图形旋转、平移、轴对称

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形旋转

定义:

在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转。这个定点叫做旋转中心,转动的角度叫做旋转角。

图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。

图形旋转性质:

(1)对应点到旋转中心的距离相等。

(2)对应点与旋转中心所连线段的夹角等于旋转角。

旋转对称中心

把一个图形绕着一个点旋转一定的角度后,与原来的图形相吻合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角。(旋转角大于0°小于360°)

平移

定义:

将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移是图形变换的一种基本形式。平移不改变图形的形状和大小,平移可以不是水平的。

平移基本性质:

经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;

平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。

(1)图形平移前后的形状和大小没有变化,只是位置发生变化;

(2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等

(3)多次连续平移相当于一次平移。

(4)偶数次对称后的图形等于平移后的图形。

(5)平移是由方向和距离决定的。

这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移

平移的条件:确定一个平移运动的条件是平移的方向和距离。

平移的三个要点

1 原来的图形的形状和大小和平移后的图形是全等的。

2 平移的方向。(东南西北,上下左右,东偏南n度,东偏北n度,西偏南n度,西偏北n

度)

3 平移的距离。(长度,如7厘米,8毫米等)

平移作用:

1.通过简单的平移可以构造精美的图形。也就是花边,通常用于装饰,过程就是复制-平移-

粘贴。

2.平移长于平行线有关,平移可以将一个角,一条线段,一个图形平移到另一个位置,是分散的

条件集中到一个图形上,使问题得到解决。

∙平移作图的步骤:

(1)找出能表示图形的关键点;

(2)确定平移的方向和距离;

(3)按平移的方向和距离确定关键点平移后的对应点;

(4)按原图的顺序,连结各对应点。

轴对称的定义:

把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。

∙轴对称的性质:

(1)对应点所连的线段被对称轴垂直平分;

(2)对应线段相等,对应角相等;

(3)关于某直线对称的两个图形是全等图形。

∙轴对称的判定:

如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

这样就得到了以下性质:

1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

2.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

3.线段的垂直平分线上的点与这条线段的两个端点的距离相等。

4.对称轴是到线段两端距离相等的点的集合。

轴对称作用:

可以通过对称轴的一边从而画出另一边。

可以通过画对称轴得出的两个图形全等。

扩展到轴对称的应用以及函数图像的意义。

轴对称的应用:

关于平面直角坐标系的X,Y对称意义

如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数。

相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变。

关于二次函数图像的对称轴公式(也叫做轴对称公式)

设二次函数的解析式是y=ax2+bx+c

则二次函数的对称轴为直线x=-b/2a,顶点横坐标为-b/2a,顶点纵坐标为(4ac-b2)/4a

在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。

譬如,等腰三角形经常添设顶角平分线;

矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;

正方形,菱形问题经常添设对角线等等。

另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中。

相关文档
最新文档