加氢催化剂预硫化方案

合集下载

浅谈加氢装置开工前的催化剂预硫化

浅谈加氢装置开工前的催化剂预硫化

浅谈加氢装置开工前的催化剂预硫化一前言目前,大多数加氢催化剂的钨、钼、钴等活性金属组分,使用前都是以氧化物的状态分散在载体表面。

根据生产经验和理论研究,加氢催化剂的活性只有呈硫化物的形态才有较高的活性。

因此,当催化剂装入反应器后,加氢催化剂使用前必须先进行预硫化。

预硫化是提高加氢催化剂活性和延长其使用寿命的重要步骤。

二加氢催化剂的预硫化技术(1)加氢催化剂的预硫化方法及选择虽然氧化态催化剂可通过在使用过程中由原料油中含有的硫化物反应生成硫化氢对其硫化,但一方面由于原料中的硫化物需要在较高的温度条件下才能反应生成硫化氢,从而导致一部分金属氧化物还原,使催化剂的硫化达不到正常水平。

因此,对这类加氢催化剂,多采用外加硫化剂预硫化的方法,将金属氧化物在进原料油反应之前转化为硫化态。

目前,工业装置最常见的预硫化方法有干法硫化和湿法硫化两种。

所谓干法硫化,即在循环氢气存在下,注入硫化剂进行硫化;湿法硫化,即在循环氢气存在下,以低氮煤油或轻柴油为硫化油,携带硫化剂注入反应系统进行硫化。

在实际生产中,究竟选择哪种预硫化方法,应视工厂及加氢催化剂的具体情况而定。

一般来说,对以无定型硅铝为载体的加氢精制催化剂多采用湿法硫化;而对于含分子筛的加氢裂化催化剂则多采用干法硫化。

因为沸石分子筛酸性较强,如果用湿法硫化,可能会因硫化油发生裂解反应而导致催化剂床层超温,并产生积炭而使催化剂活性下降。

(2) 预硫化过程的化学反应在氢存在的条件下,预硫化过程中的化学反应包括硫化剂的分解反应及金属氧化物还原和硫化的竞争反应。

理想的预硫化反应如下:CS2+4H2=2H2S+CH4MoO3+2H2S+H2=MoS2+3H2O9CoO+8H2S+H2=Co9S8+9H2O3NiO+2H2S+H2=Ni3S2+3H2OWO3+2H2S+H2=WS2+3H2O催化剂预硫化反应十分复杂,金属氧化物的还原和硫化反应互相竞争,主要取决于硫化反应的各种条件。

加氢催化剂预硫化-16页文档资料

加氢催化剂预硫化-16页文档资料
加氢催化剂预硫化
—生产四部培训小组
预硫化的目的
催化剂的加氢脱硫活性主要是在它的硫化状态下,而催化 剂的主要成分是钴、钼的氧化态,所以开工时必须对其预 硫化 即:
9CoO+8H2S → Co9S8+9H2O MoO3+2H2S+H2 → MoS2+3H2O
催化剂预硫化的主要方法
预硫化技术是加氢催化剂开发应用的关键步骤之一,使加 氢催化剂保持最佳的活性和稳定性,提高选择性,延长使 用寿命,在国内外受到广泛的关注。因此,深人研究加氢 催化剂的预硫化方法对开发高活性的催化剂有重要意义。 目前,工业上使用的加氢催化剂常用的硫化方法有很多种 .从介质相态上可分为干法硫化和湿法硫化两类,从介质 来源上可分为强化硫化和非强化硫化两种情况.从预硫化 的位置又可分为器内预硫化和器外预硫化
[ I ] - TIC-06089和FIC-06045串级控制 [ I ] - 缓慢调节TIC-06089, [ I ] - 按升温曲线升温(速率不大于20℃/小时) ( P ) - 确认E-0613开始产生蒸汽,将蒸汽排空几小时至合格 [ P ] 一 缓慢关闭放空阀逐渐提高蒸汽压力 ( I ) - 确认PI-06057稍高于PI-06029压力 [ I ] - 缓慢打开E-0613至PV-06029的手阀, [ I ] - 调整发汽并内部低低压蒸汽管网 [ I ] - PIC-06029A自动操作 [ I ] - 设定SV=0.55MPa [ P ] 一 完全关闭放空阀 [ P ] 一 启动加药设施(见加药计量泵操作), [ P ] 一 废锅连续加药 [ P ] 一 连续排污投用 ( I ) - 确认TIC-06089升温至200℃
加氢反应器R-0603催化剂预硫化
1、 预硫化前准备 2、 引氢气进反应器 3、 引再生酸性气进反应器 4、 加氢催化剂预硫化

加氢催化剂预硫化

加氢催化剂预硫化
[ [ [ ( [ ( [ [ [ [ [ [ [ [ ( I I I P P I I I I I P P P P I ] ] ] ) ] ) ] ] ] ] ] ] ] ] ) - - - - 一 - - - - - 一 一 一 一 - TIC-06089和FIC-06045串级控制 缓慢调节TIC-06089, 按升温曲线升温(速率不大于20℃/小时) 确认E-0613开始产生蒸汽,将蒸汽排空几小时至合格 缓慢关闭放空阀逐渐提高蒸汽压力 确认PI-06057稍高于PI-06029压力 缓慢打开E-0613至PV-06029的手阀, 调整发汽并内部低低压蒸汽管网 PIC-06029A自动操作 设定SV=0.55MPa 完全关闭放空阀 启动加药设施(见加药计量泵操作), 废锅连续加药 连续排污投用 确认TIC-06089升温至200℃
引清洁酸性气进反应器
o o o o o o o o P ] 一 联系化验室,采样化验再生酸性气的组成 ( I ) - 确认D-1001的压力PT-10004的压力为0.065MPa ( I ) - 打开UV-06038 [ P ] 一 打开D-1001出口去预硫化再生酸性气的阀门 [ P ] 一 打开预硫化再生酸性气FI-06044的后手阀 [ P ] 一 打开预硫化再生酸性气到主线的阀门 [ P ] 一 调节FI-06044的流量为1-5Nm3/h [ P ] 一 联系化验室,采样分析反应器入口气体中H2S的浓 度不大于2%。
加氢催化剂预硫化
—生产四部培训小组
预硫化的目的
催化剂的加氢脱硫活性主要是在它的硫化状态下,而催化 剂的主要成分是钴、钼的氧化态,所以开工时必须对其预 硫化 即: 9CoO+8H2S → Co9S8+9H2O MoO3+2H2S+H2 → MoS2+3H2O

加氢装置催化剂预硫化方案

加氢装置催化剂预硫化方案
1.1.8
预硫化和进油之间,催化剂是相当有活性的,如遇到紧急情况,催化剂床层的温度更加难以控制,很有可能引起床层飞温。因此应严格地遵守预硫化步骤中有关温度的限制并且密切监视反应器床层温度,这样才不会发生飞温。
预硫化期间,催化剂被还原会造成催化剂损坏。还原是催化剂上的金属氧化物反应生成纯的金属,而不是反应产生金属硫化物的一种反应。在较高的温度下,循环氢中硫化氢含量又少,还原反应就发生的快。因此,在预硫化期间,准确的控制硫化温度和硫化氢浓度是至关重要的。
(3)185℃前,DMDS的注入速度不宜过快,以免累积在反应器床层中发生集中分解放热;
(4)200℃以前,应严格控制升温速率不大于给定值;
(5)循环氢中H2S含量未被检出或浓度小于0.3%时,反应器内床层温度不得超过230℃。
(6)硫化期间,正常下不用冷氢,但冷氢阀必须处于随时可用状态。硫化过程中应严密观察反应器各床层温度的变化。若单个催化剂床层温升达到10℃,立即投用冷氢控制床层温度,并停止升温;若单个催化剂床层温升达到20℃以上,且呈快速上升趋势,则停炉熄火,并立即启动紧急放空系统(7bar/min)。
(1)预硫化期间新氢中断
预硫化期间,DMDS反应生成硫化氢所需的新氢量以及补充反应器回路中分解损失的氢气量以及泄漏氢气量是很少的,因此不需要补充很多的新氢。预硫化期间如果新氢中断,必须降低硫化温度,尽可能的放慢压力损失的速度。当氢气恢复之后,装置立即快速地重新开始预硫化。事故处理过程如下:
1新氢中断,降低反应温度,适当的情况下,可用冷氢把所有的床层温度降低50℃或降到150℃,如果床层温度本身低于150℃,把温度降到140℃,如果预计在3~4小时内能恢复,保持床层平均温度在这一温度。
(7)硫化期间如发生故障而中止了硫化,重新开始时必须恢复到中止前的状态进行。

加氢催化剂硫化方案

加氢催化剂硫化方案

内蒙庆华20万吨/年甲醇装置JT-8焦炉气加氢催化剂予硫化方案一、催化剂装填前准备1.检查反应器内清洁无水无杂质;2.准备好内件、填料及催化剂,其中有:①2mm不锈钢丝网16张左右(直径与反应器直径相同);②瓷球约数吨左右;③催化剂;JT-8 装填数量:87M3其中:予加氢反应器D61201A、B各14.5 M3一级加氢反应器D61202:29.06 M3;二级加氢反应器D61205:29 M3④φ300、6.5-10.5米长帆布筒子2根、剪刀2把;⑤装料漏斗(需预制);⑥500×700轻质木板2块;⑦葫芦2只或吊车。

⑧在设备内的工作人员以及所需的人孔值班人员在装填作业开始前必须具备具有认可的安全培训,所有时候进入设备内工作都须持有进入许可证以及反应器内气体测试报告。

⑨装填前要对设备进行检验以确保所需的内件都已正确的安装好,特别是温度计导管和取样管,还要检验所有的施工材料是否都已拆掉并且反应器壁已清除氧化物和铁屑。

钢丝网除锈,用白布擦净,检查各测温热电偶管,取样管的安装及连接管口方位是否符合图纸要求,特别注意固定筛网支架。

二、装填作业1、检查反应器内清洁无水无杂质;2、底部格栅安装牢固;3、画出催化剂装填上下界限标记及中间分段标记;4、底部格栅上面平铺1层不锈钢丝网;5、装入填料(瓷球)至标志线铺平;瓷球上面平铺2层不锈钢丝网6关闭下部人孔;7装催化剂装填催化剂时应避免阴天,下雨,以防催化剂受潮而影响其使用活性。

催化剂装填之前应先筛去粉尘。

催化剂装填时,从上人孔放入加料帆布筒10.0米左右和漏斗连接;催化剂装填时视装填设备及人员情况,可进行一台或多台反应器的装填作业。

①漏斗内倒入催化剂0.5-1.0吨;可根据具体情况确定。

并用吊车吊至反应器人孔上方,漏斗与帆布筒相连,放入催化剂。

②视吊装催化剂的量,取出漏斗和帆布筒由软梯进入反应器,用木板刮平催化剂;③刮平后,根据具体装填高度,帆布筒剪掉约1米,继续装催化剂,装量根据第一次实际装填情况可调节。

预加氢催化剂预硫化方法

预加氢催化剂预硫化方法

精心整理中国石化九江分公司30×104t/a重整预加氢装置FH-40C催化剂原则开工方案中国石油化工股份有限公司抚顺石油化工研究院二○○九年四月一、催化剂干燥1、干燥前的准备工作(1)催化剂装填完毕,(2)绘出催化剂干燥脱水升、恒温曲线。

(3)2、干燥示意流程↓N2↑↓↓放水3循环氮气量:循环压缩机全量循环干燥温度要求见表2。

表2催化剂干燥温度要求反应器入口温度℃床层温度℃升、降温速度℃/h升、恒温参考时间h 常温→250- 10~15 15250~280 ≮200- 至干燥结束250→<150≯15020~25 4~54、干燥结束标准高分无明水放出。

5、干燥操作(1)在氮气压力1.5MPa/h的升温速度将反应器入口温度升至250℃,不到200(2)在干燥过程中,每2(3)(4)<150(如DMDS)分解生成H2S,H2S使H2S反应转化成硫化态之前被热氢还原。

所以,催化剂预硫化时,必须控制好预硫化温度与循环氢中H2S含量的关系,在H2S未穿透催化剂床层前,床层最高点温度不应超过230℃。

1、预硫化前的准备工作(1)催化剂干燥结束后,将催化剂床层温度降至150℃,泄压至0.2MPa,引氢气置换至氢纯度>85%,再升压至操作压力,建立氢气循环。

(2)绘出预硫化过程的升、恒温曲线。

(3)注硫系统吹扫干净,并将硫化剂装入硫化罐内。

(4)准备好不同规格的H 2S 检测管。

硫化过程中每1小时测一次循环氢中的H 2S 浓度。

2、催化剂硫化示意流程硫化油↓DMDS↑↑分液罐→循环压缩机↓ ↑←高分←水冷←空冷←换热器3、催化剂硫化条件 反应压力:操作压力 (CS 2)。

则需按照CS 2硫化剂含硫量的不同进行硫化温度及循环氢中H 2S 含量控制要求见表3。

表3催化剂硫化阶段温度要求反应器入温度 ℃ 升温速度 ℃/h 升、恒温参考时间 h循环氢H 2S 控制v%常温→15015~20150 - 3150→230 10~15 8 实测230 - 8 0.3~0.8230→290 10~15 6 实测290 - 6 0.5~1.0计算,8小(2)以10~15℃/h升温速度将反应器入口温度升到290℃,恒温硫化6小时。

加氢催化剂硫化方案

加氢催化剂硫化方案

制氢装置催化剂硫化方案硫化前准备:1、催化剂已按填装方案填装完毕2、压缩机已试机完成,达到开机条件,所有仪表已联校完成3、制氢系统已用氮气置换合格(O2<0.5%)、气密完成4、准备好硫化剂(DMDS)并注入至硫化剂罐,硫化剂线已试压、吹扫干净(用蒸汽、风彻底吹扫干净)5、准备好硫化用工具:硫化氢检测管、计量水器具、画好升温曲线、记录纸、对讲机消防器具等6、干气、氮气、循环水等已准备就绪LYT-701/LYT-702加氢催化剂硫化1、硫化机理LYT—701/702加氢催化剂活性组份氧化钴、氧化镍、三氧化钼在使用前需将其转化为硫化物才具有活性,这一过程为硫化,其机理为:DMDS(或CS2)+4H2=2H2S+CH4MoO3+2H2S+H2=MoS2+3H2OCoO+H2S=CoS+H2ONi0+ H2S=NiS+H2O硫化时,用干N2-H2(H2≥10%,O2<0.5%)作为硫化原料气,配以适量的CS2或者DMDS,经加热达到一定温度后进入催化剂床层,通常采用循环硫化或一次放空硫化方法。

2、硫化过程1、反应系统气密合格,建立氢气-氮气循环后,进行催化剂硫化。

硫化条件:氢压,MPa ≦0.5MPa循环介质,% N2-H2混合气氢气含量,%(v/v) 30-50空速,h-1 200-500第一个恒温硫化阶段床层温度和时间 230℃恒温6小时第二个恒温硫化阶段床层温度和时间 300℃恒温4-6小时第三个恒温硫化阶段床层温度和时间 350℃恒温4小时硫化剂二甲基二硫或二硫化碳理论需硫量,m %(对催化剂) 约8.0吸硫量计算公式为:⎥⎦⎤⎢⎣⎡⨯+⨯⨯+⨯⨯=C B A c s M C M B M A w w 06.329/806.32306.32s w :理论吸硫量c w :催化剂装量A:MoO 3的百分含量;A M :MoO 3的分子量,143.94B :CoO 的百分含量B M :CoO 的分子量,74.93C:NiO 的百分含量C M :NiO 的分子量,74.70理论生成水重量为:DMDS (或CS 2)注入量计算式:(催化剂量)×8%×94(DMDS 分子量或CS 2)/64(硫分子量)=硫注入量 硫注入量×1.1(10%的余量)=实际硫注入量0.452 吨 气体含硫量计算式:X (气体循环量Nm3)/22.4×0.5%(硫含量)×94(DMDS 分子量或CS2)/64(硫分子量)=X’ Kg 二甲基二硫性质:分子式:CH3SSCH3 分子量:94.20 CAS :624-92-0 淡黄色透明液体。

T202有机硫加氢催化剂硫化方案

T202有机硫加氢催化剂硫化方案

T202有机硫加氢催化剂硫化方案T202有机硫加氢催化剂硫化就是利用焦炉气中高浓度H2S将催化剂的金属组分由氧化态转化成相应的硫化态。

硫化的关键是要避免金属氧化态在与H2S反应转化成硫化态之前被热氢还原。

所以,催化剂硫化时,必须控制好温度与循环气中H2S含量,在H2S未穿透催化剂床层前,床层最高点温度不应超过230℃。

利用未经脱硫的高硫原料气硫化。

1、硫化条件:气源:未经脱硫的焦炉气,其中含硫5-7g/m3硫化空速:一般控制在250-400h-1最高温度≤400℃压力:0.1-1.0MPa,放硫时降低到0.1-0.2MPa2、硫化曲线:3、硫化注意事项:(1)系统用氮气置换合格后,引入低硫焦炉气(或循环氮气)进入升温炉,建立升温流程,点燃升温炉,根据升温曲线调节燃烧气量,一般控制升温炉出口温度不大于床层温度50℃,将催化剂升温至220℃恒温,待催化剂床层温度拉平后,改高硫原料气对催化剂进行等温硫化,床层最高温度≤450℃。

(2)硫化时将系统压力以每小时0.3-0.5MPa的速率提至硫化曲线要求的操作压力。

(3)在120℃前主要是赶吸附水平稳升温,防止操作过急。

(4)120℃恒温主要是驱赶吸附水,拉平床层温度。

(5)220℃开始有硫化反应应加强分析,每1小时分析一次进出口H2S含量。

(6)300℃时密切注意床层温度付反应开始,应控制入口温度按硫化曲线进行。

(7)300℃-370℃吸硫激烈,应保证充足时间,使硫化彻底具体参照分析数据定,当开始放硫时(出口H2S浓度大于入口H2S浓度)应加快升温。

(8)硫化时提高压力应缓慢进行,最高提至1.0MPa。

放硫时应把温度提到400℃保持0.1-0.2MPa即可,此时应该保证足够时间,当分析进出口硫浓度基本一致,可认为硫化结束。

(9)催化剂硫化结束后要用低硫原料气对催化剂吹扫,这时可将催化剂床层温度保持在400℃,压力逐渐降低,保持在0.1-0.2MPa即可,这一阶段要保证有足够时间,分析出口H2S≤300mg/m3可停止吹扫,将系统压力逐渐提至0.5MPa,设备保温保压。

预加氢催化剂预硫化方案

预加氢催化剂预硫化方案

预加氢催化剂预硫化方案The document was finally revised on 2021中国石化九江分公司30×104t/a重整预加氢装置FH-40C催化剂原则开工方案中国石油化工股份有限公司抚顺石油化工研究院二○○九年四月一、催化剂干燥1、干燥前的准备工作(1)催化剂装填完毕,临氢系统进行氮气置换、气密合格。

催化剂干燥用氮气作介质。

(2)绘出催化剂干燥脱水升、恒温曲线。

(3)催化剂干燥前,各切水点排尽存水,并准备好计量水的器具。

2、干燥示意流程↓N2循环氢分液罐→循环压缩机→换热器→加热炉↑↓分离器←水冷←空冷←换热器←反应器↓放水3、催化剂干燥条件:高分压力:反应器入口温度:250℃循环氮气量:循环压缩机全量循环干燥温度要求见表2。

表2 催化剂干燥温度要求反应器入口温度℃床层温度℃升、降温速度℃/h升、恒温参考时间h常温→250- 10~15 15250~280 ≮200 - 至干燥结束250→<150≯150 20~25 4~54、干燥结束标准高分无明水放出。

5、干燥操作(1)在氮气压力下,循环压缩机全量循环,加热炉点火,以10~15℃/h的升温速度将反应器入口温度升至250℃,开始恒温脱水。

如果催化剂床层最低点温度达不到200℃,可适当提高反应器入口温度,但反应器入口温度≯280℃。

(2)在干燥过程中,每2小时在高分放水一次,并计量。

(3)画出催化剂脱水干燥的实际升、恒温曲线图。

(4)干燥达到结束标准后,以≯25℃/h的降温速度将反应器床层各点温度均降至<150℃,方可引入氢气进行高压气密,合格后进行催化剂预硫化。

二、催化剂预硫化催化剂预硫化是指催化剂在氢气存在下,硫化剂(如DMDS)分解生成H2S,H2S使催化剂金属组分由氧化态转化成相应的硫化态。

在预硫化过程中,关键问题是要避免金属氧化态在与H2S反应转化成硫化态之前被热氢还原。

所以,催化剂预硫化时,必须控制好预硫化温度与循环氢中H2S含量的关系,在H2S未穿透催化剂床层前,床层最高点温度不应超过230℃。

加氢裂化催化剂预硫化操作规程

加氢裂化催化剂预硫化操作规程

加氢裂化催化剂预硫化操作规程一、催化剂预硫化的目的加氢裂化催化剂的活性金属组分主要是Mo、Ni、Co和W,同其它新催化剂或再生后的催化剂一样,其所含的活性金属组分(Mo、Ni、Co、W)都是以氧化态的形式存在。

大量的研究和工业实践证明,催化剂经过硫化,活性金属组分由氧化态转化为硫化态,具有良好的加氢活性和热稳定性。

因此,在加氢催化剂接触原料油汽之前,先进行预硫化,将催化剂活性金属组分由氧化态转化为硫化态。

本装置使用的FZC系列保护剂为Mo-Ni系活性金属氧化物,FF-20精制催化剂活性金属为W-Mo-Ni系金属氧化物,FC-14裂化催化剂的活性金属为W-Ni系金属氧化物,予硫化能使MoO3、WO3和NiO转变为具有较高活性的MoS2、WS2和Ni3S2金属硫化物。

催化剂硫化一般分为湿法硫化和干法硫化两种,湿化硫化为在氢气存在下,采用硫化物或馏分油在液相或半液相状态下的预硫化;干法硫化为在氢气存在下,直接用含有一定浓度的H2S或直接向循环氢中注入有机硫化物进行的预硫化。

湿法硫化分为两种:一种为催化剂硫化过程所需要的硫油外部加入的硫化物而来,一种为依靠硫化油自身的硫进行预硫化。

本装置预硫化工艺为干法气相硫化。

使用二甲基二硫化物C2H6S2(DMDS)作为硫化剂。

二、催化剂预硫化的原理催化剂预硫化是基于硫化剂(DMDS)临氢分解生成硫化氢(H2S),H2S与催化剂活性金属氧化态反应转化成相应金属硫化态的反应。

其相关的硫化反应如下:(CH3)2S2+3H2→ 2H2S+2CH4MoO3 + 2H2S + H2→ MoS2 + 3H2O3NiO + 2H2S + H2→ Ni3S2 + 3H2OWO3 + 2H2S + H2→ WS2 + 3H2O三、具备条件(1)经过气密检验和紧急泄压试验,确认系统严密性和联锁系统性能安全可靠。

(2)供氢系统确保稳定可靠,1401-K-101及1401-K-102运转正常。

有机硫加氢(HDS)催化剂的预硫化

有机硫加氢(HDS)催化剂的预硫化

有机硫加氢(H DS)催化剂的预硫化冯 续 崔 芳(西北化工研究院,陕西西安,710600) 摘要 预硫化是H DS 、H DN 过程中决定催化剂活性的最重要环节。

在分析催化剂硫化反应原理、硫化条件、硫化与还原的关系等基础上进一步指出了在工业过程中预硫化的一些原则。

关键词 H DS 有机硫加氢 预硫化 硫化收稿日期:2002-09-09。

作者简介:冯 续,男,1966年毕业于南开大学化学专业,研究员,现在西北化工研究院从事催化剂、净化剂研究和管理工作,曾获全国科学大会奖2项,省科技进步奖1项,发明专利1项,在国内学术刊物上发表论文35篇。

电话:029-*******。

C o 2M o/Al 2O 3加氢催化剂的磁性研究结果指出[1]:新鲜的催化剂是由Al 2O 3、C oAl 2O 4、M oO 3、C oO 、C oM oO 4和一种复杂的钴钼氧化物的复合物组成。

这种氧化态催化剂具有一定的加氢脱硫活性,但在其变成硫化物以前,不可能达到最佳活性。

因此,催化剂投入正常使用前需将氧化态的活性组成先变成硫化态的金属硫化物,这个过程称为催化剂的硫化。

某些以天然气为原料的装置,因原料分子量较小,硫的形态简单,硫化物随原料烃易于扩散到催化剂多孔结构的内表面,使内表面利用率提高。

在这种情况下,可以采用自然硫化,即边使用边硫化的办法使催化剂达到硫化态,这是因为一方面氧化态也具有一定的活性,再则也避免了原料气中硫含量变低时导致硫化态催化剂放硫。

我国曾进行了以高沸点油(馏分为140~224℃的923航空煤油)为原料的C o 2M o/Al 2O 3预硫化与不预硫化的活性比较,试验结果见图1[2]。

图1 催化剂预硫化和不预硫化的比较可以看出,对液态烃采用自然硫化方式,硫化不完全且导致一部分金属还原,使催化剂活性达不到正常水平。

因此对于沸点高,形态硫复杂的原料(如炼厂气、轻油等),需要采用预硫化方法将金属氧化物在进料反应前转化为硫化态。

JT-8硫化

JT-8硫化

(3)、在温度恒定之后,开始注硫,气体中含硫量:0.5~1.5%(体积)初期2-4小时气体中硫含量0.5-0.8%(体积),之后可控制在1.0-1.5%(体积)。待出口气中检测出硫时,开始升温,升温速率20~30℃/小时,220℃恒温,待出口气中检测出硫时,继续升温,升温速率20~30℃/小时,260-280℃恒温,待出口气中检测出硫时,继续升温,升温速率20~30℃/小时,350-380℃恒温,待出口气中检测出0.1%的硫时,或按催化剂理论吸硫量将CS2加完后,可认为预硫化结束,然后降温吹扫,降温速率20~30℃/小时,等温度降至240℃,出口气中硫含量低于500ppm时,逐步升压到正常操作压力(升压速率不高于0.5Mpa/10min),转入正常操作。
3.2.5升温、升压结束后,先进行4小时左右半负荷生产,以调整温度。压力、流量等,待操作稳定后,逐步加大负荷,转入正常生产。
3.2.6若先加压后升温,亦须严格按上述要求进行控制,因为调整幅度过大,会造成应力作用,导致脱硫剂粉化。
3.2.7操作温度在使用范围内逐步递升,可增加硫容。
3.2.8 T305干燥升温
280 恒温 4 ≤0.5 、、 、、 1.0-1.5 出口检出硫后
280-380 20-30 4 ≤0.5 、、 、、 1.0-1.5
380 恒温 5 ≤0.5 、、 、、 1.0-1.5 出口检出0.1%硫后
380-280 20-30 5 0.1-0.2 低硫焦炉气 、、 充分放硫
(1)、装填完毕后,用气密合格,用氮气其它惰性气体升温,升温速率为20~30℃/hr,空速300-500h-1,压力为0.3-0.5MPa当温度升至160-180℃时,恒定2-3小时,待温度稳定后,切换焦炉气。

加氢催化剂器外预硫化技术的研究

加氢催化剂器外预硫化技术的研究

加氢催化剂器外预硫化技术的研究方向晨高玉兰凌凤香张喜文宋永一(中国石油化工股份有限公司抚顺石油化工研究院辽宁抚顺 113001)1 前言加氢处理催化剂的活性金属组分通常为氧化态的W、Mo、Ni和Co,为使其转化为具有活性的硫化态,必须在催化剂使用前进行预硫化处理。

催化剂的预硫化方法按照载硫的方式可分为:“器内/器外”。

由于加氢精制催化剂的器内预硫化操作条件苛刻,开工时间较长,因而器外预硫化方法应运而生。

器外预硫化技术优势:(1)提高加氢精制催化剂活性金属组分的利用率,确保以最低的催化剂制造成本获得较高的催化剂反应活性;(2)节省催化剂的开工时间;(3)最大限度减少活性金属化合物还原的可能性;(4)在催化剂的工业开工过程中避免接触有害硫化物。

国外从80年代开始在器外预硫化方面进行研究。

如EURACAT公司、CRITERION 公司和TRICAT公司推出了相应的器外预硫化技术EasyActive、actiCAT 和Xpress等。

目前抚顺石油化工研究院在器外预硫化领域的研究取得了较好结果,新研制的EPRES器外预硫化技术制备出催化剂的持硫率和孔性质恢复率均与同类参比催化剂相当,其活性达到器内硫化的催化剂水平。

2 器外预硫化催化剂的研究加氢处理催化剂的活性金属通常为Mo、W、Ni和Co。

目前加氢催化剂多采用双金属或多金属组合,而且活性金属的含量也比较高,因此催化剂中活性金属的物种比较复杂。

上述氧化态催化剂经过硫化后形成MoS2、WS2、Ni3S2和Co9S8。

选择复合硫化剂作为研制器外预硫化催化剂的硫源比较好。

然而,器外预硫化催化剂所载的硫化物的流失是一个非常关键的问题。

器外预硫化催化剂在氢气气氛中硫化,其催化剂内所载入的硫化物可以转化为三部分:一部分硫化物会转化为硫化氢被氢气带走,一部分则会与催化剂活性金属结合,还有少量会流失掉。

其中,转化为硫化氢的是可以再利用的部分,这部分硫仍然可以循环并进一步与催化剂活性金属进行硫化反应。

加氢催化剂釜式预硫化方案

加氢催化剂釜式预硫化方案

加氢催化剂釜式预硫化及反应方案
(1)加氢催化剂预硫化
将100g 200#溶剂油加入高压反应釜中,然后称取一定质量的CS 2(1%~2%)加入其中,然后将25g 催化剂加入反应釜,体系密闭后用H 2吹扫3遍,充H 2到4~5MPa 。

开始加热,加热电压为220V 。

加热至100℃开始搅拌,搅拌速率300r/min ,然后升温到硫化温度280℃硫化8~10h 。

反应过程中不停止搅拌,温度波动范围控制在±1℃,需连续补充H 2。

待反应完成,自然冷却。

石油炼制与工程P412
硫化剂通常CS 2,1%~2%。

CS 2+4H 2——CH 4+2H 2S
NiO+H 2+2H 2S ——Ni 3S 2+3H 2O
MoO 3+H 2+2H 2S ——MoS 2+3H 2O
Co 3O 4+H 2+3H 2S ——3CoS+4H 2O
(2)加氢反应
打开反应釜,迅速清洗溶剂油后,尽快将80g 原料油加入高压反应釜中,密封后用H 2吹扫3遍,充H 2到8.0MPa 。

按正常操作步骤进行加氢反应。

主反应:
副反应:2
+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 引言
加氢催化剂是广泛应用于石化工业领域的关键催化剂之一。

为了提高加氢催化剂的活性和稳定性,预硫化技术被广泛应用。

本文将从预硫化的原理、影响因素以及常见的预硫化方案等方面进行探讨。

2. 预硫化的原理
预硫化是指在加氢催化剂使用之前,使用硫化物溶液进行处理,使其表面形成一层硫化物膜。

这一膜可以防止催化剂表面被氧化物或其他不活性物质占据,从而提高催化剂的活性和稳定性。

预硫化的原理可以归结为两个方面:
•活性金属硫化物的形成:活性金属如镍、钼等能够与硫化物反应形成硫化物,这种硫化物能够促进加氢反应的进行,提高催化剂的反应活性。

•表面硫化膜的形成:硫化物膜可以阻隔外界氧气和不活性物质的侵蚀,减少催化剂的表面被氧化的机会,提高催化剂的稳定性。

3. 预硫化的影响因素
预硫化的效果受到多种因素的影响,下面列举了一些主要的影响因素:
3.1 硫化剂的选择
预硫化过程中使用的硫化剂对催化剂的性能起着至关重要的作用。

常用的硫化剂包括硫化氢(H2S)、二硫化碳(CS2)等。

不同的硫化剂在反应中会产生不同的硫化物,并对催化剂表面的化学状态产生影响。

3.2 预硫化温度和时间
预硫化温度和时间是影响预硫化效果的关键因素。

一般来说,高温和长时间的预硫化会使硫化剂更充分地与催化剂发生反应,生成更完善的硫化物膜。

然而,过高的温度可能会导致催化剂的部分活性成分被分解或损失,因此需要根据具体情况选择合适的预硫化温度和时间。

3.3 氛围条件
预硫化过程中的气氛条件也会对催化剂的预硫化效果产生影响。

一般情况下,加氢环境中的氢气浓度越高,硫化剂与催化剂的反应速度越快,硫化物膜形成的效果也越好。

4. 常见的预硫化方案
4.1 H2S气体预硫化
H2S气体预硫化是一种常用的预硫化方式。

预硫化过程中,将催化剂放入加热炉中,通入含有H2S气体的加硫气体。

通过控制炉内温度和气氛浓度,使硫化剂与催化剂表面反应生成硫化物。

4.2 溶液浸泡预硫化
溶液浸泡预硫化是另一种常见的预硫化方式。

在该方法中,将催化剂放入硫化物溶液中浸泡一段时间,使硫化物溶液与催化剂表面进行反应。

随后将催化剂取出并进行洗涤、干燥等后续处理。

4.3 硫化剂拌混预硫化
硫化剂拌混预硫化用于颗粒状的催化剂。

将硫化剂与催化剂进行拌混,使硫化剂充分地均匀分散在催化剂颗粒中。

然后加热拌混后的混合物,使硫化剂与催化剂表面发生反应。

5. 结论
预硫化是提高加氢催化剂活性和稳定性的重要手段。

通过合理选择硫化剂、控制预硫化的温度和时间以及调节气氛条件,可以获得良好的预硫化效果。

不同的预
硫化方案适用于不同形态和类型的催化剂,具体的选择应根据实际情况进行。

预硫化技术的应用可以显著改善加氢催化剂的性能,进一步推动石化工业的发展。

相关文档
最新文档