基因突变的检测方法(完整资料).doc

合集下载

体外哺乳动物细胞基因突变试验

体外哺乳动物细胞基因突变试验

十、体外哺乳动物细胞基因突变试验In Vitro Mammalian Cell Gene Mutation Test1 范围本规范规定了体外哺乳类细胞基因突变试验的基本原则、要求和方法。

本规范适用于检测化妆品原料及其产品的致突变性。

2 规范性引用文件OECD Guidelines for Testing of Chemicals (No. 476, 1997)3 试验目的该测试系统用于检测化妆品原料及其产品引起的突变,包括碱基对突变、移码突变和缺失等,从而评价受试物引起突变的可能性。

4 定义正向突变(Forward mutation):从原型至突变子型的基因突变,这种突变可引起酶和功能蛋白的改变。

突变频率(Mutant frequency):所观察到的突变细胞数与存活细胞数之比值。

5试验原理在加入和不加入代谢活化系统的条件下,使细胞暴露于受试物一定时间,然后将细胞再传代培养,突变细胞在含有6-硫代鸟嘌呤(6-thioguanine,6-TG)或三氟胸苷(trifluorothymidine,TFT)的选择性培养液中能继续分裂并形成集落。

基于突变集落数,计算突变频率以评价受试物的致突变性。

6 试验方法6.1 试剂和受试物制备6.1.1 受试物6.1.1.1 受试物的配制:固体受试物需溶解或悬浮于溶剂中,用前稀释至适合浓度;液体受试物可以直接加入试验系统/或用前稀释至适合浓度。

受试物应在使用前新鲜配制,否则就必须证实储存不影响其稳定性。

6.1.1.2 溶剂的选择:溶剂必须是非致突变物,不与受试物发生化学反应,不影响细胞存活和S9活性。

首选溶剂是水或水溶性溶剂。

二甲基亚砜(DMSO)也是常用溶剂,但使用时浓度不应大于0.5%。

6.1.1.3 受试物浓度设置6.1.1.3.1 最高浓度的选择:决定最高浓度的因素是细胞毒性、受试物在试验系统中的溶解度以及pH或渗克分子浓度(osmolality)的改变。

6.1.1.3.2 细胞毒性的确定:应使用指示细胞完整性和生长情况的指标,在活化系统存在或不存在两种条件下确定细胞毒性,例如相对集落形成率或相对细胞总生长情况(total growth)。

临床常用基因突变及融合基因检查方法

临床常用基因突变及融合基因检查方法

临床常用基因突变及融合基因检查方法1. 引言1.1 基因突变及融合基因检查的重要性基因突变及融合基因检查在临床诊断中起着至关重要的作用。

基因突变是导致遗传性疾病和癌症等疾病发生的主要原因之一,通过检测基因突变可以及早发现患者的疾病风险,为个体化治疗提供重要依据。

而融合基因则是某些癌症的特征之一,对于癌症的诊断、治疗和预后判断有着重要意义。

通过基因突变及融合基因检查,可以精准地了解患者疾病的发展过程、临床表现和预后;可以帮助医生选择最适合患者的治疗方案,避免不必要的试错;可以帮助患者及时接受个体化治疗,提高治疗效果和生存率。

基因突变及融合基因检查已经成为临床诊断和治疗的重要辅助手段,对改善患者生活质量和延长患者生存时间起着至关重要的作用。

随着检测技术的不断发展和完善,基因突变及融合基因检查的精准性和灵敏度将进一步提高,有望为临床诊断和治疗带来更多的突破。

加强对基因突变及融合基因检查的研究和应用,对于提高临床诊断的准确性和治疗的有效性具有重要的意义。

1.2 临床常用的基因突变检查方法临床常用的基因突变检查方法主要包括Sanger测序技术、下一代测序技术和PCR技术。

Sanger测序技术是一种经典的测序方法,通过测序反应得出DNA序列,适用于短序列的测序。

尽管这种方法已有一定历史,但仍然被广泛应用于临床基因检测中。

下一代测序技术则是近年来发展起来的新一代测序技术,具有高通量、高效率和低成本的特点,可以同时测序多个样本,广泛用于基因组学研究和个性化医疗中。

PCR技术也是一种常用的基因突变检查方法,通过扩增特定DNA 片段进行检测,具有高灵敏度和特异性,适用于检测患者的基因突变状态。

这些基因突变检查方法在临床诊断中发挥着重要作用,为医生提供了准确的基因信息,指导临床治疗方案的制定。

1.3 临床常用的融合基因检查方法临床常用的融合基因检查方法主要包括荧光原位杂交(FISH)、反转录聚合酶链式反应(RT-PCR)和基因组定序。

基因突变的检测方法

基因突变的检测方法

基因突变的检测方法基因突变是指细胞中一些基因序列发生改变,影响了基因的正常功能。

这些突变可以是单个碱基的改变、插入或删除,也可以是基因内或基因间区域的结构改变。

基因突变可能是遗传的,也可能是后天的,是导致许多疾病的重要原因之一、因此,对基因突变进行准确的检测和分析对于预防、诊断和治疗疾病具有重要意义。

目前,常见的基因突变的检测方法主要有以下几种:1.直接测序法:直接测序法是一种最常用、最可靠的基因突变检测方法。

通过DNA测序技术,可以准确地检测出基因序列的每个碱基,从而发现可能存在的突变。

这种方法可以检测到单个碱基的点突变、小片段的插入或缺失等突变。

2.聚合酶链式反应(PCR):PCR是一种常用于扩增基因片段的方法,可以将DNA样本中的目标基因片段扩增到足够的数量,以便进行突变的分析。

PCR可以用于检测点突变、大片段缺失和插入等突变。

此外,PCR还可以与其他技术(例如限制性酶切、序列特异性引物放大、测序等)结合使用,增加突变检测的灵敏性和准确性。

3.变性梅毒凝胶电泳(DGGE):DGGE是一种分析DNA序列异质性的方法。

通过在电泳过程中使用梯度浓度的变性剂,可以将DNA样本中具有不同序列的片段分离开来。

通过比较样品与对照的DGGE图谱,可以检测到突变的存在和类型。

4.基因芯片技术:基因芯片技术是一种高通量基因突变检测方法。

基因芯片上携带了大量不同的探针,可以同时检测一系列基因的突变状态。

这种方法适用于筛查大规模的基因突变。

5.网络测序技术:网络测序技术是一种新兴的基因突变检测方法。

通过将DNA样本测序后上传至云端服务器,利用高效的计算机算法和庞大的数据库,可以分析和鉴定样本中的突变。

这种方法可以快速准确地检测大规模基因突变,适用于临床中的个性化医疗。

虽然以上列举了几种常见的基因突变检测方法,但需要注意的是,每种方法都有其优缺点,并且适用于不同类型的突变鉴定。

在实际应用中,常常需要结合多种方法进行综合分析和鉴定,以提高突变检测的准确性和可靠性。

基因突变检测内容

基因突变检测内容

基因突变检测内容介绍基因突变检测是一种通过分析个体基因组中的突变,来了解个体是否携带有害突变或遗传疾病的方法。

本文将详细探讨基因突变检测的相关内容,包括检测方法、应用领域、优势和限制等,旨在帮助读者全面了解基因突变检测的重要性和应用前景。

一、基因突变检测方法基因突变检测有多种方法,包括单倍型分析、酶切位点变异分析、测序技术和PCR扩增等。

这些方法根据突变类型和检测需求的不同,选择不同的策略来进行基因突变分析。

1. 单倍型分析单倍型分析是通过检测个体基因组上的特定位点的单倍型(allele)来确定基因型。

常用的单倍型分析方法包括限制性片段长度多态性(RFLP)和序列特定引物扩增(SSP)。

这些方法通常用于检测单个核苷酸多态性(SNPs)或小片段的插入/缺失等突变。

2. 酶切位点变异分析酶切位点变异分析是通过检测特定基因上的酶切位点是否发生变异来判断个体是否存在突变。

这种方法常用于检测大片段插入/缺失和染色体重排等结构变异。

在此方法中,关键是选择合适的酶切位点和适当的酶切酶进行检测。

3. 测序技术测序技术是最常用的基因突变检测方法之一。

通过对整个基因组或特定基因进行测序,可以检测到基因组中所有可能的突变类型。

目前,常用的测序技术包括Sanger测序、下一代测序(NGS)和单分子测序等。

4. PCR扩增PCR扩增是一种常用的突变检测方法,通过特定序列的扩增来检测基因组中的突变。

PCR扩增可以用于检测单个核苷酸多态性、小片段插入/缺失以及基因的重复序列等突变。

此外,PCR扩增也可用于基因组的特定区域富集,以便后续测序分析。

二、基因突变检测的应用领域基因突变检测在医学、生物学和遗传学等领域有着广泛的应用。

下面将分别探讨其在这些领域中的具体应用。

1. 医学应用基因突变检测在医学中的应用非常广泛。

它可以用于遗传性疾病的诊断和预测。

通过检测个体基因组中与特定疾病相关的突变,可以及早发现患者的病情并制定相应的治疗方案。

SNP突变点检测方法进展( 完整版)

SNP突变点检测方法进展( 完整版)

(polymerase chain reaction-sequence specific primer)
1
2 3 4 5
简 特 经 直
便 异 济
准确

一般DNA实验室能满足实验 要求
Tagman探针技术(分子信标、分子灯塔) 实时荧光PCR技术 SYBR Green Ⅰ法(结合熔解曲线分析) 芯片分析(微阵列杂交实验技术)
特异性高;
引物设计简单; 反应条件易于优化;
分辨能力高。
随着科技的进步,SNP突变点检测方法在继续改进演 变。我们选择经济实用的技术方法来满足自己所做课题需 求。就目前来说,SNP检测技术手段还有待进一步提高。 科研在呼唤着一种最为理想的SNP检测方法,其能具 备以下优点: 1. 适合自动化操作, 简便快速;
基于PCR
荧光标记检测
相 关 技 术
寡核苷酸连接 分析
基于物理技术
内切酶酶切技 术
其它
单链构象多态性(SSCP) 变性梯度凝胶电泳(DGGE)
变性高效液相色谱分析技术(DHPLC)
(一)PCR-SSCP
1. 基本原理:
经PCR 扩增的目的片段在变性剂或低离子浓度下经 高温处理使之解链并保证在单链状态下,然后在一定浓度 的非变性聚丙稀酰胺凝胶中电泳。相同长度的单链DNA , 可以因其顺序或单个碱基差异,所形成的空间构象就会不 同,其在凝胶中泳动速度不一样,从而显示出带型的差异, 即多态型
20bp
优势
局 限 性
序列多态性座位中大约只有1/3的
碱基涉及限制酶识别序列;
遗传标记系统的个人识别能力有限; 限制酶消化条件较高。
微测序技术(SNaPshot)
焦测序技术(Pyrosequencing)

基因突变的检测方法

基因突变的检测方法

基因突变的检测方法基因突变是指基因序列发生了改变,包括点突变(例如单核苷酸突变、缺失、插入等)和结构变异(例如片段缺失、增加、倒位、易位等)。

这些突变可能对人体的健康产生重大影响,如导致遗传性疾病的发生或对药物敏感性造成改变。

因此,基因突变的检测对于疾病诊断、预测和个体化治疗至关重要。

目前,基因突变的检测方法主要包括以下几种:1. 直接测序法:这是一种最常用的方法,通过测序技术直接对基因序列进行确定。

例如,通过Sanger测序技术对特定基因进行首选外显子的测序,以便检测点突变或小片段缺失插入。

2. SNP芯片技术:SNP(Single Nucleotide Polymorphism)芯片技术能够同时检测多个SNP位点。

通过这种方法,可以快速高效地测定有数千个SNP位点的基因组范围内的突变情况。

3. 基因组测序:全基因组测序(Whole Genome Sequencing,WGS)和全外显子测序(Whole Exome Sequencing,WES)是最全面的基因突变检测方法。

WGS对整个基因组进行测序,包括编码区域和非编码区域,可以全面检测基因组的突变情况。

而WES则主要关注外显子区域,这是人类基因组中编码蛋白质所必需的一部分。

4. FISH技术:FISH (Fluorescence In Situ Hybridization)技术通过标记染色体上的特定序列进行检测。

这种技术可以用于检测染色体结构变异、基因扩增、转座等。

FISH技术能够提供与直接观察、定位和评估染色体关联的一些特定突变的信息。

5. PCR技术:PCR(Polymerase Chain Reaction)技术可以放大DNA 片段,从而使得检测突变更容易。

这种技术可以用于检测具体的点突变、小片段的缺失或插入。

6. 基于高通量测序的技术:近年来,新一代测序技术的快速发展为基因突变检测提供了更高效和经济的方法。

例如,靶向测序技术(Targeted Sequencing)可以选择性地测定特定的基因或基因组区域,从而降低成本和分析难度。

浅述ALK融合突变及其检测方法(上)

浅述ALK融合突变及其检测方法(上)

浅述ALK融合突变及其检测方法(上)作者:闵ALK融合突变是非小细胞肺癌常见驱动基因突变之一,因其靶向药使用时间长,平均生存期长,也被病友们戏称为“钻石突变”。

由于ALK融合突变发生概率仅5%-7%左右,不少病友都很羡慕ALK阳性的幸运儿,也希望同样的运气降落在自己身上,于是如何认识ALK 融合突变、如何检测ALK突变以及如何看懂结果就成了需要回答的问题。

有很多病友会奇怪自己的基因检测报告上有ALK突变却被告知不能吃靶向药,或者为什么自己的病理报告上写着ALK(+)还要做基因检测?想回答这些问题,我们需要去了解什么是ALK融合突变,究竟是怎么检测的。

什么是ALK融合突变?让我们先了解一下主角ALK融合突变到底是怎么回事。

ALK基因全称为间变性淋巴瘤激酶(anaplastic lymphoma kinase,ALK),总共有29个外显子。

为了方便理解,各位可以将它想象成一辆名为ALK的高铁列车,而29个外显子就是列车的29节车厢,那么“融合突变”就是指ALK 的某节车厢断裂并且与其他班次的列车车厢相接变成一个新的列车,最常见的是从ALK号列车的20号车厢处断裂,并与另一辆名为“EML4”的基因重新拼接,如下所示。

已发现的所有ALK基因融合突变都是在ALK基因外显子20处发生断裂,而EML4断裂点有外显子2/6/13/14/15/17/18/20,即上图中与断裂后的ALK基因20号外显子重新连接的不但可以是EML4基因13号外显子,也可以是其他外显子。

上面例子可简称为“E13:A20”,即代表EML4外显子13与ALK 外显子20融合,有些基因检测报告的结果也采用这种缩写。

不同的融合类型使用靶向药的效果也不同,这是后话在此不过多赘述。

随着研究进步,更多的ALK基因融合伴侣被发现,ALK基因20外显子断裂后不仅可能与EML4基因融合,还可能有与KIF5B基因、KLC1基因、TFG基因、HIP1基因等等融合,此类也成为罕见ALK融合突变。

基因突变的检测办法(完整资料).doc

基因突变的检测办法(完整资料).doc

基因突变的检测办法(完整资料).doc此文档下载后即可编辑基因突变的检测办法基因突变的检测办法基因突变的研已成为当今生命科学研究的热点之一,检测办法也随之迅速进展。

人类细胞癌基因的突变类型已如上所述,关于基因突变的检测,1985往常,利用Southern印迹法,能够筛选出基因的缺失、插入和移码重组等突变形式。

关于用该法法别能检测的突变,只能应用复杂费时的DNA序列测定分析法。

多聚酶链反应(polymerase chain reaction,PCR)技术是突变研究中的最重大发展,使基因突变检测技术有了长脚的进展,目前几乎所有的基因突变检测的分子诊断技术基本上建立于PCR的基础之上,同时由PCR衍生出的新办法别断浮现,目前已达二十余种,自动化程度也愈来愈高,分析时刻大大缩短,分析结果的准确性也有非常大非常提高。

其中包括单链构象多态性(single-strand comformational polymorphism,SSCP)和异源双链分析法(heteroduplex analysis,HA)。

下面分不介绍几种PCR衍生技术及经典突变检测办法,可依照检测目的和实验室条件挑选时参考。

PCR-SSCP法PCR-SSCP法是在非这性聚丙烯酰胺凝胶上,短的单链DNA和RNA 分子依其大街基序列别同而形成别同构象,一具碱基的改变将妨碍其构象而导致其在凝胶上的挪移速度改变。

其基本原理为单链DNA在中性条件下会形成二级结构,这种二级结构依靠于其碱基组成,即使一具碱基的别同,也会形成别同的二级结构而出刺同的迁移率。

由于该法简单快速,因而被广泛用于未知基因突变的检测。

用PCR-SSCP法检测小于200bp 的PCR产物时,突变检出率可达70%-95%,片段大于400bp时,检出率仅为50%左右,该法也许会存在1%的假阳性率。

应用PCR-SSCP法应注意电泳的最佳条件,普通突变类型对检测的灵敏度无大的妨碍,并且该法别能测定突变的准确位点,还需经过序列分析来确定。

第八章基因突变监测

第八章基因突变监测

可以预计,在 21世纪,新的高灵敏度、高检测密度、高输出量的突变 检测技术将使遗传性和非遗传性的基因突变的鉴定成为现实。基因治疗的 成功将根本性的改变医疗实践,分子医学的新时代已经来临。

结:
1.基因突变扫描方法有哪些?其基本程序是什么? 2.简述序列分析的大体步骤?
(二)突变诊断方法 1. 序列分析 第一代序列分析技术:以凝胶电泳为基础 第二代的技术包括高压毛细管电泳、超薄电泳和共振离子化光谱分析。 这些方法可使分析速度提高一个数量级。 第三代方法包括流氏细胞光度术对单个标记的碱基进行荧光检测。用 扫描隧道或原子力显微镜直接读出 DNA 序列。对 DNA 进行序列质谱 分析。用杂交法进行序列分析等。这些方法将使序列分析的效率提高 几个数量级,但是,实验方法需要不断成熟与完善。 DNA序列分析方法既是一种突变扫描方法,更是一种突变诊断方法。 对未知的突变来说,必须通过序列分析类鉴定突变的类型和位置。
第八章 基因突变的检测
方法与进展
(一) 突变扫描方法 1. 单链构象多样分析法(SSCP) 其原理在于在非变性条件下一个单链DNA分子会依据其碱基序 列而形成独特的构象。一个单一碱基变化就会引起其构象的改变。 因此,当这两个分子同时在非变性条件下电泳时,他们会出现在 不同的位置,从而区分开来。由于DNA是双链分子,在电泳图谱 上就会出现两条正常带和两条突变带。
一些与疾病相关的基因探针在不断地出现,在不久的将来会有更大容量的基 因探针问世。
随着疾病基因的不断发现,今后的研究将不再局限于确定单个基因产 物对一两个基因的调控,而是要了解一个基因及其突变体在细胞水平上对 所有基因表达的影响。只有通过这样的实验研究才能全面确定一个突变基 因如何在细胞内改变基因表达的标志,从而引起细胞分裂的失控(癌症), 细胞坏死(衰老),细胞代谢的紊乱等等。为了达到这个目的,一些新技 术在不断涌现,如DNA微型组合技术就是 将寡聚核苷酸或cDNA片段固定 到玻璃片上,然后用DNA杂交来观察其基因转录情况。另一种大规模分析 基因转录的方法称为基因表达的系列分析法(SAGE)。其原理是用两个 内切酶将每一个cDNA缩短成10-14各碱基的序列标签,然后用DNA连接酶 连接这些小的标签。在PCR扩增和酶切后,再将这些序列标签连接起来, 通过克隆和序列分析来鉴定基因表达。(详见相关文献)

4-25 陈红岩 DNA测序及突变检测

4-25 陈红岩 DNA测序及突变检测

-O-P-O-CH 2
O
1’
3’
3’ OH
2’
H
DNA sequencing
DNA polymerase I fragment (Klenow), Taq DNA polymerase, Sequenase(T7 phage DNA polymerase modified) Substrate dNTP, dCTP
ARMS法与Sanger测序法灵敏度比较
ARMS技术发表文献
二、未知点突变的检测方法
1. 单链构象多态性(single-strand conformational polymorphism,SSCP) 基本原理: 1) 单链DNA在中性条件下会形成二级结构,这种二级结构依赖 于其碱基组成; 2)在非变性聚丙烯酰胺凝胶上,短的单链DNA和RNA分子依其碱 基序列不同而形成不同构象,一个碱基的改变将影响其构象 而导致其在凝胶上移动速度改变。
(一) 已知点突变的检测方法
1.PCR-RFLP
原理:由于碱基变异可能导致限制酶切点消失或新的酶切点出 现,引起不同个体DNA在用同一限制酶切割时,产生不同长 度的DNA片段,称 RFLP。 利用正常序列或突变序列是否处于限制性内切酶的酶切位点 而设计。若点突变处于某一限制性内切酶的酶切位点内,可 在突变点两侧设计引物,使PCR产物含有该突变序列。用相 应的内切酶对正常产物和突变产物进行水解并作电泳分离, 可根据水解片段的大小和电泳位置区分二者。
基因突变的效应—碱基代换
碱基代换会产生4种不同的效应: 1)同义突变: 不改变氨基酸顺序的碱基代换 2)错义突变: 使氨基酸密码子发生改变的碱基代换 3)无义突变: 产生终止密码的突变, 使翻译终止, 产 生残缺蛋白质 4)连读突变: 终止密码变为有义密码, 产生延伸的多 肽链

基因突变的检测

基因突变的检测
基的检测 • 2、果蝇突变体的检测 • 3、人类现行突变体的检测 • 4、植物及其他动物突变体的检测
病毒基因突变的检测
• 利用诉诸范围、生长速度、噬斑大 小、形态等形状、毒性等对病毒进 行突变检测
• 以E.coli-T4为例 • 没发生突变的T4噬菌体和突变体
• 营养缺陷型细菌在基本培养基上不 能合成必要的某种生长所需营养, 导致细菌不能分裂,青霉素对其没 有影响,存活。
• 几个周期后,收集菌体,培养在完 全培养基上。
负选择法
• 利用在完全培养基上可以生长,但是在基 本培养基上不能生长的影印实验选出突变 体。
• 影印实验——?请老师解答
快速溶菌γ的比较
• 突变体的溶菌速度比没突变的快而 且有明显的大而透明的溶菌斑。
细菌基因突变的检测
• 易——细菌的抗噬菌体、抗抗生素 突变体检测
• 在培养基上添加抗生素 • 喷洒噬菌体
• 难——营养缺陷型突变体
• 采用基本培养基青霉素富集法后在 使用负选择法筛选突变型细菌
• 利用低渗原理使原生质体破裂死亡。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

此文档下载后即可编辑基因突变的检测方法基因突变的检测方法基因突变的研已成为当今生命科学研究的热点之一,检测方法也随之迅速发展。

人类细胞癌基因的突变类型已如上所述,对于基因突变的检测,1985以前,利用Southern印迹法,可以筛选出基因的缺失、插入和移码重组等突变形式。

对于用该法法不能检测的突变,只能应用复杂费时的DNA序列测定分析法。

多聚酶链反应(polymerase chain reaction,PCR)技术是突变研究中的最重大进展,使基因突变检测技术有了长足的发展,目前几乎所有的基因突变检测的分子诊断技术都是建立于PCR的基础之上,并且由PCR衍生出的新方法不断出现,目前已达二十余种,自动化程度也愈来愈高,分析时间大大缩短,分析结果的准确性也有很大很提高。

其中包括单链构象多态性(single-strand comformational polymorphism,SSCP)和异源双链分析法(heteroduplex analysis,HA)。

下面分别介绍几种PCR衍生技术及经典突变检测方法,可根据检测目的和实验室条件选择时参考。

PCR-SSCP法PCR-SSCP法是在非这性聚丙烯酰胺凝胶上,短的单链DNA和RNA分子依其大街基序列不同而形成不同构象,一个碱基的改变将影响其构象而导致其在凝胶上的移动速度改变。

其基本原理为单链DNA在中性条件下会形成二级结构,这种二级结构依赖于其碱基组成,即使一个碱基的不同,也会形成不同的二级结构而出刺同的迁移率。

由于该法简单快速,因而被广泛用于未知基因突变的检测。

用PCR-SSCP法检测小于200bp 的PCR产物时,突变检出率可达70%-95%,片段大于400bp时,检出率仅为50%左右,该法可能会存在1%的假阳性率。

应用PCR-SSCP法应注意电泳的最佳条件,一般突变类型对检测的灵敏度无大的影响,同时该法不能测定突变的准确位点,还需通过序列分析来确定。

Sarkar等认为对于大于200bp的片段,用其RNA 分子来做SSCP会提高其录敏度。

应用PCR-SSCP检测点突变已见报道于人类大部分的肿瘤组织或细胞,如乳腺癌、食管癌、肺癌、胃癌、肝癌、胰腺癌等。

检测的基因包括多种癌基因及抑癌基因,也是检测抑癌基因p53突变最常用的方法,仅检测第5-8外显子即可发现85%以上的p53基因突变。

由于该法简便快速,特别适合大样本基因突变研究的筛选工作。

异源双链分析法(HA)HA法直接在变性凝胶上分离杂交的突变型一野生型DNA双链。

由于突变和野生型DNA形成的异源杂合双链DNA在其错配处会形成一突起,在非变性凝胶中电泳时,会产生与相应的同源双DNA不同的迁移率。

该法与SSCP 相似,所不同的是SSCP分离的是单链DNA,HA法分离的是双链DNA,也只适合于小片段的分析。

但HA对一些不能用SSCP 检出的突变有互补作用,两者结合使用,可使突变检出率提高到近100%。

突变体富集PCR法(mutant-enriched PCR)本法的基本原理是利用ras基因家族某个密码子部位存在已知的限制性内切酶位点,如K-ras基因第12密码子的BstNI位点,第13密古巴子有BgⅠⅡ位点。

用链续二次的巢式PCR来扩增包括K-ras第12、13密码子的DNA片段,在两次扩增反应之间用相应的内切酶消化扩增的DNA片段,野生型因被酶切而不能进入第二次PCR扩增,而突变型则能完整进入第二次PCR扩增并得到产物的富集。

变性梯度凝胶电泳法(denaturing gradinent electrophoresis,DGGE)DGGE法分析PCR产物,如果突变发生在最先解链的DNA区域,检出率可达100%,检测片段可达1kb,最适围为100bp-500bp。

基本原理基于当双链DNA在变性梯度凝胶中进行到与DNA变性湿度一致的凝胶位置时,DNA发生部分解链,电泳适移率下降,当解链的DNA链中有一个碱基改变时,会在不同的时间发生解链,因影响电泳速度变化的程而被分离。

由于本法是利用温度和梯度凝胶迁移率来检测,需要一套专用的电泳装置,合成的PCR引物最好在5`末端加一段40bp-50bp的GC夹,以利于检测发生于高熔点区的突变。

在DGGE的基础上,又发展了用湿度梯度代替化学变性剂的TGGE 法(温度梯度凝胶电泳temperature gradient gelelectrophoresis,TGGE)。

DGGE和TGGE均有商品化的电泳装置,该法一经建立,操作也较简便,适合于大样本的检测筛选。

化学切割错配法(chemical cleavage of mismatch,CCM)CCM为在Maxam-Gilbert测序法的基础上发展的一项检测突变的技术,其检测突变的准确性可与DNA测序相仿。

其基本原理为将待测含DNA片段与相应的野生型DNA片段或DNA和RNA片段混俣变性杂交,在异源杂合的双链核酸分子中,错配的C能被羟胺或哌啶切割,错配的T能被四氧化饿切割,经变性凝胶电泳即可确定是否存在突变。

该法检出率很高,也是检片段最长的方法,已有报功检测了1.7kb片段,如果同时对正、反义链进行分析,检出率可达100%。

应用荧光检测系统可增强敏感度,可检测到10个细胞中的1个突变细胞。

该法中的化学试剂有毒,又发展了碳二亚胺检测法(catodiimide,CDI),CDI为无毒物质,也可检测大片段DNA的点突变。

等位基因特异性寡核苷酸分析法(allele-specific oligonucleotide,ASO)ASO为一种以杂交为基础对已知突变的检测技术。

以PCR和ASO相结合,设计一段20bp左右的寡核苷酸片段,其中包含了发生突变的部位,以此为探针,与固定在膜上的经PCR拉增的样品DNA杂交。

可以用各种突变类型的寡核苷酸探针,同时以野生型探针为对照,如出现阳性杂交带,则表运河样品中存在与该ASO探针相应的点突变,ASO需严格控制杂交条件和设置标准对照避免假阳性和假阴性。

目前已有商品化的检测盒检测部分癌基因ASO突变。

DNA芯片技术(DNA chip)DNA芯片技术是90年代后发展的一项DNA分析新技术,它集合了集成电路计算机、激光共聚焦扫描、荧光标记探针和DNA合成等先进技术。

可用于基因定位、DNA测序、物理图谱和遗传图谱的构建等。

在基因突变检测方面DNA芯片也有广阔的前景,其基本原理为将许多已知序列的寡核苷酸DNA排列在1块集成电路板上,彼此之间重叠1个碱基,并覆盖全部所需检测的基因,将荧光标记的正常DNA和突变DNA发别与2块DNA芯片杂交,由于至少存在1个碱基的差异,正常和突变的DNA将会得到不同的杂交图谱,经过共聚集显微镜分别检测两种DNA分子产生的荧光信号,即可确定是否存在突变,该方法快速简单、片动化程度高,具有很大的发展潜力,将在基因突变检测中心发挥非常重要的作用。

连接酶链反应(ligase chain reaction,LCR)与其他核酸扩增技术比较,其最大特点为可准确区分基因序列中单个基因突变,由Landegree于1988年首次应用于镰刀奖细胞贫血的分子诊断。

LCR 是以DNA连接酶将某一DNA链的5`-磷酸与另一相邻链3`-羟基连接为基础,应用两对互补的引物,双链DNA经加热变性后,两对引物分别与模板复性,若完全互补,则在连接酶的作用下,使相邻两引物的5`-磷酸与3`-羟基形成磷酸二酯二酯键而连接,前一次的连接产物又作为下一次循环反应的模板,如果配对的碱基存在突变则不能连接和扩增。

LCR产物检测最初是通过这32p 标记上游引物3`未端,经变性凝胶电泳分离后放射自显影加以鉴定,其检测敏感性达到200个靶分子。

也可设计1个横跨两引物的检测探针,用它与LCR产物进行杂交检测。

近年有应用荧光素、地高辛等非核素标记方法。

Batt在1994年发展了一种更为简的方法,好微孔板夹心杂交法。

由于LCR的快速、特蛋和敏感的特性,以及能检测单个碱基突变的能力,因此被应用于肿瘤基因突变的分子诊断,并与PCR结合用以提高其敏感性。

等位基因特异性扩增法(Allele-specific amplification,ASA)ASA于1989年建立,是PCR技术应用的发展,也称扩增阻碍突变系统(amplification refractory mutation system,ARMS)、等位基因特性PCR(allele-specific PCR,ASPCR)等,用于对已知突变基因进行检测。

该法通过设计两个5`端引物,一个与正常DNA互补,一个与突变DNA互补,对于纯合性突变,分别加入这两种引物及3`端引物进行两个平行PCR,吸有与突变DNA完互补的引物才可延伸并得到PCR扩增产物。

如果错配位于引物的3`端则导致PCR不能延伸,则称为ARMS。

ARMS和ASPCR借鉴多重PCR 原理,可在同一系统中同时检测两种或多种等位基因突变位点。

ASA法的检出率依赖于反应条件的优化和可能发生的引物与靶DNA有氏配时错配延伸,特别是当错配碱基为G:T时,这时可通过调整实验条件如引物靶DNA,Taq DNA聚合酶的浓度等来得高瓜在特异性。

在反应体系中加入甲酰胺也可减少非特异性扩增。

还可通过在引物3`端的第二个碱基引入一个错配碱基,使之与模板之间形成双重错配以阻止错误延伸。

RNA酶A切割法(RNase A cleavage)在一定条件下,氨基源双链核酸分子RNA:RNA或RNA:DNA中的错配碱基可被RNaseA 切割,切割产物可通过变性凝胶电泳分离。

当RNA探针上错配的碱基为嘌呤时,RNaseA在错配处的切割效率很低,甚至不切割,而当错配碱基为嘧啶时,则其切割效率较高。

故如果仅分析被检DNA的一个条链,突变检出率只有30%,如同时分析正义和反义二条链,检出率可达70%。

该法需要制备RNA探针,增加了操作的复杂性,但可用于1-2kb的大片段进行检测,并能确定突变位点。

于这些优越性,它仍被作为一种经典方法用于对未知突变进行分析。

染色体原位杂交(In situ hybridization of chromosome)染色体发现距今已有150多年的历史,染色体检测被广泛用于动、植物及人类的细胞遗传学研究,随着染色体分技术和分子生物学技术的发展。

染色体研究范围也不断扩大,特别是用于肿瘤分子诊断。

肿瘤细胞的染色体变化是一非常普遍的现象,可分为原发和继发两类。

在肿瘤形成的生物学基础方面,原发性的染色体变化与引起肿瘤的直接原因有关,肿瘤细胞中可以发现各种形式的染色体畸变,如缺失、重复、易位、重排、单体断裂及核内复制等;继发性变化主要是肿瘤细胞核型的改变。

染色体的检测对于肿瘤的诊断、鉴别诊断、生物学行为判别等方面都重要意义。

相关文档
最新文档