单像空间后方交会

合集下载

【武汉大学-摄影测量学-单张相片解析】3.5.5单片空间后方交会

【武汉大学-摄影测量学-单张相片解析】3.5.5单片空间后方交会

cos
0
s
in
0 0 1 0 0 0
1 0 0
X
YZ
R 1 R
R1
X
Y
Z
Xs
Ys Zs
0 R1 0
1
0 0 0
1X X s
0 0
Y Z
Ys Zs
武汉大学
摄影测量基础
偏导数-2-2
X
YZ
R 1
0 0
1
0 0 0
1 X
0 0
R
YZ
c1
X s
X)
f Z 2 (a1Z a3 X )
1
X
Z
(a1 f
f
Z
a3 )
1 Z
a1 f
a3 (x
x0 )
武汉大学
摄影测量基础
偏导数-1
x X s
1 Z
a1 f
a3(x x0 )
x Ys
1 Z
b1 f
b3(x x0 )
x Z s
1 Z
c1 f
c3(x x0 )
y X s
1 Z
c2 c3
0 0 0
a1 a1
a2 a3
bc11
a2 b2 c2
a3 b3 c3
X Y Z
0
aa23cc11
a1c2 a1c3
a1c2 a2c1 0
a3c2 a2c3
a1c3 a2c3
0
a3c1 a3c2
X
YZ
0 bb32
b3 0
b1
b2 b1
0
X
武汉大学
摄影测量基础
误差方程的建立
☺ 已知值 x0 , y0 , f , m, X, Y, Z ☺ 观测值 x, y

单像空间后方交会名词解释

单像空间后方交会名词解释

单像空间后方交会名词解释
单像空间后方交会是摄影测量学中的一个重要概念,它是指利用单个影像进行地物测量和定位的方法。

在单像空间后方交会中,通过对单张影像进行分析,可以确定地面上物体的位置和形状。

这个过程涉及到对影像中的特征点进行识别和匹配,然后利用相机内外参数以及影像上的像点坐标来计算地物的三维坐标。

单像空间后方交会的过程包括以下几个步骤,首先是对影像进行预处理,包括去畸变、影像配准等操作;然后是特征点的提取和匹配,这一步是通过计算机视觉算法来实现的,可以利用角点、边缘等特征来进行匹配;接下来是相机内外参数的标定,这一步是为了将像素坐标转换为实际世界坐标而进行的;最后是利用已知的相机参数和像点坐标来计算地物的三维坐标。

单像空间后方交会在航空摄影、遥感影像解译和地图制图等领域有着广泛的应用。

它可以通过对单张影像的处理,实现对地物的测量和定位,为地理信息系统和地图制图提供了重要的数据基础。

同时,随着计算机视觉和图像处理技术的不断发展,单像空间后方交会的精度和效率也在不断提高,为各种应用领域提供了更加可靠和精确的地物信息。

第五讲 单片空间后方交会

第五讲 单片空间后方交会

x12 − f (1 + 2 ) f xy − 1 1 f
2 x2 − f (1 + 2 ) f

x1 y1 f
y12 − f (1 + 2 ) f − x2 y2 f
x y − 2 2 f
2 x3 − f (1 + 2 ) f
2 y2 − f (1 + 2 ) f

x3 y3 f
xy − 3 3 f
Y B
A
C X
利用航摄像片上三个以上像点坐标和对应像 点坐标和对应地面点坐标,计算像片外方位元 素的工作,称为单张像片的空间后方交会。 进行空间后方交会运算,常用的一个基本公 式是前面提到的共线方程。式中的未知数,是 六个外方位元素。由于一个已知点可列出两个 方程式,如有三个不在一条直线上的已知点, 就可列出六个独立的方程式,解求六个外方位 元素。由于共线条件方程的严密关系式是非线 性函数,不便于计算机迭代计算。为此,要由 严密公式推导出一次项近似公式,即变为线性 函数。
(5) 用所取未知数的初始值和控制点的地面坐标,代入共线方程式,逐 ) 用所取未知数的初始值和控制点的地面坐标,代入共线方程式, 点计算像点坐标的近似值 ( x), ( y ) 并计算 lx , l y a ( X − X S ) + b1 (Y − YS ) + c1 ( Z − Z S ) x=−f 1 a3 ( X − X S ) + b3 (Y − YS ) + c3 ( Z − Z S ) a ( X − X S ) + b2 (Y − YS ) + c2 ( Z − Z S ) y=−f 2 a3 ( X − X S ) + b3 (Y − YS ) + c3 ( Z − Z S ) (6) 组成误差方程式。 ) 组成误差方程式。 7) 计算法方程式的系数矩阵与常数项,组成法方程式。 (7) 计算法方程式的系数矩阵与常数项,组成法方程式。 (8) 解算法方程,迭代求得未知数的改正数。 ) 解算法方程,迭代求得未知数的改正数。

单向空间后方交会名词解释

单向空间后方交会名词解释

单向空间后方交会名词解释
单向空间后方交会是指在测量学中用于确定目标位置的一种方法。

它通常用于地理测量、导航和航空航天领域。

在这种方法中,
通过测量目标物体在不同位置的角度和距离,然后利用三角测量原
理来计算目标物体的位置坐标。

这种方法需要至少两个观测点,每
个观测点都测量目标物体与自身的角度和距离,然后通过三角计算
来确定目标物体的位置。

这种方法通常用于需要测量远距离目标位
置的情况,例如在航空航天领域中用于确定飞行器或卫星的位置。

单向空间后方交会方法的优点之一是可以通过简单的测量手段
来确定目标位置,而不需要直接测量目标物体与观测点之间的距离。

这使得它在某些情况下比其他测量方法更为实用和经济。

然而,这
种方法也有一些局限性,例如需要准确的角度测量和观测点之间的
相对位置确定等要求。

同时,由于测量误差的累积,可能会对最终
的位置计算结果产生一定的影响。

总的来说,单向空间后方交会是一种常用的测量方法,它通过
角度和距离测量来确定目标位置,适用于需要测量远距离目标位置
的情况。

然而,在实际应用中需要注意测量精度和误差控制等因素,以确保最终计算结果的准确性。

摄影测量学空间后方交会实验报告

摄影测量学空间后方交会实验报告

摄影测量学实验报告实验一、单像空间后方交会学院:建测学院班级:测绘082姓名:肖澎学号: 15一.实验目的1.深入了解单像空间后方交会的计算过程;2.加强空间后方交会基本公式和误差方程式,法线方程式的记忆;3.通过上机调试程序加强动手能力的培养。

二.实验原理以单幅影像为基础,从该影像所覆盖地面范围内若干控制点和相应点的像坐标量测值出发,根据共线条件方程,求解该影像在航空摄影时刻的相片外方位元素。

三.实验内容1.程序图框图2.实验数据(1)已知航摄仪内方位元素f=153.24mm,Xo=Yo=0。

限差0.1秒(2)已知4对点的影像坐标和地面坐标:3.实验程序using System;using System.Collections.Generic;using System.Linq;using System.Text;namespace ConsoleApplication3{class Program{static void Main(){//输入比例尺,主距,参与平参点的个数Console.WriteLine("请输入比例尺分母m:\r");string m1 = Console.ReadLine();double m = (double)Convert.ToSingle(m1);Console.WriteLine("请输入主距f:\r");string f1 = Console.ReadLine();double f = (double)Convert.ToSingle(f1);Console.WriteLine("请输入参与平差控制点的个数n:\r");string n1 = Console.ReadLine();int n = (int)Convert.ToSingle(n1);//像点坐标的输入代码double[] arr1 = new double[2 * n];//1.像点x坐标的输入for (int i = 0; i < n; i++){Console.WriteLine("请输入已进行系统误差改正的像点坐标的x{0}值:\r", i+1);string u = Console.ReadLine();for (int j = 0; j < n; j += 2){arr1[j] = (double)Convert.ToSingle(u);}}//2.像点y坐标的输入for (int i = 0; i < n; i++){Console.WriteLine("请输入已进行系统误差改正的像点坐标的y{0}值:\r", i+1);string v = Console.ReadLine();for (int j = 1; j < n; j += 2){arr1[j] = (double)Convert.ToSingle(v);}}//控制点的坐标输入代码double[,] arr2 = new double[n, 3];//1.控制点X坐标的输入for (int j = 0; j < n; j++){Console.WriteLine("请输入控制点在地面摄影测量坐标系的坐标的X{0}值:\r", j+1);string u = Console.ReadLine();arr2[j , 0] = (double)Convert.ToSingle(u);}//2.控制点Y坐标的输入for (int k = 0; k < n; k++){Console.WriteLine("请输入控制点在地面摄影测量坐标系的坐标的Y{0}值:\r", k+1);string v = Console.ReadLine();arr2[k , 1] = (double)Convert.ToSingle(v);}//3.控制点Z坐标的输入for (int p =0; p < n; p++){Console.WriteLine("请输入控制点在地面摄影测量坐标系的坐标的Z{0}值:\r", p+1);string w = Console.ReadLine();arr2[p , 2] = (double)Convert.ToSingle(w);}//确定外方位元素的初始值//1.确定Xs的初始值:double Xs0 = 0;double sumx = 0;for (int j = 0; j < n; j++){double h = arr2[j, 0];sumx += h;}Xs0 = sumx / n;//2.确定Ys的初始值:double Ys0 = 0;double sumy = 0;for (int j = 0; j < n; j++){double h = arr2[j, 1];sumy += h;}Ys0 = sumy / n;//3.确定Zs的初始值:double Zs0 = 0;double sumz = 0;for (int j = 0; j <= n - 1; j++){double h = arr2[j, 2];sumz += h;}Zs0 = sumz / n;doubleΦ0 = 0;doubleΨ0 = 0;double K0 = 0;Console.WriteLine("Xs0,Ys0,Zs0,Φ0,Ψ0,K0的值分别是:{0},{1},{2},{3},{4},{5}", Xs0, Ys0, Zs0, 0, 0, 0);//用三个角元素的初始值按(3-4-5)计算各方向余弦值,组成旋转矩阵,此时的旋转矩阵为单位矩阵I:double[,] arr3 = new double[3, 3];for (int i = 0; i < 3; i++)arr3[i, i] = 1;}double a1 = arr3[0, 0]; double a2 = arr3[0, 1]; double a3 = arr3[0, 2];double b1 = arr3[1, 0]; double b2 = arr3[1, 1]; double b3 = arr3[1, 2];double c1 = arr3[2, 0]; double c2 = arr3[2, 1]; double c3 = arr3[2, 2];/*利用线元素的初始值和控制点的地面坐标,代入共线方程(3-5-2),* 逐点计算像点坐标的近似值*///1.定义存放像点近似值的数组double[] arr4 = new double[2 * n];//----------近似值矩阵//2.逐点像点坐标计算近似值//a.计算像点的x坐标近似值(x)for (int i = 0; i < 2 * n; i += 2){for (int j = 0; j < n; j++){arr4[i] = -f * (a1 * (arr2[j, 0] - Xs0) + b1 * (arr2[j, 1] - Ys0) + c1 * (arr2[j, 2] - Zs0)) / (a3 * (arr2[j, 0] - Xs0) + b3 * (arr2[j, 1] - Ys0) + c3 * (arr2[j, 2] - Zs0)); }}//b.计算像点的y坐标近似值(y)for (int i = 1; i < 2 * n; i += 2){for (int j = 0; j < n; j++){arr4[i] = -f * (a2 * (arr2[j, 0] - Xs0) + b2 * (arr2[j, 1] - Ys0) + c2 * (arr2[j, 2] - Zs0)) / (a3 * (arr2[j, 0] - Xs0) + b3 * (arr2[j, 1] - Ys0) + c3 * (arr2[j, 2] - Zs0)); }}//逐点计算误差方程式的系数和常数项,组成误差方程:double[,] arr5 = new double[2 * n, 6]; //------------系数矩阵(A)//1.计算dXs的系数for (int i = 0; i < 2 * n; i += 2){arr5[i, 0] = -1 / m; //-f/H == -1/m}//2.计算dYs的系数for (int i = 1; i < 2 * n; i += 2){arr5[i, 1] = -1 / m; //-f/H == -1/m}//3.a.计算误差方程式Vx中dZs的系数for (int i = 0; i < 2 * n; i += 2)arr5[i, 2] = -arr1[i] / m * f;}//3.b.计算误差方程式Vy中dZs的系数for (int i = 1; i < 2 * n; i += 2){arr5[i, 2] = -arr1[i] / m * f;}//4.a.计算误差方程式Vx中dΦ的系数for (int i = 0; i < 2 * n; i += 2){arr5[i, 3] = -f * (1 + arr1[i] * arr1[i] / f * f);}//4.a.计算误差方程式Vy中dΦ的系数for (int i = 1; i < 2 * n; i += 2){arr5[i, 3] = -arr1[i - 1] * arr1[i] / f;}//5.a.计算误差方程式Vx中dΨ的系数for (int i = 0; i < 2 * n; i += 2){arr5[i, 4] = -arr1[i] * arr1[i + 1] / f;}//5.b.计算误差方程式Vy中dΨ的系数for (int i = 1; i < 2 * n; i += 2){arr5[i, 4] = -f * (1 + arr1[i] * arr1[i] / f * f);}//6.a.计算误差方程式Vx中dk的系数for (int i = 0; i < 2 * n; i += 2){arr5[i, 5] = arr1[i + 1];}//6.b.计算误差方程式Vy中dk的系数for (int i = 1; i < 2 * n; i += 2){arr5[i, 5] = -arr1[i - 1];}//定义外方位元素组成的数组double[] arr6 = new double[6];//--------------------外方位元素改正数矩阵(X)//定义常数项元素组成的数组double[] arr7 = new double[2 * n];//-----------------常数矩阵(L)//计算lx的值for (int i = 0; i < 2 * n; i += 2)arr7[i] = arr1[i] - arr4[i]; //将近似值矩阵的元素代入}//计算ly的值for (int i = 1; i <= 2 * (n - 1); i += 2){arr7[i] = arr1[i] - arr4[i]; //将近似值矩阵的元素代入}/* 对于所有像点的坐标观测值,一般认为是等精度量测,所以权阵P为单位阵.所以X=(ATA)-1ATL *///1.计算ATdouble[,] arr5T = new double[6, 2 * n];for (int i = 0; i < 6; i++){for (int j = 0; j < 2 * n; j++){arr5T[i, j] = arr5[j, i];}}//A的转置与A的乘积,存放在arr5AA中double[,] arr5AA = new double[6, 6];for (int i = 0; i < 6; i++){for (int j = 0; j < 6; j++){arr5AA[i, j] = 0;for (int l = 0; l < 2 * n; l++){arr5AA[i, j] += arr5T[i, l] * arr5[l, j];}}}nijuzhen(arr5AA);//arr5AA经过求逆后变成原矩阵的逆矩阵//arr5AA * arr5T存在arr5AARATdouble[,] arr5AARAT = new double[6, 2 * n];for (int i = 0; i < 6; i++){for (int j = 0; j < 2 * n; j++){arr5AARAT[i, j] = 0;for (int p = 0; p < 6; p++){arr5AARAT[i, j] += arr5AA[i, p] * arr5T[p, j];}}}//计算arr5AARAT x L,存在arrX中double[] arrX = new double[6];for (int i = 0; i < 6; i++){for (int j = 0; j < 1; j++){arrX[i] = 0;for (int vv = 0; vv < 6; vv++){arrX[i] += arr5AARAT[i, vv] * arr7[vv];}}}//计算外方位元素值double Xs, Ys, Zs, Φ, Ψ, K;Xs = Xs0 + arrX[0];Ys = Ys0 + arrX[1];Zs = Zs0 + arrX[2];Φ = Φ0 + arrX[3];Ψ = Ψ0 + arrX[4];K = K0 + arrX[5];for (int i = 0; i <= 2; i++){Xs += arrX[0];Ys += arrX[1];Zs += arrX[2];Φ += arrX[3];Ψ += arrX[4];K += arrX[5];}Console.WriteLine("Xs,Ys,Zs,Φ,Ψ,K的值分别是:{0},{1},{2},{3},{4},{5}", Xs0, Ys0, Zs0, Φ, Ψ, K);Console.Read();}//求arr5AA的逆矩public static double[,] nijuzhen(double[,] a) {double[,] B = new double[6, 6];int i, j, k;int row = 0;int col = 0;double max, temp;int[] p = new int[6];for (i = 0; i < 6; i++){p[i] = i;B[i, i] = 1;}for (k = 0; k < 6; k++){//找主元max = 0; row = col = i;for (i = k; i < 6; i++){for (j = k; j < 6; j++){temp = Math.Abs(a[i, j]);if (max < temp){max = temp;row = i;col = j;}}}//交换行列,将主元调整到k行k列上if (row != k){for (j = 0; j < 6; j++){temp = a[row, j];a[row, j] = a[k, j];a[k, j] = temp;temp = B[row, j];B[row, j] = B[k, j];B[k, j] = temp;i = p[row]; p[row] = p[k]; p[k] = i; }if (col != k){for (i = 0; i < 6; i++){temp = a[i, col];a[i, col] = a[i, k];a[i, k] = temp;}}//处理for (j = k + 1; j < 6; j++){a[k, j] /= a[k, k];}for (j = 0; j < 6; j++){B[k, j] /= a[k, k];a[k, k] = 1;}for (j = k + 1; j < 6; j++){for (i = 0; j < k; i++){a[i, j] -= a[i, k] * a[k, j];}for (i = k + 1; i < 6; i++){a[i, j] -= a[i, k] * a[k, j];}}for (j = 0; j < 6; j++){for (i = 0; i < k; i++){B[i, j] -= a[i, k] * B[k, j];}for (i = k + 1; i < 6; i++){B[i, j] -= a[i, k] * B[k, j];}for (i = 0; i < 6; i++) {a[i, k] = 0;a[k, k] = 1;}}//恢复行列次序for (j = 0; j < 6; j++){for (i = 0; i < 6; i++) {a[p[i], j] = B[i, j]; }}for (i = 0; i < 6; i++){for (j = 0; j < 6; j++) {a[i, j] = a[i, j];}}return a;}4.实验结果四.实验总结此次实验让我深入了解单像空间后方交会的计算过程,加强了对空间后方交会基本公式和误差方程式,法线方程式的记忆。

单像空间后方交会实验报告(c++版)

单像空间后方交会实验报告(c++版)

单像空间后方交会实验报告(c++版)单像空间后方交会姓名:学号:时间:目录一、作业任务..................................................... - 4 -二、计算原理..................................................... - 4 -三、算法流程..................................................... - 8 -四、源程序....................................................... - 9 -五、计算结果..................................................... - 9 -六、结果分析..................................................... - 9 -七、心得与体会................................................... - 9 -八、附页......................................................... - 9 -1.c++程序.................................................. - 10 -2.C++程序截图.............................................. - 17 -3.matlb程序 ............................................... - 17 -一、 作业任务已知条件:摄影机主距f=153.24mm ,x0=0,y0=0, 像片比例尺为1:40000,有四对点的像点坐标与相应的地面坐标如下表。

单像空间后方交会实习报告

单像空间后方交会实习报告

单像空间后方交会实习报告一、引言在我参加实习项目期间,我有幸在测绘工程实践中学习到了单像空间后方交会的相关知识和技能。

本报告旨在总结和详细介绍我在这个项目中所学到的内容,并分享我在实践中的经验和感悟。

二、实习背景实习项目的目标是通过使用单像空间后方交会方法对给定的影像数据进行三维测量,实现对地物位置和形状的准确测绘。

实习过程中,我所参与的任务是基于无人机获取的航片进行测绘,希望能达到较高的准确性和精度。

三、实习内容1. 影像数据获取与准备为了能够进行后方交会,首先我需要获取一组高质量、清晰度较高的影像数据。

在实习项目中,我们使用了专业的无人机拍摄了一系列航测相片。

在选择相机设备、安装和定位无人机方面,我们尽可能保证了影像的质量和准确性。

2. 影像处理和点提取获取到影像数据后,对影像进行预处理以满足后方交会的需要。

这一步骤包括图像的几何校正、色调校正等。

接下来,从影像中手动或者自动提取出具有明显特征点的区域,作为后方交会的控制点。

3. 单像空间后方交会参数计算在进行后方交会之前,需要确定准确的内、外方位元素。

内方位元素包拟化比例分母纸试验、比例尺、转分度仪、坐标尺等设备。

外方位元素的测量利用经纬度、高程等信息,通过空间三角测量的方法来计算。

4. 控制点的标定和精度评定为了保证交会精度,需要至少有三个以上的控制点,同时还需在计算之前对这些控制点进行标定。

控制点的标定首先进行坐标基准的精确定义,然后通过重复测量来评估控制点的精度。

5. 三维坐标的计算根据前面计算得到的内、外方位元素以及控制点的坐标,可以利用单像空间后方交会的方法来计算其它像上点的坐标。

这一步骤主要涉及相对定向和绝对定向的计算,其中相对定向可以通过一些数学模型和算法来实现。

四、实习总结通过参与单像空间后方交会实习项目,我深刻认识到了测绘工程的重要性和挑战性。

在实践中,我学到了很多相关的知识和技能。

首先,我掌握了使用无人机获取影像数据的方法和技巧,了解了影像处理的基本步骤和注意事项。

单像空间后方交会

单像空间后方交会
外方位元素 :
关于外方位 元素:
知道外方位元素, 可用来恢复像片在 摄影时的空间位置, 重建像片与被摄地 面之间的相互关系
1、确定S在物方空 •间坐标系中位置的元 •素(直线元素)。 •Xs,Ys,Zs •例Xs=1140.2m •Ys=2003.5m •Zs=1035.7m
2、确定像片在物方空间坐标系中位置的元素 (角元素)。 •角元素
• • • ---主垂面W方向角 ---像片倾角 ---像片旋角(y轴与主纵线夹角)
关于内方位元素
内方位元素 •确定像片相对S 的位置。 • --焦距 • --像主点
在像平面坐标系 中的坐标
后方 交会 在现 代社 会中 的应 用
角 锥 体 交会
测绘13-2
单向空间后方交会的定义
• 以单幅影像为基础,从该影像所覆盖地面 范围内若干控制点的已知地面坐标和相应 点的像坐标量测值出发,根据共线方程条 件方程,解该影像在航空摄影时刻的外方 位元素,由于空间后方交会所采用的数学 模型共线方程是非线性函数,为了方便外 方位元素的解求,需首先对共线方程进行 显性化》

摄影测量学基础试题1

摄影测量学基础试题1

一、名词解释1摄影测量学 2航向重叠3单像空间后方交会 4相对航高5解析空中三角测量 6外方位元素7核面 8绝对定向元素二、问答题1.写出中心投影的共线方程式并说明式中各参数的含义。

2.指出采用“后方交会+前方交会”和“相对定向+绝对定向”两种方法计算地面点坐标的基本步骤。

3.简述利用光束法(一步定向法)求解物点坐标的基本思想。

4.简述解析绝对定向的基本过程。

5.简述相对定向的基本过程。

6.试述航带网法解析空中三角测量的基本步骤。

二、填空1摄影测量的基本问题,就是将_________转换为__________。

2人眼产生天然立体视觉的原因是由于_________的存在。

3相对定向完成的标志是__________。

三、简答题1两种常用的相对定向元素系统的特点及相对定向元素。

2倾斜位移的特性。

3单航带法相对定向后,为何要进行比例尺归化?怎样进行?4独立模型法区域网平差基本思想。

5何谓正形变换?有何特点?四、论述题1空间后方交会的计算步骤。

2有三条航线,每条航线六张像片组成一个区域,采用光束法区域网平差。

(1)写出整体平差的误差方程式的一般式。

(2)将像片进行合理编号,并计算带宽,内存容量。

(3)请画出改化法方程系数阵结构简图。

参考答案:一、1是对研究的对象进行摄影,根据所获得的构想信息,从几何方面和物理方面加以分析研究,从而对所摄影的对象本质提供各种资料的一门学科。

2供测图用的航测相片沿飞行方向上相邻像片的重叠。

3知道像片的内方位元素,以及三个地面点坐标和量测出的相应像点的坐标,就可以根据共线方程求出六个外方位元素的方法。

4摄影瞬间航摄飞机相对于某一索取基准面的高度。

5将中心投影转换成正射投影时,经过投影变换来消除相片倾斜所引起的像点位移,使它相当于水平相片的构象,并符合所规定的比例尺的变换过程。

6是将建立的投影光束,单元模型或航带模型以及区域模型的数字模型,根据少数地面控制点,按最小二乘法原理进行平差计算,并求加密点地面坐标的方法。

摄影测量作业3-空间后方交会计算

摄影测量作业3-空间后方交会计算
5
CFileDialog dlgOpenFile(TRUE, _T("txt"), NULL, OFN_FILEMUSTEXIST, _T("(文本文件)|*.txt|(所有文件)|*.*)||"));
if (dlgOpenFile.DoModal() == IDCANCEL) return;//如果选择取消按钮,则退出
原理、算法流程、源程序、计算结果、结果分析、心得体会等。
三.实验所用到的数学公式及程序计算步骤。
单张影像的空间后方交会:利用已知地面控制点数据及相应像点坐标 根据共线方程反 求影像的外方位元素。 数学模型:共线条件方程式:
3
求解过程: (1)获取已知数据。从航摄资料中查取平均航高与摄影机主距;获取控制点的地面测
CMatrix X,_A,_AA,N_AA; _A = ~A;//A 的转置 _AA = _A*A; N_AA = _AA.Inv();//_AA 的逆矩阵 X = N_AA*_A*L; return X; }
CMatrix CKongJianHouFangJiaoHuiDlg::GetA(CMatrix xyXYZ, double f, CMatrix XX)//计算系数矩 阵A {
CMatrix CKongJianHouFangJiaoHuiDlg::GetL(CMatrix xyXYZ, double f, CMatrix XX)//计算 L 矩阵 {
int iRow = xyXYZ.Row(); CMatrix L(2 * iRow, 1); double XS = XX(0, 0); double YS = XX(0, 1); double ZS = XX(0, 2);
A(2*i, 3) = y*sin(w) - (x*(x*cos(k) - y*sin(k)) / f + f*cos(k))*cos(w); A(2*i, 4) = -f*sin(k) - x*(x*sin(k) + y*cos(k)) / f; A(2*i, 5) = y; A(2*i+1, 0) = (a2*f + a3*y) / _Z; A(2 * i + 1, 1) = (b2*f + b3*y) / _Z; A(2 * i + 1, 2) = (c2*f + c3*y) / _Z; A(2 * i + 1, 3) = -x*sin(w) - (y*(x*cos(k) - y*sin(k)) / f - f*sin(k))*cos(w); A(2 * i + 1, 4) = -f*cos(k) - y/ f*(x*sin(k) + y*cos(k)); A(2 * i + 1, 5) = -x; } return A; }

简述单像空间后方交会的程序设计步骤

简述单像空间后方交会的程序设计步骤

简述单像空间后方交会的程序设计步骤
单像空间后方交会是一种用于测量摄影点在三维空间中位置的方法。

以下是简述的程序设计步骤:
1.读取摄影测量数据:首先,从摄影测量设备(如相机)中读取图像和相关的内参数据,包括相机的焦距、像点大小等。

2.图像处理:对读取的图像进行预处理。

可能需要进行去畸变操作,校正图像的畸变。

3.特征提取:从图像中提取关键点或特征点。

这些特征点可以是角点、边缘、斑点等。

提取出的特征点用于后方交会计算。

4.求解相机位姿:使用特征点的像素坐标和已知内参数,通过解非线性方程组的方法,计算相机在三维空间中的位姿(即相机的位置和方向)。

5.求解三维点坐标:对于每个特征点,使用单像模型,将像素坐标投影到相机坐标系中。

然后,通过解线性方程组的方法,计算特征点在三维空间中的坐标。

6.误差检测与优化:计算测量误差,并进行误差检测。

可以使用一些优化算法,如最小二乘法,来优化相机位姿和三维点坐标。

7.输出测量结果:将计算得到的三维点坐标输出,可以是数字格式或者可视化结果。

以上是单像空间后方交会的基本程序设计步骤。

每个步骤可能会有不同的具体实现,根据具体的应用场景和需求进行设计和调整。

单像空间后方交会

单像空间后方交会

单像空间后方交会测绘学院 成晓倩1 概述1.1 定义利用一定数量的地面控制点和对应像点坐标求解单张像片外方位元素的方法称为空间后方交会。

1.2 所需控制点个数与分布共线条件方程的一般形式为:⎪⎪⎩⎪⎪⎨⎧-+-+--+-+--=--+-+--+-+--=-)()()()()()()()()()()()(33322203331110S S S S S S S S S S S S Z Z c Y Y b X X a Z Z c Y Y b X X a f y y Z Z c Y Y b X X a Z Z c Y Y b X X a f x x (1)式中包含有六个外方位元素,即κωϕ、、、、、S S S Z Y X ,只有确定了这六个外方位元素的值,才能利用共线条件方程真正确定一张像片的任一像点与对应地面点的坐标关系。

个数:对任一控制点,我们已知其地面坐标)(i i i Z Y X 、、和对应像点坐标)(i i y x 、,代入共线条件方程可以列出两个方程式,因此,只少需要3个控制点才能解算出六个外方位元素。

在实际应用中,为了避免粗差,应有多余检查点,因此,一般需要4~6个控制点。

分布:为了最有效地控制整张像片,控制点应均匀分布于像片边缘,如下图所示。

由于共线条件方程是非线性的,直接答解十分困难,所以首先将共线方程改化为线性形式,然后再答解最为简单的线性方程组。

2 空间后方交会的基本思路分布合理 分布合理 分布不合理2.1 共线条件方程线性化的基本思路在共线条件方程中,令)()()()()()()()()(333222111S S S S S S S S S Z Z c Y Y b X X a Z Z Z c Y Y b X X a Y Z Z c Y Y b X X a X -+-+-=-+-+-=-+-+-= (2) 则共线方程变为⎪⎪⎩⎪⎪⎨⎧-=--=-ZY fy y Z Xf x x 00 (3) 对上式两侧同乘Z ,并移至方程同侧,则有⎩⎨⎧=-+=-+0)(0)(00Z y y Y f Z x x X f (4) 令⎩⎨⎧-+=-+=Zy y Y f Fy Zx x X f Fx )()(00 (5) 由于上式是共线方程的变形,因此,Fy Fx 、是κωϕ、、、、、S S S Z Y X 的函数。

(空间后方交会的计算过程)空间后方交会

(空间后方交会的计算过程)空间后方交会

将上述偏导数代入,可以求得其余的系数如下
x ( x cos k y sin k ) f cos k ] cos f x a15 f sin k ( x sin k y cos k ) f a16 y a14 y sin [ x ( x cos k y sin k f sin k ) f sin k ] cos f y a25 f cos k ( x sin k y cos k f a26 x a24 x sin [
计算中,通常将地面控制点的坐标认为是真值,而把相应的像点 Vy 列 坐标认为是观测值,加入相应的改正数 Vx ,Vy ,得 x Vx , y , 出如下的每个点的误差方程式为:
x x x x x x V dX dY dZ d d dk ( x) x S S S x X Y Z k S S S V y dX y dY y dZ y d y d y dk ( y ) y y S S S X Y Z k S S S
当竖直投影时,角元素都是小角(小于3度),此时可近似认为 k 0, Z A Z S H ,各个系数的表达式可以得到简化。
空间后方交会计算中的误差方程和法方程 由于有六个未知数,所以至少需要知道三个 已知的地面控制点,为了能够平差,通常在 像片的四个角选取四个或更多的地面控制点。
1 4 YS 0 Ytpi 4 i 1
4) 计算旋转矩阵R:利用角元素的近似值计算 方向元素,组成旋转矩阵R。 5)逐点计算像点坐标的近似值:利用未知数 的近似值按照共线方程计算控制点像点坐 标的近似值(x),(y); 6) 组成误差方程式 7) 组成法方程式 8)解求外方位元素 9)检查计算是否收敛:将求得外方位元素的 改正数与规定的限差比较,小于限差则计 算终止,否则迭代计算。

摄影测量学基础试题 (2)

摄影测量学基础试题 (2)

一、名词解释1摄影测量学 2航向重叠3单像空间后方交会 4相对航高5解析空中三角测量 6外方位元素7核面 8绝对定向元素二、问答题1.写出中心投影的共线方程式并说明式中各参数的含义。

2.指出采用“后方交会+前方交会”和“相对定向+绝对定向”两种方法计算地面点坐标的基本步骤。

3.简述利用光束法(一步定向法)求解物点坐标的基本思想。

4.简述解析绝对定向的基本过程。

5.简述相对定向的基本过程。

6.试述航带网法解析空中三角测量的基本步骤。

二、填空1摄影测量的基本问题,就是将_________转换为__________。

2人眼产生天然立体视觉的原因是由于_________的存在。

3相对定向完成的标志是__________。

三、简答题1两种常用的相对定向元素系统的特点及相对定向元素。

2倾斜位移的特性。

3单航带法相对定向后,为何要进行比例尺归化?怎样进行?4独立模型法区域网平差基本思想。

5何谓正形变换?有何特点?四、论述题1空间后方交会的计算步骤。

2有三条航线,每条航线六张像片组成一个区域,采用光束法区域网平差。

(1)写出整体平差的误差方程式的一般式。

(2)将像片进行合理编号,并计算带宽,内存容量。

(3)请画出改化法方程系数阵结构简图。

参考答案:一、1是对研究的对象进行摄影,根据所获得的构想信息,从几何方面和物理方面加以分析研究,从而对所摄影的对象本质提供各种资料的一门学科。

2供测图用的航测相片沿飞行方向上相邻像片的重叠。

3知道像片的内方位元素,以及三个地面点坐标和量测出的相应像点的坐标,就可以根据共线方程求出六个外方位元素的方法。

4摄影瞬间航摄飞机相对于某一索取基准面的高度。

5将中心投影转换成正射投影时,经过投影变换来消除相片倾斜所引起的像点位移,使它相当于水平相片的构象,并符合所规定的比例尺的变换过程。

6是将建立的投影光束,单元模型或航带模型以及区域模型的数字模型,根据少数地面控制点,按最小二乘法原理进行平差计算,并求加密点地面坐标的方法。

单张像片空间后方交会

单张像片空间后方交会

外方位元素的计算
当一张像片上至少有三个控制点时, 当一张像片上至少有三个控制点时,误差方程矩阵形式
V = Ax − l
x = ( A T A ) −1 ( A T l )
x , l = y a 14 a 15 a 24 a 25
σ
0
=
V TV 2n − 6
∆ X s ∆Ys ∆Z vx V = x = ∆ ϕs , v y ∆ω ∆κ a 12 a 13 a A = 11 a 22 a 23 a 21
X X −Xs Y = R−1 Y −Y s Z −Z Z s
a 1 a1 a 2 b1 a 3 c1
0 = a 2 c1 − a1 c 2 a c − a c 1 3 3 1 0 = b3 − b 2 − b3 0 b1
在竖直摄影情况 误差方程系 数的近似值
f a11 = − , H
ϕ =ω =κ = 0
Z − Z
s
= H
x a12 = 0, a13 = − H f y a21 = 0, a22 = − , a23 = − H H 2 x xy a14 = − f (1+ 2 ), a15 = − , a16 = y f f xy y2 a24 = − , a25 = − f (1+ 2 ), a26 = −x f f
已知值 x0 , y0 , f , m, X, Y, Z 观测值 x,y 未知数 Xs, Ys, Zs, ϕ, ω, κ , 泰勒级数展开
按泰勒级数展开,取小值一次项
∂x ∂x ∂x ∂x x = (x) + ΔX + ∆Y + ∆Z + ∆ϕ ∂X ∂Y ∂Z ∂ϕ ∂x ∂x + ∆ω + ∆κ ∂ω ∂κ ∂y ∂y ∂y ∂y y = ( y) + ∆X + ∆Y + ∆Z + ∆ϕ ∂X ∂Y ∂Z ∂ϕ ∂y ∂y + ∆ω + ∆κ ∂ω ∂κ

中国大学MOOC慕课爱课程(14)--内定向与空间后方交会试题网课刷课

中国大学MOOC慕课爱课程(14)--内定向与空间后方交会试题网课刷课

内定向与空间后方交会试题1、填空题(1)数字影像内定向的目的:实现像坐标系统之间的转换 、 改正影像几何变形 。

(2)单像空间后方交会最少需要 3 不在一条直线上的地面控制点。

2、名词解释(1)空间后方交会:利用地面控制点及其在像片上的像点,确定像片外方位元素的方法称为空间后方交会。

3、综合题(1)数字影像内定向的基本思路是什么?答:利用一些特殊点,如框标点或其他特征点,分别获取这些点的像平面坐标和扫描坐标然后依据内定向的数学模型求解待定系数。

(2)利用共线条件方程解算像片的外方位元素的基本过程答:过程如下:a 、读入原始数据(x ,y ,x 0,y 0,f ,X ,Y ,Z )(x ,y )是像点坐标,(x 0,y 0,f )是内方位元素,(X ,Y ,Z )是像点坐标对应的地面点坐标;b 、确定外方位元素初值:(0000,][,][H Zs nY n Y Ys n X n XXs =====∑∑ ,φ0=ω0=κ0=0) c 、组误差方程式:利用已知值和近似值,组M ,计算 Z Y X ,,和x 计,y 计d 、法化,答解法方程解算外方位元素改正数(dXs ,dYs ,dZs ,dφ,dω,dκ)和改正值111111111111,,,,+++++++++++++=+=+=+=+=+=k k k k k k k k k k k k k k k k k k d d d dZs Zs Zs dYs Ys Ys dXs Xs Xs κκκωωωφφφe 、判断改正数是否小于限差:若大于限差,回到第3部,重组误差方程式进行迭代计算;若小于限差,输出计算结果。

课程答案网课刷课flyingjgh。

摄影测量考试试题及详细答案

摄影测量考试试题及详细答案

1 摄影测量学 23 单像空间后方交会5 像片纠正 67 透视平面旋转定律9 核面 105光束法区域网平差时,若像片按垂直于航带方向编号,则改化法方程系数阵带 宽为 ,若按平行于航带方向编号,则带宽为 ____________________________ 。

三、 简答题1 两种常用的相对定向元素系统的特点及相对定向元素。

2 倾斜位移的特性。

3 单行带法相对定向后,为何要进行比例尺归化?为何进行?4 独立模型法区域网平差基本思想。

5 何谓正形变换?有何特点?四、 论述题1 空间后方交会的结算步骤。

2有三条航线,每条航线六张像片组成一个区域,采用光束法区域网平差。

(1)(2)(3)A 卷答案:1是对研究的对象进行摄影,根据所获得的构想信息,从几何方面和物理方面加 以分析研究,从而对所摄影的对象本质提供各种资料的一门学 科。

2供测图用的航测相片沿飞行方向上相邻像片的重叠。

3 知道像片的内方位元素,以及三个地面点坐标和量测出的相应像点的坐标,就 可以根据共线方程求出六个外方位元素的方法。

4 摄影瞬间航摄飞机相对于某一索取基准面的高度。

5 将中心投影转换成正射投影时, 经过投影变换来消除相片倾斜所引起的像点位移,使它相当于水平相片的构象,并符合所规定的比例尺的变换过程。

6是将建立的投影光束,单元模型或航带模型以及区域模型的数字模型,根据少 数地面控制点,按最小二乘法原理进行平差计算,并求加密点地面坐标的方法。

7当物面和合面分别绕透视轴合线旋转后,只要旋转地角度相同,则投影射线总 是通过物面和像面的统一相对应点。

一、 填空1摄影测量的基本问题,就是将 2 物体 的 色是 随 着 ______ ______ 转换为 _____________ 。

的光谱成分和物体对光谱成分固有不变的____ 的能力而定的。

3人眼产生天然立体视觉的原因是由于 4 相对定向完成的标志是 ____________ 、和的存在。

单像空间后方交会

单像空间后方交会

摄影测量学实习报告遥感07011班吴倩200732590254一、实习目的1.掌握空间后方交会的定义和实现算法(1)定义:空间后方交会是以单幅影像为基础,从该影像所覆盖地面范围内若干控制点的已知地面坐标和相应点的像坐标量测值出发,根据共线条件方程,解求该影像在航空摄影时刻的外方位元素Xs,Ys,Zs,φ,ω,κ。

(2)算法:由于每一对像方和物方共轭点可列出2个方程,因此若有3个已知地面坐标的控制点,则可列出6个方程,解求6个外方位元素的改正数△Xs,△Ys,△Zs,△φ,△ω,△κ。

实际应用中为了提高解算精度,常有多余观测方程,通常是在影像的四个角上选取4个或均匀地选择更多的地面控制点,因而要用最小二乘平差方法进行计算。

2.了解摄影测量平差的基本过程(1)获取已知数据。

从摄影资料中查取影像比例尺1/m,平均摄影距离(航空摄影的航高)、内方位元素x0,y0,f;获取控制点的空间坐标Xt,Yt,Zt。

(2)量测控制点的像点坐标并进行必要的影像坐标系统误差改正,得到像点坐标。

(3)确定未知数的初始值。

单像空间后方交会必须给出待定参数的初始值,在竖直航空摄影且地面控制点大体对称分布的情况下,Xs0和Ys0为均值,Zs0为航高,φ、ω、κ的初值都设为0。

或者κ的初值可在航迹图上找出或根据控制点坐标通过坐标正反变换求出。

(4)计算旋转矩阵R。

利用角元素近似值计算方向余弦值,组成R阵。

(5)逐点计算像点坐标的近似值。

利用未知数的近似值按共线条件式计算控制点像点坐标的近似值(x),(y)。

(6)逐点计算误差方程式的系数和常数项,组成误差方程式。

(7)计算法方程的系数矩阵ATA与常数项ATL,组成法方程式。

(8)解求外方位元素。

根据法方程,解求外方位元素改正数,并与相应的近似值求和,得到外方位元素新的近似值。

(9)检查计算是否收敛。

将所求得的外方位元素的改正数与规定的限差比较,通常对φ,ω,κ的改正数△φ,△ω,△κ给予限差,通常为0.1′,当3个改正数均小于0.1′时,迭代结束。

单像空间后方交会实习报告

单像空间后方交会实习报告

单像空间后方交会实习报告在我大二的时候,我在学校的地理信息科学实验室进行了一次后方交会实习。

这次实习让我学到了很多关于单像空间后方交会的知识和技能,也让我感受到了这个领域的重要性和挑战性。

一、实习背景地理信息科学实验室每年都会招募一些学生进行实习,我很幸运地被录取了。

这次实习的任务是处理一张由我校经济学院提供的无人机航拍图,将其转换为面状地图,并标注出地物和道路等信息。

这需要我们进行一系列的处理和分析步骤,其中包括单像空间后方交会。

二、单像空间后方交会的概念单像空间后方交会是指利用单个航空(或是航天)影像数据,通过对影像信息的解译和解算,实现航空(或是航天)影像数据与地面控制点、地物控制点的精确定位和测量。

在数字摄影测量中,它被广泛应用于三维地图制图、遥感分析、环境监测等领域。

三、后方交会的步骤在进行单像空间后方交会的过程中,我们需要按照以下步骤进行:1. 确定控制点和目标点首先,我们需要去现场进行勘测,确定一些地面控制点和地物控制点。

这些控制点通常是人为放置的,其经纬度和高程值可以通过全球卫星定位系统(GPS)进行测量。

同时,我们也需要标注出一些目标点,例如建筑物、道路等。

2. 数字化影像然后,我们需要将航拍图数字化,得到其高分辨率的像元值。

数字化过程中需要对影像进行去畸变和空间校正处理,保证像号与光学系统的参数之间的一一对应关系。

3. 特征提取接着,我们需要对数字化影像进行特征提取,例如道路、建筑物、不规则物体的边缘等,得到这些待测量的点的坐标信息。

4. 内方位元素的解算接下来,我们需要对影像的内部参数进行计算,包括焦距、主点位置、像距和畸变参数等。

这些参数对后面的后方交会计算至关重要。

5. 外方位元素的解算然后,我们需要通过空三测量方法,计算航拍机的位置和姿态信息,即外方位元素。

外方位元素包括愚角、俯仰角、横滚角、以及平台的三维坐标。

6. 后方交会计算最后,我们需要将上述内外方位元素的解算值与控制点的经纬度和高程值进行计算,得到待测点在像元和地面坐标系下的坐标值。

空间后方交会基本原理

空间后方交会基本原理
获得(恢复)影像的外方位元素的方法很多:
①一张影像 ; ----单像空间后方交会 ②两张影像 (一立体像对 ) ; --相对定向+绝对定向 ③多(甚至上千)张影像; --空中三角测量; ④在摄影过程中直接获取。

? 单像空间后方交会概述

? 共线方程的线性化(难点) ? 利用共线条件方程解算像片的外方位元
?
ZS
)
??
a3 ( X ? X S ) ? b3 (Y ? YS ) ? c3 ( Z ? Z S )
已知: ?X i ,Yi ,Z i ?,?xi , yi ?,i ? 3
求: ?X S ,YS ,Z S ?,?? ,? ,? ?
通过计算机编程如何实现?
[ 一]方程线性化及应用
y =a +a2x
Fy
?
y?
f
a2 ( X a3 (X
? ?
X S ) ? b2 (Y ? YS ) ? c2 (Z ? Z S ) ? 0 X S ) ? b3 (Y ? YS ) ? c3 (Z ? Z S )
Fx ( X S ,YS , ZS ,? ,? ,? ) Fy ( X S ,YS , ZS ,? ,? ,? )
xy d? ? (
f
f
?
y2 f
)d?
?
xd?
?(y?
y计 ) ? 0
误差方程式为:
?f
x
x2
xy
?? Z dXs ? Z dZs ? ( f ? f )d? ? f d? ? yd? ? ( x ? x计 ) ? vx
?
? ??
f Z
dYs
?
y dZs ? Z
xy d? ? (
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单像空间后方交会测绘学院 成晓倩1 概述1.1 定义利用一定数量的地面控制点和对应像点坐标求解单张像片外方位元素的方法称为空间后方交会。

1.2 所需控制点个数与分布共线条件方程的一般形式为:⎪⎪⎩⎪⎪⎨⎧-+-+--+-+--=--+-+--+-+--=-)()()()()()()()()()()()(33322203331110S S S S S S S S S S S S Z Z c Y Y b X X a Z Z c Y Y b X X a f y y Z Z c Y Y b X X a Z Z c Y Y b X X a f x x (1)式中包含有六个外方位元素,即κωϕ、、、、、S S S Z Y X ,只有确定了这六个外方位元素的值,才能利用共线条件方程真正确定一张像片的任一像点与对应地面点的坐标关系。

个数:对任一控制点,我们已知其地面坐标)(i i i Z Y X 、、和对应像点坐标)(i i y x 、,代入共线条件方程可以列出两个方程式,因此,只少需要3个控制点才能解算出六个外方位元素。

在实际应用中,为了避免粗差,应有多余检查点,因此,一般需要4~6个控制点。

分布:为了最有效地控制整张像片,控制点应均匀分布于像片边缘,如下图所示。

由于共线条件方程是非线性的,直接答解十分困难,所以首先将共线方程改化为线性形式,然后再答解最为简单的线性方程组。

2 空间后方交会的基本思路分布合理 分布合理 分布不合理2.1 共线条件方程线性化的基本思路在共线条件方程中,令)()()()()()()()()(333222111S S S S S S S S S Z Z c Y Y b X X a Z Z Z c Y Y b X X a Y Z Z c Y Y b X X a X -+-+-=-+-+-=-+-+-= (2) 则共线方程变为⎪⎪⎩⎪⎪⎨⎧-=--=-ZY fy y Z Xf x x 00 (3) 对上式两侧同乘Z ,并移至方程同侧,则有⎩⎨⎧=-+=-+0)(0)(00Z y y Y f Z x x X f (4) 令⎩⎨⎧-+=-+=Zy y Y f Fy Zx x X f Fx )()(00 (5) 由于上式是共线方程的变形,因此,Fy Fx 、是κωϕ、、、、、S S S Z Y X 的函数。

对Fy Fx 、分别按泰劳级数展开,并且只保留一次项,得⎪⎪⎩⎪⎪⎨⎧∆∂∂+∆∂∂+∆∂∂+∆∂∂+∆∂∂+∆∂∂+=∆∂∂+∆∂∂+∆∂∂+∆∂∂+∆∂∂+∆∂∂+=κκωωϕϕκκωωϕϕFy Fy Fy Z Z Fy Y Y Fy X X Fy Fy Fy Fx Fx Fx Z Z Fx Y Y Fx X X Fx Fx Fx S S S S S S S S S S S S 0)()((6) 式中,0)(Fx 、0)(Fy 分别是Fx 和Fy 的初值;•∂∂Fx 、•∂∂Fy分别是Fx 和Fy 对各个外方位元素的偏导数;κωϕ∆∆∆∆∆∆、、、、、S S S Z Y X 分别是κωϕ、、、、、S S S Z Y X 初值的增量。

为了明确(6)式中常数项的意义,对(6)式两侧同乘以Z1-,则⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧∆∂∂-+∆∂∂-+∆∂∂-+∆∂∂-+∆∂∂-+∆∂∂-+-=-∆∂∂-+∆∂∂-+∆∂∂-+∆∂∂-+∆∂∂-+∆∂∂-+-=-κκωωϕϕκκωωϕϕFy Z Fy Z Fy Z Z Z FyZ Y Y Fy Z X X Fy Z Fy Z Fy Z Fx Z Fx Z Fx Z Z Z Fx Z Y Y Fx Z X X Fx Z Fx Z Fx Z SSS S S S S S S S S S )1()1()1()1()1()1()(11)1()1()1()1()1()1()(1100(7) 考查(7)式中的常数项,有)()]()[()]()[(])([1)(100000计计=-x x x x x x Z Xf x x Z x x X f Z Fx Z -----=----=-+-=-(8)式中x 是像点坐标的观测值;计x 是由相应地面坐标和外方位元素初值计算出的像点坐标。

这样(7)式中的常数项就有明确的意义,即为像点观测值和计算值之差。

同样也可以得到,)()]()[()]()[(])([1)(100000计计=-y y y y y y Z Y f y y Z y y Y f Z Fy Z -----=----=-+-=-(9)现将(7)式改写为⎩⎨⎧-∆+∆+∆+∆+∆+∆=-∆+∆+∆+∆+∆+∆=y S S S yxS S S x l a a a Z a Y a X a v l a a a Z a Y a X a v κωϕκωϕ262524232221161514131211 (10) 式中,y x v v 、为残差;ij a 为系数;κωϕ∆∆∆∆∆∆、、、、、S S S Z Y X 是待求值,y x l l 、是像点观测值和计算值之差。

与(7)式相比较,显然有计====x x l Fx Z a Fx Z a Fx Z a Fx Z a Fx Z a X Fx Z a x S S S -=∂∂-∂∂-∂∂-∂∂-∂∂-=∂∂-=κωϕ111Z 1Y 11615141312111 计====y y l FyZ a FyZ a FyZ a Fy Z a FyZ a X FyZ a y S S S -=∂∂-∂∂-∂∂-∂∂-∂∂-=∂∂-=κωϕ111Z 1Y 11262524232212 (10a ) 式(10)就是以外方位元素增量为待求值的共线条件方程线性化公式,也称误差方程式。

要得到完整的线性化形式,关键是求各个系数ij a ,而求ij a 的关键是求出Fy Fx 、对各个外方位元素的偏导数。

如何求偏导数,将在共线方程线性化部分介绍。

2.2 答解外方位元素的基本过程每个控制点都可以按(10)式列出两个误差方程式,n 个控制点可列出2n 个方程,用矩阵形式可表示为:L AX V -= (11)式中[]Tny n x y x yxv v v v v v 2211=V ;⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=n n n n n n a a a a a a a a a a a a a a a a a a 261622122111226216222212221211126116122112121111A ; []TSSS Z Y X κωϕ∆∆∆∆∆∆=X ;[]Tn y nxy xy xl l l l l l 2211=L 。

如果能答解这2n 个方程构成的方程组,则可得到外方位元素的增量。

具体的求解过程应是一个迭代过程:(1)给出外方位元素的初值,0000κωϕ、、、、、S S S Z Y X ;(2)对每个控制点计算误差方程式系数ij a 和y x l l 、,从而按(10)式组成误差方程式; (3)答解线性方程组,得到每个外方位元素的增量κωϕ∆∆∆∆∆∆、、、、、S S S Z Y X ;(4)将增量和初值相加,得到新的外方位元素值;(5)各个增量是否小于规定的限差?若是,则停止迭代运算;若不是,则将新外方位元素值作为初值重复(2)~(5)。

2.3 误差方程组的答解方法(最小二乘原理)式(11)是一个由2n 个方程组成的误差方程组,且方程个数多于待求值的个数,对这样的方程组应如何答解呢?在摄影测量中一般按最小二乘原理进行答解。

按最小二乘原理,求出的待求参数的最佳估计值应使各误差方程式的残差平方和为最小,即满足min =V V T (12)这样就转化为V V T对待求值的求极值问题。

下面以式(11)为例,说明求极值后误差方程式的变化。

将VV T 分别对κωϕ∆∆∆∆∆∆、、、、、S S S Z Y X 求极值,即令00000=∆∂∂=∆∂∂=∆∂∂=∆∂∂=∆∂∂=∆∂∂κωϕV V V V V V V V V V V V T T T S T S T S T Z Y X (13) 这样将得到六个新的线性方程式,方程式的个数与待求值的个数相同。

解这个方程组,则可得到κωϕ∆∆∆∆∆∆、、、、、S S S Z Y X 的最佳估计值。

在测量平差中把由式(11)变为式(13)的过程称为误差方程式的法化,法化后的方程式称为法方程式。

显然,法方程式的系数和常数项将与误差方程式不同。

究竟法方程式的系数、常数项和原误差方程式有什么变化,又有什么关系呢?这可以通过较复杂的推导过程来找到。

在这里,我们略去推导过程,只按矩阵方式给出结论。

由于L L L A X AX A X L AX L AX V V T T T T T T T +-=--=2)()(则022=-=∂∂L A AX A XVV T T T 整理后有L A AX A T T =令A A N T= 即为法方程式的系数阵。

两边同乘以1-N ,则可求出X ,即L A N X T 1-= (14)该式即为κωϕ∆∆∆∆∆∆、、、、、S S S Z Y X 的解。

3 共线条件方程的线性化在“共线条件方程线性化的基本思路”中,我们知道:共线条件方程线性化的关健是求各个偏导数(•∂∂Fx 和•∂∂Fy),下面我们分别求取线元素和角元素的偏导数。

3.1 线元素的偏导数已知⎩⎨⎧-+=-+=Z y y Y f Fy Zx x X f Fx )()(00 和 )()()()()()()()()(333222111S S S S S S S S S Z Z c Y Y b X X a Z Z Z c Y Y b X X a Y Z Z c Y Y b X X a X -+-+-=-+-+-=-+-+-= 则)()()()()()()()()()()()(032003200320031003100310y y c f c Z Zy y Z Y f Z Fy y y b f b Y Zy y Y Y f Y Fy y y a f a X Zy y X Y f X Fy x x c f c Z Zx x Z X f Z Fx x x b f b Y Zx x Y X f Y Fx x x a f a X Zx x X X f X Fx SS S S S S S S S S S S S S S S S S ---=∂∂-+∂∂=∂∂---=∂∂-+∂∂=∂∂---=∂∂-+∂∂=∂∂---=∂∂-+∂∂=∂∂---=∂∂-+∂∂=∂∂---=∂∂-+∂∂=∂∂ (15)如果把内方位元素也作为未知数进行答解,则Z x Fx -=∂∂0 00=∂∂y Fx X f Fx =∂∂ 00=∂∂x Fy Z y Fy -=∂∂0 Y fFy=∂∂3.2 角元素的偏导数Fx 和Fy 是角元素κωϕ、、的复合函数,为了推导的方便,我们将对角元素求导数的过程分为三个步骤。

相关文档
最新文档