人教版因式分解教学设计(精选8篇)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版因式分解教学设计(精选8篇)篇一:《因式分解》教学设计

教学准备

教学目标

知识与能力

1.了解多项式公因式的意义,初步会用提公因式法分解因式;

2.通过找公因式,培养观察能力.

过程与方法

1.了解因式分解的概念,以及因式分解与整式乘法的关系;

2.了解公因式概念和提取公因式的方法;会用提取公因式法分解因式.

情感态度与价值观

1.在探索提公因式法分解因式的过程中学会逆向思维,渗透化归的思想方法;

2.培养观察、联想能力,进一步了解换元的思想方法;

教学重难点

重点:能观察出多项式的公因式,并根据分配律把公因式提出来.难点:识别多项式的公因式.

教学过程

一、新课导入

请同学们想一想?993-99能被100整除吗?

解法一:993-99=970299-99

=970200

解法二:993-99=99(992-1)

=99(99+1)(99-1)

=100×99×98

=970200

(1)已知:x=5, a-b=3,求ax2-bx2的值.(2)已知:a=101,b=99,求a2-b2的值.

你能说说算得快的原因吗?

解:(1) ax2-bx2=x2(a-b)

=25×3=75.

(2)a2-b2=(a+b)(a-b)

=(101+99)(101-99)

=400

二、新知探究

1、做一做:

计算下列各式:

①3x(x-2)=__3x2-6x

②m(a+b+c)= ma+mb+mc

③(m+4)(m-4)=m2-16

④(x-2)2=x2-4x+4

⑤a(a+1)(a-1)=a3-a

根据左面的算式填空:

①3x2-6x=(_3x__)(_x-2__)

②ma+mb+mc=(_m_)(a+b+c_)

③m2-16=(_m+4)(m-4_)

④x2-4x+4=(x-2)2

⑤a3-a=(a)(a+1)(a-1)

左边一组的变形是什么运算?右边的变形与这种运算有什么不同?右边变形的结果有什么共同的特点?

总结:把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.整式乘法因式分解与整式乘法是互逆过程因式分解

在am+bm=m(a+b)中, m叫做多项式各项的公因式.

公因式:

即每个单项式都含有的相同的因式.

提公因式法:

如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成乘积的形式.这种分解因式的方法叫做提公因式法.

确定公因式的方法:

(1)公因式的系数是多项式各项系数的最大公约数;

(2)字母取多项式各项中都含有的相同的字母;

(3)相同字母的指数取各项中最小的一个,即最低次幂.

三、例题分析

例1把12a4b3+16a2b3c2分解因式.

解:12a4b3+16a2b3c2

=4a2b3·3a2+4a2b3·4c2

=4a2b3(3a2+4c2)

提公因式后,另一个因式:

①项数应与原多项式的项数一样;

②不再含有公因式.

例2 把2ac(b+2c)- (b+2c)分解因式.

解:2ac(b+2c) -(b+2c)

= (b+2c)(2ac-1)

公因式可以是数字、字母,也可以是单项式,还可以是多项式.

例3把-x3+x2-x分解因式.

解:原式=-(x3-x2+x)

=-x(x2-x+1)

多项式的第一项是系数为负数的项,一般地,应提出负系数的公因式.但应注意,这时留在括号内的每一项的符号都要改变,且最后一项“-x”提出时,应留有一项“+1”,而不能错解为-x(x2-x).

四、当堂训练

1.(1)9x3y3-12x2y+18xy3中各项的公因式是 3xy_.(2)5x2-25x的公因式为 5x .(3)-2ab2+4a2b3的公因式为-2ab2.(4)多项式x2-1与(x-1)2的公因式是x-1.

2.如果(x+y)(x2-xy+y2)-(x+y)xy有公因式(x+y),那么另外的因式是 (x-y)2

课后小结

1.分解因式

把一个多项式分解成几个整式的积的形式,叫做分解因式,分解因式和整式乘法互为逆运算.

2.确定公因式的方法

一看系数二看字母三看指数

3.提公因式法分解因式步骤(分两步)

第一步找出公因式;

第二步提公因式.4.用提公因式法分解因式应注意的问题

(1)公因式要提尽;

(2)其中一项全部提出时,这一项除以公因

式时的商是1,这个1不能漏掉;

(3)多项式的首项取正号.

板书

一、因式分解

把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.

二、提公因式法

如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成乘积的形式.这种分解因式的方法叫做提公因式法.am+bm=m(a+b)

二、例题分析

例1、例2、例3、三、当堂训练

篇二:《因式分解》教学设计

一、内容和内容解析

1.内容

用因式分解法解一元二次方程.2.内容解析

相关文档
最新文档