二次函数复习导学案

合集下载

二次函数复习课导学案

二次函数复习课导学案

第二十六章二次函数复习课导学案【中考考点透析】1、熟练掌握二次函数的一般式和顶点式,能确定其三要素并画出草图。

2、熟练掌握函数的平移规律。

3、能将二次函数的一般式转化为顶点式。

4、熟知二次函数的性质(增减性、对称性、最值等)5、理解二次函数与一元二次方程的关系6、能够用待定系数法求二次函数的解析式。

7、能够建立二次函数模型解决实际问题8、体会数形结合、分类讨论、平移变换、建模等数学思想一、知识回顾(做题并反思各考查了本章中的哪些知识?你是如何解决的?)1.下列函数一定是二次函数的是 ( )A .232y x =+B .221y ax x =++C .22(1)y x x =--D .212y x =- 2.二次函数2(1)3y x =-+的图像顶点坐标是( ) A .(-1,3) B .(1,3) C .(-1,-3) D .(1,-3)3.22y x =-的图像向左平移3个单位,再向下平移2个单位,得到新图像的表达式( )A .22(3)2y x =---B .22(2)3y x =--+C . 22(3)2y x =-++D .22(3)2y x =-+-4.抛物线223y x x =-+的顶点坐标是 ,对称轴是 ;当x 时,y 随x 增大而减小,当x 时,y 随x 增大而增大;当x 时,函数有最 值,其最值为 。

5.抛物线2(0)y ax bx c a =++≠与x 轴的两个交点坐标为(-2,0),(1,0),则关于x 的一元二次方程20ax bx c ++=的两根为 。

6.抛物线228y x x =--与x 轴有 个交点。

7、函数2y ax bx c =++的图像如图所示,对称轴为直线1x =,根据这个图像,你能得到哪些结论?二、综合应用8、当m为何值时,函数22(2)m y m x-=-是二次函数(A .2± B .2 C .-2 D .09、抛物线2y x bx c =++上有两点(3,0)和(-5,0),则此抛物线的对称轴是直线( ) A .4x = B .3x = C .5x =- D .1x =-变1:抛物线2y x bx c =++上有两点(3,5)和(-5,5),则此抛物线的对称轴是直线( ) 变2:抛物线2y x bx c =++上有两点(3,7)和(-5,7),则此抛物线的对称轴是直线( ) 10、如图,抛物线26y x x =--与x 轴交于A 、B 两点,与y 轴交于点C ,在对称轴右侧的抛物线上是否存在点M 使得23AMO COB S S ∆∆=,若存在求出M 的坐标,若不存在请说明理由。

九年级 二次函数 导学案17个

九年级  二次函数 导学案17个

1NO.1《函数与它的表示法》导学案学习目标:1.熟练掌握函数表示方法,会求自变量取值范围,并能解决生活中的函数问题。

2.体会函数建模思想在实际生活中的应用,3.感受数学在生活中的魅力.预习案出函数图象. (2).据估计这种上涨的情况还会持续2小时,预测再过2小时水位高度将达到多少米?【归纳】__________________________________________叫做函数解析式或______________ _________________________叫做解析法___________________________叫做列表法 __________________________________________叫做图像法 【探究点二】2、如图,一辆汽车在行驶中,速度v 随时间t 变化的情况如图所示.(1)在这个问题中,速度v 与时间t 之间的函数关系是 用哪种方法表示的?_______________(2)时间t 的取值范围是什么?______________________。

(3)当时间t =______,汽车行驶的速度最大,最大速度是______; 当时间t =______时,速度为0?当t__________时,汽车的行驶速度逐渐增加?当t__________时,汽车的行驶速度逐渐减少?当t__________时,按匀速运动行驶?【典型例题】3、一根蜡烛长20cm,每小时燃掉4cm.(1)写出蜡烛剩余的长度y (cm )与燃烧时间x (h )之间的函数解析式.(2)求自变量x 可以取值的范围;(3)蜡烛点燃2h 后还剩多长?4、求下列函数中自变量x 的取值范围(1) y=3x+2 335x -(2)y =(3)4y ()探究案1、等腰三角形ABC 的周长为10cm,底边BC 长为y (cm), 腰AB 长为x (cm ) (1)写出y 与x 之间的函数解析式; (2)指出自变量x 可以取值的范围.2的正方形ABCD 的一边BC 上,有一动点P 从B 点运动到C 点,设PB=x ,四边形APCD 的面积为y 。

二次函数全章导学案(不分版本,通用)

二次函数全章导学案(不分版本,通用)

26.1二次函数§26.1.1《二次函数》导学案【学习目标】1. 了解二次函数的有关概念.2. 会确定二次函数关系式中各项的系数。

3. 确定实际问题中二次函数的关系式。

【学法指导】类比一次函数,反比例函数来学习二次函数,注意知识结构的建立。

【学习过程】【活动一】知识链接(5分钟)1.若在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值, y 都有唯一的值与它对应,那么就说y 是x 的 ,x 叫做 。

2. 形如___________y =0)k ≠(的函数是一次函数,当______0=时,它是 函数;形如 0)k ≠(的函数是反比例函数。

【活动二】自主交流 探究新知(25分钟)1.用16m 长的篱笆围成长方形圈养小兔,圈的面积y(㎡)与长方形的长x(m)之间的函数关系式为 。

分析:在这个问题中,可设长方形生物园的长为x 米,则宽为 米,如果将面积记为y 平方米,那么y 与x 之间的函数关系式为y = ,整理为y = .2.n 支球队参加比赛,每两队之间进行一场比赛.写出比赛的场次数m 与球队数n 之间的关系式_______________________.3.用一根长为40cm 的铁丝围成一个半径为r 的扇形,求扇形的面积S 与它的半径r 之间的函数关系式是 。

4.观察上述函数函数关系有哪些共同之处?。

5.归纳:一般地,形如 ,(,,a b c a 是常数,且 )的函数为二次函数。

其中x 是自变量,a 是__________,b 是___________,c 是_____________.【活动三】课内小结 (学生归纳总结) (3分钟)(1)二次项系数a 为什么不等于0?答: 。

(2)一次项系数b 和常数项c 可以为0吗?答: . 【活动四】快乐达标(学生先独立完成5分钟,后组内互查2分钟.)1.观察:①26y x =;②235y x =-+;③y =200x 2+400x +200;④32y x x =-;⑤213y x x=-+;⑥()221y x x =+-.这六个式子中二次函数有 。

九年级数学二次函数复习导学案

九年级数学二次函数复习导学案

九年级数学二次函数复习导学案一、中考要求:1.理解二次函数的概念;2.会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;3.会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(x-h)2+k的图象,了解特殊与一般相互联系和转化的思想;4.会用待定系数法求二次函数的解析式;5.利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。

二、知识要点:1.二次函数的图象在画二次函数y=ax2+bx+c(a≠0)的图象时通常先通过配方配成y=a(x+ )2+ 的形式,先确定顶点( , ),然后对称找点列表并画图,或直接代用顶点公式来求得顶点坐标.2.理解二次函数的性质抛物线的开口方向由a的符号来确定,当a>0时,在对称轴左侧y随x的增大而 ;在对称轴的右侧,y随x的增大而 ;简记左减右增,这时当x= 时,y最小值= ;反之当a<•0时,简记左增右减,当x= 时y最大值= .3.待定系数法是确定二次函数解析式的常用方法(1)一般地,在所给的三个条件是任意三点(或任意三对x,y•的值)•可设解析式为y=ax2+bx+c,然后组成三元一次方程组来求解;(2)在所给条件中已知顶点坐标或对称轴或最大值时,可设解析式为y=a(x-h)2+k,顶点是(h,k);(3)在所给条件中已知抛物线与x•轴两交点坐标或已知抛物线与x轴一交点坐标和对称轴,则可设解析式为y=a(x-x1)(x-x2)来求解.4.二次函数与一元二次方程的关系抛物线y=ax2+bx+c当y=0时抛物线便转化为一元二次方程ax2+bx+c=0,即(1)当抛物线与x轴有两个交点时,方程ax2+bx+c=0有两个不相等实根;(2)当抛物线y=ax2+bx+c与x轴有一个交点,方程ax2+bx+c=0有两个相等实根;(3)当抛物线y=ax2+bx+c与x轴无交点,•方程ax2+bx+c=0无实根.5.抛物线y=ax2+bx+c中a、b、c符号的确定(1)a的符号由抛物线开口方向决定,当a>0时,抛物线开口当a<0时,•抛物线开口 ;(2)c的符号由抛物线与y轴交点的纵坐标决定.当c 0时,抛物线交y轴于正半轴;当c 0时,抛物线交y轴于负半轴;(3)b的符号由对称轴来决定.当对称轴在y•轴左侧时,b的符号与a的符号相同;当对称轴在y轴右侧时,b的符号与a的符号相反;•简记左同右异.三、典例剖析:例1(1)二次函数y=ax2+bx+c的图像如图,则点M(b,ca)在()A .第一象限B .第二象限C .第三象限D .第四象限(2)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,•则下列结论:①a 、b 同号;②当x=1和x=3时,函数值相等;③4a+b=0;④当y=-2时,x 的值只能取0.其中正确的个数是( )A .1个B .2个C .3个D .4个例2(1)若二次函数y =(m + 1)x 2 + m 2 – 2m – 3的图象经过原点,则m 的值必为 ( )A .– 1和3 B.– 1 C.3 D.无法确定(2)已知抛物线9)2(2++-=x a x y 的顶点在坐标轴上,求a 的值.例3如图,已知抛物线b ax ax y --=22(0>a )与x 轴的一个交点为(10)B -,,与y 轴的负半轴交于点C ,顶点为D .(1)直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点A 的坐标;(2)以AD 为直径的圆经过点C .①求抛物线的解析式;②点E 在抛物线的对称轴上,点F 在抛物线上, 且以E F A B ,,,四点为顶点的四边形 为平行四边形,求点F 的坐标.四、随堂练习:1.已知函数42)1(22-++-=m x x m y .当m 时,函数的图象是直线;当m 时,函数的图象是抛物线;当m 时,函数的图象是开口向上且经过原点的抛物线.2.对于y = ax 2(a ≠0)的图象,下列叙述正确的是( )A.a 越大开口越大,a 越小开口越小B.a 越大开口越小,a 越小开口越大C.| a |越大开口越小,| a |越小开口越大D.| a |越大开口越大,| a |越小开口越小3.抛物线22121x x y -+=可由抛物线221x y -=向 平移 个单位,再向 平 移 个单位而得到.4.若抛物线y=(m-1)x 2+2mx+2m-1的图象的最低点的纵坐标为零,则m=_______.5.已知二次函数b x a y +-=2)1(有最小值–1,则a 与b 之间的大小关系是( )A .a <bB .a=bC .a >bD .不能确定6.已知方程05322=--x x 的两根是25,-1,则二次函数5322--=x x y 与x 轴的两个交点间的距离为 .7.抛物线过点A (2,0)、B (6,0)、C (1,3),平行于x轴的 直线CD 交抛物线于点C 、D ,以AB 为直径的圆交直线CD 于点E 、F ,则CE+FD 的值是 ( )A .2B .4C .5D .68. 如图,已知⊙P 的半径为2,圆心P 在抛物线2112y x =-运动,当⊙P 与坐标轴相切时,圆心P 的坐标为9.函数132++-=x ax ax y 的图象与x 轴有且只有一个交点,求a 的值及交点坐标.10. (1)将抛物线y 1=2x 2向右平移2个单位,得到抛物线y 2的图 象,则 y 2= ;(2)如图,P 是抛物线y 2对称轴上的一个动点,直线x =t 平行于y 轴,分别与直线y =x 、抛物线y 2交于点A 、B .若△ABP 是以点A 或点B 为直角顶点的等腰直角三角形,求满足条件的t 的值 。

二次函数复习课导学案

二次函数复习课导学案

二次函数复习课导学案一、携手相约:1、一般地,如果y= ,那么y 叫做x 的二次函数;它的图象是_____; (1)、a 决定了抛物线的____和___;当___时,开口向上; (2)、二次函数图象的对称轴由___决定;它的对称轴是____; (3)、c 决定了图象与_____轴的交点位置;那么交点坐标为___. (4)、图象的顶点坐标为______; (5)、当a >0时,图象有最__点,函数有最__值,当__ ,y 随x 的增大而减小, 当 ,y 随x 的增大而增大; (6)、若抛物线与x 轴没有交点,则 ;若抛物线与x 轴有一个交点,则 ;若抛物线与x 轴有两个交点,则 ,若两交点坐标分别为( x 1,0)、(x 2,0) 则对称轴x= (x , x 1 ,x 2 三者关系) 2、二次函数y = a x 2 ( a ≠ 0 )(1)向下平移C(C >0)个单位,得到函数解析式是 (2)向右平移h(h >0)个单位,得到函数解析式是(3)向上平移C(C >0)个单位,再向左平移h(h >0)个单位,得到函数解析式是 二、智力冲关:1、若函数y=(k -1) x k - k+2 +kx-1是关于x 的二次函数,则k=2、填表抛物线开口 对称轴 顶点坐标 y=a(x –h)2+k (a>0) y=ax 2+bx+c (a<0)3、把抛物线22y x =-向上平移1个单位,得到的抛物线是 ( ) (A )22(1)y x =-+ (B )22(1)y x =--(C )221y x =-+ (D )221y x =-- 4、将二次函数y= x 2 - 2x –1配成顶点式为 ,当x= 时,y 的最小值是5.在同一坐标系中一次函数和二次函数的图象可能为( )6、抛物线c x a y +-=2)1(的图象如图1所示,该抛物线与x 轴交于A ,B 两点, B 点的坐标为B )0,2(,则A 的坐标是 .图17、已知抛物线21(4)33y x =--与x 轴的一个交点坐标是(1、0),则图象与x 轴的另一个交点坐标是 8.已知二次函数的部分图象如图所示,则关于的一元二次方程的解为__________10题图 11题图 9.已知二次函数的图象如图所示,有下列5个结论:① ;②;③;④;⑤,(的实数)其中,正确的结论有( )A. 2个B. 3个C. 4个D. 5个 10.下列图形中,阴影部分面积为1的是( )三、综合运用1、已知二次函数的最大值是4,图象顶点在直线y=x+3上,图象经过点(0,3) (1)求二次函数的解析式。

二次函数知识点归纳(导学案)

二次函数知识点归纳(导学案)

函数专题复习 —— 二次函数一、二次函数概念:1.二次函数的概念:一般地,形如 的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而 可以为零.二次函数的定义域(自变量取值范围)是 . 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是 ,右边是关于自变量x 的 ,x 的最高次数是 .⑵ a b c ,,是常数,a 是 ,b 是 ,c 是 . 例:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:例1:抛物线3)2(2+-=x y 的对称轴是( )A. 直线3-=xB. 直线3=xC. 直线2-=xD. 直线2=x例2:抛物线322+-=x x y 的对称轴是 例3:二次函数322+-=x x y 的最小值是( )A. 1B. 2C. 3 D .-2三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数基础上“h 值正 移,h 值负 移;k 值正 移,k 值负 移”.概括成八个字“ 加 减, 加 减”. 方法二: ⑴c bx ax y ++=2沿y 轴平移:向上平移m 个单位,c bx ax y ++=2变成向下平移m 个单位,c bx ax y ++=2变成⑵c bx ax y ++=2沿X 轴平移:向左平移m 个单位,c bx ax y ++=2变成向右平移m 个单位,c bx ax y ++=2变成例1:把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式是532+-=x x y ,则有( )A. 3=b ,7=cB. 9-=b ,15-=cC. 3=b ,3=cD. 9-=b ,21=c四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中h = ,k = .例1:将二次函数322+-=x x y 配方成k h x y +-=2)(的形式,则y =______________________五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点: , , , , . 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口 ,对称轴为 ,顶点坐标为 . 当2b x a <-时,y 随x 的增大而 ;当2b x a >-时,y 随x 的增大而 ;当2bx a =-时,y 有最小值 . 2. 当0a <时,抛物线开口 ,对称轴为 ,顶点坐标为 . 当2b x a <-时,y 随x 的增大而 ;当2b x a >-时,y 随x 的增大而 ;当2b x a=-时,y 有最大值 . 七、二次函数解析式的表示方法1. 一般式: (a ,b ,c 为常数,0a ≠);2. 顶点式: (a ,h ,k 为常数,0a ≠);3. 交点式: (0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). (也称两根式) 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点 即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 八、二次函数的图象与各项系数之间的关系1. 二次项系数a : 二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口 ,a 的值越大,开口 ,反之a 的值越小,开口 ; ⑵ 当0a <时,抛物线开口 ,a 的值越小,开口 ,反之a 的值越大,开口 .总结起来,a 决定了抛物线开口的 ,a 的 决定开口方向, 的大小决定开口的大小. 2. 一次项系数b : 在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下, 当0b >时,02b a -<,即抛物线的对称轴在y 轴 侧;当0b =时,02ba -=,即抛物线的对称轴就是 ; 当0b <时,02ba->,即抛物线对称轴在y 轴的 侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即当0b >时,02b a ->,即抛物线的对称轴在y 轴 侧;当0b =时,02ba-=,即抛物线的对称轴就是 ; 当0b <时,02ba-<,即抛物线对称轴在y 轴的 侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 3. 常数项c : ⑴ 当0c >时,抛物线与y 轴的交点在x 轴 方,即抛物线与y 轴交点的纵坐标为 ;⑵ 当0c =时,抛物线与y 轴的交点为坐标 ,即抛物线与y 轴交点的纵坐标为 ; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴 方,即抛物线与y 轴交点的纵坐标为 . 总结起来,c 决定了抛物线与y 轴交点的位置.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用 ;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用 ;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用 ;4. 已知抛物线上纵坐标相同的两点,常选用 .例1 二次函数2y ax bx c =++的图像如图1,则点),(ac b M 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限例2 已知二次函数y=ax 2+bx+c (a ≠0)的图象如图2所示,• 则下列结论:①a 、b 同号;②当x=1和x=3时,函数值相等; ③4a+b =0;④当y=-2时,x 的值只能取0. 其中正确的个数是( )A .1个B .2个C .3个D .4个例3请你写出函数2)1(+=x y 与12+=x y 具有的一个共同性质:_____ __________.例4已知二次函数的图象开口向上,且与y 轴的正半轴相交,请你写出一个满足条件的二次函数的解析式:_____________________.例5已知二次函数c bx ax y ++=2,且0<a ,0>+-c b a ,则一定有( )A. 042>-ac bB. 042=-ac bC. 042<-ac bD. ac b 42-≤0例6二次函数c bx ax y ++=2的图象如图所示,若c b a M ++=24c b a N +-=,b a P -=4,则( )A. 0>M ,0>N ,0>PB. 0<M ,0>N ,0>PC. 0>M ,0<N ,0>PD. 0<M ,0>N ,0<P 九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达.1. 关于x 轴对称:2y ax bx c =++关于x 轴对称后,得到的解析式是 ;()2y a x h k =-+关于x 轴对称后,得到的解析式是 ;2. 关于y 轴对称:2y ax bx c =++关于y 轴对称后,得到的解析式是 ;()2y a x h k =-+关于y 轴对称后,得到的解析式是 ;3. 关于原点对称:2y ax bx c =++关于原点对称后,得到的解析式是 ; ()2y a x h k =-+关于原点对称后,得到的解析式是 ;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是 ;()2y a x h k =-+关于顶点对称后,得到的解析式是 .5. 关于点()m n ,对称: ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式. 十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当 时的特殊情况。

九年级数学《二次函数》单元复习(导学案)

九年级数学《二次函数》单元复习(导学案)

九年级数学《二次函数》单元复习(导学案)复习目标:1.体会二次函数的意义,理解二次函数的有关概念.2.会运用配方法确定二次函数的图象的顶点、开口方向和对称轴,并会确定最值.3.会运用待定系数法求二次函数的解析式.4.能根据图象判断二次函数a、b、c的符号及一些特殊方程或不等式是否成立.5.会将实际问题转化为函数问题,并利用函数的性质进行决策.一、基础知识归类和整理1.二次函数的概念及图象特征:(1)二次函数:如果 ,那么y叫做x的二次函数,图象是线(2)二次函数顶点式:通过配方y=ax²+bx+c可写成 ,它的图象是以直线为对称轴,以为顶点的一条抛物线。

a值函数的图象及性质a>0 (1)开口向上,并向上无限伸展;(2)当时,函数有最小值当时,y随x的增大而减小;当时,y随x的增大而增大.a<0 (1)开口向下,并向下无限伸展;(2)当时,函数有最大值当时,y随x的增大而增大;当时,y随x的增大而减小.3.二次函数图象的平移规律:y=ax²⟺y=ax²+k ⟺y=a(x+h)²+k,抛物线y=ax²+bx+c(a≠0)可由抛物线y=ax²(a≠0)平移得到.由于平移时,抛物线上所有的点的移动规律都相同,所以只需研究其顶点移动的情况,因此有关抛物线的平移问题,需要利用二次函数的顶点式来讨论。

4.二次函数解析式的确定:用待定系数法可求出二次函数的解析式,确定二次函数一般需要三个独立的条件,根据不同的条件选择不同的设法:(1)设一般形式: ;(2)设顶点形式: ;(3)设交点式: 。

a 的作用决定开口方向a>0开口 ;a<0开口 决定开口的大小 ︳a| 越大,抛物线的开口b 的作用b 与a 同号ab2-<0,顶点在y 轴的 侧 b 与a 异号ab2->0,顶点在y 轴的 侧 顶点在y 轴上c 的作用 c>0抛物线与y 轴的交点在y 轴的 c<0 抛物线与y 轴的交点在y 轴的c=0 抛物线过 点 b ²-4ac b ²-4ac>0抛物线与x 轴有 交点 b ²-4ac<0 抛物线与x 轴有 交点 b ²-4ac=0抛物线与x 轴有 交点解决实际应用问题的关键是选准变量,建立好二次函数模型,同时还要注意符合实际情景。

《二次函数》复习导学案教学设计

《二次函数》复习导学案教学设计

《二次函数》复习导学案教学设计学习目标:知识与技能目标:理解二次函数和抛物线的有关概念,从整体上掌握二次函数的图象和性质,并应用图象和性质解决一些简单的问题,提高学生对知识的整合能力和分析能力。

识的整合能力和分析能力。

过程与方法目标:过程与方法目标:经历本节课的复习的过程,经历本节课的复习的过程,经历本节课的复习的过程,形成比较完整的知识体系,形成比较完整的知识体系,形成比较完整的知识体系,进一步进一步感受数形结合这一重要数学思想方法的应用。

感受数形结合这一重要数学思想方法的应用。

情感态度价值观目标:情感态度价值观目标:通过对一些基础题型的练习,通过对一些基础题型的练习,通过对一些基础题型的练习,增加学生的成就感,增加学生的成就感,增加学生的成就感,培养学培养学生自信心,逐步消除学生对数学科的畏难情绪。

并在教学中培养学生同他人合作完成任务,以及及时反思、总结的良好学习习惯。

同他人合作完成任务,以及及时反思、总结的良好学习习惯。

学习重点:二次函数图象及其性质的灵活运用:二次函数图象及其性质的灵活运用学习难点:利用数形结合的思想解决二次函数的有关问题。

:利用数形结合的思想解决二次函数的有关问题。

情景引入【设计意图】PPT 辅助展示,动画展示篮球运动等生活实例,提高同学们学习的兴奋点和积极性,使学生感受数学来源于生活,服务于生活。

【课前复习学案】下列函数中,哪些是二次函数?下列函数中,哪些是二次函数? (1)32y=2x-8x +3 (2)21y= -x(3)2y=mx-x-1(4)y=x(1-x)【课内探究学案】【自主复习】一、一、 如果你是二次函数223y x x =--,请你做下自我介绍,比一比谁介绍的最全面!(提示:可以从图像、性质和特点等入手)(提示:可以从图像、性质和特点等入手)【设计意图】抛弃枯燥的习题复习课模式,采用“角色扮演”的方式,假如你是二次函数如何来进行自我介绍?极大带动了学生的学习兴趣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

03
-1
y
x
二次函数复习导学案
一、课前热身
1、二次函数y=-(x-1)2
+3的图象的顶点坐标是( ) A 、(-1,3) B 、(1,3) C 、(-1,-3) D 、(1,-3) 2、把二次函数y=x 2
-2x-1配方成顶点式为( )
A 、y=(x-1)2
B 、y=(x-1)2
-2 C 、y=(x+1)2
+1 D 、y=(x+1)2
-2
3、二次函数y=x 2+bx+c 的图象上有两点(3,-8)和(-5,-8),此抛物线的对称轴是直线( ) A 、x=4 B 、x=3 C 、x=-5 D 、x=-1
4、已知点A ()1,1y 、B (
)
2,2y -、C ()3,2y -在函数()2
1
122
-
+=x y 上,则1y 、2y 、3y 的大小关系是( )。

A 、321y y y >>
B 、132y y y >>
C 、213y y y >>
D 、312y y y >>
5、二次函数2
y ax bx c =++的图象如下图, 则方程2
0ax bx c ++=的解为 ;
当x 为 时,20ax bx c ++>;当x 为 时,2
0ax bx c ++< 6.抛物线y=2x 2+6x+5的对称轴是直线x=________________.
7.将抛物线y=x 2
向左平移4个单位后,再向下平移2个单位,则此时抛物线的解析式是___________。

典例解析
例题1:二次函数()02
≠++=a c bx ax y 图象如图所示,下面五个代数式:
ab 、ac 、c b a +-、ac b 42
-、b a +2中,值大于0的有( )个。

A 、2
B 、3
C 、4
D 、5
知识梳理1:a 、b 、c 符号的判别:
显条件 隐条件 顶点在原点 b=c=0 二次函数y=ax 2
+bx+c a ≠0 抛物线交y 轴正半轴 c>0 抛物线开口向上 a>0 抛物线交y 轴负半轴
c<0 抛物线开口向下 a<0
抛物线过原点 c=0 对称轴在y 轴左侧 ab>0 (a 、b 同号)
抛物线顶点在x 轴
△=0 对称轴在y 轴右侧 ab<0 (a 、b 异号) 抛物线 与x 轴有一个交点
△=0 对称轴为y 轴 b=0 抛物线 与x 轴有两个交点 △>0 顶点在y 轴
b=0
抛物线 与x 轴无交点
△<0
-1
x
O
y
练习 1.已知反比例函数
x k
y =
的图象如右图所示,则二次函数
222k x kx y +-=的图象大致为( )
A B C D
2.二次函数c bx ax y ++=2
与一次函数c ax y +=在同一直角坐标系中图象大致是( )。

例题2:二次函数y= (m-1)x 2
+2mx+3m-2,则当m=_________时,其最大值为0。

练习1.抛物线y= -x 2
-2x+m ,若其顶点在x 轴上,则m=______ ___。

练习2.二次函数y=x 2+ax+4的图象,若顶点在y 轴上,则a= 。

例3已知抛物线c bx ax y ++=2
与抛物线732
+--=x x y 的形状相同,顶点在直线1=x 上,且顶点到x 轴的距离为5,则此抛物线的解析式为 。

知识梳理2:对称抛物线与平移、旋转抛物线的规律: ①对称抛物线的规律
②平移抛物线的规律
③绕顶点旋转1800
的规律
练习1、形状与抛物线22
--=x y 相同,对称轴是2-=x ,且过点(0,3)的抛物线是( )A 、
342++=x x y B 、342+--=x x y
C 、342
++-=x x y D 、342
++=x x y 或342
+--=x x y
x
A
O y x
B
O y
x
C
O y x
D
O y
y
O
x
y O x y O x y
O x y
O
x
O
y
x
B
A
知识梳理3: 二次函数与一元二次方程及不等式的关系
例4已知二次函数2
2y x x m =-++的部分图象如右图所示,则关于x 的一
元二次方程2
20x x m -++=的解为 . 不等式-x 2
+2x+m >0的解集为
练习1. 如图,直线m x y +=和抛物线c bx x y ++=2
都 经过点A(1,0),B(3,2). ⑴ 求m 的值和抛物线的解析式; (2)求不等式m x c bx x +>++2
的解集. (直接写出答案)
知识梳理4:函数增减性与对称轴的关系
例5:已知点A(-1,y 1),B(-2,y 2),在函数y= -(x-1)2
+4的图象上,那么y 1,y 2 的大小关系是(用“>”连结)
练习1.已知点A(-0.5,y 1),B(-1.5,y 2),C(2.2,y 3)都在函数y=a(x-1)2
+k(a<0)的图 象上,那么y 1,y 2,y 3的大小关系是(用“>”连结) 综合应用
如图,已知抛物线y =x 2
+bx +c 经过矩形ABCD 的两个顶点A 、B ,AB 平行于x 轴,对角线BD 与抛物线交于点P , 点A 的坐标为(0,2),AB =4. (1)求抛物线的解析式;
(2)若S △APO =1.5,求矩形ABCD 的面积.
课后作业
1、关于x 的一元二次方程2
0x x n --=无实数根则抛物线2
y x x n =--的顶点在( )
A .第一象限 B.第二象限 C. 第三象限 D.第四象限
2、如图所示的抛物线是二次函数
22
31y ax x a =-+-的图象,那么a 的值是 . 3、已知二次函数
)0(2
≠++=a c bx ax y 的图象如图所示:你可以得到哪些结论?
4. 已知函数y=mx 2-6x +1(m 是常数).
⑴求证:不论m 为何值,该函数的图象都经过y 轴上的一个定点; ⑵若该函数的图象与x 轴只有一个交点,求m 的值.
5..如图,二次函数y= ax 2
+bx+c 的图象与x 轴交于a,b 两点,其中点A (-1,0), 点C (0,5),点D (1,8)都在抛物线上,M 为抛物线的顶点。

(1)求抛物线的函数解析式; (2)求直线CM 的解析式; (3)求△MCB 的面积。

第3题图
y x
M
C
A O
B。

相关文档
最新文档