图形旋转、平移、轴对称
图形的平移、旋转与轴对称单元知识点总结
二、图形的平移、旋转与轴对称1.图形的平移●平移的定义:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定距离的图形运动。
●平移两要素:平移的方向、平移的距离●平移前的图形:画虚线;箭头:表示平移的方向;平移后的图形:画实线。
●注意:平移几格不是原图形与平移后图形之间的格数,而是指图形的对应点之间的格数。
●关键点:一般是图形的各顶点或线段的交点。
●注意:平移前后,图形的大小、形状、方向都不变,只是位置变了。
●画平移后图形的方法:①找关键点②定平移方向、距离③找对应点④依次连线。
2.图形的旋转●旋转的定义:旋转是指在平面内,将某个图形绕一个定点沿某个方向旋转一个角度的图形运动。
这个定点称为旋转中心,旋转的角度称为旋转角度。
●旋转三要素①旋转中心:点/轴②旋转方向:顺时针方向/逆时针方向③旋转角度●怎样描述图形的旋转:将某图形绕某点沿某时针方向旋转某度到某位置。
●画旋转后图形的方法:①找旋转中心②找准关键线段③旋转关键线段④画出旋转后的图形●旋转中心:一般是两个图形的公共点●关键线段:过旋转中心的线段。
为了保证旋转角度,一般选与方格纸重合的线段作为关键线段。
●注意:旋转前后,图形的大小、形状都不发生改变,但位置和方向一般会发生变化。
3.轴对称图形●定义:轴对称图形沿一条直线对折后,两部分能完全重合,折痕所在的直线叫做它的对称轴(对称轴画虚线,画超出图形)。
●轴对称图形至少有一条对称轴。
●轴对称图形中每一组对称点到对称轴的距离相等。
●轴对称图形中对称点的连线与对称轴互相垂直。
●轴对称图形和对称轴的数量:①正方形(4条对称轴)②长方形(2条对称轴)③等腰三角形(1条对称轴)④等边三角形也叫正三角形(3条对称轴)⑤菱形(2条对称轴)⑥圆形(无数条对称轴)⑦等腰梯形(1条对称轴)⑧五角星(5条对称轴)⑨正五边形(5条对称轴)●生活中的轴对称图形或轴对称现象:京剧脸谱、剪纸、国徽、天坛、北京故宫、凯旋门、蝴蝶、空调、人的五官和身体等●画对称轴的方法:①找一组对应点②画对应点间线段的中垂线③画虚线●画轴对称图形另一半的方法:①找关键点②定对称点③依次连线(一般画虚线)4.设计图案●利用平移设计图案的方法:①选好基本图形②确定平移的方向③确定平移的距离④进行多次平移●利用旋转设计图案的方法:①选和基本图形②确定旋转方向和角度③确定旋转中心④依次画出每次旋转后的图形●利用轴对称设计图案的方法:①选好基本图形②确定对称轴③画出基本图形的另一半5.探索规律●观察图形变化时,先确定变化方式(平移、旋转或轴对称),再确定位置变化的规律。
图形的平移、旋转和轴对称 教案苏教版四年级下册
图形的平移、旋转和轴对称教案(苏教版四年级下册)图形的平移、旋转和轴对称教案(苏教版四年级下册)「篇一」教学目标:1、进一步认识图形的对称轴,探索图形成轴对称的特征和性质,并能在方格纸上画出一个图形的轴对称图形。
2、会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
教学重、难点:1、认识图形的对称轴,并能画出轴对称图形。
2、能画出平移后的图形。
教学建议:1、注意让学生真正地、充分地进行活动和探究。
2、恰当把握教学目标。
3、注意知识的科学性。
章节名称图形的运动(二)课时课标要求教学目标1、进一步认识图形的对称轴,探索图形成轴对称的特征和性质,并能在方格纸上画出一个图形的轴对称图形。
2、会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
内容分析学生在二年级已经初步感知了生活中的对称、平移和旋转现象,初步认识了轴对称图形,能在方格纸上画简单的轴对称图形,在此基础上,本单元让学生进一步认识图形的轴对称,探索图形成轴对称的特征和性质,学习在方格纸上画出一个图形的轴对称图形,发展空间观念。
学情分析在二年级学生已经认识了日常生活中的对称现象,有了轴对称图形的概念,并能画出一个轴对称图形的对称轴和它的另一半,这里是进一步认识两个图形成轴对称的概念,探索图形成轴对称的特征和性质,并学习在方格纸上画出一个图形的轴对称图形。
本单元教材先设计了画对称轴,观察轴对称图形的特征和画出一个轴对称图形的另一半的活动,加深对轴对称图形特征的认识,从而让学生在已有的知识基础上探索新知识。
教学重点1、认识图形的对称轴,并能画出轴对称图形。
2、能画出平移后的图形。
教学难点1、认识图形的对称轴,并能画出轴对称图形。
2、能画出平移后的图形。
学生课前需要做的准备工作教学策略轴对称教学目标:进一步认识图形的对称轴,探索图形成轴对称的特征和性质,并能在方格纸上画出一个图形的轴对称图形。
教学重难点:认识图形的对称轴,并能画出轴对称图形。
轴对称平移与旋转轴对称轴对称的再认识
2023-10-30•轴对称平移•旋转轴对称•轴对称的再认识目录•总结与展望01轴对称平移轴对称平移是指将图形以某条直线为轴,将图形上所有点沿该直线方向作对应平移。
定义轴对称平移不改变图形的形状和大小,只改变图形的位置和方向。
性质定义与性质轴对称平移的应用图像处理在图像处理中,轴对称平移可用于对图像进行平移、旋转等操作,实现图像的几何变换。
晶体学在晶体学中,轴对称平移是描述晶体结构的重要工具之一,可以帮助科学家更好地理解晶体的性质和结构。
图形设计在图形设计中,轴对称平移是一种常见的变换方式,可以用来创建新的图形或图案。
实例展示矩形平移将一个矩形以某条直线为轴,将矩形上所有点沿该直线方向作对应平移,得到一个新的矩形。
螺旋图案通过连续的轴对称平移和旋转操作,可以创建一个美丽的螺旋图案。
雪花图案通过多个轴对称平移和旋转操作,可以创建一个雪花图案。
02旋转轴对称定义旋转轴对称是指图形绕某一直线旋转一定的角度后,自身重合的现象。
性质旋转轴对称具有旋转不变性和对称性。
定义与性质旋转对称在建筑、雕塑、绘画等艺术领域中有着广泛的应用。
艺术领域自然界中许多现象,如雪花、螺旋壳等,都呈现出旋转对称性。
自然界中在计算机图形学中,旋转对称被广泛应用于图像处理和动画制作。
计算机科学旋转轴对称的应用螺旋图案是典型的旋转对称图形,其结构具有旋转不变性。
螺旋图案六角形雪花是一种典型的具有旋转对称性的自然结构。
雪花圆形花坛是常见的旋转对称建筑,其设计具有旋转不变性。
圆形花坛实例展示03轴对称的再认识轴对称是指一个物体关于某一直线(对称轴)对称,即物体在该直线的两侧或一侧,沿直线折叠后,物体两部分能够互相重合。
轴对称的定义轴对称的深入理解轴对称具有唯一性、反身性和对称性。
轴对称的性质可以通过观察物体的形状、位置、方向等是否关于对称轴对称来进行判断。
轴对称的判断如雪花、树叶等自然物的形状呈现出轴对称的特点。
自然界中的轴对称许多艺术品和建筑在设计时也会利用轴对称,如教堂、寺庙等。
第一轮复习图形的位置变换(平移、旋转、轴对称)
(1, 3) . 则点 C′的坐标是_______
典型习题
五、变换作图 如图, 在平面直角坐标系中, △ABC 的三个顶点都在格 点上,点 A 的坐标为(2,4),请解答下列问题: (1)画出△ABC 关于 x 轴对称的 △A1B1C1,并写出点 A1 的坐标; (2)画出△A1B1C1 绕原点 O 旋转 180° 后得到的△A2B2C2,并写出 点 A2 的坐标.
达标检测
8.下列图形中,既是轴对称图形,又是中心对称图形 的是( C )
达标检测
9.线段 MN 在直角坐标系中的位置如图所示,若线段 M′N′与 MN 关于 y 轴对称, 则点 M 的对应点 M′的坐标 为( D ) A.(4,2) B.(-4,2) C.(-4,-2) D.(4,-2)
达标检测
典型习题
解:(1)△A1B1C1 如图所示,A1(2,-4). (2)△A2B2C2 如图所示,A2(-2,4).
达标检测
1. 如图, 点 A, B, C, D 都在方格纸的格点上, 若△AOB 绕点 O 按逆时针方向旋转到△COD 的位置,则旋转的 角度为( C ) A.30° B.45° C.90° D.135°
典型习题
二、旋转的性质 如图,在直角△OAB 中,∠AOB=30° ,将△OAB 绕点 O 按逆时针方向旋转 100° 得到△OA1B1,则∠A1OB 的
70° . 度数为_______
典型习题
三、识别轴对称图形与中心对称图形
下图中,既是中心对称图形又是轴对称图形的是( B )
典型习题
四、轴对称的性质 如图,在平面直角坐标系中△ABC 的两个顶点 A,B 的 坐标分别为(-2,0),(-1,0),BC⊥x 轴.将△ABC 以 y 轴为对称轴对称变换,得到△A′B′C′(A 和 A′,B 和 B′, C 和 C′分别是对应顶点). 直线 y=x+b 经过点 A, C′,
三年级数学上册---平移、旋转及轴对称( 知识梳理+例题精讲+易错专练)
第6讲平移、旋转及轴对称一、思维导图二、知识点梳理知识点一:平移在同一平面内,物体或图形沿着某一直线方向运动的现象叫做平移。
平移时物体或图形的形状、大小和方向没有变化,只是位置改变了。
知识点二:旋转物体或图形绕一个点或一个轴运动的现象叫做旋转。
旋转时物体或图形的形状和大小不变,其自身的运动方向发生了变化。
注意:旋转分为顺时针旋转和逆时针旋转。
知识点三:轴对称图形一个图形沿着一条直线对折后,折痕两边的部分能够完全重合的图形就是轴对称图形。
轴对称图形沿对称轴对折后,两边能够完全重合,即对称的点、对称的线段都能够完全重合,对称点到对称轴的距离相等。
三、例题精讲考点一:平移和旋转1.能够通过下图平移得到的图形是()。
A.B.C.D.2.在括号中填“平移”或“旋转”。
(1)小明进教室开门时,门的运动是()。
(2)小丽拧开纯净水瓶盖,瓶盖的运动是()。
(3)小红拉开窗帘,窗帘的运动是()。
(4)老师将课桌拖到最后一排,桌子的运动是()。
3.观察下面的图形,然后填空。
(1)小汽车向()平移了()格。
(2)小船向()平移了()格。
(3)飞机向()平移了()格。
4.如图所示。
(1)小狗先向左走4格,再向下走6格,它能吃到肉骨头吗?如果能,请你把小狗的行走过程在方格中画出来;如果不能,请你帮小狗设计一个正确的行走方案。
(2)小狗吃完肉骨头后接着想去吃大鸡腿,它应该怎么走?考点二:轴对称图形5.图形是从()对折的纸上剪下来的。
A.B.C.D.6.如图,一个大正方形被分成16个大小相同的小正方形,其中四个小正方形已涂成阴影,若再将一个小正方形涂成阴影,使所有阴影区域构成轴对称图形,则这个小正方形的编号为()。
7.拿一张长纸条,将它一反一正折叠起来,并画出字母E。
用小刀把画出的字母E挖去,拉开就可以得到一条以字母E为图案的花边,如图。
观察整条花边,左起和右起的三个图案各为一组,这两组图案有什么关系?8.(1)下面五个图形中,是轴对称图形的有()。
《图形的平移》平移旋转和轴对称
04
平移、旋转和轴对称的对比与 联系
对比
平移
图形在平面内沿某一方向 等距移动,不改变形状和 大小。
旋转
图形围绕某一点旋转一定 的角度,不改变形状和大 小。
轴对称
图形关于某一直线对称, 不改变形状和大小。
联系
01
02
03
04
平移和旋转都是图形在平面内 的运动,但方向和中心点不同
。ቤተ መጻሕፍቲ ባይዱ
平移和轴对称都可以视为一种 特殊的旋转,其中旋转中心是
《图形的平移》平移旋转和 轴对称
汇报人: 2024-01-09
目录
• 平移 • 旋转 • 轴对称 • 平移、旋转和轴对称的对比与
联系 • 生活中的平移、旋转和轴对称
01
平移
平移的定义
平移是指在平面内,将一个图形沿某 一方向移动一定的距离,而图形本身 不发生旋转或翻转,只是位置发生了 变化。
平移的距离可以是固定的,也可以是 变化的。
03
轴对称
轴对称的定义
轴对称
如果一个图形关于某条直线(对称轴)对称,那 么这个图形被称为轴对称图形。
对称轴
将图形分为两个完全相同的部分的直线。
对称点
关于对称轴的对称点。
轴对称的性质
对称性
轴对称图形关于对称轴对称,即 如果图形上有一个点,那么在对 称轴的另一侧存在一个与其完全
相同的点。
稳定性
轴对称图形在平衡状态下是稳定的 ,即不会发生旋转或倾斜。
个美丽例子。
建筑物
02
许多建筑物,如中国的天坛、美国的自由女神像等,都是轴对
称的。
雪花
03
雪花的形状常常是六边形的,并且具有轴对称性。
《轴对称图形》平移、旋转和轴对称
旋转对称性
旋转对称图形具有旋转对称性 ,即经过一定角度的旋转后,
图形可以与自身重合。
旋转应用
建筑设计
建筑师可以利用旋转对称 性来设计优美的建筑外形 ,如旋转餐厅、圆形剧场 等。
图案设计
旋转对称图形在图案设计 中有广泛的应用,如地毯 、壁纸、纺织品等。
艺术创作
艺术家可以利用旋转对称 性创作出独特的艺术作品 ,如旋转雕塑、水墨画等 。
根据平行四边形对边平行的性质,可以将一个四边形沿一条对角线平移得到另 一个四边形,如果这个四边形的对角线互相平分,那么这个四边形就是平行四 边形。
梯形的判定
根据梯形一组对边平行的性质,可以将一个四边形沿一条对角线平移得到另一 个四边形,如果这个四边形的对角线互相平分,那么这个四边形就是梯形。
02 旋转对称图形
《轴对称图形》平移、旋转和轴对 称
汇报人: 2023-12-02
contents
目录
• 平移对称图形 • 旋转对称图形 • 轴对称图形 • 总结与展望
01 平移对称图形
平移定义
01
02
03
平移
在平面内,将一个图形沿 某个方向移动一定的距离 ,这样的图形运动称为平 移。
平移变换
把一个图形经过平移变换 后得到的图形称为平移变 换图形。
通过本节课的学习,学生可以培养 空间观念和几何直觉,提高解决几 何问题的能力。
THANKS FOR WATCHING
感谢您的观看
03 轴对称图形
轴对称定义
轴对称定义
一个图形如果能够经过一条直线分割 成两个部分,其中一部分与另一部分 的图形关于这条直线对称,那么这个 图形就叫做轴对称图形。
轴对称图形的特点
平移_旋转_轴对称_知识点总结
线找其中点
分线。找两组
两组对应点连
对应点连线,过
线的交点
两条中点的直线
找关键点
找关键点
找关键点
找关犍点
过每个关键点
过每个关犍点做
连接关键点与旋
连接关键点与
做对称轴的垂线
平移方向的平行线
转中心,将这条线
对称中心,延长
法
截取与之相等的
截取与之相等的距
段按方向和角度旋
并截取相等的长
距离,标出对应
旋转.平移.轴对称、中心对称知识点总结
轴对称
平移
旋转
中心对称
全等
一个(两个)平
平面图形在它所在
一个平面图形绕一
一个图形旋转
能够完全重合的
面图形沿某条直
平面上的平行移动。
定点按一定的方向
180°能与自身
两个图形
线对折能够完全
决定要素:平移的方
旋转一定的角度的
重合
表示方法:
定
重合
向.平移的距离
运动。
AABC^ADEF
离,标出对应点
转.标出对应点
度.标出对应点
点
连接对应点。
连接对应点。
连接对应点。
连接对应点。
线段是轴对称
多次平移相当于
线段旋转90°
中心对称一定
一个图形经过
图形,对称轴是
一次平移
后与原來的位置垂
是旋转对称.旋
轴对称、平移或选
它的垂直平分
两条对称轴平行
直
转对称不一定是
转等变换得到的
线。
时,两次轴对称相当
义
轴对称
成轴对
中心对
平移、旋转、轴对称
---------------------------------------------------------------最新资料推荐------------------------------------------------------平移、旋转、轴对称什么是平移、旋转、轴对称?如何判断一个图形进行了平移、旋转或者是否为轴对称图形?如何确定平移的的方向什么是平移、旋转、轴对称?如何判断一个图形进行了平移、旋转或者是否为轴对称图形?如何确定平移的的方向和距离?如何确定旋转角度和旋转中心?(1)什么是平移、旋转、轴对称?平移:一个图形在平面内沿某个方向移动一定距离,这样的图形运动叫平移。
旋转:一个图形在平面内绕着一个固定点转动一定角度,这样的图形运动叫旋转,这个固定点称为旋转中心,转动的角度称为旋转角度。
轴对称:如果一个平面图形,沿着某一条直线对折,直线两边的部分能够完全重合,这个图形就叫做轴对称图形。
这条直线叫对称轴。
互相重合的点叫对称点。
(2)如何判断一个图形进行了平移、旋转或者是否为轴对称图形?在学习中,学生可能会问到摩天轮的运动、窗帘的拉动、门的转动、荡秋千、钟摆等生活现象算不算旋转。
回答这些具体的问题,教师首先需要理解轴对称、平移和旋转的概念在图形的变换中有一个非常重要的变换,就是全等变换,1 / 5也叫做合同变换。
如果图形经过变换后与原来的图形是重合的,也就是图形的形状、大小不发生变化,那么这个图形的变换就叫做全等变换,即原来的图形中,任意两点的距离假设是 l 的话,经过变换后的两点之间的距离仍是 l,所以全等变换是一个保距变换,而且由于距离保持不变,图形整体的形状、大小,都可以证明仍然是保持不变的。
全等变换有几种方式。
我们可以想象一下两个完全一样的图形,要由一个图形的运动得到另一个图形,可以作怎样的运动呢?可以是平移。
除此以外呢?比如两个三角形有一顶点重合,那么有两种情况:一种是这两个三角形的三个顶点顺序是一致的,这时其中一个经过旋转就能与另一个重合;还有一种是顶点的顺序相反,这时将其中一个反射(翻折)就能得到另一个。
轴对称平移、旋转定义总结
精心整理一、轴对称1、轴对称图形概念轴对称图形:一个图形如果沿某条直线对折,对折后的两部分能完全重合,那么就称这样的图形为轴对称图形,这条直线叫作这个图形的对称轴。
注:对称轴是一条直线,不是线段,也不是射线。
23注:4线段是轴对称图形。
把垂直并且平分一条线段的直线称为这条线段的垂直平分线。
角是轴对称图形,对称轴是它的角平分线所在的直线注:角平分线是一条射线,三角形的角平分线是一条线段,而角是轴对称图形,对称轴是角的平分线所在的直线。
5、画图形的对称轴图形对称轴画法:找出轴对称图形的任意一组对称点;连接这组对称点;画出对称点所连接线段的垂直平分线,这条垂直平分线就是该轴对称图形的对称轴。
轴对称图形的性质:如果一个图形是轴对称图形,那么连接对称点的线段的垂直平分线就是该图形的对称轴。
注:画出轴对称图形的对称轴,关键是选取一些对称点(如线段的端点、角的顶点),然后画对称点连线的垂直平分线。
61平移。
找平移图形的对应元素的关键是找对应点,由对应点确定对应角、对应线段。
2、平移的特征平移特征:平移前后,图形的形状和大小不变,只是位置发生变化。
对应点:对应点所连的线段平行(或在同一条直线上)且相等。
对应角:对应角相等,对应角的两边分别平行或共线且方向一致。
对应线段:对应线段平行(或共线)且相等。
注:对应线段、对应角必须在平移前后的两个图形中去找。
平移过程中,对应线段有可能在同一条直线上,对应点的连线也有可能在同一条直线上。
对应点所连的线段与对应线段不同。
3、平移作图平移作图条件:(1)图形原来的位置;(2)平移方向;(3)平移距离(2(3(4(5。
图形的轴对称、平移与旋转的知识点
图形的轴对称、平移与旋转一、轴对称图形与轴对称如果一个图形沿着某条直线对折如果两个图形对折后,这两个图形1.常见的轴对称图形: 等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质:折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【注意】凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.解决折叠问题时,首先清楚折叠和轴对称能够提供我们隐含的且可利用的条件,分析角之间、线段之间的关系,借助勾股定理建立关系式求出答案,所求问题具有不确定性时,常常采用分类讨论的数学思想方法.3.作某点关于某直线的对称点的一般步骤1)过已知点作已知直线(对称轴)的垂线,标出垂足;2)在这条直线另一侧从垂足除法截取与已知点到垂足的距离相等的线段,那么截点就是这点关于该直线的对称点.4.作已知图形关于某直线的对称图形的一般步骤1)作出图形的关键点关于这条直线的对称点;2)把这些对称点顺次连接起来,就形成了一个符合条件的对称图形.二、图形的平移1.定义:在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.2.三大要素:一是平移的起点,二是平移的方向,三是平移的距离.3.性质:1)平移前后,对应线段平行且相等、对应角相等;2)各对应点所连接的线段平行(或在同一条直线上)且相等;3)平移前后的图形全等.4.作图步骤:1)根据题意,确定平移的方向和平移的距离;2)找出原图形的关键点;3)按平移方向和平移距离平移各个关键点,得到各关键点的对应点;4)按原图形依次连接对应点,得到平移后的图形.三、图形的旋转1.定义:在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.2.三大要素:旋转中心、旋转方向和旋转角度.3.性质:1)对应点到旋转中心的距离相等;2)每对对应点与旋转中心所连线段的夹角等于旋转角;3)旋转前后的图形全等.4.作图步骤:1)根据题意,确定旋转中心、旋转方向及旋转角;2)找出原图形的关键点;3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;4)按原图形依次连接对应点,得到旋转后的图形.【注意】旋转是一种全等变换,旋转改变的是图形的位置,图形的大小关系不发生改变,所以在解答有关旋转的问题时,要注意挖掘相等线段、角,因此特殊三角形性质的运用、锐角三角函数建立的边角关系起着关键的作用.四、中心对称图形与中心对称如果一个图形绕某一点旋转180°后能与如果一个图形绕某点旋转180°后与平行四边形、矩形、菱形、正方形、正六边形、圆等.注意:图形的“对称”“平移”“旋转”这些变化,是图形运动及延伸的重要途径,研究这些变换中的图形的“不变性”或“变化规律”.。
平移旋转轴对称的总结归纳
平移旋转轴对称的总结归纳平移、旋转、轴对称是几何学中常见的变换操作,它们在图形的变换中起着重要的作用。
本文将对平移、旋转和轴对称进行总结归纳,以便加深对这些概念的理解。
一、平移平移是指沿着固定的方向和距离,将一个点或者图形在平面内移动。
平移不改变图形的大小、形状和方向,只是改变了图形的位置。
1. 平移的特点- 平移是一种向量运算,其运算结果仍然是一个向量。
- 平移过程中,所有点的位移矢量都相等。
- 平移可以用向量表示,平移向量的起点为原图形上的一个点,终点为其平移后的位置。
2. 平移的表示方法平移可以使用向量运算的方式进行表示,如设平移向量为AB,其中A为原图形上的一个点,B为其平移后的位置。
3. 平移的性质平移具有以下性质:- 平移不改变图形的大小、形状和方向。
- 平移保持图形之间的相对位置关系不变。
二、旋转旋转是指将一个点或者图形按照一定的角度围绕某一点旋转。
旋转可以改变图形的方向,但保持其大小和形状不变。
1. 旋转的特点- 旋转是一种变换运算,将一个点或者图形按照一定的角度绕固定点旋转。
- 旋转可以用角度来描述,旋转角度可以是正数或负数,正数表示逆时针旋转,负数表示顺时针旋转。
- 旋转中心可以是任意点,也可以是图形的某个顶点。
2. 旋转的表示方法旋转可以使用坐标变换的方式进行表示,如设旋转中心为O,旋转角度为θ,则旋转过程中,点P(x, y)绕点O旋转后的新坐标为P'(x', y')。
3. 旋转的性质旋转具有以下性质:- 旋转不改变图形的大小和形状。
- 旋转改变图形的方向。
- 旋转保持图形上的点与中心点之间的距离不变。
三、轴对称轴对称是指图形相对于某条直线对称。
对称轴可以是任意直线,轴对称的图形可以通过对称轴翻转得到自身。
1. 轴对称的特点- 轴对称是一种空间变换,将图形相对于某条直线进行翻转。
- 轴对称的图形具有镜像对称性,即沿对称轴折叠后,两侧图形完全一致。
2. 轴对称的表示方法轴对称可以使用对称关系进行表示,如设对称轴为l,点P关于l的对称点为P',则P'与P关于l对称。
《图形的旋转》平移旋转和轴对称
这种组合在实际生活中并不常见,因为在实际应用中,旋转和轴对 称两种操作通常会分开进行。
应用
在几何学中,旋转轴对称组合常用于研究图形的旋转对称性质,如 圆形、椭圆形的性质等。
05
实际应用案例
平移旋转在机械制造中的应用
平移旋转在机械制造中有着广泛的应用。通过平移和旋转,可以方便地对机械零件 进行精确加工和调整。
《图形的旋转》平移旋转和 轴对称
2023-11-08
目 录
• 平移 • 旋转 • 轴对称 • 平移旋转和轴对称的组合应用 • 实际应用案例
01
平移
定义
平移是指在平面内,将一个图形沿某个方向移动一定的距离 。
平移不改变图形的形状、大小和方向,只改变图形的位置。
性质
平移前后,图形的对应线段平行且相等,对应角相等,对应点所连接的线段平行 且相等。
描述
这种组合在实际生活中很常见,比 如汽车在公路上行驶,除了位置的 移动,车身也会围绕自己的轴线旋 转,保持方向不变。
应用
在几何学中,平移旋转组合常用于 研究图形的性质和变化,如平行四 边形的性质、三角形的稳定性等。
平移轴对称组合应用
定义
平移轴对称组合是指将平移和轴 对称两种操作结合起来,使图形 在平面上进行移动的同时,绕某
应用
在几何学中,旋转被广泛应用于图形 的位置和形状的变换。
在物理学中,旋转运动被广泛应用于 物体的运动和平衡状态的研究。
在机械工程中,旋转运动被广泛应用 于机器人的关节和传动装置。
在艺术领域,旋转被广泛应用于舞蹈 、音乐和绘画的表现形式。
03
轴对称
定义
轴对称是指一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线是 它的对称轴。
平移_旋转_轴对称_知识点总结
两条对称轴互相垂直时,两次轴对称相当于一次中心对称
一个图形经过轴对称、平移或选转等变换得到的新图形一定与原图形全等
两个全等的图形总能经过轴对称、平移或旋转等变换后重合.
轴对称图形
成轴对称
中心对称图形
成中心对称
全等多边形
全等三角形
对应边
对应角
一个图形;
不止一条对称轴
两个图形;
只有一条对称轴
旋转对称图形:一个图形绕内部某一点旋转一定的角度能与自身重合。
一个图形
两个图形
图
形
特
征
对应角相等,对应边相等
对应点间的连线平行且相等(或在同一条直线上)
对应边平行且相等(或在同一条直线上),对应角相等,图形的形状和大小不改变.
垂直平分线的性质:垂直平分线上任意一点到线段两端的距离相等。④角平分线的性质:角平分线上任意一点到叫两边的距离相等。⑤对称轴垂直平分对称点间的连线.
多次平移相当于一次平移
两条对称轴平行时,两次轴对称相当于一次平移
线段旋转90°后与原来的位置垂直
两条对称轴相交时,两次轴对称相当于一次旋转。
中心对称一定是旋转对称,旋转对称不一定是中心对称。
旋转、平移、轴对称、中心对称知识点总结
轴对称
平移
旋转
中心对称
全等
定
义
一个(两个)平面图形沿某条直线对折能够完全重合
平面图形在它所在平面上的平行移动.
决定要素:平移的方向、平移的距离
一个平面图形绕一定点按一定的方向旋转一定的角度的运动.
一个图形旋转180°能与自身重合
能够完全重合的两个图形
中考总复习29——图形的轴对称、平移和旋转
中考复习29——图形的轴对称、平移和旋转考点复习1.轴对称、轴对称图形(1)轴对称:把一个图形沿着某一条直线翻折过去,如果它能与另一个图形重合,那么称这两个图形成轴对称.两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点.(2)轴对称图形:如果一个图形沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线称为对称轴.对称轴一定为直线.(3)轴对称图形变换的特征:不改变图形的和,只改变图形的.新旧图形具有对称性.2.中心对称、中心对称图形(1)中心对称:把一个图形绕着某一点旋转,如果它能与另一个图形,那么这两个图形成中心对称,该点叫做对称中心.(2)中心对称图形:一个图形绕着某一点旋转后能与自身,这个图形叫做中心对称图形,该点叫做对称中心.3.图形的平移(1)定义:在平面内,将某个图形沿某个移动一定的,这样的图形运动称为平移.(2)特征:①平移后,对应线段相等且平行,对应点所连的线段且.②平移后,对应角且对应角的两边分别平行,方向相同.③平移不改变图形的和,只改变图形的位置,平移后新旧两图形全等.4.图形的旋转(1)定义:在平面内,将一个图形绕一个定点沿某个方向旋转一个角度,这样的图形运动称为旋转.这个定点称为旋转中心,转动的角度称为旋转角.(2)特征:图形旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同角度;注意每对对应点与旋转中心的连线所成的角度都是旋转角,旋转角都;对应点到旋转中心的距离.图形的对称1.(2020呼和浩特)下面四幅图是我国传统文化与艺术中的几个经典图案,其中不是轴对称图形的是( )2.(2020天津)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )3.(2020湘潭)下列图形中,不是中心对称图形的是( )4.(2020遂宁)下列图形中,既是轴对称图形,又是中心对称图形的是( )A.等边三角形B.平行四边形C.矩形D.正五边形5.(2020绥化)下列图形是轴对称图形而不是中心对称图形的是( )6.(2020烟台)如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC边上的点F处.若AB=3,BC=5,则tan∠DAE的值为( )A.12B.920C.25D.13图形的平移7.(2020泸州)在平面直角坐标系中,将点A(-2,3)向右平移4个单位长度,得到的对应点A'的坐标为( )A.(2,7)B.(-6,3)C.(2,3)D.(-2,-1)8.(2020台州)如图,把△ABC先向右平移3个单位长度,再向上平移2个单位长度得到△DEF,则顶点C(0,-1)对应点的坐标为( )A.(0,0)B.(1,2)C.(1,3)D.(3,1)9.(2020青海)如图,将周长为8的△ABC沿BC边向右平移2个单位长度,得到△DEF,则四边形ABFD的周长为_______.图形的旋转10.(2020南通)以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为( )A.第一象限B.第二象限C.第三象限D.第四象限11.(2020天津)如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是( )A.AC=DEB.BC=EFC.∠AEF=∠DD.AB⊥DF12.(2020潮州模拟)如图,在Rt△ABC中,∠ACB=90°,∠CAB=30°,将△ABC绕点A顺时针旋转一定的角度得到△ADE,点B,C的对应点分别是D,E.当点E恰好在AB上时,则∠BDE的度数为___________ .13.(2020孝感)如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF 的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=3,CG=2,则CE的长为( )A.54B.154C.4D.92广东中考14.(2018广东)下列图形中,不是轴对称图形的是( )15.(2015广东)在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )16.(2016广东)下列所述图形中,是中心对称图形的是( )A.直角三角形B.平行四边形C.正五边形D.正三角形17.(2017广东)下列所述图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆18.(2018广东)下列所述图形中,是轴对称图形但不是中心对称图形的是( )A.圆B.菱形C.平行四边形D.等腰三角形19.(2019广东)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是( )20.(2016广州)如图,在△ABC中,AB=AC,BC=12 cm,点D在AC上,DC=4 cm.将线段DC沿着CB 的方向平移7 cm得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为______cm.21.(2018广东)如图,将一张直角三角形纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E'位置,则四边形ACE'E的形状是________ .22.(2014广东)如图,△ABC绕点A顺时针旋转45°得到△A'B'C',若∠BAC=90°,AB=AC=√2,则图中阴影部分的面积等于.23.(2016广东)如图,在矩形ABCD中,对角线AC=2√3,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的B'处,则AB=.24.(2017广州)如图,E,F分别是▱ABCD的边AD,BC上的点,EF=6,∠DEF=60°,将四边形EFCD 沿EF翻折,得到EFC'D',ED'交BC于点G,则△GEF的周长为( )A.6B.12C.18D.2425.(2017广东)如图①,在矩形纸片ABCD中,AB=5,BC=3,先按图②操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图③操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A,H两点间的距离为.26.(2020广东)如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B恰好落在AD边上,则BE的长度为( )A.1B.√2C.√3D.227.(2020广州)如图,在正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C',AB',AC'分别交对角线BD于点E,F,若AE=4,则EF·ED的值为____________ .。
图形的轴对称、平移与旋转
图形的轴对称、平移与旋转主讲:黄冈中学优秀数学教师余燕考点回顾:考点一:轴对称与轴对称图形1、轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,也称这两个图形成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点.2、轴对称图形:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形是轴对称图形,这条直线就是对称轴.3、轴对称与轴对称图形的区别与联系(1)轴对称是指两个特定图形之间的位置关系,轴对称图形是描述一个图形的形状特征;(2)轴对称只有一条对称轴,而轴对称图形不一定只有一条对称轴.4、轴对称两点在平面直角坐标系中的坐标关系(1)关于x轴对称的两个图形的对应点的横坐标相同,纵坐标互为相反数;(2)关于y轴对称的两个图形的对应点的横坐标互为相反数,纵坐标相同.(3)点A(a,b)关于直线y=x对称的点的坐标为(b,a),点A(a,b)关于直线y=-x对称的点的坐标为(-b,-a).考点二:轴对称和轴对称图形的性质1、关于某条直线成轴对称的两个图形是全等的,对应线段相等,对应角相等.2、如果两个图形关于某条直线对称,那么对称轴是对称点连线的垂直平分线.3、两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上.4、如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.考点三:中心对称与中心对称图形1、中心对称:把一个图形绕着某一定点旋转180°,如果它能够和另一个图形重合,那么我们就说这两个图形关于这个定点成中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.2、中心对称图形:在平面内,一个图形绕某一定点旋转180°,能够和原来的图形完全重合,那么这个图形叫做中心对称图形,这个定点叫做对称中心.3、中心对称与中心对称图形的区别与联系(1)中心对称是指两个特定图形之间的位置关系,中心对称图形是描述一个图形的形状特征;(2)将成中心对称的两个图形看做一个整体时,这个整体图形就是中心对称图形.考点四:中心对称的性质1、对称点的连线经过对称中心且被对称中心平分;2、对应线段相等、平行或共线;3、对应角相等;4、点A(a,b)关于原点对称的点的坐标为(-a,-b);5、点A(a,b)关于点(m,n)对称的点的坐标为(2m-a,2n-b).考点五:图形的平移将某一基本的图形沿着一定的方向移动一定的距离,这种图形的平行运动称为图形的平移,简称平移.平移由移动的方向和距离所决定.考点六:图形平移的性质1、平移后的图形与原来图形的对应线段平行(或在同一条直线上)且相等.2、平移后的图形与原来图形的对应角相等,且对应角的两边分别平行,方向一致.3、平移后的图形与原来的图形的对应点连线平行(或在同一条直线上)且相等.4、平移不改变图形的形状和大小,只改变图形的位置.考点七:图形的旋转1、旋转的概念在平面中,将一个图形绕一个定点沿某个方向(逆时针或顺时针)转动一定的角度,这样的图形运动称为图形的旋转.这个定点称为旋转中心,转动的角度称为旋转角.2、旋转对称图形(1)概念:如果一个图形绕着某一定点旋转一定角度后能与自身重合,那么这个图形就叫做旋转对称图形,其中的定点叫做旋转对称图形的旋转中心.(2)旋转对称图形的识别判断一个图形是不是旋转对称图形的方法是根据旋转对称图形的定义,判断图形能否绕一定点旋转一定的角度后与自身完全重合.考点八:图形旋转的性质1、图形旋转时,图形中每一点都绕着旋转中心旋转了同样大小的角度;2、任意一对对应点与旋转中心的连线所成的角的度数都等于旋转角的度数;3、对应点到旋转中心的距离相等;4、对应线段相等,对应角相等;5、图形的形状与大小都没有发生变化.考点精讲精练:例1、如图所示的矩形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚线剪下一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个?解析:C 由轴对称的性质可知,C项正确.变式练习1、将一个矩形纸片依次按图1、图2的方式对折,然后沿图3中的虚线裁剪,最后将图4的纸再展开铺平,所得到的图案是()答案:A例2、在平面直角坐标系xOy中,如果有点P(-2,1)与点Q(2,-1),那么:①点P与点Q关于x轴对称;②点P与点Q关于y轴对称;③点P与点Q关于原点对称;④点P与点Q都在的图象上.前面的四种描述正确的是()A.①②B.②③C.①④D.③④答案:D变式练习2、如图,△ABC的顶点都在正方形网格格点上,点A的坐标为(-1,4).将△ABC沿y轴翻折得到△A1B1C1,则点C的对应点C1的坐标是__________;若△ABC与△A2B2C2关于原点O对称,则点A的对应点A2的坐标是__________.答案:(3,1);(1,-4)例3、如图,在3×3的正方形网格中,已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有__________种.答案:5变式练习3、如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为____________________.答案:(-1,1),(-2,-2),(0,2),(-2,-3)例4、如图,把矩形ABCD沿EF对折,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°答案:B解析:由折叠,可知∠BFE=∠B′FE=65°,由AE∥BF,知∠AEF=115°.变式练习4、如图,在Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC 折叠,使点C与点A重合,得折痕DE,则△ABE的周长等于_________cm.解析:C△ABE=AB+BE+AE= AB+BE+CE=AB+BC=3+4=7cm.答案:7例5、如图,将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,若∠AOB =15°,则∠AOB′的度数是()A.25°B.30°C.35°D.40°解析:由题意知∠AOA′=∠BOB′=45°,所以∠AOB′=∠BOB′-∠AOB=45°-15°=30°.故选B.答案:B变式练习5、如图,A、B、C三点在正方形网格线的交点处.若将△ACB绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.B.C.D.解析:由题意,得∠B′=∠B,所以.答案:B例6、如图,在等边三角形ABC中,AB=6,D是BC上一点,且BC=3BD,△ABD 绕点A旋转后得到△ACE,则CE的长度为__________.解析:由旋转的性质可知,△ABD≌△ACE,所以BD=CE.在等边三角形ABC中,AB=6,则BC=6,由BC=3BD,可知BD=2,所以CE=2.答案:2变式练习6、如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1,以点A为中心,把△ADE顺时针旋转90°,得△ABE′,连接EE′,则EE′的长等于__________.解析:△AEE′为等腰直角三角形,.答案:例7、如图,边长为a的正方形ABCD绕点A按逆时针方向旋转30°得到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.D.解析:阴影部分面积=正方形面积-两个正方形重叠的面积答案:C变式练习7、如图(左),点P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,求∠APB的度数.解析:将△APC绕点A逆时针旋转60°后,得到△AFB,连接FP(如图(右)),则FB=PC=10,FA=PA=6,∠FAP=60°,∴△FAP是正三角形,∴FP=PA=6.在△PBF中,PB2+PF2=82+62=102=BF2,∴∠BPF=90°,∴∠APB=∠APF +∠FPB=60°+90°=150°.- 返回 -备考模拟一、选择题1、下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.等腰梯形D.菱形2、下列平面图形中,既是轴对称图形,又是中心对称图形的是()3、如图,已知△OAB是正三角形,OC⊥OB,OC=OB,将△OAB绕点O按逆时针方向旋转,使得OA与OC重合,得到△OCD.则旋转的角度是()A.150° B.120°C.90°D.60°4、在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1)、B(1,1).将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为()A.(-5,4)B.(4,3)C.(-1,2)D.(-2,-1)5、在如图所示的平面直角坐标系内,画在透明胶片上的□ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,-1)处,则此平移可以是()A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位二、填空题6、如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(直接填写答案)(1)点A关于点O中心对称的点的坐标为__________;(2)点A1的坐标为__________.7、如图,等腰直角三角形ABC的直角边AB的长为6cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,则图中阴影部分的面积等于__________cm2.8、如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是__________.隐藏答案答案:6、(1)(-3,-2);(2)(-2,3)7、8、(0,1)三、综合题9、如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有一个格点三角形ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求:A与A1,B 与B1,C与C1相对应)(2)在(1)问的结果下,连接BB1,CC1,求四边形BB1C1C的面积.隐藏答案解析:(1)如下图,△A1B1C1是△ABC关于直线l的对称图形.(2)由上图可知四边形BB1C1C是等腰梯形,BB1=4,CC1=2,高是4,10、如图,在平面直角坐标系中,有一Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋转得到的.(1)请写出旋转中心的坐标是__________,旋转角是__________度;(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形;(3)设Rt△ABC两直角边BC=a、AC=b、斜边AB=c,利用变换前后所形成的图案证明勾股定理.隐藏答案解:(1)旋转中心坐标是O(0,0),旋转角是90°.(2)画出的图形如图所示:(3)由旋转的过程可知,四边形CC1C2C3和四边形AA1A2B是正方形.-END-。
《轴对称图形》平移旋转和轴对称
《轴对称图形》平移旋转和轴对称汇报人:日期:•轴对称图形基本概念与性质•平移变换及其性质•旋转变换及其性质目录•轴对称、平移和旋转综合应用•实际生活中轴对称、平移和旋转现象观察与体验01平移定义平移性质定义与性质平移可以用于制作动画效果,如物体在屏幕上的移动。
平移的应用动画制作图案设计轴对称图形基本概念与性质轴对称图形定义轴对称图形特点轴对称图形定义及特点轴对称性质判定方法轴对称性质与判定方法等腰三角形矩形有两条对称轴,分别是两组对边中点所在的直线。
沿这两条直线折叠矩形,两侧的部分能够完全重合。
矩形圆常见轴对称图形举例平移变换及其性质平移变换定义在平面内,将一个图形沿某个方向移动一定的距离,得到一个新的图形,这种变换称为平移变换。
描述方式平移变换可以用向量来表示,即平移向量。
平移向量包括大小和方向两个要素。
平移变换定义及描述方式平移性质与判定方法平移性质平移不改变图形的形状和大小,只改变图形的位置。
经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。
判定方法如果两个图形通过平移能够完全重合,则称这两个图形为平移图形。
可以通过观察图形的形状、大小、方向和位置关系等特征来判断是否为平移图形。
平移在图案设计中的应用旋转变换及其性质旋转变换定义及描述方式旋转变换定义描述方式旋转前后的图形全等;对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形关于旋转中心对称。
判定方法根据旋转性质进行判定。
旋转性质旋转性质与判定方法VS图案设计可以利用旋转设计各种美丽的图案,如花边、地毯、瓷砖等。
要点一要点二应用实例通过旋转基本图形,可以得到各种复杂、美观的图案。
旋转在图案设计中的应用轴对称、平移和旋转综合应用轴对称与平移旋转与轴对称综合运用030201图案设计中组合运用技巧动态与静态通过平移和旋转变换表现画面的动态感,如流水、飘动的云彩等;同时,轴对称变换可表现静态美,如建筑、静物等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形旋转
定义:
在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。
这个定点叫做旋转中心,转动的角度叫做旋转角。
图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。
图形旋转性质:
(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
旋转对称中心
把一个图形绕着一个点旋转一定的角度后,与原来的图形相吻合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角。
(旋转角大于0°小于360°)
平移
定义:
将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移是图形变换的一种基本形式。
平移不改变图形的形状和大小,平移可以不是水平的。
平移基本性质:
经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;
平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。
(1)图形平移前后的形状和大小没有变化,只是位置发生变化;
(2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等
(3)多次连续平移相当于一次平移。
(4)偶数次对称后的图形等于平移后的图形。
(5)平移是由方向和距离决定的。
这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移
平移的条件:确定一个平移运动的条件是平移的方向和距离。
平移的三个要点
1 原来的图形的形状和大小和平移后的图形是全等的。
2 平移的方向。
(东南西北,上下左右,东偏南n度,东偏北n度,西偏南n度,西偏北n
度)
3 平移的距离。
(长度,如7厘米,8毫米等)
平移作用:
1.通过简单的平移可以构造精美的图形。
也就是花边,通常用于装饰,过程就是复制-平移-
粘贴。
2.平移长于平行线有关,平移可以将一个角,一条线段,一个图形平移到另一个位置,是分散的
条件集中到一个图形上,使问题得到解决。
∙平移作图的步骤:
(1)找出能表示图形的关键点;
(2)确定平移的方向和距离;
(3)按平移的方向和距离确定关键点平移后的对应点;
(4)按原图的顺序,连结各对应点。
轴对称的定义:
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。
∙轴对称的性质:
(1)对应点所连的线段被对称轴垂直平分;
(2)对应线段相等,对应角相等;
(3)关于某直线对称的两个图形是全等图形。
∙轴对称的判定:
如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
这样就得到了以下性质:
1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
2.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
3.线段的垂直平分线上的点与这条线段的两个端点的距离相等。
4.对称轴是到线段两端距离相等的点的集合。
轴对称作用:
可以通过对称轴的一边从而画出另一边。
可以通过画对称轴得出的两个图形全等。
扩展到轴对称的应用以及函数图像的意义。
轴对称的应用:
关于平面直角坐标系的X,Y对称意义
如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数。
相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变。
关于二次函数图像的对称轴公式(也叫做轴对称公式)
设二次函数的解析式是y=ax2+bx+c
则二次函数的对称轴为直线x=-b/2a,顶点横坐标为-b/2a,顶点纵坐标为(4ac-b2)/4a
在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。
譬如,等腰三角形经常添设顶角平分线;
矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;
正方形,菱形问题经常添设对角线等等。
另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中。