的地点的坐标.(写出2个即可)7.(2016·海陵模拟)某园艺公司对一块直角三角形的花园进行改造,测得两直角边长6分别为6m、8m.现要将其扩建成等腰三角形,且扩大部分是以8m为直角边长的直角三角形.请你设计出所有适合的方案,画出草图,并求出扩建后的等腰三角形花园的面积.【研究研究题】要在一块长52m,宽48m的矩形绿地上,修筑相同宽的两条相互垂直的甬路.下边分别是小亮和小颖的设计方案.求小亮设计方案中甬路的宽度x;(2)求小颖设计方案中四块绿地的总面积(小颖设计方案中的x与小亮设计方案中的x取值相同).【方法与对策】本题是一元二次方程的应用,特别是图形的面积问题更是近几年中考取考察一元二次方程的应用的主要题型.该题型是实质应用和图形变换相联合,是中考命题的方式之一.【忽略变量前系数,致使解答不全而犯错】为了迎接“五·一”小长假的购物顶峰,某运动品牌服饰专卖店准备购进甲、乙两种服装,甲种服饰每件进价180元,售价320元;乙种服饰每件进价150元,售价280元.7若该专卖店同时购进甲、乙两种服饰共200件,恰巧用去32400元,求购进甲、乙两种服饰各多少件?该专卖店为使甲、乙两种服饰共200件的总收益(收益=售价-进价)许多于26700元,且购进甲服饰不超出80件,则该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备在5月1日当日对甲种服饰进行优惠促销活动,决定对甲种服饰每件优惠a(0<a<20)元销售,乙种服饰价钱不变,那么该专卖店要获取最大收益应怎样进货?参照答案8第37讲 方案设计型问题 【例题精析】1例1(1)方案 1最后得分:10×(3.2 +7.0+7.8 +3×8+3×8.4+9.8) =7.7;方案2最后得分: 1+7.8+3×8+3×8.4) =8;方案 3最后得分:8;方案4最后得分:8×(7.0 8或8.4.(2)由于方案1中的均匀数受极端数值的影响, 不可以反应这组数据的“均匀水平”,所以方案1不适合作为最后得分的方案; 又由于方案4中的众数有两个,进而使众数失掉了实质意义,所以方案4不适合作为最后得分的方案.例2方案一赢利:4×2000+6×500=11000(元).方案二:设制奶粉 x 天,则1×x(4-x)×3=10,解得x =1天.故1×1×2000+3×3×1200=12800(元).故方案二赢利最多.例3(1)设A 型污水办理设施的单价为x 万元,B 型污水办理设施的单价为y 万元,2x +3y =54 x =1212万元,B 型依据题意可得:,解得:.答:A 型污水办理设施的单价为 4x +2y =68 y =10污水办理设施的单价为10 万元;(2)设购进a 台A 型污水办理器,依据题意可得: 220a+190(8-a)≥1565,解得:a ≥1.5,∵A 型污水办理设施单价比 B 型污水办理设施单价高,∴A 型污水办理设施买越少,越省钱,∴购进 2台A 型污水办理设施,购进6台B 型污水处理设施最省钱.例4(1)w =(x -20)(250-10x +250)=-10x 2+700x -10000; (2)w =-10x2+700x-10000=-10(x -35)2+2250所以,当x =35时,w 有最大值 2250,即销售单价为35元时,该文具每日的销售收益最大;(3)方案A :由题可得20<x ≤30,由于a =-10<0,对称轴为x =35,抛物线张口向下,在对称轴左边,w 随x 的增大而增大,所以,当x =30时,w250-10(x -25)≥10,取最大值为2000元,方案B :由题意得解得:45≤x ≤49,在对x ≥45,称轴右边,w 随x 的增大而减小,所以,当 x =45时,w 取最大值为1250元,由于2000元>1250元,所以选择方案A.例5(1)丈量方案设计以下:①丈量绳索比旗杆多出的部分BC =a m ;②把绳索ABC 拉紧到地面D 处如图1,丈量B 到D 的距离BD =b.计算过程:设旗杆的高度为x ,则AD 是mm22 222 2 2222(x +a)m .在直角△ABD 中,依据AB +BD =AD 得x+b =(x +a) ,x +b =x +a +2ax ,解b 2-a 2 得x =2a.(2) 这个数学研究性学习小组本来拟订的丈量旗杆的方案可能有以下几个:9【变式拓展】 1.B2. (1)依据题意得:2x +y =15,∴y 与x 之间的关系式为 y =15-2x.(2) 购置方案:x =1,y =13;x =2,y =11;x =3,y =9;x =4,y =7;x =5,y =5;x =6,y =3,x =7,y =1,∴共有7种购置方案.(3)∵买到的中性笔与笔录本数目相等的只有1种状况,∴1买到的中性笔与笔录本数目相等的概率为:7.3.(1)设A 、B 两种型号电电扇的销售单价分3x +5y =1800,x =250, 答:A 、B 两种型号电电扇的销售别为x 元、y 元,得:+10y =3100, 解得:4x y =210,单价分别为250元、210元;(2)设采买A 种型号电电扇a 台,依题意得: 200a +170(30-a)≤5400,得:a ≤10.答:商场最多采买 A 种型号电电扇10台时,采买金额不多于5400元;(3)依题意有:(250-200)a +(210-170)(30-a)=1400,解得:a =20,∵a >10,∴ 在(2)的条件下商场不可以实现收益 1400元的目标.4. (1)设y 1=k 1x +80,把点(1,95)代入,可得 95=k 1+80,解得k 1=15,∴y 1=15x+80(x ≥0);设y 2=k 2x ,把(1,30)代入,可得30=k 2,即k 2=30,∴y 2=30x(x ≥0); (2)当y 1=y 2时,15x +80=30x ,解得x =16;当y 1>y 2时,15x +80>30x ,解得x <16;当y 13316 16<y 2时,15x +80<30x ,解得x >3;∴当租车时间为3小时,选择甲乙公司相同合算;当1616租车时间小于3小时,选择乙公司合算;当租车时间大于3小时,选择甲公司合算.5.(1)设A 栽花草每棵的价钱 x 元,B 栽花草每棵的价钱y 元,依据题意得:30x +15y =675 x =20 ,∴A 栽花草每棵的价钱是20元,B 栽花草每棵的价钱12x +5y =940-675,解得:y =5是5元.(2)设A 栽花草的数目为m 株,则B 栽花草的数目为(31-m)株,∵B 栽花草的数31量少于A 栽花草的数目的 2倍,∴31-m <2m ,解得:m >3,∵m 是正整数,∴ m 最小值=11, 设购置树苗总花费为 W =20m +5(31-m)=15m +155,∵k >0,∴W 随m 的减小而减小,当 m=11时,W 最小值=15×11+155=320(元).答:购进 A 栽花草的数目为 11株、B 种20株, 花费最省;最省花费是 320元. 6.(1)如图,答案不独一; (2)(2,1),(0,-1).10精选文档111 2 1 27.如图1所示:S △ABD =2×8×12=48(m );如图2所示:S △ABD =2×8×10=40(m ) ;如222 ,即 22 2 7 △ABD 1 图3所示:在Rt △ACD 中,AC +DC =AD 8+x =(x +6) ,解得:x =3,故S = 2×8 ×6+ 7 = 100 ( 2). 3 3m【热门题型】【剖析与解】 (1)依据小亮的方案表示出矩形的长和宽,利用矩形的面积公式列出方程求解即可.依据小亮的设计方案列方程得: (52-x)(48-x)=2300,解得:x =2或x =98(舍去),∴小亮设计方案中甬道的宽度为2m ;(2)求得甬道的宽后利用平行四边形的面积计 算方法求得两个暗影部分面积的和即可.作AI ⊥CD ,HJ ⊥EF ,垂足分别为I ,J ,∵AB ∥CD ,∠1=60°,∴∠ADI =60°,∵BC ∥AD ,∴四边形ADCB 为平行四边形,∴BC =AD ,由(1) 得x =2,∴BC=HE =2=AD ,在Rt △ADI 中,AI =2sin 60°= 3.∴小颖设计方案中四块绿地的总面积为 52×48-52×2-48×2+( 3)2=2299平方米.【错误警告】 (1)设购进甲种服饰 x 件,则乙种服饰是 (200-x)件,依据题意得: 180x150(200-x)=32400,解得:x =80,200-x =200-80=120(件),则购进甲、乙两种服装分别为80件、120件;(2) 设购进甲种服饰y 件,则乙种服饰是 (200-y)件,依据题意 得:(320-180)y +(280-150)(200-y)≥26700,解得:y ≥70,而 y ≤80,∴70≤y ≤80, 又∵y 是正整数,∴共有11种方案; (3) 设总收益为W 元,W =(140-a)y +130(200-y), 即w =(10-a)y +26000.①当0<a <10时,10-a >0,W 随y 增大而增大,∴当 y =80时, W 有最大值,即此时购进甲种服饰 80 件,乙种服饰120 件;②当a =10时,(2) 中所有方案 赢利相同,所以按哪一种方案进货都能够; ③当10<a <20 时,10-a <0,W 随y 增大而减小.当y =70时,W 有最大值,即此时购进甲种服饰 70件,乙种服饰130 件.11。

浙江省中考数学总复习第七章数学思想与开放探索问题课后练习36分类讨论型问题作业本(2021学年)

浙江省中考数学总复习第七章数学思想与开放探索问题课后练习36分类讨论型问题作业本(2021学年)

浙江省2018年中考数学总复习第七章数学思想与开放探索问题课后练习36分类讨论型问题作业本编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省2018年中考数学总复习第七章数学思想与开放探索问题课后练习36 分类讨论型问题作业本)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省2018年中考数学总复习第七章数学思想与开放探索问题课后练习36 分类讨论型问题作业本的全部内容。

课后练习36 分类讨论型问题A组1.若等腰三角形的一个内角为50°,则其他两个内角为()A.50°,80°B.65°,65°C.50°,65° D.50°,80°或65°,65°2.已知线段AB=8cm,在直线AB上画线段BC,使BC=5cm,则线段AC的长度为()A.3cm或13cm B.3cmC.13cm D.18cm3.在同一坐标系中,正比例函数y=-3x与反比例函数y=错误!的图象的交点的个数是( )A.0个或2个B.1个C.2个 D.3个4.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x,那么x的值( )A.只有1个 B.可以有2个C.可以有3个D.有无数个5.若⊙O的弦AB所对的圆心角∠AOB=60°,则弦AB所对的圆周角的度数为( )A.30°B.60°C.150° D.30°或150°6.一次函数y=kx+b,当-3≤x≤1时,对应的y值为1≤y≤9,则kb值为()A.14 B.-6C.-4或21 D.-6或147.(2016·无锡模拟)在△ABC中,∠B=25°,AD是BC边上的高,并且AD2=BD·DC,则∠BCA的度数为。

浙江省中考数学总复习第七章数学思想与开放探索问题第38讲阅读理解型问题讲解篇(2021学年)

浙江省中考数学总复习第七章数学思想与开放探索问题第38讲阅读理解型问题讲解篇(2021学年)

浙江省2018年中考数学总复习第七章数学思想与开放探索问题第38讲阅读理解型问题讲解篇编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省2018年中考数学总复习第七章数学思想与开放探索问题第38讲阅读理解型问题讲解篇)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省2018年中考数学总复习第七章数学思想与开放探索问题第38讲阅读理解型问题讲解篇的全部内容。

第38讲阅读理解型问题内容特性阅读理解型问题是指通过阅读材料,理解材料中所提供的新方法或新知识,并灵活运用这些新方法或新知识,去分析、解决类似或相关的问题.解题策略解决阅读理解问题的基本思路是“阅读→分析→理解→解决问题",具体做法:①认真阅读材料,把握题意,注意一些数据、关键名词;②全面分析,理解材料所蕴含的基本概念、原理、思想和方法,提取有价值的数学信息;③对有关信息进行归纳、整合,并且和方程、不等式、函数或几何等数学模型结合来解答.基本思想方程思想,类比思想,化归思想;分析法,比较法等.这是解决阅读理解题常用的数学思想方法.类型一应用型:阅读-理解-建模-应用错误! (2015·湖州)如图,已知抛物线C1∶y=a1x2+b1x+c1和C2∶y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一个交点分别为M、N,如果点A与点B,点M与点N都关于原点O成中心对称,则抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是__________和__________.【解后感悟】此题通过阅读二次函数的图象与几何变换,用到的知识点是姐妹抛物线的定义、二次函数的图象与性质、矩形的判定,理解构建根据姐妹抛物线的定义得出姐妹抛物线的二次项的系数,一次项系数、常数项之间的关系,利用矩形知识对定义的应用.1.(2015·孝感)我们把两组邻边相等的四边形叫做“筝形".如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD.对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F.求证OE=OF.类型二猜想型:阅读-理解-归纳-验证错误!(2015·衢州)小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则称这两个函数互为“旋转函数”.求函数y=-x2+3x-2的“旋转函数".小明是这样思考的:由函数y=-x2+3x-2可知,a1=-1,b1=3,c1=-2,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2,就能确定这个函数的“旋转函数”.请参考小明的方法解决下面问题:(1)写出函数y=-x2+3x-2的“旋转函数”;(2)若函数y=-x2+\f(4,3)mx-2与y=x2-2nx+n互为“旋转函数”,求(m+n)2015的值;(3)已知函数y=-错误!(x+1)(x-4)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1,B1,C1,试证明经过点A1,B1,C1的二次函数与函数y=-错误!(x +1)(x-4)互为“旋转函数”.【解后感悟】在仔细阅读后,正确理解新定义,理解其中的内容、方法和思想,阅读特殊范例,归纳验证一般结论.2.(2015·株洲)P表示n边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P与n的关系式是:P=错误!·(n2-an+b)(其中,a,b是常数,n≥4)(1)填空:通过画图可得:四边形时,P=____________________(填数字),五边形时,P=____________________(填数字);(2)请根据四边形和五边形对角线交点的个数,结合关系式,求a,b的值.(注:本题的多边形均指凸多边形)类型三概括型:阅读-理解-概括-拓展错误!(2016·台州)定义:有三个内角相等的四边形叫三等角四边形.(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形;(3)三等角四边形ABCD中,∠A=∠B=∠C,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?并求此时对角线AC的长.【解后感悟】本题要对新定义阅读和理解,通过前面问题的解答积累经验,再概括、拓展解决新问题,要注意分类讨论.解题时关键要领会题中所体现的解题方法,运用已有知识深刻理解解题方法的内涵,予以拓展、应用,解决所提问题.3.(2017·绍兴)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长;②若AC⊥BD,求证:AD=CD;(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.类型四探究型:阅读-理解-尝试-探究例4(2015·绍兴)如果抛物线y=ax2+bx+c过定点M(1,1),则称此抛物线为定点抛物线.(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y=2x2+3x-4,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=-x2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.【解后感悟】此题是二次函数的知识基础上的新定义题,题目较新颖,解答本题的关键是仔细审题,理解题意所给的信息,尝试、探究新问题:抛物线顶点纵坐标的值最小时的解析式,即要构建一个函数,顶点纵坐标为y=(b-1)2+1来解决问题.4.(2015·自贡)观察下表序号123图形我们把某格中字母和所得的多项式称为特征多项式,例如第1格的“特征多项式”为4x+y,回答下列问题:(1)第3格的“特征多项式”为____________________,第4格的“特征多项式”为____________________,第n格的“特征多项式”为____________________;(2)若第1格的“特征多项式"的值为-10,第2格的“特征多项式”的值为-16,①求x,y的值;②在此条件下,第n格的特征多项式是否有最小值?若有,求出最小值和相应的n值,若没有,说明理由.【阅读理解题】已知坐标平面上的线段AB及点P,任取AB上一点Q,线段PQ长度的最小值称为点P到线段AB的距离,记作d(P→AB).(1)如图所示,已知长度为2个单位的线段MN在x轴上,M点的坐标为(1,0),求点P(1,1)到线段MN的距离d(P→MN);(2)已知坐标平面上点G到线段DE:y=x(0≤x≤3)的距离d(G→DE)=2,且点G的横坐标为1,试求点G的纵坐标.【方法与对策】此题属于一次函数的综合题,运用了点到直线的距离、等腰直角三角形的性质、待定系数法求一次函数的解析式等知识.注意掌握数形结合思想与分类讨论思想的应用.重视这种题型,该题型通过定义,使学生了解概念,再通过第(1)题解答,有更深入的感受来解答第(2)题.这是中考命题方向.【对材料的理解不正确,而造成解题错误】阅读下列材料,然后解答下面的问题:我们知道方程2x+3y=12有无数组解,但在实际生活中,我们往往只需要求出其正整数解,例:由2x+3y=12,得y=错误!=4-错误!x(x、y为正整数),而错误!则有0<x〈6,又y=4-错误!x为正整数,则23x为正整数,由2与3互质,可知x为3的倍数,从而x=3,则y=4-错误!x=2。

浙江省2019年中考数学总复习第七章数学思想与开放探索问题第37讲方案设计型问题讲解篇175

浙江省2019年中考数学总复习第七章数学思想与开放探索问题第37讲方案设计型问题讲解篇175

第37讲方案设计型问题类型一利用计算和判断比较的方案设计例1某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数;方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余所给分的平均数;方案3:所有评委所给分的中位数;方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.【解后感悟】通过计算得出各个方案的数值,逐一比较;学会选用适当的统计量分析问题.1.一家特色煎饼店提供厚度相同、直径不同的两种煎饼,甲种煎饼直径20厘米卖价10元,乙种煎饼直径30厘米卖价15元,请问:买哪种煎饼划算?( )A.甲B.乙C.一样D.无法确定类型二利用方程(组)的方案设计例2某乳制品厂现有鲜牛奶10吨,若直接销售,每吨可获利500元;若制成酸奶销售,每吨可获利1200元;若制成奶粉销售,每吨可获利2000元.该工厂的生产能力是:若制成酸奶,每天可加工鲜牛奶3吨;若制成奶粉,每天可加工鲜牛奶1吨(两种加工方式不能同时进行).受气温条件限制,这批鲜牛奶必须在4天内全部销售或加工完成.为此该厂设计了以下两种可行方案:方案一:4天时间全部用来生产奶粉,其余直接销售鲜奶;方案二:将一部分制成奶粉,其余制成酸奶,并恰好4天完成.你认为哪种方案获利最多,为什么?【解后感悟】本题是一元一次方程的应用,注意仔细理解两种方案的内容,在求解方案二的获利时,要设出未知数,利用方程思想求解.2.某班组织班团活动,班委会准备用15元钱全部用来购买笔记本和中性笔两种奖品,已知笔记本2元/本,中性笔1元/支,且每种奖品至少买1件.(1)若设购买笔记本x本,中性笔y支,写出y与x之间的关系式;(2)有多少种购买方案?请列举所有可能的结果;(3)从上述方案中任选一种方案购买,求买到的中性笔与笔记本数量相等的概率.类型三利用不等式的方案设计例3(2016·资阳)某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万元,购买A型4台、B型2台需68万元.(1)求出A型、B型污水处理设备的单价;(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.【解后感悟】此题是一元一次不等式的应用,根据已知得出不等式求出所有方案是解题关键.。

2018年中考数学总复习第七章数学思想与开放探索问题第34讲归纳猜想与说理型问题讲解篇

2018年中考数学总复习第七章数学思想与开放探索问题第34讲归纳猜想与说理型问题讲解篇

第34讲 归纳、猜想与说理型问题(建议该讲放第11讲后教学)类型一 通过数式变化产生规律例1 (2016·淄博)(1)填空:(a -b)(a +b)=; (a -b)(a 2+ab +b 2)=; (a -b)(a 3+a 2b +ab 2+b 3)=; (2)猜想:(a -b)(an -1+an -2b +…+abn -2+bn -1)=(其中n 为正整数,且n ≥2);(3)利用(2)猜想的结论计算:29-28+27-…+23-22+2.【解后感悟】此类问题要从整体上观察各个式子的特点,猜想出式子的变化规律,并进行验证.对于本题来说,关键是先计算,再观察各等式的结构,猜想结果并验证.对于(3)根据结构特征进行设、列来构建等式求解.1.(1)(2016·资阳模拟)设一列数中相邻的三个数依次为m 、n 、p ,且满足p =m 2-n ,若这列数为-1,3,-2,a ,-7,b …,则b = .(2)(2016·德州模拟)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:输入x ――→第1次y1=2x x +1――→第2次y2=2y1y1+1――→第3次y3=2y2y2+1――→… 则第n 次运算的结果y n =(用含字母x 和n 的代数式表示).类型二 通过图形变化产生规律例2 (2016·达州)如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是( )A .25B .33C .34D .50【解后感悟】本题通过一次操作,得到下一个图形的三角形个数与上一个图形的三角形个数之间的数量关系是解题的关键.解决这类问题的关键是仔细分析前后两个图形中基础图案的数量关系,从而发现其数字变化规律.具体地说,先根据图形写出数字规律,然后将每一个数字改写为等式,再比较各等式的相同点和不同点,分析不同点(数字)与等式序号之间的关系,从而得到一般规律.2.(2017·舟山)如图,把n 个边长为1的正方形拼接成一排,求得tan ∠BA 1C =1,tan ∠BA 2C =13,tan∠BA 3C =17,计算tan ∠BA 4C =____________________,…按此规律,写出tan ∠BA n C =____________________(用含n 的代数式表示).类型三 通过平移、折叠产生规律例3 如图,直角三角形纸片ABC 中,AB =3,AC =4,D 为斜边BC 中点,第1次将纸片折叠,使点A 与点D 重合,折痕与AD 交于点P 1;设P 1D 的中点为D 1,第2次将纸片折叠,使点A 与点D 1重合,折痕与AD 交于点P 2;设P 2D 1的中点为D 2,第3次将纸片折叠,使点A 与点D 2重合,折痕与AD 交于点P 3;…;设P n -1D n -2的中点为D n -1,第n 次将纸片折叠,使点A 与点D n -1重合,折痕与AD 交于点P n (n >2),则AP 6的长为( )A .5×35212B .365×29 C .5×36214D .375×211【解后感悟】此题是翻折变换的知识,解答本题关键是写出前面几个有关线段长度的表达式,从而得出一般规律,注意培养自己的归纳总结能力.3.如图,矩形OABC 的两条边在坐标轴上,OA =1,OC =2,现将此矩形向右平移,每次平移1个单位,若第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,则第n 次(n >1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为(用含n 的代数式表示).类型四 通过旋转产生规律例4 (2017·衢州)如图,正△ABO 的边长为2,O 为坐标原点,A 在x 轴上,B 在第二象限,△ABO 沿x 轴正方向作无滑动的翻滚,经一次翻滚后得到△A 1B 1O ,则翻滚3次后点B 的对应点的坐标是________,翻滚2017次后AB 中点M 经过的路径长为________.【解后感悟】解题的关键是尝试特殊情况,寻找循环规律,从特殊到一般的探究方法解决问题.4.(2015·东港模拟)如图,点B1是面积为1的等边△OBA的两条中线的交点,以OB1为一边,构造等边△OB1A1(点O,B1,A1按逆时针方向排列),称为第一次构造;点B2是△OB1A1的两条中线的交点,再以OB2为一边,构造等边△OB2A2(点O,B2,A2按逆时针方向排列),称为第二次构造;以此类推,当第n次构造出的等边△OB n A n的边OA n与等边△OBA的边OB第一次重合时,构造停止.则构造出的最后一个三角形的面积是.类型五以数轴、平面直角坐标系为背景的规律问题例5(2016·菏泽)如图,一段抛物线:y=-x(x-2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=.【解后感悟】此题是抛物线其中一段的旋转规律,解题的关键是求出抛物线的顶点坐标.5.(1)如图,在数轴上,A1,P两点表示的数分别是1,2,A1,A2关于点O对称,A2,A3关于点P对称,A3,A4关于点O对称,A4,A5关于点P对称…依此规律,则点A14表示的数是.(2)(2015·达州)在直角坐标系中,直线y=x+1与y轴交于点A1,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C3C2…,A1、A2、A3…在直线y=x+1上,点C1、C2、C3、…在x轴上,图中阴影部分三角形的面积从左到右依次记为S1,S2,S3,…S n,则S n的值为____________________(用含n的代数式表示,n为正整数).【探索研究题】用水平线和竖直线将平面分成若干个边长为1的小正方形格子,小正方形的顶点称为格点,以格点为顶点的多边形称为格点多边形.设格点多边形的面积为S ,该多边形各边上的格点个数和为a ,内部的格点个数为b ,则S =12a +b -1(史称“皮克公式”).小明认真研究了“皮克公式”,并受此启发对正三角形网格中的类似问题进行探究:正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,下图是该正三角形格点中的两个多边形:根据图中提供的信息填表:则S 与a 、b 之间的关系为S =________(用含a 、b 的代数式表示).【方法与对策】此题需要根据图中表格和自己所算得的数据,总结出规律.寻找规律是一件比较困难的活动,需要仔细观察和大量的验算.该题型采用特殊到一般探究问题的方法.是中考命题的一种方式.【探求一般规律,注意序号与变量之间对应关系】如图,△ABC 是斜边AB 的长为3的等腰直角三角形,在△ABC 内作第1个内接正方形A 1B 1D 1E 1(D 1、E 1在AB 上,A 1、B 1分别在AC 、BC 上),再在△A 1B 1C 内按同样的方法作第2个内接正方形A 2B 2D 2E 2,…如此下去,操作n 次,则第n 个小正方形A n B n D n E n 的边长是________.。

浙江省中考数学总复习第七章数学思想与开放探索问题课后练习38阅读理解型问题作业本(2021学年)

浙江省中考数学总复习第七章数学思想与开放探索问题课后练习38阅读理解型问题作业本(2021学年)

浙江省2018年中考数学总复习第七章数学思想与开放探索问题课后练习38 阅读理解型问题作业本编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省2018年中考数学总复习第七章数学思想与开放探索问题课后练习38 阅读理解型问题作业本)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省2018年中考数学总复习第七章数学思想与开放探索问题课后练习38阅读理解型问题作业本的全部内容。

课后练习38 阅读理解型问题A组1.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式:①(a-b)2;②ab+bc+ca;③a2b+b2c+c2a.其中是完全对称式的是( )A.①②B.①③C.②③D.①②③2.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A.1,2,3B.1,1,错误!C.1,1,错误!D.1,2,错误!3.对点(x,y)的一次操作变换记为P1(x,y),定义其变换法则如下:P1(x,y)=(x+y,x-y);且规定P n(x,y)=P(Pn-1(x,y))(n为大于1的整数).如P1(1,2)=(3,-1),P2(1,12)=P1(P1(1,2))=P1(3,-1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,-2).则P2017(1,-1)=( )A.(0,21008) B.(0,-21008)C.(0,-21009) D.(0,21009)4.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+错误!(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是错误!,矩形的周长是2(x+错误!);当矩形成为正方形时,就有x=\f(1,x)(x>0),解得x=1,这时矩形的周长2(x+错误!)=4最小,因此x+错误!(x>0)的最小值是2。

浙江省中考数学总复习第七章数学思想与开放探索问题第39讲开放与探索型问题讲解篇(2021学年)

浙江省中考数学总复习第七章数学思想与开放探索问题第39讲开放与探索型问题讲解篇(2021学年)

浙江省2018年中考数学总复习第七章数学思想与开放探索问题第39讲开放与探索型问题讲解篇编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省2018年中考数学总复习第七章数学思想与开放探索问题第39讲开放与探索型问题讲解篇)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省2018年中考数学总复习第七章数学思想与开放探索问题第39讲开放与探索型问题讲解篇的全部内容。

第39讲开放与探索型问题内容特性所谓开放题,即为答案不唯一的问题,其主要特征是答案的多样性和多层次性.解题策略从总体上看,解开放型题时,通过观察、比较、分析、综合及猜想,应尽可能地放开思维,大胆猜想,仔细论证,充分运用已学过的数学知识和数学方法,经过归纳、类比、联想等推理的手段,得出正确的结论.从方法上看,一般以分类讨论及反演推理等方法较为常见.基本方法(1)条件开放型问题:从结论出发,执果索因,逆向推理,逐步探求结论成立的条件或把可能产生结论的条件一一列出,逐个分析;(2)结论开放型问题:从剖析题意入手,充分捕捉题设信息,通过由因导果,顺向推理或联想类比、猜测等,从而获得所求的结论;(3)条件和结论都开放型:此类问题没有明确的条件和结论,并且符合条件的结论具有多样性,需将已知的信息集中进行分析,探索问题成立所必须具备的条件或特定的条件应该有什么结论,通过这一思维活动得出事物内在联系,从而把握事物的整体性和一般性。

类型一条件开放与探索型问题错误! (1)四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )A.3种B.4种C.5种D.6种【解后感悟】判断一个四边形是平行四边形的基本依据是:平行四边形的定义及其判定定理.解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的结论,挖掘它的内在联系,向“纵、横、深、广”拓展,从而寻找出添加的条件.(2)(2016·河北)如图,∠AOB=120°,OP平分∠AOB,且OP=2。

2018年中考数学总复习第七章数学思想与开放探索问题课后练习41课本题改编型问题作业本

2018年中考数学总复习第七章数学思想与开放探索问题课后练习41课本题改编型问题作业本

课后练习41 课本题改编型问题A组1.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第1题图第2题图2.(2017·杭州市萧山区模拟)已知一个圆锥体的三视图如图所示,则这个圆锥的侧面积为( )A.12πcm2 B.15πcm2C.24πcm2 D.30πcm23.(2015·衢州)如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC于点E,则CE的长等于( )A.8cm B.6cmC. 4cm D.2cm第3题图第4题图4.如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA的面积比为( ) A.2∶3 B.2∶5C.4∶9 D.2∶ 35.(2017·绍兴模拟)将一张正方形纸片,按如图步骤①,②,沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是( )第5题图6.(2017·金华模拟)设计师以y=2x2-4x+8的图形为灵感设计杯子如图所示,若AB=4,DE=3,则杯子的高CE=( )A.17 B.11 C.8 D. 7第6题图7.(2015·嘉兴)如图,正方形ABCD中,点E,F分别在AB,BC上,AF=DE,AF和DE相交于点G.第7题图(1)观察图形,写出图中所有与∠AED相等的角;(2)选择图中与∠AED相等的任意一个角,并加以证明.8.作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如图:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第37讲方案设计型问题
类型一利用计算和判断比较的方案设计
例1某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数;
方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余所给分的平均数;
方案3:所有评委所给分的中位数;
方案4:所有评委所给分的众数.
为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.下面是这个同学的得分统计图:
(1)分别按上述4个方案计算这个同学演讲的最后得分;
(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.
【解后感悟】通过计算得出各个方案的数值,逐一比较;学会选用适当的统计量分析问题.
1.一家特色煎饼店提供厚度相同、直径不同的两种煎饼,甲种煎饼直径20厘米卖价10元,乙种煎饼直径30厘米卖价15元,请问:买哪种煎饼划算?( )
A.甲 B.乙 C.一样 D.无法确定
类型二利用方程(组)的方案设计
例2某乳制品厂现有鲜牛奶10吨,若直接销售,每吨可获利500元;若制成酸奶销售,每吨可获利1200元;若制成奶粉销售,每吨可获利2000元.该工厂的生产能力是:若制成酸奶,每天可加工鲜牛奶3吨;若制成奶粉,每天可加工鲜牛奶1吨(两种加工方式不能同时进行).受气温条件限制,这批鲜牛奶必须在4天内全部销售或加工完成.为此该厂设计了以下两种可行方案:方案一:4天时间全部用来生产奶粉,其余直接销售鲜奶;
方案二:将一部分制成奶粉,其余制成酸奶,并恰好4天完成.
你认为哪种方案获利最多,为什么?
【解后感悟】本题是一元一次方程的应用,注意仔细理解两种方案的内容,在求解方案二的获利时,要设出未知数,利用方程思想求解.
2.某班组织班团活动,班委会准备用15元钱全部用来购买笔记本和中性笔两种奖品,已知笔记本2元/本,中性笔1元/支,且每种奖品至少买1件.
(1)若设购买笔记本x本,中性笔y支,写出y与x之间的关系式;
(2)有多少种购买方案?请列举所有可能的结果;
(3)从上述方案中任选一种方案购买,求买到的中性笔与笔记本数量相等的概率.
类型三利用不等式的方案设计
例3(2016·资阳)某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万元,购买A型4台、B型2台需68万元.
(1)求出A型、B型污水处理设备的单价;
(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.
【解后感悟】此题是一元一次不等式的应用,根据已知得出不等式求出所有方案是解题关键.
3.(2017·绍兴模拟)某电器超市销售每台进价分别为200元、170元的A、B两种型号的电风扇,下表是近两周的销售情况:
(进价、售价均保持不变,利润=销售收入-进货成本)
(1)求A、B两种型号的电风扇的销售单价;
(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.
类型四利用函数的方案设计
例4某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销。

相关文档
最新文档