初一数学 全等三角形之旋转模型 (教师版)10

合集下载

专题01 旋转中的三种全等模型(手拉手、半角、对角互补模型)(解析版)

专题01 旋转中的三种全等模型(手拉手、半角、对角互补模型)(解析版)

专题01 旋转中的三种全等模型(手拉手、半角、对角互补模型)本专题重点分析旋转中的三类全等模型(手拉手、半角、对角互补模型),结合各类模型展示旋转中的变与不变,并结合经典例题和专项训练深度分析基本图形和归纳主要步骤,同时规范了解题步骤,提高数学的综合解题能力。

模型1.手拉手模型【模型解读】将两个三角形(或多边形)绕着公共顶点旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等。

其中:公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。

手拉模型解题思路:SAS型全等(核心在于导角,即等角加(减)公共角)。

1)双等边三角形型条件:△ABC和△DCE均为等边三角形,C为公共点;连接BE,AD交于点F。

结论:①△ACD≌△BCE;②BE=AD;③∠AFM=∠BCM=60°;④CF平分∠BFD。

2)双等腰直角三角形型条件:△ABC和△DCE均为等腰直角三角形,C为公共点;连接BE,AD交于点N。

结论:①△ACD≌△BCE;②BE=AD;③∠ANM=∠BCM=90°;④CN平分∠BND。

3)双等腰三角形型条件:△ABC 和△DCE 均为等腰三角形,C 为公共点;连接BE ,AD 交于点F 。

结论:①△ACD ≌△BCE ;②BE =AD ;③∠ACM =∠BFM ;④CF 平分∠AFD 。

4)双正方形形型条件:△ABCFD 和△CEFG 都是正方形,C 为公共点;连接BG ,ED 交于点N 。

结论:①△△BCG ≌△DCE ;②BG =DE ;③∠BCM =∠DNM=90°;④CN 平分∠BNE 。

例1.(2022·黑龙江·中考真题)ABC V 和ADE V 都是等边三角形.(1)将ADE V 绕点A 旋转到图①的位置时,连接BD ,CE 并延长相交于点P (点P 与点A 重合),有PA PB PC +=(或PA PC PB +=)成立;请证明.(2)将ADE V 绕点A 旋转到图②的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?并加以证明;(3)将ADE V 绕点A 旋转到图③的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【答案】(1)证明见解析 (2)图②结论:PB PA PC =+,证明见解析 (3)图③结论:PA PB PC+=【分析】(1)由△ABC 是等边三角形,得AB =AC ,再因为点P 与点A 重合,所以PB =AB ,PC =AC ,PA =0,即可得出结论;(2)在BP 上截取BF CP =,连接AF ,证明BAD CAE V V ≌(SAS ),得ABD ACE Ð=Ð,再证明CAP BAF ≌△△(SAS ),得CAP BAF Ð=Ð,AF AP =,然后证明AFP V 是等边三角形,得PF AP =,即可得出结论;(3)在CP 上截取CF BP =,连接AF ,证明BAD CAE V V ≌(SAS ),得ABD ACE Ð=Ð,再证明BAP CAF ≌△△(SAS ),得出CAF BAP Ð=Ð,AP AF =,然后证明AFP V 是等边三角形,得PF AP =,即可得出结论:PA PB PF CF PC +=+=.(1)证明:∵△ABC 是等边三角形,∴AB =AC ,∵点P 与点A 重合,∴PB =AB ,PC =AC ,PA =0,∴PA PB PC +=或PA PC PB +=;(2)解:图②结论:PB PA PC=+证明:在BP 上截取BF CP =,连接AF ,∵ABC V 和ADE V 都是等边三角形,∴AB AC =,AD AE =,60BAC DAE Ð=Ð=°∴BAC CAD DAE CAD Ð+Ð=Ð+Ð,∴BAD CAE Ð=Ð,∴BAD CAE V V ≌(SAS ),∴ABD ACE Ð=Ð,∵AC =AB ,CP =BF , ∴CAP BAF ≌△△(SAS ),∴CAP BAF Ð=Ð,AF AP =,∴CAP CAF BAF CAF Ð+Ð=Ð+Ð,∴60FAP BAC Ð=Ð=°,∴AFP V 是等边三角形,∴PF AP =,∴PA PC PF BF PB +=+=;(3)解:图③结论:PA PB PC +=,理由:在CP 上截取CF BP =,连接AF ,∵ABC V 和ADE V 都是等边三角形,∴AB AC =,AD AE =,60BAC DAE Ð=Ð=°∴BAC BAE DAE BAE Ð+Ð=Ð+Ð,∴BAD CAE Ð=Ð,∴BAD CAE V V ≌(SAS ),∴ABD ACE Ð=Ð,∵AB =AC ,BP =CF ,∴BAP CAF ≌△△(SAS ),∴CAF BAP Ð=Ð,AP AF =,∴BAF BAP BAF CAF Ð+Ð=Ð+Ð,∴60FAP BAC Ð=Ð=°,∴AFP V 是等边三角形,∴PF AP =,∴PA PB PF CF PC +=+=,即PA PB PC +=.【点睛】本题考查等边三角形的判定与性质,全等三角形的判定与性质,熟练掌握等边三角形的判定与性质、全等三角形的判定与性质是解题的关键.例2.(2023·湖南·长沙市八年级阶段练习)如图1,在Rt △ABC 中,∠B =90°,AB =BC =4,点D ,E 分别为边AB ,BC 上的中点,且BD =BE .(1)如图2,将△BDE 绕点B 逆时针旋转任意角度α,连接AD ,EC ,则线段EC 与AD 的关系是 ;(2)如图3,DE ∥BC ,连接AE ,判断△EAC 的形状,并求出EC 的长;(3)继续旋转△BDE ,当∠AEC =90°时,请直接写出EC 的长.例3.(2023·黑龙江·虎林市九年级期末)已知Rt △ABC 中,AC =BC ,∠ACB =90°,F 为AB 边的中点,且DF =EF ,∠DFE =90°,D 是BC 上一个动点.如图1,当D 与C 重合时,易证:CD 2+DB 2=2DF 2;(1)当D 不与C 、B 重合时,如图2,CD 、DB 、DF 有怎样的数量关系,请直接写出你的猜想,不需证明.(2)当D 在BC 的延长线上时,如图3,CD 、DB 、DF 有怎样的数量关系,请写出你的猜想,并加以证明.【答案】(1)CD 2+DB 2=2DF 2 ;(2)CD 2+DB 2=2DF 2,证明见解析【分析】(1)由已知得222DE DF =,连接CF ,BE ,证明CDF BEF D @D 得CD =BE ,再证明BDE D 为直角三角形,由勾股定理可得结论;(2)连接CF ,BE ,证明CDF BEF D @D 得CD =BE ,再证明BDE D 为直角三角形,由勾股定理可得结论.【详解】解:(1)CD 2+DB 2=2DF 2证明:∵DF =EF ,∠DFE =90°,∴222DF EF DE += ∴222DE DF = 连接CF ,BE ,如图∵△ABC 是等腰直角三角形,F 为斜边AB 的中点∴CF BF =,CF AB ^,即90CFB Ð=° ∴45FCB FBC Ð=Ð=°,90CFD DFB Ð+Ð=°又90DFB EFB Ð+Ð=° ∴CFD EFB Ð=Ð在CFD D 和BFE D 中CF BF CFD BFE DF EF =ìïÐ=Ðíï=î∴CFD D @BFED ∴CD BE =,45EBF FCB Ð=Ð=° ∴454590DBF EBF Ð+Ð=°+°=° ∴222DB BE DE +=∵CD BE =,222DE DF =∴CD 2+DB 2=2DF 2 ;(2)CD 2+DB 2=2DF 2 证明:连接CF 、BE∵CF =BF ,DF =EF 又∵∠DFC +∠CFE =∠EFB +∠CFB=90°∴∠DFC =∠EFB ∴△DFC ≌△EFB ∴CD =BE ,∠DCF =∠EBF =135°∵∠EBD =∠EBF -∠FBD =135°-45°=90° 在Rt △DBE 中,BE 2+DB 2=DE 2∵ DE 2=2DF 2 ∴ CD 2+DB 2=2DF 2【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、证明三角形全等是解决问题的关键,学会添加常用辅助线,构造全等三角形解决问题.例4.(2022·青海·中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若ABC V 和ADE V 是顶角相等的等腰三角形,BC ,DE 分别是底边.求证:BD CE =;(2)解决问题:如图2,若ACB △和DCE V 均为等腰直角三角形,90ACB DCE Ð=Ð=°,点A ,D ,E 在同一条直线上,CM 为DCE V 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系并说明理由.图1 图2【答案】(1)见解析 (2)90DCE Ð=°;2AE AD DE BE CM=+=+【分析】(1)先判断出∠BAD =∠CAE ,进而利用SAS 判断出△BAD ≌△CAE ,即可得出结论;(2)同(1)的方法判断出△BAD ≌△CAE ,得出AD =BE ,∠ADC =∠BEC ,最后用角的差,即可得出结论.【解析】(1)证明:∵ABC V 和ADE V 是顶角相等的等腰三角形,∴AB AC =,AD AE =,BAC DAE Ð=Ð,∴BAC CAD DAE CAD Ð-Ð=Ð-Ð,∴BAD CAE Ð=Ð.在BAD V 和CAE V 中,AB AC BAD CAE AD AE =ìïÐ=Ðíï=î,∴()BAD CAE SAS ≌△△,∴BD CE =.(2)解:90AEB =°∠,2AE BE CM =+,理由如下:由(1)的方法得,≌ACD BCE V V ,∴AD BE =,ADC BEC ÐÐ=,∵CDE △是等腰直角三角形,∴45CDE CED Ð=Ð=°,∴180135ADC CDE Ð=°-Ð=°,∴135BEC ADC Ð=Ð=°,∴1354590AEB BEC CED Ð=Ð-Ð=°-°=°.∵CD CE =,CM DE ^,∴DM ME =.∵90DCE Ð=°,∴DM ME CM ==,∴2DE CM =.∴2AE AD DE BE CM =+=+.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰三角形,等边三角形,等腰直角三角形的性质,判断出△ACD ≌△BCE 是解本题的关键.3)15°模型2.半角模型【模型解读】半角模型概念:过多边形一个顶点作两条射线,使这两条射线夹角等于该顶角一半思想方法:通过旋转构造全等三角形,实现线段的转化1)正方形半角模型条件:四边形ABCD是正方形,∠ECF=45°;结论:①△BCE≌△DCG;②△CEF≌△CGF;③EF=BE+DF;④D AEF的周长=2AB;⑤CE、CF分别平分∠BEF和∠EFD。

全等旋转类

全等旋转类

旋转类全等中考剖析课程结构一、几何变换——共顶点旋转等边三角形共顶点共顶点等腰直角三角形以上给出了各种图形连续变化图形,图中出现的两个阴影部分的三角形是全等三角形,此模型需要注意的是利用“全等三角形”的性质进行边与角的转化。

证明的基本思想“SAS”。

二、旋转变换的性质:(1)对应线段相等,对应角相等(2)对应点位置的排列次序相同(3)任意两条对应线段所在直线的夹角都等于旋转角θ.三、利用旋转思想构造辅助线(1)根据相等的边先找出被旋转的三角形(2)根据对应边找出旋转角度,画出旋转三角模块一简单类旋转与全等【例1】D是等腰Rt ABC∆内一点,BC是斜边,如果将ABD∆绕点A逆时针方向旋转到'ACD∆的位置,旋转的度数是( )A.25︒B.30︒C.35︒D.90︒D'DCBA例题精讲【巩固】如图,P 是正ABC ∆内的一点,若将PBC ∆绕点B 旋转到P BA '∆,则PBP '∠的度数是( ) A .45︒ B .60︒ C .90︒ D .120︒P 'ABCP【巩固】ABC ∆中,108ACB ∠=︒,将它绕着C 逆时针旋转30︒后得到''A B C ∆,则'ACB ∠的度数是多少?B'A'CBA【例2】 如图,将矩形ABCD 绕点A 顺时针旋转90︒后,得到矩形'''AB C D ,如果22CD DA ==,那么'CC =_________.D'C'B'D CB A【巩固】如图,P 是正三角形ABC 内的一点,且6PA =,8PB =,10PC =.若将PAC ∆绕点A 顺时针旋转后,得到'P AB ∆,则点P 与点'P 之间的距离为______,APB ∠= .P'PCB A模块二 旋转中的基本模型【例3】 如图,四边形ABCD 是正方形,F 是BA 延长线上的点,ADF ∆旋转一定角度后得到ABE ∆,如果4AF =,7AB =. ⑴指出旋转中心和旋转角度; ⑵求DE 的长度.A BCD EF【巩固】⑴如图1,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求AEB ∠的大小.⑵如图2,OAB ∆固定不动,保持COD ∆的形状和大小不变,将COD ∆绕着点O 逆时针旋转15︒,求AEB ∠的大小.图1ABCDEO 图2ABCDEO【例4】 在等腰Rt ABC △的斜边AB 上取两点M N 、,使45MCN ∠=︒,若3AM =,4BN =,求ABC △的面积.NMCBA【例5】 等腰直角三角形ABC ,902ABC AB O ∠=︒=,,为AC 中点,45EOF ∠=︒,求△B E F的周长. OFE CBA【巩固】如图,将ABC △绕顶点B 按顺时针方向旋转60︒,得到DBE △,连接AD DC 、,若30DCB ∠=︒,123AB BC CD ===,,,求ACEDCBA【例6】 如图,ABC ∆和ADE ∆都是等腰直角三角形,点M 为EC 的中点,求证:BMD ∆为等腰直角三角形.MDECBA【巩固】已知:在Rt △ABC 中,AB =BC ,在Rt △ADE 中,AD =DE ,连结EC ,取EC 的中点M ,连结DM 和BM .(1)若点D 在边AC 上,点E 在边AB 上且与点B 不重合,如图①,探索BM 、DM 的关系并给予证明;(2)如果将图①中的△ADE 绕点A 逆时针旋转小于45°的角,如图②,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.【巩固】取一副三角板按图①拼,固定三角板ADC ,将三角板ABC 绕点A 依顺时针方向旋转一个大小为α的角()045α︒<︒≤得到ABC '∆,如图所示.试问:⑴当α为多少度时,能使得图②中AB DC ∥?⑵连结BD ,当045α︒<︒≤时,探寻DBC CAC BDC ''∠+∠+∠值的大小变化情况,并给出你的证明.ABCDABCDC'图2图1图②M DB ACE 图①M D B ACE【例7】 已知:如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形.求证:(1)AN BM =(2)CD CE =(3)CF 平分AFB ∠(4)CDE △是等边三角形.M D NEC BFA【巩固】如图,点C 为线段AB 上一点,ACM ∆、CBN ∆是等边三角形,D 是AN 中点,E是BM 中点,求证:CDE ∆是等边三角形.M DNECBA【例8】 如图,等腰直角三角形ABC 中,90B =︒∠,AB a =,O 为AC 中点,EO OF ⊥.求证:BE BF +为定值.OB ECF A【巩固】在等腰直角ABC ∆中,90ACB ∠=,AC BC =,M 是AB 的中点,点P 从B 出发向C 运动,MQ MP ⊥ 交AC 于点Q ,试说明MPQ ∆的形状和面积将如何变化.APMCQ B【例9】 如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120的等腰三角形,以D 为顶点作一个60的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.NM DCBA【例10】 如图,在△ABC 外面作正方形ABEF 与ACGH ,AD 为△ABC 的高,其反向延长线交FH 于M ,求证:(1)CF BH =;(2)MH MF =MHGFECB A本课易错点反思1、等边ABD ∆和等边CBD ∆的边长均为1,E 是BE AD ⊥上异于A D 、的任意一点,F 是CD 上一点,满足1AE CF +=,当E F 、移动时,试判断BEF ∆的形状.DFE CBA2、如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG .求证:(1)AE CG =;(2)CG AE ⊥.G FE DCBA课后作业3、已知:△ABC 和△ADE 均为等腰直角三角形, ∠ABC =∠ADE =90︒, AB = BC ,AD =DE ,按图1放置,使点E 在BC 上,取CE 的中点F ,联结DF 、BF . (1)探索DF 、BF 的数量关系和位置关系,并证明;(2)将图1中△ADE 绕A 点顺时针旋转45︒,再联结CE ,取CE 的中点F (如图2),问(1)中的结论是否仍然成立?证明你的结论;(3)将图1中△ADE 绕A 点转动任意角度(旋转角在0︒到90︒之间),再联结CE ,取CE 的中点F (如图3),问(1)中的结论是否仍然成立?证明你的结论图1FE D CBA图2ABCD E FFEDCBA图34、在等边ABC ∆的两边AB ,AC 所在直线上分别有两点M ,N ,D 为ABC ∆外一点,且︒=∠60MDN ,︒=∠120BDC ,CD BD =,探究:当点M ,N 分别爱直线AB ,AC 上移动时,BM ,NC ,MN 之间的数量关系及AMN ∆的周长与等边ABC ∆的周长L 的关系.N M DCBANM DCBANMD CBA图(1) 图(2) 图(3)⑴如图①,当点M ,N 在边AB ,AC 上,且DM=DN 时,BM ,NC ,MN 之间的数量关系式__________;此时LQ=__________ ⑵如图②,当点M ,N 在边AB ,AC 上,且DN DM ≠时,猜想(1)问的两个结论还成立吗?写出你的猜想并加以证明;⑶如图③,当点M ,N 分别在边AB ,CA 的延长线上时,若AN=x ,则Q=_________(用x ,L 表示)。

初中数学:利用旋转证明三角形全等综合证明题专题

初中数学:利用旋转证明三角形全等综合证明题专题

已知,如图,∠1=∠2,∠C =∠D ,BD=BC ,△ABD ≌△E BC 吗?为什么?如图,已知ΔABC ,BD 、CE 分别是AC 、AB 边上的高,B F=AC , ∠CAG=∠F ,请你判断AG 与AF 是否相等,说明理由。

如图,∠A =∠B ,∠1=∠2,EA =EB ,你能证明AC =BD 吗?∠1=∠2,∠B =∠C ,AB =AC ,D 、A 、E 在一条直线上.求证:AD =AE ,∠D =∠E .已知:∠1=∠2,∠B =∠C ,AB =AC .求证:AD =AE ,∠D =∠E .ABCDE1 2两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,AB=AC,AE=AD,∠BAC=∠EAD=90∘,B,C,E在同一条直线上,连接DC.(1)请找出图2中与△ABE全等的三角形,并给予证明(2)证明:DC⊥BE.如图,在Rt△ABC中,∠ACB=90∘,点D. F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90∘后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数。

如图,在正方形ABCD中,△PBC、△QCD是两个等边三角形,PB与DQ交于M,BP与CQ交于E,CP与DQ交于F. 求证:PM=QM.如图,已知长方形ABCD,过点C引∠A的平分线AM的垂线,垂足为M,AM交BC于E,连接MB,MD. (1)求证:BE=DC;(2)求证:∠MBE=∠MDC如图所示,已知△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,AE与BD与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC,FG,其中正确结论的个数是()①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.如图,△ABD与△ACE均为正三角形,且AB<AC,则BE与CD之间的大小关系是()如图,在▱ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是()如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且EA⊥AF.求证:DE=BF.如图,△ABC中,AB=AC,延长BC至D,使CD=BC,点E在边AC上,以CE,CD为邻边做▱CDFE,过点C作CG∥AB交EF于点G,连接BG,DE.(1)∠ACB与∠GCD有怎样的数量关系?请说明理由;(2)求证:△BCG≌△DCE.如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=1,BD=2,求CD的长.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于点F,BD分别交CE、AE 于点G、H.试猜测线段AE和BD的数量和位置关系,并说明理由.已知:如图,点C是线段AB的中点,CE=CD,∠ACD=∠BCE,求证:AE=BD.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.如图,分别以Rt△ABC的直角边AC,BC为边,在Rt△ABC外作两个等边三角形△ACE和△BCF,连接BE,AF.求证:BE=AF.如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连接AE、BF.求证:(1)AE=BF;(2)AE⊥BF.如图,在△ABD和△ACE中,有下列四个等式:(1)AB=AC;(2)AD=AE;(3)∠1=∠2;(4)BD=CE.请你以其中三个等式作为题设,余下的作为结论,写出一个真命题.(要求写出已知,求证及证明过程)如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=5,BD=12,求DE的长.如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE 的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由.如图,△ABC是等腰直角三角形,其中CA=CB,四边形CDEF是正方形,连接AF、BD.(1)观察图形,猜想AF与BD之间有怎样的关系,并证明你的猜想;(2)若将正方形CDEF绕点C按顺时针方向旋转,使正方形CDEF的一边落在△ABC的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.正方形ABCD和正方形AEFG有一公共点A,点G.E分别在线段AD、AB上(如图(1)所示),连接DF、BF.(1)求证:DF=BF,(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG、BE(如图(2)所示),在旋转过程中,请猜想线段DG、BE始终有什么数量关系和位置关系并证明你的猜想.(1)已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=60°,求证:①AC=BD;②∠APB=60度;(2)如图②,在△AOB和△COD中,若OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系式为_______;∠APB的大小为_______;(3)如图③,在△AOB和△COD中,若OA=k•OB,OC=k•OD(k>1),∠AOB=∠COD=α,则AC与BD 间的等量关系式为_______;∠APB的大小为_______.如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)证明:∠BAE=∠FEC;(2)证明:△AGE≌△ECF;(3)求△AEF的面积.如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连结BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.△DAC, △EBC均是等边三角形,AE,BD分别与CD,CE交于点M,N,求证:(1)AE=BD (2)CM=CN (3) △CMN为等边三角形(4)MN∥BC已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的个数是()如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACD=∠DCE=90°,D为AB边上一点.求证:BD=AE.某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.。

【几何模型】“全等模型”与“旋转全等模型”

【几何模型】“全等模型”与“旋转全等模型”

全等变换
说明:
旋转全等模型
说明:
旋转半⾓的特征是相邻等线段所成⾓含⼀个⼆分之⼀⾓,通过旋转将另外两个和为⼆分之⼀的⾓拼接在⼀起,成对称全等。

⾃旋转模型
构造⽅法:
遇60度旋60度,造等边三⾓形
遇90度旋90度,造等腰直⾓
遇等腰旋顶点,造旋转全等
遇中点旋180度,造中⼼对称
共旋转模型
说明:模型变形
说明:
模型变形主要是两个正多边形或者等腰三⾓形的夹⾓的变化,另外是等腰直⾓三⾓形与正⽅形的混⽤。

当遇到复杂图形找不到旋转全等时,先找两个正多边形或者等腰三⾓形的公共顶点,围绕公共顶点找到两组相邻等线段,分组组成三⾓形证全等。

中点旋转:
说明:
两个正⽅形、两个等腰直⾓三⾓形或者⼀个正⽅形⼀个等腰直⾓三⾓形及两个图形顶点连线的中点,证明另外两个顶点与中点所成图形为等腰直⾓三⾓形。

证明⽅法是倍长所要证等腰直⾓三⾓形的⼀直⾓边,转化成要证明的等腰直⾓三⾓形和已知的等腰直⾓三⾓形(或者正⽅形)公旋转顶点,通过证明旋转全等三⾓形证明倍长后的⼤三⾓形为等腰直⾓三⾓形从⽽得证。

模型构建专题:全等三角形中的常见八种模型(8类热点题型讲练)(解析版)--初中数学北师大版7年级下册

模型构建专题:全等三角形中的常见八种模型(8类热点题型讲练)(解析版)--初中数学北师大版7年级下册

第05讲模型构建专题:全等三角形中的常见八种模型(8类热点题型讲练)目录【模型一平移型模型】 (1)【模型二轴对称型模型】 (3)【模型三四边形中构造全等三角形解题】 (5)【模型四一线三等角模型】 (9)【模型五三垂直模型】 (13)【模型六旋转型模型】 (18)【模型七倍长中线模型】 (24)【模型八截长补短模型】 (30)【模型一平移型模型】例题:(2023上·福建福州·八年级统考期末)如图,点B,E,C,F在同一直线上,A D∠=∠,AB DE∥,=.BE CF求证:AB DE=.【答案】证明见解析【分析】本题考查了三角形全等的性质与判定的应用以及两直线平行的判定定理,解此题的关键是推出△△,注意全等三角形的对应边相等;根据AB DE≌ABC DEF∠=∠,又根据∠A=∠D,BE=CF∥可知B DEF可以判定ABC DEF ≌△△,即可求证AB DE =.【详解】解:∵AB DE ∥,∴B DEF ∠=∠,∵BE CF =,∴BC EF =,∴在ABC 和DEF 中,A DB DEF BCEF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABC DEF ≌△△,∴AB DE =.【变式训练】1.(2023秋·浙江·八年级专题练习)如图,在ACD 和CEB 中,点A 、B 、C 在一条直线上,D E AD EC AD EC ∠=∠=,∥,.求证:ACD CBE ≌.【答案】见解析【分析】根据平行线的性质得出A ECB ∠=∠,再根据全等三角形的判定定理ASA 证明ACD CBE ≌.【详解】AD EC ∥ ,A ECB ∴∠=∠,在ACD 和CEB 中,A ECB AD ECDE ∠=∠⎧⎪=⎨⎪∠=∠⎩,(ASA)ACD CBE ∴△≌△.【点睛】本题考查了全等三角形的判定定理和平行线的性质,能熟记全等三角形的判定定理是解此题的关键.2.(2024上·新疆和田·八年级统考期末)如图,点A 、D 、C 、F 在同一条直线上,AD CF =,AB DE =,BC EF =.(1)求证:ABC DEF ≌△△;(2)若65A ∠=︒,82B ∠=︒,求F ∠的度数.【答案】(1)见解析(2)33︒【分析】本题考查了全等三角形的性质与判定,三角形内角和定理的应用,掌握全等三角形的性质与判定是解题的关键.(1)先证明AC DF =,然后根据SSS 证明ABC DEF ≌△△即可;(2)根据全等三角形的性质得出F ACB ∠=∠,进而根据三角形内角和定理即可求解.【详解】(1)证明:AC AD DC =+∵,DF DC CF =+,且AD CF =,AC DF =∴,在ABC 和DEF 中,AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩,(SSS)ABC DEF ∴△≌△,(2)解:由(1)可知,ABC DEF ≌△△,F ACB ∠=∠∴,65A ∠=︒ ,82B ∠=︒,180()180(6582)33ACB A B ∴∠=︒-∠+∠=︒-︒+︒=︒,33F ACB ∴∠=∠=︒.【模型二轴对称型模型】例题:(2024上·云南昆明·八年级统考期末)线段AC 、BD 相交于点E ,D A ∠=∠,DE AE =,求证:C B ∠=∠.【答案】证明见解析.【分析】本题考查了全等三角形的判定和性质,根据ASA 可证ABE ≌DCE △,根据全等三角形的性质即可得证.【详解】证明: 在DEC 和AEB △中D A DE AE DEA AEB ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA DEC AEB ∴△≌△,ABE ∴ ≌()ASA DCE ,C B∴∠=∠【变式训练】1.(2023·湖南益阳·统考一模)如图,点D 在AB 上,点E 在AC 上,AB AC =,BD CE =.求证:ACD ABE ≌.【答案】见解析【分析】根据AB AC =,BD CE =推出AD AE =,即可根据SAS 进行求证.【详解】证明:,,,AB AC BD CE AD AB BD AE AC CE ===-=- ,AD AE ∴=.在ABE 和ACD 中,AD AE A A AC AB =⎧⎪∠=∠⎨⎪=⎩,()SAS ACD ABE ∴ ≌.【点睛】本题主要考查了三角形全等的判定,解题的关键是熟练掌握证明三角形全等的方法有SSS,SAS,AAS,ASA,HL .2.(2024上·山西阳泉·八年级统考期末)如图1是小宁制作的燕子风筝,燕子风筝的骨架图如图2所示,AB AE =,AC AD =,BAD EAC ∠=∠,40C ∠=︒,求D ∠的度数.【答案】40︒【分析】本题考查了全等三角形的判定与性质,先证明BAC EAD ∠=∠,再证明BAC EAD ≌,即可得到40D C ∠=∠=︒.【详解】解:∵BAD EAC ∠=∠,BAD DAC EAC DAC ∴∠+∠=∠+∠,即BAC EAD ∠=∠.在BAC 与EAD 中,,,,AB AE BAC EAD AC AD =⎧⎪∠=∠⎨⎪=⎩()SAS BAC EAD ∴V V ≌.C D ∴∠=∠.∵40C ∠=︒,40C D =∠=︒∴∠.【模型三四边形中构造全等三角形解题】例题:如图,在四边形ABCD 中,CB AB ⊥于点B ,CD AD ⊥于点D ,点E ,F 分别在AB ,AD 上,AE AF =,CE CF =.(1)若8AE =,6CD =,求四边形AECF 的面积;(2)猜想∠DAB ,∠ECF ,∠DFC 三者之间的数量关系,并证明你的猜想.AE ⎧⎪∴∠DFC+∠BEC=∠FCA+∠FAC+∠ECA+∠EAC=∠DAB+∠ECF.∴∠DAB+∠ECF=2∠DFC【点睛】本题考查了三角形全等的性质与判定,三角形的外角的性质,掌握三角形全等的性质与判定是解题的关键.【变式训练】1.在四边形ABDC中,AC=AB,DC=DB,∠CAB=60°,∠CDB=120°,E是AC上一点,F是AB延长线上一点,且CE=BF.(1)试说明:DE=DF:(2)在图中,若G在AB上且∠EDG=60°,试猜想CE,EG,BG之间的数量关系并证明所归纳结论.(3)若题中条件“∠CAB=60°,∠CDB=120°改为∠CAB=α,∠CDB=180°﹣α,G在AB上,∠EDG满足什么条件时,(2)中结论仍然成立?猜想CE 、EG 、BG 之间的数量关系为:证明:在ABD ∆和ACD ∆中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,ΔΔ()ABD ACD SSS ∴≅,【模型四一线三等角模型】【答案】探究:见解析;应用:61.已知CD 是经过BCA ∠顶点C 的一条直线,CA CB =.E 、F 分别是直线CD 上两点,且BEC CFA α∠=∠=∠.(1)若直线CD 经过BCA ∠的内部,且E 、F 在射线CD 上,请解决下面问题:①如图1,若90BCA ∠=︒,90α∠=︒,求证:BE CF =;②如图2,若180BCA α∠+∠=︒,探索三条线段EF BE AF ,,的数量关系,并证明你的结论;(2)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,题(1)②中的结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确的结论再给予证明.【答案】(1)①见解析;②EF BE AF =-,见解析(2)不成立,EF BE AF =+,见解析【分析】(1)①利用垂直及互余的关系得到ACF CBE ∠=∠,证明BCE ≌CAF V 即可;②利用三等角模型及互补证明ACF CBE ∠=∠,得到BCE ≌CAF V 即可;(2)利用互补的性质得到EBC ACF ∠=∠,证明BCE ≌CAF V 即可.【详解】(1)①证明:∵90EE CD AF CD ACB ⊥⊥∠=︒,,,∴90BEC AFC ∠=∠=︒,∴9090BCE ACF CBE BCE ∠+∠=︒∠+∠=︒,,∴ACF CBE ∠=∠,在BCE 和CAF V 中,EBC FCA BEC CFA BC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴BCE ≌CAF V ()AAS ,∴BE CF =;②解:EF BE AF =-.证明:∵180BEC CFA ACB αα∠=∠=∠∠+∠=︒,,∴180180CBE BCE ACF ACB BCE BCE αα∠=︒-∠-∠∠=∠-∠=︒-∠-∠,,∴ACF CBE ∠=∠,在BCE 和CAF V 中,EBC FCA BEC CFA BC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴BCE ≌CAF V ()AAS ,∴BE CF CE AF ==,,∴EF CF CE BE AF =-=-;(2)解:EF BE AF =+.理由:∵BEC CFA BCA αα∠=∠=∠∠=∠,,又∵180180EBC BCE BEC BCE ACF ACB ∠=∠=∠=︒∠+∠+∠=︒,,∴EBC BCE BCE ACF ∠+∠=∠+∠,∴EBC ACF ∠=∠,在BCE 和CAF V 中,EBC FCA BEC CFA BC CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴BCE ≌CAF V ()AAS ,∴AF CE BE CF ==,,∵EF CE CF =+,∴EF BE AF =+.【点睛】本题主要考查三角形全等的判定及性质,能够熟练运用三等角模型快速证明三角形全等是解题关键.2.(2024上·湖南株洲·八年级校联考期末)(1)如图①,已知∶ABC 中,90,BAC AB AC ∠=︒=,直线m 经过点,A BD m ⊥于,D CE m ⊥于E ,求证∶ABD CAE △△≌;(2)拓展∶如图②,将(1)中的条件改为∶ABC 中,,AB AC D A E =、、三点都在直线m 上,并且BDA AEC BAC α∠=∠=∠=,α为任意锐角或钝角,请问结论DE BD CE =+是否成立?如成立,请证明;若不成立,请说明理由;(3)应用∶如图③,在ABC 中,BAC ∠是钝角,,AB AC BAD CAE =∠>∠,BDA AEC BAC ∠=∠=∠,直线m 与BC 的延长线交于点F ,若2,BC CF ABC = 的面积是12,求ABD △与CEF △的面积之和.【答案】(1)见解析;(2)成立,理由见解析;(3)6【分析】(1)先证明90BDA AEC BAC ∠=∠=∠=︒,DBA CAE ∠=∠,然后根据AAS 即可证明ABD CAE ≌ ;(2)先证明DBA CAE ∠=∠,再证明()AAS ABD CAE ≌,再利用全等三角形的性质可得结论;(3)同(2)可证()AAS ABD CAE ≌,得出ABD CEA S S = ,再由不同底等高的两个三角形的面积之比等于底的比,得出ACF S △即可得出结果.【详解】解:(1)∵90BDA AEC BAC ∠=∠=∠=︒,∴90BAD CAE ∠+∠=︒,且90DBA BAD ∠+∠=︒,∴DBA CAE ∠=∠,在ABD △和CAE V 中,【模型五三垂直模型】例题:(2023上·辽宁大连·八年级统考期中)通过对下面数学模型的研究学习,解决下列问题:(1)如图1,点A 在直线l 上,90,BAD AB AD ∠=︒=,过点B 作BC l ⊥于点C ,过点D 作DE l ⊥交于点E .得1D ∠=∠.又90BCA AED ∠=∠=︒,可以推理得到()ABC DAE AAS ≌.进而得到结论:AC =_____,BC =_____.我们把这个数学模型称为“K 字”模型或“一线三直角”模型;(2)如图2,∠90,,,BAD MAN AB AD AM AN BM l ∠=∠=︒==⊥于点C ,DE l ⊥于点E ,ND 与直线l 交于点P ,求证:NP DP =.【答案】(1)DE ,AE(2)见解析【分析】本题考查一线三直角全等问题,(1)由90CBA AED BAD ∠∠∠===︒,得12290D ∠∠∠∠+=+=︒,则1D ∠∠=,而AB DA =,即可证明ABC DAE ≌,得AC DE =,BC AE =,于是得到问题的答案;(2)作NF l ⊥于点F ,因为BM l ⊥于点C ,DE l ⊥于点E ,所以90ACM NFA NFP DEP ∠∠∠∠====︒,由(1)得AC DE =,因为90MAN ∠=︒,所以90CAM FAN FNA FAN ∠∠∠∠+=+=︒,则CAM FNA ∠∠=,而AM NA =,即可证明CAM FNA ≌,得AC NF =,所以NF DE =,再证明PFN PED ≌,则NP DP =.【详解】(1))解:BC l ⊥于点C ,DE l ⊥于点E ,∴90CBA AED ∠∠==︒,∵90BAD ∠=︒,∴12890D ∠∠∠∠+=+=︒,∴1D ∠∠=,在ABC 和DAE 中,1D BCA AED AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴AAS ABC DAE ≌(),∴AC DE =,BC AE =,故答案为:DE ,AE .(2)证明:如图2,作NF l ⊥于点F ,∵BM l ⊥于点C ,DE l ⊥于点E ,∴90ACM NFA NFP DEP ∠∠∠∠====︒,由1AC DE=()得,同理(1)得AC NF =,∴NF DE =,在PFN 和PED 中,MFP DEF FPN EPD MF DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AAS PFN PED ≌(),∴NP DP =.【变式训练】1.在△ABC 中,∠BAC =90°,AC=AB ,直线MN 经过点A ,且CD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点A 旋转到图1的位置时,EAB DAC ∠+∠=度;(2)求证:DE=CD +BE ;(3)当直线MN 绕点A 旋转到图2的位置时,试问DE 、CD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】(1)90°(2)见解析(3)CD=BE +DE ,证明见解析【解析】【分析】(1)由∠BAC =90°可直接得到EAB DAC ∠+∠=90°;(2)由CD ⊥MN ,BE ⊥MN ,得∠ADC =∠BEA =∠BAC =90°,根据等角的余角相等得到∠DCA =∠EAB ,根据AAS 可证△DCA ≌△EAB ,所以AD =CE ,DC =BE ,即可得到DE =EA +AD =DC +BE .(3)同(2)易证△DCA ≌△EAB ,得到AD =CE ,DC =BE ,由图可知AE =AD +DE ,所以CD =BE +DE .(1)∵∠BAC =90°∴∠EAB +∠DAC =180°-∠BAC =180°-90°=90°故答案为:90°.(2)证明:∵CD ⊥MN 于D ,BE ⊥MN 于E∴∠ADC =∠BEA =∠BAC =90°∵∠DAC +∠DCA =90°且∠DAC +∠EAB =90°∴∠DCA =∠EAB∵在△DCA 和△EAB 中90ADC BEA DCA EAB AC AB ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴△DCA ≌△EAB (AAS )∴AD =BE 且EA =DC由图可知:DE =EA +AD =DC +BE .(3)∵CD ⊥MN 于D ,BE ⊥MN 于E∴∠ADC =∠BEA =∠BAC =90°∵∠DAC +∠DCA =90°且∠DAC +∠EAB =90°∴∠DCA =∠EAB∵在△DCA 和△EAB 中90ADC BEA DCA EAB AC AB ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴△DCA ≌△EAB (AAS )∴AD =BE 且AE =CD由图可知:AE =AD +DE∴CD =BE +DE .【点睛】本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角,也考查了三角形全等的判定与性质.2.(2024上·吉林辽源·九年级统考期末)如图,在ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到①的位置时,求证:①ADC CEB △△≌;②DE AD BE =+;(2)当直线MN 绕点C 旋转到②的位置时,求证:DE AD BE =-;(3)当直线MN 绕点C 旋转到③的位置时,试问DE 、AD 、BE 具有怎样的数量关系?请直接写出这个等量关系,不需要证明.【答案】(1)①见解析;②见解析(2)见解析(3)DE BE AD =-(或AD BE DE =-,BE AD DE =+).【分析】本题考查了几何变换综合题,需要掌握全等三角形的性质和判定,垂线的定义等知识点的应用,解此题的关键是推出证明ADC △和CEB 全等的三个条件.题型较好.(1)①已知已有两直角相等和AC BC =,再由同角的余角相等证明DAC BCE =∠∠即可证明()AAS ADC BEC ≌;②由全等三角形的对应边相等得到AD CE =,BE CD =,从而得证;(2)根据垂直定义求出BEC ACB ADC ∠=∠=∠,根据等式性质求出ACD CBE ∠=,根据AAS 证出ADC △和CEB 全等,再由全等三角形的对应边相等得到AD CE =,BE CD =,从而得证;(3)同样由三角形全等寻找边的关系,根据位置寻找和差的关系.【详解】(1)①证明:∵90ACB ∠=︒,90ADC ∠=︒,90BEC ∠=︒∴90ACD DAC ∠+∠=︒,90ACD BCE ∠+∠=︒,∴DAC BCE =∠∠,在ADC △与BEC 中,90ADC BEC DAC BCE AC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴()AAS ADC BEC ≌;②由①知,ADC BEC △△≌,∴AD CE =,BE CD =,∵DE CE CD =+,∴DE AD BE =+;(2)证明:∵AD MN ⊥于D ,BE MN ⊥于E ,∴90ADC BEC ACB ∠=∠=∠=︒,∴90CAD ACD ∠+∠=︒,90ACD BCE ∠+∠=︒,∴CAD BCE ∠=∠,在ADC △与BEC 中,90ADC BEC DAC BCE AC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴()AAS ADC CEB ≌.∴AD CE =,BE CD =,∴DE CE CD AD BE =-=-.(3)解:同(2)理可证()AAS ADC CEB ≌.∴AD CE =,BE CD =,∵CE CD DE=-∴AD BE DE =-,即DE BE AD =-;当MN 旋转到图3的位置时,AD 、DE 、BE 所满足的等量关系是DE BE AD =-(或AD BE DE =-,BE AD DE =+).【模型六旋转型模型】例题:如图,AB AC =,AE AD =,CAB EAD α∠=∠=.(1)求证:AEC ADB ≅△△1.如图,在△ABC中,AB=BC,∠ABC=120°,点D在边AC上,且线段BD绕着点B按逆时针方向旋转120°能与BE重合,点F是ED与AB的交点.(1)求证:AE=CD;(2)若∠DBC=45°,求∠BFE的度数.【答案】(1)AB⊥BE,AB=BD+BE;(2)图2中BE=AB+BD,图∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,∵CA=CB,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE,∠CBE=∠A,∵CA=CB,∠ACB=90°,∴∠A=∠CBA=45°,∴∠CBE=∠A=45°,∴ABE=90°,∴AB⊥BE,∵AB=AD+BD,AD=BE,∴AB=BD+BE,故答案为AB⊥BE,AB=BD+BE.(2)①如图2中,结论:BE=AB+BD.理由:∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,∵CA=CB,CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE,∵AD=AB+BD,AD=BE,∴BE=AB+BD.②如图3中,结论:BD=AB+BE.理由:∵∠ACB =∠DCE =∴∠ACD =∠BCE ,【模型七倍长中线模型】例题:(2023秋·山东滨州·八年级统考期末)如图,BD 是ABC 的中线,10AB =,6BC =,求中线BD 的取值范围.【答案】28BD <<【分析】延长BD 到E ,使DE BD =,证明两边之和大于2BE BD =,两边之差小于2BE BD =,证明三角形全等,得到线段相等,等量代换得28BD <<.【详解】解:如图,延长BD 至E ,使DE BD =,连接CE ,∵D 为AC 中点,∴AD DC =,在ABD △和CED △中,BD DE ADB CDE AD CD =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABD CED ≌△△,∴10EC AB ==,在BCE 中,CE BC BE CE BC -<<+,即106106BE -<<+,∴416BE <<,∴4216BD <<,∴28BD <<.【点睛】本题考查了全等三角形的判定和性质,三角形三边之间的关系,解题的关键是作辅助线,构造全等三角形.【变式训练】1.如图,在ABC 中,AD 是BC 边上的中线.延长AD 到点E ,使DE AD =,连接BE .(1)求证:ACD EBD △△≌;(2)AC 与BE 的数量关系是:____________,位置关系是:____________;(3)若90BAC ∠=︒,猜想AD 与BC 的数量关系,并加以证明.【答案】(1)见解析(2)AC BE =,AC BE∥(3)2AD BC =,证明见解析【分析】(1)根据三角形全等的判定定理SAS ,即可证得;(2)由ACD EBD △△≌,可得AC BE =,C EBC ∠=∠,据此即可解答;(3)根据三角形全等的判定定理SAS ,可证得BAC ABE ≌,据此即可解答.【详解】(1)证明:AD 是BC 边上的中线,BD CD ∴=,在ACD △与EBD △中AD ED ADC EDB BD CD =⎧⎪∠=∠⎨⎪=⎩,()SAS ACD EBD ∴ ≌;(2)解:ACD EBD ≌,AC BE ∴=,C EBC ∠=∠,∴∥AC BE ,故答案为:AC BE =,AC BE ∥;(3)解:2AD BC=证明:ACD EBD ≌,AC BE ∴=,C EBC ∠=∠,∴∥AC BE ,90BAC ∠=︒90BAC ABE ∴∠=∠=︒在BAC △和ABE △中,90AB BA BAC ABE AC BE =⎧⎪∠=∠=︒⎨⎪=⎩()SAS BAC ABE ∴ ≌,2BC AE AD ∴==.【点睛】本题考查了全等三角形的判定与性质,平行线的判定与性质,熟练掌握和运用全等三角形的判定与性质是解决本题的关键.2.(2023上·江苏南通·八年级统考期中)课外兴趣小组活动时,老师提出了如下问题:如图1,ABC 中,若6AB =,4AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到E ,使DE AD =,连接BE .请根据小明的方法思考:(1)由已知和作图能得到ADC EDB V V ≌,得到BE AD =,在ABE 中求得2AD 的取值范围,从而求得取值范围是.方法总结:上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.(2)如图2,AD 是ABC 的中线,AB AE =,AC AF =,180BAE CAF ∠+∠=︒,试判断线段关系,并加以证明;(3)如图3,在ABC 中,D ,E 在边BC 上,且BD CE =.求证:AB AC AD AE +>+【答案】(1)15AD <<CD BD ADC EDB AD ED =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ADC EDB ≌,∴4BE AC ==,∵在ABE 中,AB BE AE AB BE -<<+,即64264AD -<<+,∴15AD <<.故答案为:15AD <<(2)2EF AD =,理由:如图,延长AD 到M ,使得DM AD =,连接BM ,∴2AM AD DM AD =+=,∵AD 是ABC 的中线,∴BD CD =,在BDM 和CDA 中BD CD BDM CDA DM DA =⎧⎪∠=∠⎨⎪=⎩∴()SAS BDM CDA ≌,∴BM AC =,∵AC AF =,∴BM AF =,∵BDM CAD ≌,∴∠=∠MBD ACD ,∴BM AC ∥,∴180ABM BAC ︒∠+∠=,∵180BAE CAF ∠+∠=︒,∴()360360180180BAC FAE BAE CAF ∠+∠=︒-∠+∠=︒-︒=︒,∴ABM FAE ∠=∠,在ABM 和EAF △中AB AE ABM EAF BM AF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABM EAF ≌,∴AM EF =,∵2AM AD =,∴2EF AD =;(3)取BC 的中点为M ,连接AM 并延长至N ,使AM MN =,连接BN 、DN ,∵点M 是BC 的中点,∴CM BM =,在ACM △和NBM 中,CM BM AMC NMB AM NM =⎧⎪∠=∠⎨⎪=⎩∴()SAS ACM NBM ≌,∴AC NB=∵BD CE =,∴BM BD CM CE -=-,即=DM EM ,在AEM △和NDM 中,EM DM AME NMD AM NM =⎧⎪∠=∠⎨⎪=⎩∴()SAS AEM NDM ≌,∴AE ND =,延长AD 交BN 于F ,+>,则AB BF AD DF+>+,且FN DF DN+++>++,∴AB BF FN DF AD DF DN+>+,∴AB BN AD DN+>+.即AB AC AD AE【模型八截长补短模型】【点睛】本题是四边形综合题,考查了全等三角形的判定及性质的运用,等边三角形的性质的运用,解答时证明三角形全等是关键.【变式训练】(1)求证:CD BC DE =+;(2)若75B ∠=︒,求E ∠的度数.【答案】(1)见解析(2)105︒∵CA 平分BCD ∠,∴BCA FCA ∠=∠.在BCA V 和FCA △中,⎧⎪∠⎨⎪⎩【答案】(1)①见解析;②14x <<;(2)见解析【分析】(1)①根据三角形的中线得出BD CD =,再由对顶角相等得出②先由ABD ECD ≌,得出5CE =,再由ED AD =,得出可求出答案;(2)先根据SAS 判断出DEF DEH △≌△,得出EH EF =,BD CD ∴=,在ADB 和ECD 中,BD CD ADB CDE AD DE =⎧⎪∠=∠⎨⎪=⎩,()SAS ABD ECD ∴△≌△;②解:由①知,ABD ECD ≌,CE AB ∴=,5AB = ,5CE ∴=,ED AD = ,AD x =,22AE AD x ∴==,在ACE △中,3AC =,根据三角形的三边关系得,53253x -<<+,14x ∴<<,故答案为:14x <<;(2)证明:如图2,延长FD ,截取DH DF =,连接BH ,EH ,DH DF = ,DE DF ⊥,即90EDF EDH ∠=∠=︒,DE DE =,∴()SAS DEF DEH ≌,EH EF ∴=,AD 是中线,BD CD ∴=,DH DF = ,BDH CDF ∠=∠,∴()SAS BDH CDF ≌,CF BH ∴=,∵BE BH EH +>,BE CF EF ∴+>.【点睛】此题是三角形综合题,主要考查了三角形中线的定义,全等三角形的判定和性质,三角形的三边【答案】(1)正确;(2)成立,见解析;(3)正确,见解析【分析】本题考查了三角形全等的判定与性质,正确做辅助线构造全等三角形是解题关键.(1)延长FD 到点G ,使DG BE =,连接AG ,先证明ADG ABE △△≌AEF AGF △△≌,可得EF GF =,进而得出EF BE DF =+,即可解题;(2)证明方法同(1):延长FD 到点G ,使DG BE =,连接AG ,先证明再证明AEF AGF △△≌,可得EF GF =,进而得出EF BE DF =+即可解题;∵90B ADF ∠=∠=︒,∴ADG ADF ∠=∠=∠在ABE 和ADG △中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE ADG ≌,∴AE AG =,BAE DAG ∠=∠,∵120BAD ∠=︒,60EAF ∠=︒,∴2BAD EAF ∠∠=,∴GAF DAG DAF BAE DAF BAD EAF EAF ∠=∠+∠=∠+∠=∠-∠=∠,在AEF △和AGF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS AEF AGF ≌,∴EF GF =,∵GF DG DF BE DF =+=+,∴EF BE DF =+,故答案为:正确;(2)解:上题中的结论依然成立;如图2,延长FD 到点G ,使DG BE =,连接AG ,∵110ADF ∠=︒,70B ∠=︒,∴18011070ADG B ∠=︒-︒=︒=∠,在ABE 和ADG △中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE ADG ≌,∴AE AG =,BAE DAG ∠=∠,∵180B ADF ∠+∠=︒,∴ADG B ∠=∠,在ABE 和ADG △中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE ADG ≌,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴()AEF AGF SAS ≌,∴EF GF =,∵GF DG DF BE DF =+=+,∴EF BE DF =+.。

初中数学《几何旋转》重难点模型汇编(四大题型)含解析

初中数学《几何旋转》重难点模型汇编(四大题型)含解析

专题旋转重难点模型汇编【题型1手拉手模型】【题型2“半角”模型】【题型3构造旋转模型解题】【题型4奔驰模型】【题型5费马点模型】【题型1手拉手模型】1如图1,在△ABC中,∠A=90°,AB=AC=2,点D、E分别在边AB、AC上,且AD=AE=2-2,连接DE.现将△ADE绕点A顺时针方向旋转,旋转角为α0°<α<360°,分别连接CE、BD.(1)如图2,当0°<α<90°时,求证:CE=BD;(2)如图3,当α=90°时,延长CE交BD于点F,求证:CF垂直平分BD;(3)连接CD,在旋转过程中,求△BCD的面积的最大值,并写出此时旋转角α的度数.【答案】(1)见解析(2)见解析(3)△BCD的面积的最大值为3-2,旋转角α=135°【详解】(1)证明:由题意得,AB=AC,AD=AE,∠CAB=∠EAD=90°,∵∠CAE+∠BAE=∠BAD+∠BAE=90°,∴∠CAE=∠BAD,在△ACE和△ABD中,AC =AB∠CAE =∠BAD AE =AD,∴△ACE ≌△ABD SAS ,∴CE =BD ;(2)证明:根据题意:AB =AC ,AD =AE ,∠CAB =∠EAD =90°,在△ACE 和△ABD 中,AC =AB∠CAE =∠BAD AE =AD∴△ACE ≌△ABD SAS ,∴∠ACE =∠ABD ,∵∠ACE +∠AEC =90°,且∠AEC =∠FEB ,∴∠ABD +∠FEB =90°,∴∠EFB =90°,∴CF ⊥BD ,∵AB =AC =2,AD =AE =2-2,∠CAB =∠EAD =90°,∴BC =AB 2+AC 2=2,CD =AC +AD =2,∴BC =CD , ∵CF ⊥BD ,∴CF 是线段BD 的垂直平分线;(3)解: 在△BCD 中,边BC 的长是定值,则BC 边上的高取最大值时,△BCD 的面积有最大值,∴当点D 在线段BC 的垂直平分线上时,△BCD 的面积取得最大值,如图,∵AB =AC =2,AD =AE =2-2,∠CAB =∠EAD =90°,DG ⊥BC ,∴AG =12BC =1,∠GAB =45°,∴DG =AG +AD =3-2,∠DAB =180°-45°=135°,∴△BCD 的面积的最大值为:12BC ⋅DG =12×2×3-2 =3-2,此时旋转角α=135°.【点睛】本题是几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,垂直平分线的判定和性质等知识,寻找全等三角形,利用数形结合的思想解决问题是解题关键.2如图1,在Rt △ABC 中,∠C =90°,AC =BC =2,D ,E分别为AC ,BC 的中点,将△CDE 绕点C 逆时针方向旋转得到△CD E (如图2),使直线D E 恰好过点B ,连接AD .(1)判断AD 与BD 的位置关系,并说明理由;(2)求BE 的长;(3)若将△CDE绕点C逆时针方向旋转一周,当直线D E 过Rt△ABC的一个顶点时,请直接写出BE 长的其它所有值.【答案】(1)AD ⊥BD ,见详解(2)14-22(3)2+142或14-2 2【详解】(1)解:AD 与BD 的位置关系为AD ⊥BD .∵AC=BC,D,E分别为AC,BC的中点,∴CD=CE,即CD =CE ,∵∠C=90°,即∠BCA=∠D CE =90°,∴∠ACD =∠BCE ,∴△CD A≌△CE B,∴∠CE B=∠CD A,∵∠C=90°,CD =CE ,AC=BC,∴∠CD E =∠CE D =∠CAB=∠CBA=45°,∴∠CE B=∠CD A=135°,∴∠AD B=135°-45°=90°,即:AD ⊥BD .(2)解:Rt△ACB中,AC=BC=2,∴BA=AC2+BC2=22,同理可求D E =2,∵△CD A≌△CE B,∴AD =BE ,设AD =BE =x,在Rt△AD B中,由勾股定理得:x2+2+x2=222,解得:x=14-22(舍负),∴BE =14-22.(3)解:①经过点B 时,题(2)已求BE =14-22;②经过点A 时,如图所示,同理可证:△CD A ≌△CE B ,∴∠D AC =∠E BC ,BE =AD∵∠1=∠2,∴∠AE B =∠BCA =90°,设BE =AD =x ,在Rt △AE B 中,由勾股定理得:x 2+x -2 2=22 2,解得:x =2+142(舍负),即:BE =2+142;③再次经过点B 时,如下图:同理可证:△CD A ≌△CE B ,AD ⊥BE ,设BE =AD =x ,在Rt △AD B 中,由勾股定理得:x 2+x -2 2=22 2,解得:x =2+142(舍负),即:BE =2+142;综上所述:BE =2+142或BE =14-22.【点睛】本题考查了旋转的性质,全等三角形的判定与性质,勾股定理等的应用,正确熟练掌握知识点是解题的关键.3如图,△ABC 和△DCE 都是等腰直角三角形,∠ACB =∠DCE =90°.(1)【猜想】如图1,点E 在BC 上,点D 在AC 上,线段BE 与AD 的数量关系是,位置关系是;(2)【探究】:把△DCE 绕点C 旋转到如图2的位置,连接AD ,BE ,(1)中的结论还成立吗?说明理由;(3)【拓展】:把△DCE 绕点C 在平面内自由旋转,若AC =6,CE =22,当A ,E ,D 三点在同一直线上时,直接写出BE的长.【答案】(1)BE=AD,BE⊥AD(2)(1)中的结论成立,理由见解析(3)42-2或42+2【详解】(1)解:∵△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴BC=AC,EC=DC,∠ACB=90°,∴BC-EC=AC-DC,∴BE=AD,∵∠ACB=90°,∴BE⊥AD,故答案为:BE=AD,BE⊥AD;(2)解:(1)中结论仍然成立,理由:由旋转知,∠BCE=∠ACD,∵BC=AC,EC=DC,∴△BCE≌△ACD,∴BE=AD,∠CBE=∠CAD,∵∠ACB=90°,∴∠CBE+∠BHC=90°,∴∠CAD+∠BHC=90°,∵∠BHC=∠AHG,∴∠CAD+∠AHG=90°,∴∠AGH=90°,∴BE⊥AD;(3)解:①当点E在线段AD上时,如图3,过点C作CM⊥AD于M,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CM⊥AD,DE=2,∴CM=EM=12在Rt△ACM中,AC=6,∴AM=AC2-CM2=42,∴AE=AM-EM=42-2,在Rt△ACB中,AC=6,AB=AC2+AB2=62,在Rt△ABE中,BE=AB2-AE2=42+2;②当点D在线段AE上时,如图4,过点C作CN⊥AE于N,∵△DCE是等腰直角三角形,且CE=22,∴DE=CE2+CD2=4,∵CN⊥AD,DE=2,∴CN=EN=12在Rt△ACN中,AC=6,∴AN=AC2-CN2=42,∴AE=AN+NE=42+2,在Rt△ACB中,AC=6,AB=AC2+AB2=62,在Rt△ABE中,BE=AB2-AE2=42-2;综上,BE的长为42-2或42+2.【点睛】此题是几何变换综合题,主要考查了等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,作出辅助线构造出直角三角形是解本题的关键.4已知:如图1,△ABC中,AB=AC∠BAC=60°,D、E分别是AB、AC上的点,AD=AE,不难发现BD、CE的关系.(1)将△ADE绕A点旋转到图2位置时,写出BD、CE的数量关系;(2)当∠BAC=90°时,将△ADE绕A点旋转到图3位置.①猜想BD与CE有什么数量关系和位置关系?请就图3的情形进行证明;②当点C、D、E在同一直线上时,直接写出∠ADB的度数.【答案】(1)BD=CE(2)①BD=CE,BD⊥CE,证明见解析,②45°或135°【详解】(1)∵∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,水不撩不知深浅∴△BAD≌△CAE SAS∴BD=CE;(2)①BD=CE,BD⊥CE,证明:如图,BD交AC于点F,交CE于点M,∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE SAS∴BD=CE,∠ABD=∠ACE,在△BAF和△CMF中,∵∠ABD=∠ACE,∠AFB=∠MFC,∴∠FMC=∠FAB,∵∠BAC=90°,∴∠FMC=90°,∴BD⊥CE,因此BD=CE,BD⊥CE;②如图,当点 C、D、E 在同一直线上,且点D在线段CE上时,如图I所示,在等腰Rt△ADE中,∠ADE=45°,∵BD⊥CE,∴∠EDB=90°,∴∠ADB=∠EDB-∠ADE=45°;当点 C、D、E 在同一直线上,且点E在线段DE上时,如图II所示,在等腰Rt△ADE中,∠ADE=45°,∵BD⊥CE,∴∠EDB=90°,∴∠ADB =∠EDB +∠ADE =135°;故∠ADB 的度数为:45°或135°.5△ABC是等腰直角三角形,点D 是△ABC 外部的一点,连接AD ,AB =AC =2AD =6,将线段AD 绕点A 逆时针旋转90°得到线段AE ,连接ED ,CE ,BD .(1)如图1,当点D 在线段EC 上时,线段EC 与线段BD 的数量关系是,位置关系是;(2)如图2,线段EC 交BD 于点P ,此时(1)中线段EC 与线段BD 的关系是否依然成立,请说明理由;(3)如图3,线段EC 交BD 于点P ,点Q 是AC 边的中点,连接DC ,PQ ,当DC =32时,求PQ 的长.【答案】(1)BD =CE ,BD ⊥CE(2)(1)中线段EC 与线段BD 的关系是否依然成立,理由见解析(3)PQ 的长为32【详解】(1)解:BD =CE ,BD ⊥CE ,理由如下:∵△ABC 是等腰直角三角形,∴∠BAC =90°,AB =AC ,∵将线段AD 绕点A 逆时针旋转90°得到线段AE ,∴∠DAE =90°,AE =AD ,∴∠BAD =∠CAE ,在△ABD 与△ACE 中,AB =AC∠BAD =∠CAE AD =AE,∴△ABD ≌△ACE ,∴BD =CE ,∠ABD =∠ACE ,∴∠ACE +∠DBC +∠ACB =∠ABD +∠DBC +∠ACB =∠ABC +∠ACB =90°,∴∠BDC =90°,∴BD ⊥CE ;故答案为:BD =CE ,BD ⊥CE ;(2)解:(1)中线段EC 与线段BD 的关系依然成立;理由:∵△ABC 是等腰直角三角形,∴∠BAC =90°,AB =AC ,∵将线段AD 绕点A 逆时针旋转 90° 得到线段AE ,∴∠DAE=90°,AE=AD,∴∠BAD=∠CAE,在△ABD与△ACE中,AB=AC∠BAD=∠CAE AD=AE,∴△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∴∠ACE+∠DBC+∠ACB=∠ABD+∠DBC+∠ACB=∠ABC+∠ACB=90°,∴∠BPC=90°,∴BD⊥CE;(3)解:连接PQ,∵将线段AD绕点A逆时针旋转90°得到线段AE,∴∠DAE=90°,AE=AD=3,∴DE=2AD=32,∵DC=32,∴DE=CD,由(2)知BD⊥CE,∴EP=CP,∵点Q是AC边的中点,∴PQ=12AE=32.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形性质,旋转的性质,三角形中位线定理,熟练掌握全等三角形的判定和性质定理是解题的关键.【题型2“半角”模型】6如图①,四边形ABCD是正方形,M,N分别在边CD、BC上,且∠MAN=45°,我们称之为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法,如图①,将△ADM绕点A顺时针旋转90°,点D与点B重合,连接AM、AN、MN.(1)试判断DM,BN,MN之间的数量关系;(2)如图②,点M、N分别在正方形ABCD的边BC、CD的延长线上,∠MAN=45°,连接MN,请写出MN 、DM 、BN 之间的数量关系,并写出证明过程.(3)如图③,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B +∠D =180°,点N ,M 分别在边BC ,CD 上,∠MAN =60°,请直接写出BN ,DM ,MN 之间数量关系.【答案】(1)MN =DM +BN (2)MN =BN -DM ,证明见解析(3)MN =DM +BN【详解】(1)解:MN =DM +BN ,证明如下:如图:∵四边形ABCD 是正方形,∴∠ABC =∠BAD =∠D =90°,,由旋转的性质可得:AE =AM ,BE =DM ,∠ABE =∠D =90°,∠DAM =∠BAE ,∴∠ABE +∠ABC =180°,∴点E 、B 、C 共线,∵∠DAM +∠BAM =90°,∴∠BAE +∠BAM =90°=∠EAM ,∵∠MAN =45°,∴∠EAN =∠EAM -∠MAN =45°=∠MAN ,在△EAN 和△MAN 中,AE =AM∠EAN =∠MANAN =AN∴△EAN ≌△MAN SAS ,∴EN =MN ,∵EN =BE +BN ,∴MN =DM +BN ;(2)解:MN =BN -DM ,证明如下:如图,在BC 上取BE =MD ,连接AE ,,∵四边形ABCD 是正方形,∴∠ABC =∠ADC =∠BAD =90°,AB =AD ,∵∠ADC +∠ADM =180°,∴∠ADC =∠ADM =∠ABE =90°,在△ABE 和△ADM 中,AB =AD∠ABE =∠ADM BE =DM,∴△ABE≌△ADM SAS ,∴AE =AM ,∠BAE =∠MAD ,∵∠BAE +∠EAD =∠BAD =90°,∴∠DAM +∠EAD =∠EAM =90°,∵∠MAN =45°,∴∠EAN =∠EAM -∠MAN =45°=∠MAN ,在△EAN 和△MAN 中,AE =AM∠EAN =∠MAN AN =AN,∴△EAN ≌△MAN SAS ,∴EN =MN ,∵EN =BN -BE ,∴MN =BN -DM ;(3)解:如图,将△ABN 绕点A 逆时针旋转120°得△ADE , ∴∠B =∠ADE ,AB =AD ,AE =AN ,∴∠B +∠ADC =180°,∴∠ADE +∠ADC =180°,∴点E 、D 、C 共线,∵∠BAN +∠NAD =∠BAD =120°,∴∠DAE +∠NAD =∠NAE =120°,∵∠MAN =60°,∴∠EAN =∠EAM -∠MAN =60°=∠MAN ,在△EAN 和△MAN 中,AE =AN∠EAM =∠NAM AM =AM,∴△EAM ≌△NAM SAS ,∴EM =MN ,∴MN =DM +BN .【点睛】本题是四边形综合题,主要考查了正方形的性质,旋转的性质,全等三角形的判定与性质,利用旋转构造全等三角形是解题的关键.7如图,已知在△ABC 中,AB =AC ,D 、E 是BC 边上的点,将△ABD 绕点A 旋转,得到△ACD,连接D E .(1)当∠BAC =120°,∠DAE =60°时,求证:DE =D E ;(2)当DE=D E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由.(3)在(2)的结论下,当∠BAC=90°,BD与DE满足怎样的数量关系时,△D EC是等腰直角三角形?(直接写出结论,不必证明)【答案】(1)见解析(2)∠DAE=12∠BAC,理由见解析(3)DE=2BD【详解】(1)证明:∵△ABD绕点A旋转得到△ACD ,∴AD=AD ,∠CAD =∠BAD,∵∠BAC=120°,∠DAE=60°,∴∠D AE=∠CAD +∠CAE=∠BAD+∠CAE=∠BAC-∠DAE=120°-60°=60°,∴∠DAE=∠D AE,在△ADE和△AD E中,∵AD=AD∠DAE=∠D AE AE=AE,∴△ADE≌△AD E(SAS),∴DE=D E;(2)解:∠DAE=12∠BAC.理由如下:在△ADE和△AD E中,AD=AD AE=AE DE=D E,∴△ADE≌△AD′E(SSS),∴∠DAE=∠D AE,∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,∴∠DAE=12∠BAC;(3)解:∵∠BAC=90°,AB=AC,∴∠B=∠ACB=∠ACD =45°,∴∠D CE=45°+45°=90°,∵△D EC是等腰直角三角形,∴D E=2CD ,由(2)DE=D E,∵△ABD绕点A旋转得到△ACD ,∴BD=C D ,∴DE=2BD.【点睛】本题考查了几何变换的综合题,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小找出三角形全等的条件是解题的关键.8学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF =45°,求证:EF =BE +DF .”小明同学的思路:∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠ADC =90°.把△ABE 绕点A 逆时针旋转到△ADE 的位置,然后证明△AFE ≌△AFE ,从而可得EF =E F .E F =E D +DF =BE +DF ,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,∠EAF =12∠BAD ,直接写出EF ,BE ,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,∠EAF =12∠BAD ,求证:EF =BE +DF .(3)【知识迁移】如图4,四边形ABPC 是⊙O 的内接四边形,BC 是直径,AB =AC ,请直接写出PB +PC 与AP 的关系.【答案】(1)BE +DF =EF (2)证明见解析(3)PB +PC =2PA【详解】(1)解:结论:BE +DF =EF ,理由如下:证明:将△ABE 绕点A 逆时针旋转,旋转角等于∠BAD ,使得AB 与AD 重合,点E 转到点E 的位置,如图所示,可知△ABE≌△ADE ,∴BE=DE .由∠ADC+∠ADE =180°知,C、D、E 共线,∠BAD,∵∠EAF=12∴∠BAF+∠DAF=∠EAF,∴∠DAE +∠DAF=∠EAF=∠E'AF,∴△AEF≌△AE F,∴EF=E F=BE+DF.(2)证明:将△ABE绕点A逆时针旋转,旋转角等于∠BAD,使得AB与AD重合,点E转到点E 的位置,如图所示,由旋转可知△ABE≌△ADE ,∴BE=DE ,∠B=∠ADE ,∠BAE=∠DAE ,AE=AE .∴∠ADC+∠ADE =180°,∴点C,D,E 在同一条直线上.∠BAD,∵∠EAF=12∴∠BAE+∠DAF=1∠BAD,2BAD,∴∠DAE +∠DAF=12∠BAD,∴∠FAE =12∴∠EAF=∠FAE .∵AF=AF,∴△FAE ≌△FAE,∴FE=FE ,即BE+DF=EF.(3)结论:PB+PC=2PA,理由如下:证明:将△ABP绕点A逆时针旋转90°得到△ACP ,使得AB与AC重合,如图所示,由圆内接四边形性质得:∠ACP +∠ACP=180°,即P,C,P 在同一直线上.∴BP=CP ,AP=AP ,∵BC为直径,∴∠BAC=90°=∠BAP+∠PAC=∠CAP +∠PAC=∠PAP ,∴△PAP 为等腰直角三角形,∴PP =2PA,即PB+PC=2PA.【点睛】本题考查了旋转与全等三角形的综合应用、直径所对的圆周角是直角、圆内接四边形的性质、等腰直角三角形的判定及性质等知识点.解题关键是利用旋转构造全等三角形.9阅读下面材料.小炎遇到这个一个问题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.小炎是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段相对集中,她先尝试了翻折、旋转、平移的方法,最后发现线段AB、AD是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着点A逆时针旋转90°得到△ADG,再利用全等的知识解决这个问题(如图2).参考小炎同学思考问题的方法,解决下列问题:(1)写出小炎的推理过程;(2)如图3,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°,若∠B、∠D都不是直角,则当∠B与∠D满足于关系时,仍有EF=BE+DF;(3)如图4,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,若BD=1,EC =2,求DE的长.【答案】(1)见解析(2)∠B+∠ADC=180°(3)5【详解】(1)解:如图所示,将△ABE绕着点A逆时针旋转90°得到△ADG,∵四边形ABCD是正方形,∴AB=AD,∠B=∠ADC=∠BAD=90°,由旋转的性质可得AE=AG,BE=DG,∠BAE=∠DAG,∠ADG=∠B=90°,∴∠ADC+∠ADG=180°,即C、D、G三点共线,∵∠BAE+∠DAE=90°,∴∠DAG+∠DAE=90°,即∠EAG=90°,∵∠EAF=45°,∴∠GAF=45°=∠EAF,又∵AF=AF,∴△AEF≌△AGF SAS,∴EF=GF,又∵GF=DF+DG,DG=BE,∴EF=BE+DF;(2)解:当∠B+∠ADC=180°时,仍有EF=BE+DF,理由如下:如图所示,将△ABE绕点A逆时针旋转90°得到△ADG,∴BE=DG,AE=AG,∠BAE=∠DAG,∠B=∠ADG∵∠B+∠ADC=180°,∠B=∠ADG,∴∠ADC+∠ADG=180°,即C、D、G三点共线,∵∠BAD=90°∴∠BAE+∠DAE=90°,∴∠DAG+∠DAE=90°,即∠EAG=90°,∵∠EAF=45°,∴∠GAF=45°=∠EAF,又∵AF=AF,∴△AEF≌△AGF SAS,∴EF=GF,又∵GF=DF+DG,DG=BE,∴EF=BE+DF,故答案为:∠B+∠ADC=180°;(3)解:如图所示,将△ABD绕点A逆时针旋转90°得到△ACG,∴∠B=∠ACG,BD=CG=1,AD=AG,∵∠BAC=90°,∴∠B+∠ACB=90°,∠BAD+∠CAD=90°,∴∠CAG+∠CAD=90°,∠ACG+∠ACB=90°,即∠ECG=90°,∠DAG=90°,∵∠DAE=45°,∴∠GAE=45°=∠DAE,又∵AE=AE,∴△ADE≌△AGE SAS,∴GE=DE,在Rt△CEG中,由勾股定理得GE=CE2+CG2=5,∴DE=GE=5.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,旋转的性质,勾股定理等等,正确作出辅助线构造全等三角形是解题的关键.10如图1,E,F分别是正方形ABCD的边CD,BC上的动点,且满足∠EAF=45°,试判断线段BF,EF,ED之间的数量关系,并说明理由.小聪同学的想法:将△DAE顺时针旋转90°,得到△BAH,然后通过证明三角形全等可得出结论.请你参考小聪同学的思路完成下面的问题.(1)线段BF,EF,ED之间的数量关系是.(2)如图2,在正方形ABCD中,∠EAF=45°,连接BD,分别交AF,AE于点M,N,试判断线段BM,MN,ND之间的数量关系,并说明理由.【答案】(1)EF=BE+DF(2)MN2=BM2+DN2【详解】(1)解:结论:EF=BE+DF理由:∵四边形ABCD是正方形,∴∠ABC=∠ADC=∠BAD=90°,由旋转的性质可知:AH=AE,∠ADE=∠ABH=90°,HB=DE,∠EAH=90°,∵∠EAF=45°,∴∠FAH=45°,∴∠FAH=∠EAF,∵∠ABF+∠ABH=90°+90°=180°,∴F、B、H三点共线,又∵AF=AF,∴△AFE≌△AFH SAS,∴EF=FH,∵FH=BF+BH=BF+DE,∴EF=BE+DF.(2)结论:MN2=BM2+DN2,证明如下:如图所示,将△ADN绕点A顺时针旋转90°得到△BAG.∵BA=AD,∠BAD=90°,∴∠ABD=∠ADB=45°,由旋转的性质可知:AN=AG,∠ABG=∠ADB=45°,∠GAE=90°,∴∠MBG=∠ABG+∠ABD=90°,∵∠EAF=45°,∴∠GAM=∠BAG+∠BAM=90°-∠EAF=45°,∴∠MAG=∠MAN,∵AM=AM,∴△AGM≌△ANM SAS,∴MN=GM,∵∠MBG=90°,∴BM2+BG2=GM2,∴MN2=BM2+DN2.【点睛】本题涉及了旋转变换,正方形的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形,属于中考常考题型.【题型3构造旋转模型解题】11如图,正方形ABCD中,点E、F分别在线段BC、CD上运动,且满足∠EAF=45°,AE、AF分别与BD相交于点M、N,下列说法中:①BE+DF=EF;②点A到线段EF的距离一定等于正方形的边长;③BE=2,DF=3,则S△AEF=15;④若AB=62,BM=3,则MN=5.其中结论正确的个数是()A.4B.3C.2D.1【答案】A【分析】根据旋转的性质得到BH=DF,AH=AF,∠BAH=∠DAF,得到∠EAH=∠EAF=45°,根据全等三角形的性质得到EH=EF,∠AEB=∠AEF,于是得到BE+BH=BE+DF=EF,故①正确;过A作AG⊥EF于G,根据全等三角形的性质得到AB=AG,于是得到点A到线段EF的距离一定等于正方形的边长,故②正确;求出EF=BE+DF=5,设BC=CD=n,根据勾股定理即可得到S△AEF=15,故③正确;把△ADN绕点A顺时针旋转90°得到△ABQ,再证明△AMQ≌△AMN(SAS),从而得MQ=MN,再证明∠QBM=∠ABQ+∠ABM=90°,设MN=x,再由勾股定理求出x即可.【详解】解:如图,把△ADF绕点A顺时针旋转90°得到△ABH,由旋转的性质得,BH=DF,AH=AF,∠BAH=∠DAF,∵∠EAF=45°,∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=90°-∠EAF=45°,∴∠EAH=∠EAF=45°,在△AEF和△AEH中,AH=AF∠EAH=∠EAF=45oAE=AE,∴△AEF≌△AEH(SAS),∴EH=EF,∴∠AEB=∠AEF,∴BE+BH=BE+DF=EF,故①正确;过A作AG⊥EF于G,∴∠AGE=∠ABE=90°,在△ABE与△AGE中,∠ABE=∠AGE∠AEB=∠AEGAE=AE,∴△ABE≌△AGE(AAS),∴AB=AG,∴点A到线段EF的距离一定等于正方形的边长;故②正确;∵BE=2,DF=3,∴EF=BE+DF=5,设BC=CD=n,∴CE=n-2,CF=n-3,∴EF2=CE2+CF2,∴25=(n-2)2+(n-3)2,∴n=6(负值舍去),∴AG=6,∴S△AEF=12×6×5=15.故③正确;如图,把△ADN 绕点A 顺时针旋转90°得到△ABQ ,连接QM ,由旋转的性质得,BQ =DN ,AQ =AN ,∠BAQ =∠DAN ,∠ADN =∠ABQ =45°,∵∠EAF =45°,∴∠MAQ =∠BAQ +∠BAE =∠DAN +∠BAE =90°-∠EAF =45°,∴∠MAQ =∠MAN =45°,在△AMQ 和△AMN 中,AQ =AN∠MAQ =∠MAN AM =AM,∴△AMQ ≌△AMN (SAS ),∴MQ =MN ,∵∠QBM =∠ABQ +∠ABM =90°,∴BQ 2+MB 2=MQ 2,∴ND 2+MB 2=MN 2,∵AB =62,∴BD =2AB =12,设MN =x ,则ND =BD -BM -MN =9-x ,∴32+(9-x )2=x 2,解得:x =5,∴MN =5,故④正确,故选A .【点睛】本题主要考查了旋转的性质,正方形的性质,全等三角形的性质与判定,勾股定理等等,解题的关键是旋转三角形ADF 和三角形AND .12如图,已知点P 是正方形ABCD 内的一点,连接PA 、PB 、PC .若PA =4,PB =2,∠APB =135°,则PC 的长为.【答案】26【分析】先根据正方形的性质得BA=BC,∠ABC=90°,则可把△BAP绕点B顺时针旋转90°得到△CBE,连接PE,如图,根据旋转的性质得BP=BE=2,CE=AP=4,∠PBE=90°,∠BEC=∠APB= 135°,于是可判断△PBE为等腰直角三角形,所以PE=2PB=22,∠PEB=45°,则∠PEC=90°,然后在Rt△PEC中利用勾股定理计算PC的长.【详解】解:∵四边形ABCD为正方形,∴BA=BC,∠ABC=90°,把△BAP绕点B顺时针旋转90°得到△CBE,连接PE,如图,∴BP=BE=2,CE=AP=4,∠PBE=90°,∠BEC=∠APB=135°,∴△PBE为等腰直角三角形,∴PE=2PB=22,∠PEB=45°,∴∠PEC=135°-45°=90°,在Rt△PEC中,∵PE=22,CE=4,∴PC=42+(22)2=26.故答案为:26.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.13(1)问题发现:如图1,△ABC和△DCE均为等边三角形,当△DCA应转至点A,D,E在同一直线上,连接BE,易证△BCE≌△ACD,则①∠BEC=;②线段AD,BE之间的数量关系;(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A,D,E在同一直线上,若AE=12,DE=7,求AB的长度;(3)如图3,P为等边三角形ABC内一点,且∠APC=150°,∠APD=30°,AP=4,CP=3,DP=7,求BD的长.【答案】(1)①120°;②AD=BE;(2)13;(3)229【分析】本题主要考查了全等三角形的判定及性质和勾股定理的应用,(1)证明△ACD≌△BCE(SAS).得到∠ADC=∠BEC.利用△DCE为等边三角形,得到∠CDE=∠CED=60°,再利用点A,D,E在同一直线上,可得∠ADC=120°,即可得∠BEC=120°;(2)证明△ACD≌△BCE(SAS),可得AD=BE=AE-DE=15-7=8,∠ADC=∠BEC,再证明∠AEB=∠BEC-∠CED=90°,利用勾股定理求解即可;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,可得△BEC≌△APC,证明△PCE是等边三角形,证明∠BED=90°,再证明D、P、E在同一条直线上,求出DE,利用勾股定理求解即可.【详解】解:(1)①∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.②由①得:△ACD≌△BCE,∴AD=BE;故答案为:①120°;②AD=BE.(2)∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,AC=BC∠ACD=∠BCE CD=CE,∴△ACD≌△BCE(SAS),∴AD=BE=AE-DE=12-7=5,∠ADC=∠BEC,∵△DCE为等腰直角三角形∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC-∠CED=90°.∴AB=AE2+BE2=144+25=13;(3)把△APC绕点C逆时针旋转60°得△BEC,连接PE,如图所示:AP=4,CP=3,DP=7则△BEC≌△APC,∴CE=CP,∠PCE=60°,BE=AP=4,∠BEC=∠APC=150°,∴△PCE是等边三角形,∴∠EPC=∠PEC=60°,PE=CP=3,∴∠BED=∠BEC-∠PEC=90°,∵∠APD=30°,∴∠DPC=150°-30°=120°,又∵∠DPE=∠DPC+∠EPC=120°+60°=180°,即D、P、E在同一条直线上,∴DE=DP+PE=7+3=10,在Rt△BDE中,BD=BE2+DE2=229,即BD的长为229.【点睛】本题涉及全等三角形的判定及性质,等边三角形的性质,勾股定理,旋转的性质等知识点,解题的关键是利用旋转构造全等三角形,把分散的已知条件集中到同一个三角形中.【题型4奔驰模型】14如图,已知点D是等边△ABC内一点,且BD=3,AD=4,CD=5.(1)求∠ADB的度数;以下是甲,乙,丙三位同学的谈话:甲:我认为这道题的解决思路是借助旋转,我选择将△BCD绕点B顺时针旋转60°或绕点A逆时针旋转60°;乙:我也赞成旋转,不过我是将△ABD进行旋转;丙:我是将△ACD进行旋转.请你借助甲,乙,丙三位同学的提示,选择适当的方法求∠ADB的度数;(2)若改成BD=6,AD=8,CD=10,∠ADB的度数=°,点A到BD的距离为;类比迁移:(3)已知,∠ABC=90°,AB=BC,BE=1,CE=3,AE=5,求∠BEC的度数.【答案】(1)∠ADB=150°(2)150,4.(3)∠BEC=135°【详解】(1)解:(1)选择甲:如图1,作∠DBE=60°,且BE=BD,连接DE,AE,则△BDE是等边三角形,∴DE=BD=3,∠BDE=60°,∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴∠ABE=∠CBD,∴△ABE≌△CBD,∴AE=CD=5,∵AD2+DE2=42+32=52=AE2,∴∠ADE=90°,∴∠ADB=∠ADE+∠BDE=90°+60°=150°;乙:如图2,同理可得,∠BFD=60°,∠DFC=90°,∴∠ADB=∠BFC=∠BFD+∠DFC=60°+90°=150;丙:如图3同理可得,∠AGD=60°,∠BDG=90°,∴∠ADB=∠ADG+∠BDG=60°+90°=150;(2)同理(1)可得:AD2+BD2=CD2,∴∠ADB=150°,如图4,过点A作BD的垂线AH,垂足为H,∴∠ADH=30°,AD=4,∴AH=12故答案为:150,4.(3)如图5,将△ABE绕着点B顺时针旋转90°,得到△CBF,连接EF,∴△ABE≌△CBF,∴BE=BF=1,AE=CF=5,∴∠FBE=∠BEF=45°,∴EF2=BE2+BF2=2∵EF2+EC2=2+3=5=AE2,∴∠FEC=90°,∴∠BEC=∠BEF+∠FEC=45°+90°=135°【点睛】本题属于四边形综合题,主要考查了旋转和平移的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.15(1)问题发现:如图1,等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,求∠APB的度数.为了解决本题,我们可以将△ABP绕顶点A逆时针旋转60°到△ACP 处,这样就可以将三条线段PA,PB,PC转化到一个三角形中,从而求出∠APB的度数.请按此方法求∠APB的度数,写出求解过程;(2)拓展研究:请利用第(1)题解答的思想方法,解答下面的问题:①如图2,△ABC中,AB=AC,∠BAC=90°,点E,F为BC边上的点,且∠EAF=45°,判断BE,EF,CF 之间的数量关系并证明;②如图3,在△ABC中,∠ABC=30°,AB=4,BC=6,在△ABC内部有一点P,连接PA,PB,PC,直接写出PA+PB+PC的最小值.【答案】(1)150°,见解析;(2)①BE2+CF2=EF2,见解析;②213【分析】(1)连接PP ,根据题意得到AP=AP =3,∠PAP =60°,BP=CP =4,∠APB=∠AP C,进而得到△APP '为等边三角形,PP =AP=3,∠AP P=60°,根据勾股定理逆定理证明△PP C是直角三角形,且∠PP C=90°,即可求出∠APB=∠AP C=150°;(2)①证明∠B=∠ACB=45°,将△BAE绕点A逆时针旋转90°, 得到△CAD, 连接DF,得到∠BAE=∠DAC,∠ACD=∠B=45°,AD=AE,BE=CD,进而得到∠DCE=90°,根据勾股定理得到DF2=CF2 +CD2=CF2+BE2 ,证明△AEF≌△ADF,得到EF=DF,即可得到BE2+CF2=EF2;②将△ABP绕点B逆时针旋转60°,得到△A BP , 连接PP ,A C,即可得到∠ABA =∠PBP =60°,A B= AB=4,BP=BP ,A P =AP,从而得到△BPP 为等边三角形,∠A BC=90°,BP=PP ,根据两点之间线段最短得到PA+PB+PC=A P +PP +CP≥A C ,即可得到当且仅当A ,P ,P,C四点共线时,PA +PB+PC的值最小为 A C的长,根据勾股定理求出A C=213,即可得到PA+PB+PC的最小值为213 .【详解】解:(1)连接PP ,∵将△APB绕顶点 A 逆时针PP 旋转60°到△ACP ,∴AP=AP =3,∠PAP =60°,BP=CP =4,∠APB=∠AP C,∴△APP '为等边三角形,∴PP =AP=3,∠AP P=60°,∵P P2+P C=32+42=25,PC2=52=25,∴P P2+P C=PC2,∴△PP C是直角三角形, 且∠PP C=90°,∴∠AP C=∠AP P+∠CP P=150°,∴∠APB=∠AP C=150°;(2)①BE2+CF2=EF2.证明:∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,如图,将△BAE绕点A逆时针旋转90°, 得到△CAD, 连接DF,则:∠BAE=∠DAC,∠ACD=∠B=45°,AD=AE,BE=CD,∴∠DCE=∠ACB+∠ACD=90°,∴DF2=CF2+CD2=CF2+BE2 ,∵∠EAF=45°,∠EAD=90°,∴∠DAF=∠EAF=45°,又∵AE=AD,AF=AF ,∴△AEF≌△ADF,∴EF=DF,∴BE2+CF2=EF2;②PA+PB+PC的最小值为 213如图,将△ABP绕点B逆时针旋转60°,得到△A BP , 连接PP ,A C,则:∠ABA =∠PBP =60°,A B=AB=4,BP=BP ,A P =AP,∴△BPP 为等边三角形,∠A BC=∠A BA+∠ABC=90°,∴BP=PP ,∴PA+PB+PC=A P +PP +CP≥A C ,∴当且仅当A ,P ,P,C四点共线时,PA+PB+PC的值最小为 A C的长,∵∠A BC=90°,∴A C=A B2+BC2=42+62=213,∴PA+PB+PC的最小值为213 .【点睛】本题考查了旋转的性质,等边三角形的判定与性质,勾股定理及其逆定理,全等三角形的判定与性质等知识,综合性较强,熟知相关知识并根据题意灵活应用是解题关键.16(2023•崂山区模拟)阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决.请你回答:图1中∠APB的度数等于150°.参考小伟同学思考问题的方法,解决下列问题:(1)如图3,在正方形ABCD内有一点P,且PA=,PB=1,PD=,则∠APB的度数等于135°,正方形的边长为 ;(2)如图4,在正六边形ABCDEF内有一点P,且PA=2,PB=1,PF=,则∠APB的度数等于120°,正六边形的边长为 .【答案】见试题解答内容【解答】解:阅读材料:把△APB绕点A逆时针旋转60°得到△ACP′,由旋转的性质,P′A=PA=3,P′D=PB=4,∠PAP′=60°,水不撩不知深浅∴△APP′是等边三角形,∴PP′=PA=3,∠AP′P=60°,∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°;故∠APB=∠AP′C=150°;(1)如图3,把△APB绕点A逆时针旋转90°得到△ADP′,由旋转的性质,P′A=PA=22,P′D=PB=1,∠PAP′=90°,∴△APP′是等腰直角三角形,∴PP′=2PA=2×22=4,∠AP′P=45°,∵PP′2+P′D2=42+12=17,PD2=172=17,∴PP′2+P′D2=PD2,∴∠PP′D=90°,∴∠AP′D=∠AP′P+∠PP′D=45°+90°=135°,故,∠APB=∠AP′D=135°,∵∠APB+∠APP′=135°+45°=180°,∴点P′、P、B三点共线,过点A作AE⊥PP′于E,则AE=PE=12PP′=12×4=2,∴BE=PE+PB=2+1=3,在Rt△ABE中,AB===13;(2)如图4,∵正六边形的内角为16×(6-2)•180°=120°,∴把△APB绕点A逆时针旋转120°得到△AFP′,由旋转的性质,P′A=PA=2,P′F=PB=1,∠PAP′=120°,∴∠APP′=∠AP′P=12(180°-120°)=30°,过点A作AM⊥PP′于M,设PP′与AF相交于N,则AM=12PA=12×2=1,P′M=PM===3,∴PP′=2PM=23,∵PP′2+P′F2=(23)2+12=13,PF2=132=13,水不撩不知深浅∴PP′2+P′F2=PF2,∴∠PP′F=90°,∴∠AP′F=∠AP′P+∠PP′F=30°+90°=120°,故,∠APB=∠AP′F=120°,∵P′F=AM=1,∵△AMN和△FP′N中,,∴△AMN≌△FP′N(AAS),∴AN=FN,P′N=MN=12P′M=32,在Rt△AMN中,AN===7 2,∴AF=2AN=2×72=7.故答案为:150°;(1)135°,13;(2)120°,7.【题型5费马点模型】17如图,四边形ABCD是菱形,AB=6,且∠ABC=60°,M是菱形内任一点,连接AM,BM,CM,则AM+BM+CM的最小值为.【答案】63【详解】以BM为边作等边△BMN,以BC为边作等边△BCE,则BM=BN=MN,BC=BE=CE,∠MBN=∠CBE=60°,∴∠MBC=∠NBE,∴△BCM≌△BEN,∴CM=NE,∴AM+MB+CM=AM+MN+NE.当A、M、N、E四点共线时取最小值AE.∵AB=BC=BE=6,∠ABH=∠EBH=60°,∴BH⊥AE,AH=EH,∠BAH=30°,AB=3,AH=3BH=33,∴BH=12∴AE=2AH=63.故答案为63.【点睛】本题考查了菱形的性质,全等三角形的判定与性质,等边三角形的性质.难度比较大.作出恰当的辅助线是解答本题的关键.18如图,在等边三角形ABC内有一点P.(1)若PA=2,PB=3,PC=1,求∠BPC的度数;(2)若等边三角形边长为4,求PA+PB+PC的最小值;(3)如图,在正方形ABCD内有一点P,且PA=5,PB=2,PC=1,求正方形ABCD的边长.【答案】(1)∠BPC=150°,(2)43(3)5【详解】(1)解: 如图所示,将线段BP绕点B逆时针旋转60°得到线段B P ,连接A P 、P P ,∴△BPC≌△BP A,∴BP=B P ,A P =PC=1,∠PB P =60°,∠A P B=∠BPC,∴△B P P是等边三角形,∴∠B P P=∠PB P =60°,P P =BP=3,∵AP 2+PP 2=1+3=4=AP2,∴△A P P是直角三角形,∠A P P=90°,∴∠A P B=∠AP P +∠B P P=150°,∴∠BPC=150°,(2)解:如图所示,将△ABP绕点A顺时针旋转60°得到△ACD,则△ABP≌△ACD,PA=DA,∠PAD=60°,则△APD是等边三角形,∴AP=PD,再将△APC绕点A顺时针旋转60°得到△ADE,则△APC≌△ADE∴PC=DE,∠CAE=60°,CA=EA,∴PA+PB+PC=BP+PD+DE≥BE当B,P,D,E四点共线时,PA+PB+PC取得最小值,即BE的长,设BE,AC交于点F,∵AB=AC=AE,∠BAF=∠EAF,∠BAE=∠BAF+∠EAF=120°,BE ,∴BE⊥AF,BF=EF=12∴∠ABF=30°,AB=2 ,∴AF=12在Rt△ABF中,BF=AB2-AF2=23 ,∴BE=2BF=43,即PA+PB+PC的最小值为43;(3)如图,将△BPC绕点B逆时针旋转90°,得到△BEA,∴△BPC≌△BEA,∴BE=BP=2,AE=PC=1,∠PBE=90°,∠AEB=∠BPC,∴△BEP是等腰直角三角形,∴∠BEP=∠EPB=45°,PE=2PB=2,∵AE2+PE2=1+4=5=AP2,∴△AEP是直角三角形,∠AEP=90°,如图,延长AE,过点B作BF⊥AE于F,则∠F=90°,∵∠AEP=90°,∠BEP=45°,∴∠BEF=45°=∠EBF,∴BF=EF=1,∴AF=AE+EF=2,∴AB=AF2+BF2=22+1=5,即正方形的边长为5.【点睛】此题考查了等边三角形的性质,旋转的性质,全等三角形的判定与性质,正方形的性质,勾股定理及其逆定理,熟练掌握旋转的性质是解题的关键.19背景资料:在已知△ABC所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当△ABC三个内角均小于120°时,费马点P在△ABC内部,当∠APB=∠APC=∠CPB=120°时,则PA+PB+PC取得最小值.(1)如图2,等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求∠APB的度数,为了解决本题,我们可以将△ABP绕顶点A旋转到△ACP 处,此时△ACP ≌△ABP这样就可以利用旋转变换,将三条线段PA、PB、PC转化到一个三角形中,从而求出∠APB=;知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与△ABC的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.(2)如图3,△ABC三个内角均小于120°,在△ABC外侧作等边三角形△ABB ,连接CB ,求证:CB 过△ABC的费马点.(3)如图4,在RT△ABC中,∠C=90°,AC=1,∠ABC=30°,点P为△ABC的费马点,连接AP、BP、CP,求PA+PB+PC的值.(4)如图5,在正方形ABCD中,点E为内部任意一点,连接AE、BE、CE,且边长AB=2;求AE+BE+ CE的最小值.【答案】(1)150°;(2)见详解;(3)7;(4)6+2.【详解】(1)解:连结PP′,∵△ABP≌△ACP ,∴∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,∵△ABC为等边三角形,。

三角形旋转全等常见模型

三角形旋转全等常见模型

1、绕点型(手拉手模型)(1)自旋转:⎪⎪⎩⎪⎪⎨⎧,造中心对称遇中点旋全等遇等腰旋顶角,造旋转,造等腰直角旋遇,造等边三角形旋遇自旋转构造方法0000018090906060(2)共旋转(典型的手拉手模型)例1、在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC(2) AE=DC(3) AE 与DC 的夹角为60。

(4) △AGB ≌△DFB (5) △EGB ≌△CFB (6) BH 平分∠AHC(7) GF ∥AC变式练习1、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC(3) AE 与DC 的夹角为60。

(4) AE 与DC 的交点设为H,BH 平分∠AHCHFG E DEBD变式练习2、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1)△ABE ≌△DBC (2)AE=DC(3)AE 与DC 的夹角为60。

(4)AE 与DC 的交点设为H,BH 平分∠AHC(1)如图1,点C 是线段AB 上一点,分别以AC ,BC 为边在AB 的同侧作等边△ACM 和△CBN ,连接AN ,BM .分别取BM ,AN 的中点E ,F ,连接CE ,CF ,EF .观察并猜想△CEF 的形状,并说明理由.(2)若将(1)中的“以AC ,BC 为边作等边△ACM 和△CBN”改为“以AC ,BC 为腰在AB 的同侧作等腰△ACM 和△CBN ,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由.例4、例题讲解:1. 已知△ABC 为等边三角形,点D 为直线BC 上的一动点(点D 不与B,C 重合),以AD 为边作菱形ADEF(按A,D,E,F 逆时针排列),使∠DAF=60°,连接CF.(1) 如图1,当点D 在边BC 上时,求证:① BD=CF ‚ ②AC=CF+CD.(2)如图2,当点D 在边BC 的延长线上且其他条件不变时,结论AC=CF+CD 是否成立?若不成立,请写出AC 、CF 、CD 之间存在的数量关系,并说明理由;(3)如图3,当点D 在边BC 的延长线上且其他条件不变时,补全图形,并直接写出AC 、CF 、CD 之间存在的数量关系。

2022年中考数学几何模型之全等三角形的五种模型(讲+练)(解析版)

2022年中考数学几何模型之全等三角形的五种模型(讲+练)(解析版)

专题06 全等三角形的五种模型全等三角形的模型种类多,其中有关中点的模型与垂直模型在前面的专题已经很详细的讲解,这里就不再重复。

模型一、截长补短模型①截长:在较长的线段上截取另外两条较短的线段。

如图所示,在BF 上截取BM=DF ,易证△BMC△△DFC (SAS ),则MC=FC=FG ,△BCM=△DCF , 可得△MCF 为等腰直角三角形,又可证△CFE=45°,△CFG=90°,△CFG=△MCF ,FG△CM ,可得四边形CGFM 为平行四边形,则CG=MF ,于是BF=BM+MF=DF+CG.②补短:选取两条较短线段中的一条进行延长,使得较短的两条线段共线并寻求解题突破。

如图所示,延长GC 至N ,使CN=DF ,易证△CDF△△BCN (SAS ), 可得CF=FG=BN ,△DFC=△BNC=135°,又知△FGC=45°,可证BN△FG ,于是四边形BFGN 为平行四边形,得BF=NG , 所以BF=NG=NC+CG=DF+CG.例1.如图,△ABC 中,△B =2△A ,△ACB 的平分线CD 交AB 于点D ,已知AC =16,BC =9,则BD 的长为( )A .6B .7C .8D .9【答案】.B 【详解】解:如图,在CA 上截取,CN CB = 连接,DN CD 平分,ACB ∠ ,BCD NCD ∴∠=∠,CD CD = (),CBD CND SAS ∴≌ ,,,BD ND B CND CB CN ∴=∠=∠=9,16,BC AC == 9,7,CN AN AC CN ∴==-=,CND NDA A ∠=∠+∠ ,B NDA A ∴∠=∠+∠2,B A ∠=∠ ,A NDA ∴∠=∠,ND NA ∴= 7.BD AN ∴== 故选:.B【变式训练1】如图,在△ABC 中,AB =BC ,△ABC =60°,线段AC 与AD 关于直线AP 对称,E 是线段BD 与直线AP 的交点.(1)若△DAE =15°,求证:△ABD 是等腰直角三角形;(2)连CE ,求证:BE =AE +CE .【答案】(1)见解析;(2)见解析【详解】证明:(1)△在△ABC 中,AB =BC ,△ABC =60°,△△ABC 是等边三角形, △AC =AB =BC ,△BAC =△ABC =△ACB =60°,△线段AC 与AD 关于直线AP 对称,△△CAE =△DAE =15°,AD =AC ,△△BAE =△BAC +△CAE =75°,△△BAD =90°,△AB =AC =AD ,△△ABD 是等腰直角三角形; (2)在BE 上取点F ,使BF =CE ,连接AF ,△线段AC 与AD 关于直线AP 对称,△△ACE =△ADE ,AD =AC ,△AD =AC =AB ,△△ADB =△ABD=∠ACE ,在△ABF 与△ACE 中,AC AB ACE ABF CE BF =⎧⎪∠=∠⎨⎪=⎩,△△ABF △△ACE (SAS ),△AF =AE ,△AD =AB ,△△D =△ABD ,又△CAE =△DAE , △()()111806022AEB D DAE D ABD DAC BAC ∠=∠+∠=∠+∠+∠=︒-∠=︒, △在△AFE 中,AF =AE ,△AEF =60°,△△AFE 是等边三角形,△AF =FE ,△BE =BF +FE =CE +AE .【变式训练2】如图,在△ABC 中,△ACB=△ABC=40o ,BD 是△ABC 的角平分线,延长BD 至点E ,使得DE=DA ,则△ECA=________.【答案】40°【详解】解:在BC 上截取BF=AB ,连接DF ,△ACB=△ABC=40°,BD 是△ABC 的角平分线,∴△A=100°,△ABD=△DBC=20°,∴△ADB=60°,△BDC=120°,BD=BD ,∴△ABD△△FBD ,DE=DA ,∴ DF=AD=DE ,△BDF=△FDC=△EDC=60°,△A=△DFB=100°,DC=DC ,∴△DEC△△DFC ,∴1006040DCB DCE DFC FDC ∠=∠=∠-∠=︒-︒=︒;故答案为40°.【变式训练3】已知四边形ABCD 是正方形,一个等腰直角三角板的一个锐角顶点与A 点重合,将此三角板绕A 点旋转时,两边分别交直线BC ,CD 于M ,N .(1)如图1,当M ,N 分别在边BC ,CD 上时,求证:BM +DN =MN(2)如图2,当M ,N 分别在边BC ,CD 的延长线上时,请直接写出线段BM ,DN ,MN 之间的数量关系(3)如图3,直线AN 与BC 交于P 点,MN =10,CN =6,MC =8,求CP 的长.【答案】(1)见解析;(2)BM DN MN -=;(3)3【详解】(1)证明:如图,延长CB 到G 使BG DN =,连接AG ,△四边形ABCD 是正方形,△AB AD =,90ABG ADN BAD ∠=∠=∠=︒,在ABG 与ADN △中,AB ADABG ADN BG DN=⎧⎪∠=∠⎨⎪=⎩, ()AGB AND SAS ∴△≌△,AG AN ∴=,GAB DAN ∠=∠,45MAN ∠=︒,90BAD ∠=︒,△45DAN BAM BAD MAN ∠+∠=∠-∠=︒,45GAM GAB BAM DAN BAM ∴∠=∠+∠=∠+∠=︒,GAM NAM ∴∠=∠,在AMN 与AMG 中,AM AMGAM NAM AN AG=⎧⎪∠=∠⎨⎪=⎩, ()AMN AMG SAS ∴△≌△,MN GM ∴=,又△BM GB GM +=,BG DN =,BM DN MN ∴+=;(2)BM DN MN -=,理由如下:如图,在BM 上取一点G ,使得BG DN =,连接AG ,△四边形ABCD 是正方形,△AB AD =,90ABG ADN BAD ∠=∠=∠=︒,在ABG 与ADN △中,AB AD ABG ADN GB DN =⎧⎪∠=∠⎨⎪=⎩, ()AGB AND SAS ∴△≌△,AG AN ∴=,GAB DAN ∠=∠,△GAB GAD DAN GAD ∠+∠=∠+∠,△90GAN BAD ∠=∠=︒, 又45MAN ∠=︒,45GAM GAN MAN MAN ∴∠=∠-∠=︒=∠,在AMN 与AMG 中,AM AM GAM NAM AN AG =⎧⎪∠=∠⎨⎪=⎩, ()AMN AMG SAS ∴△≌△,MN GM ∴=,又△BM BG GM -=,BG DN =,△BM DN MN -=,故答案为:BM DN MN -=;(3)如图,在DN 上取一点G ,使得DG BM =,连接AG ,△四边形ABCD 是正方形,△AB AD BC CD ===,90ABM ADG BAD ∠=∠=∠=︒,//AB CD ,在ABM 与ADG 中,AB AD ABM ADG BM DG =⎧⎪∠=∠⎨⎪=⎩, ()ABM ADG SAS ∴△≌△,AM AG ∴=,MAB GAD ∠=∠,△MAB BAG GAD BAG ∠+∠=∠+∠,△90MAG BAD ∠=∠=︒,又45MAN ∠=︒,45GAN MAG MAN MAN ∴∠=∠-∠=︒=∠,在AMN 与AGN 中,AM AG MAN GAN AN AN =⎧⎪∠=∠⎨⎪=⎩, ()AMN AGN SAS ∴△≌△,10MN GN ∴==,设DG BM x ==,△6CN =,8MC =,△1064DC DG GN CN x x =+-=+-=+,8BC MC BM x =-=-,△DC BC =,△48x x +=-,解得:2x =,△6AB BC CD CN ====,△//AB CD ,△BAP CNP ∠=∠,在ABP △与NCP 中,APB NPC BAP CNP AB CN ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABP NCP AAS ∴△≌△,132CP BP BC ∴===,△CP 的长为3.模型二、平移全等模型例.如图,在△ABC 和△DEF 中,B ,E ,C ,F 在同一条直线上,AB // DE ,AB = DE ,△A = △D .(1)求证:ABC DEF ≌;(2)若BF = 11,EC = 5,求BE 的长.【答案】(1)见解析;(2)BE =3.【详解】(1)证明:△AB△DE ,△△ABC =△DEF ,在△ABC 和△DEF 中A D AB DE ABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩△△ABC△△DEF (ASA ); (2)解:△△ABC△△DEF ,△BC =EF ,△BC -EC =EF -EC ,即BE =CF ,△BF =11,EC =5,△BF -EC =6.△BE +CF =6.△BE =3.【变式训练1】如图,AB//CD ,AB=CD 点E 、F 在BC 上,且BF=CE .(1)求证:△ABE△△DCF (2)求证:AE//DF .【答案】(1)见详解;(2)见详解【详解】证明:(1)△AB △CD ,△B C ∠=∠,△BF =CE ,△CF EF BE EF +=+,△BE CF =,△AB =CD ,△ABE DCF △≌△(SAS );(2)由(1)可得:ABE DCF △≌△,△DFC AEB ∠=∠,△180,180DFC EFD AEF AEB ∠+∠=︒∠+∠=︒,△EFD AEF ∠=∠,△//AE DF .【变式训练2】如图,已知点C 是AB 的中点,CD △BE ,且CD BE =.(1)求证:△ACD△△CBE .(2)若87,32A D ∠=︒∠=︒,求△B 的度数.【答案】(1)见解析;(2)61【分析】(1)根据SAS 证明△ACD△△CBE ;(2)根据三角形内角和定理求得△ACD ,再根据三角形全等的性质得到△B=△ACD .【详解】(1)△C 是AB 的中点,△AC =CB ,△CD//BE ,△ACD CBE ∠=∠,在△ACD 和△CBE 中,AC CB ACD CBE CD BE =⎧⎪∠=∠⎨⎪=⎩,△ACD CBE ∆≅∆;(2)△8732A D ︒︒∠=∠=,,△180180873261ACD A D ︒︒︒︒︒∠=-∠-∠=--=,又△ACD CBE ∆≅∆,△61B ACD ︒∠=∠=.模型三、对称全等模型例.如图,已知△C =△F =90°,AC =DF ,AE =DB ,BC 与EF 交于点O ,(1)求证:Rt△ABC△Rt△DEF ;(2)若△A =51°,求△BOF 的度数.【答案】(1)见解析;(2)78°【详解】(1)证明:△AE =DB ,△AE +EB =DB +EB ,即AB =DE .又△△C=△F=90°,AC=DF,△Rt△ABC△Rt△DEF.(2)△△C=90°,△A=51°,△△ABC=△C-△A=90°-51°=39°.由(1)知Rt△ABC△Rt△DEF,△△ABC=△DEF.△△DEF=39°.△△BOF=△ABC+△BEF=39°+39°=78°.【变式训练1】如图,EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90º,∠B =∠C,AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有()A.4个B.3个C.2个D.1个【解答】B【解析】∵∠E=∠F=90º,∠B=∠C,AE=AF,∴△ABE≌△ACF,∴BE=CF,∵∠BAE=∠CAF,∠BAE-∠BAC=∠CAF-∠BAC,∴∠1=∠2,∴△ABE≌△ACF,∴∠B=∠C,AB=AC,又∵∠BAC=∠CAB,∴△ACN≌△ABM,④CD=DN不能证明成立,∴共有3个结论正确.【变式训练2】如图,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A.①B.②C.①②D.①②③【解答】D【解析】∵BE⊥AC于E,CF⊥AB于F,∴∠AEB=∠AFC=90°,∵AB=AC,∠A=∠A,∴△ABE≌△ACF(第一个正确),∴AE=AF,∴BF=CE,∵BE⊥AC于E,CF⊥AB于F,∠BDF=∠CDE,∴△BDF≌△CDE(第二个正确),∴DF=DE,连接AD,∵AE=AF,DE=DF,AD=AD,∴△AED≌△AFD,∴∠FAD =∠EAD ,即点D 在∠BAC 的平分线上(第三个正确).模型四、旋转全等模型例.如图,△ABC 和△ADE 中,AB =AC ,AD =AE ,△BAC =△DAE ,且点B ,D ,E 在同一条直线上,若△CAE +△ACE +△ADE =130°,则△ADE 的度数为( )A .50°B .65°C .70°D .75°【答案】B【详解】BAC DAE ∠=∠BAC DAC DAE DAC ∴∠-∠=∠-∠BAD CAE ∴∠=∠,AB AC AD AE == ∴在BAD 和CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴BAD ≌CAE ( SAS ) ABD ACE ∴∠=∠130CAE ACE ADE ∠+∠+∠=︒130ABD BAD ADE ∴∠+∠+∠=︒ADE ABD BAD ∠=∠+∠2130ADE ∴∠=︒65ADE ∴∠=︒故选:B .【变式训练1】如图,将正方形ABCD 绕点A 逆时针旋转60°得到正方形AB ′C ′D ′,线段CD ,B ′C ′交于点E ,若DE =1,则正方形的边长等于_____.【答案】2+【详解】解:连接AC 、AE ,延长C ′B ′交AC 于点F ,过点F 作GF △DC 于G , 由题意得,AD =AB ′,△D =△AB ′E ,△B ′AB =60°,△CAB =△GCB ′=45°,△△DAB ′=30°,△CAB ′=15°在RT △ADE 与RT △AB ′E 中AD AB AE AE ='⎧⎨=⎩,△RT △ADE △RT △AB ′E (HL ), △△DAE =△B′AE =12△DAB ′=15°,DE=EB ′=1,△△B′AE=△CAB ′在△AB′E 和△AB′F 中==B AE CAB AB AB EB A FB A ∠'=∠'⎧⎪''⎨⎪∠'∠'⎩ ,△△AB′E △△AB′F (ASA ),△EB′=BF=1 △△DEB ′=360°-△D -△EB A '-∠DAB′=150°,△△GEF =30°在RT △EGF 中,EG =EF ×cos △GEFDF =EF ×sin △GEF =2×12=1 在△CGF 中,△GCF =45°,△CG=GF =1,△DC =DE+EG+GC所以正方形的边长为【变式训练1】如图,,,,AC BC DC EC AC BC DC EC ⊥⊥==, 求证:(1)ACE BCD ∆≅∆;(2)AE BD ⊥.【答案】(1)见解析;(2)见解析【详解】证明:()1AC BC ⊥,DC EC ⊥,90ACB DCE ∴∠=∠=︒, ACB ACD DCE ACD ∴∠+∠=∠+∠,∴∠=∠DCB ECA ,在DCB ∆和ECA ∆中,AC BC DCB ECA CD CE =⎧⎪∠=∠⎨⎪=⎩,()DCB ECA SAS ∴∆≅∆;()2如图,设AC 交BD 于N ,AE 交BD 于O ,∆≅∆DCB ECA ,A B ∴∠=∠,∠=∠AND BNC ,90∠+∠=︒B BNC , 90∴∠+∠=︒A AND ,90∴∠=︒AON ,AE BD ∴⊥.【变式训练2】如图,AB AC =,AE AD =,CAB EAD α∠=∠=.(1)求证:AEC ADB ≅△△;(2)若90α=︒,试判断BD 与CE的数量及位置关系并证明;(3)若CAB EAD α∠=∠=,求CFA ∠的度数.【答案】(1)见详解;(2)BD=CE ,BD△CE ;(3)902α︒-【详解】(1)△△CAB=△EAD△△CAB+△BAE=△EAD+△BAE ,△ △CAE=△BAD ,△AB=AC ,AE=AD 在△AEC 和△ADB 中AB AC CAE BAD AE AD =⎧⎪⎨⎪⎩∠=∠=△ △AEC△△ADB (SAS ) (2)CE=BD 且CE△BD ,证明如下:将直线CE 与AB 的交点记为点O ,由(1)可知△AEC△△ADB ,△ CE=BD , △ACE=△ABD ,△△BOF=△AOC ,△α=90°,△ △BFO=△CAB=△α=90°,△ CE△BD .(3)过A 分别做AM△CE ,AN△BD 由(1)知△AEC△△ADB ,△两个三角形面积相等故AM·CE=AN·BD△AM=AN△AF 平分△DFC由(2)可知△BFC=△BAC=α△△DFC=180°-α△△CFA=12△DFC=902α︒- 【变式训练3】如图①,在△ABC 中,△A =90°,AB =AC1,BC =2D 、E 分别在边AB 、AC 上,且AD =AE =1,DE.现将△ADE 绕点A 顺时针方向旋转,旋转角为α(0°<α<180°).如图②,连接CE 、BD 、CD .(1)如图②,求证:CE =BD ;(2)利用备用图进行探究,在旋转的过程中CE 所在的直线能否垂直平分BD?如果能,请猜想α的度数,画出图形,并将你的猜想作为条件,给出证明;如果不能,请说明理由; (3)在旋转的过程中,当△BCD 的面积最大时,α= °.(直接写出答案即可)【答案】(1)证明见解析;(2)能,α=90°;(3)135α=︒.【详解】(1)证明:如图2中,根据题意:AB AC =,AD AE =,90CAB EAD ∠=∠=︒, 90CAE BAE BAD BAE ∠+∠=∠+∠=︒,CAE BAD ∴∠=∠,在ACE ∆和ABD ∆中,AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩,()ACE ABD SAS ∴∆≅∆,CE BD ∴=;(2)能,若CE 所在直线垂直平分BD ,则CD =BC ,△AB =AC+1,BC =2,AD =AE =1,DE△1122AC AD CD BC +=+=== △AC +AD =CD ,即A 、C 、D 在同一条直线上,此时α=90°,如下图,CE 的延长线与BD 交于F ,与(1)同理可得()ACE ABD SAS ∆≅∆,ACE ABD ∴∠=∠,90ACE AEC ∠+∠=︒,且AEC FEB ∠=∠,90ABD FEB ∴∠+∠=︒,90EFB ∴∠=︒,CF BD ∴⊥,BC CD =,CF ∴是线段BD 的垂直平分线;(3)解:BCD ∆中,边BC 的长是定值,则BC 边上的高取最大值时BCD ∆的面积有最大值, ∴当点D 在线段BC 的垂直平分线上时,BCD ∆的面积取得最大值,如图中:1AB AC ==,1AD AE ==,90CAB EAD ∠=∠=︒,DG BC ⊥于G ,12AG BC ∴==45GAB ∠=︒,1DG AG AD ∴=+==,18045135DAB ∠=︒-︒=︒, BCD ∴∆的面积的最大值为:1122BC DG ⋅==135α=︒. 模型五、手拉手全等模型例.如图,B ,,三点在一条直线上,和均为等边三角形,与交于点,与交于点.(1)求证:;(2)若把绕点任意旋转一个角度,(1)中的结论还成立C E ABC ∆DCE ∆BD AC M AE CDN AE BD =DCE ∆C吗?请说明理由.【答案】(1)见解析(2)成立,理由见解析.【详解】解:(1)证明:如图1中,与都是等边三角形,,,,,,,即.在和中,,(SAS)..即AE=BD ,(2)成立;理由如下:如图2中,、均为等边三角形, ,,,,即,在和中,,,.【变式训练1】如图,△OAB 和△OCD 中,OA =OB ,OC =OD ,△AOB =△COD =90°,AC 、BD 交于点M .(1) 如图1,求证:AC=BD ,判断AC 与BD 的位置关系并说明理由;(2) 如图2,△AOB =△COD =60°时,△AMD 的度数为___________.【答案】(1)答案见解析;(2)120.ABC ∆DCE∆AC BC ∴=CD CE =60ACB DCE ∠=∠=︒180ACB ACD DCE ∠+∠+∠=60ACD ∴∠=︒ACB ACD ACD DCE ∠+∠=∠+∠BCD ACE ∠=∠BCD ∆ACE ∆BC AC BCD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩BCD ACE ∴∆≅∆BD AE ∴=AE BD =ABC ∆DCE ∆BC AC ∴=CD CE =60BCA DCE ∠=∠=︒BCA ACD DCE ACD ∴∠+∠=∠+∠BCD ACE ∠=∠ACE ∆BCD ∆AC BC BCD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩()ACE BCD SAS ∴∆≅∆AE BD ∴=【详解】()190AOB COD ∠∠==,.AOB AOD COD AOD ∠+∠∠+∠= 即:.BOD AOC ∠∠=,,OA OB OC OD ==易证.BOD AOC ≌.OBD OAC ∴∠=∠ AC=BD△,AMD ABM BAM ∠=∠+∠.BAM BAO OAC ∠=∠+∠△.AMD ABM BAO OBD OBA BAO ∠=∠+∠+∠=∠+∠△90.AOB ∠= △90.OBA BAO ∠+∠=90.AMD ∴∠= △AC△BD(2)同理可得. .AMD OBA BAO ∠=∠+∠60.AOB ∠= 120.OBA BAO ∠+∠= 120.AMD ∴∠= 故答案为: 120.【变式训练2】如图,将两块含45°角的大小不同的直角三角板△COD 和△AOB 如图①摆放,连结AC ,BD .(1)如图①,猜想线段AC 与BD 存在怎样的数量关系和位置关系,请写出结论并证明;(2)将图①中的△COD 绕点O 顺时针旋转一定的角度(如图②),连结AC ,BD ,其他条件不变,线段AC 与BD 存在(1)中的关系吗?请写出结论并说明理由.(3)将图①中的△COD 绕点O 逆时针旋转一定的角度(如图③),连结AC ,BD ,其他条件不变,线段AC 与BD 存在怎样的关系?请直接写出结论.【答案】(1)AC=BD ,AC△BD ,证明见解析;(2)存在,AC=BD ,AC△BD ,证明见解析;(3)AC=BD ,AC△BD【详解】(1)AC=BD ,AC△BD , 证明:延长BD 交AC 于点E .△△COD 和△AOB 均为等腰直角三角形,△OC=OD ,OA=OB ,△COA=△BOD=90º,△△AOC△△BOD (SAS ),△AC=BD ,△△OAC=△OBD ,△△ADE=△BDO ,△△AED=△BOD=90º,△AC△BD ;(2)存在,证明:延长BD 交AC 于点F ,交AO 于点G .△△COD 和△AOB 均为等腰直角三角形,△OC=OD ,OA=OB ,△DOC=BOA=90º,△△AOC=△DOC -△DOA ,△BOD=△BOA -△DOA ,△△AOC=△BOD ,△△AOC△△BOD (SAS ),△AC=BD ,△OAC=△OBD ,△△AGF=△BGO ,△△AFG=△BOG=90º,△AC△BD ;(3)AC=BD ,AC△BD .证明:BD 交AC 于点H ,AO 于M ,△△COD 和△AOB 均为等腰直角三角形,△OC=OD ,OA=OB ,△DOC=BOA=90º,△△AOC=△DOC+△DOA ,△BOD=△BOA+△DOA ,△△AOC=△BOD ,△△AOC△△BOD (SAS ),△AC=BD ,△OAC=△OBD ,△△AMH=△BMO ,△△AHM=△BOH=90º,△AC△BD .【变式训练3】已知:如图1,在和中,,,.(1)证明.(2)如图2,连接和,,与分别交于点和,,求的度数.(3)在(2)的条件下,若,请直接写出的度数.【答案】(1)证明见解析;(2)△ACE =62°;(3)△CBA =6°.【详解】解:(1)△△CAE =△DAB ,△△CAE +△CAD =△DAB +△CAD ,即△CAB =△EAD ,在△ABC 和△ADE 中,△△ABC△△ADE (AAS ),ABC ∆ADE ∆C E ∠=∠CAE DAB ∠=∠BC DE =ABC ADE ∆∆≌CE BD DE AD BC M N 56DMB ∠=︒ACE ∠CN EM =CBA∠C E CAB EAD BC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩(2)△△ABC△△ADE ,△△CBA=△EDA ,AC=AE ,在△MND 和△ANB 中,△△EDA +△MND+△DMB =,△CBA +△ANB +△DAB =,又△ △MND=△ANB ,△ △DAB=△DMB=,△△CAE =△DAB=,△AC=AE ,△△ACE =△AEC=,△△ACE =, (3)△CBA=,如图所示,连接AM ,,CN=EM,CA=EA,(SAS), AM=AN,,=即,由(2)可得:,=, △CAE =△DAB==-= .课后训练1.如图,已知AB AD =,BC DE =,且10CAD ∠=︒,25B D ∠=∠=︒,120EAB ∠=︒,则EGF ∠的度数为( )A .120︒B .135︒C .115︒D .125︒【答案】C 【详解】在△ABC 和△ADE 中AB AD B D BC DE =⎧⎪∠=∠⎨⎪=⎩△ △ABC △△ADE (SAS )△△BAC =△DAE 180︒180︒56︒56︒1(18056)622︒︒︒-=62︒6︒NCA MEA ∠=∠∴NCA MEA ≅∴EAM CAN ∠=∠∴EAM CAM ∠-∠CAN CAM ∠-∠EAC MAN ∠=∠=56EAC MAN ︒∠=∠∴ANM ∠1(18056)622︒︒︒-=56︒∴CBA ANM DAB ∠=∠-∠62︒56︒6︒△△EAB =△BAC +△DAE +△CAD =120°△△BAC =△DAE ()112010552=⨯︒-︒=︒ △△BAF =△BAC +△CAD =65°△在△AFB 中,△AFB =180°-△B -△BAF =90°△△GFD =90°在△FGD 中,△EGF =△D +△GFD =115°故选:C2.如图,△ABC 中,E 在BC 上,D 在BA 上,过E 作EF△AB 于F ,△B =△1+△2,AB =CD ,BF =43,则AD 的长为________.【详解】在FA 上取一点T ,使得FT =BF ,连接ET ,在CB 上取一点K ,使得CK =ET ,连接DK . △EB =ET ,△△B =△ETB ,△△ETB =△1+△AET ,△B =△1+△2,△△AET =△2,△AE =CD ,ET =CK ,△△AET △△DCK (SAS ),△DK =AT ,△ATE =△DKC ,△△ETB =△DKB ,△△B =△DKB ,△DB =DK ,△BD =AT ,△AD =BT ,△BT =2BF =83,△AD =83,故答案为:83.3.如图,2A C ,BD 平分ABC ∠,10BC =,6AB =,则AD =_____.【答案】4【详解】解:(1)在BC 上截取BE =BA ,如图,△BD 平分△ABC ,△△ABD =△EBD ,在△ABD 和△BED 中,BE BA ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩,△△ABD △△EBD (SAS ),△DE =AD ,△BED =△A ,又△△A =2△C ,△△BED =△C +△EDC =2△C ,△△EDC =△C ,△ED =EC ,△EC =AD ,△BC =BE +EC =AB +AD ,△BC =10,AB =6,△AD =10﹣6=4;故答案为:4.4.如图,正方形ABCD ,将边CD 绕点D 顺逆时针旋转α(0°<α<90°),得到线段DE ,连接AE ,CE ,过点A 作AF △CE 交线段CE 的延长线于点F ,连接BF .(1)当AE =AB 时,求α的度数;(2)求证:△AEF =45°;(3)求证:AE △FB .【答案】(1)α=30°;(2)证明见解析;(3)证明见解析.【详解】解:(1) 在正方形ABCD 中,AB =AD =DC ,由旋转可知,DC =DE ,△AE =AB △AE =AD =DE△△AED 是等边三角形,△∠ADE =60°,△△ADC =90°,△α=△ADC -∠ADE =90°-60°=30°.(2)证明:在△CDE 中,DC =DE ,△△DCE =△DEC =180=9022αα--, 在△ADE 中,AD =ED ,△ADE =90°-α,△△DAE =△DEA =()18090=4522αα--+ △△AEC =△DEC +△DEA =90+45+22αα-=135°.△△AEF =45°,(3)证明:过点B 作BG //CF 与AF 的延长线交于点G ,过点B 作BH //GF 与CF 交于点H , 则四边形BGFH 是平行四边形,△AF △CE ,△平行四边形BGFH 是矩形,△△AFP =△ABC =90°,△APF =△BPC ,△△GAB =BCP ,在△ABG 和△CBH 中,GAB HCB BGA BHC AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ABG △△CBH (AAS ),△BG =BH ,△矩形BGFH 是正方形,△△HFB =45°,由(2)可知:△AEF =45°,△△HFB =△AEF =45°,△AE△F B .5.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BAC.(1)求证:∠ABD=∠ACD;(2)若∠ACB=65º,求∠BDC的度数.【答案】(1)见解析;(2)50º【解析】(1)证明:∵∠BAC=∠EAD,∴∠BAC-∠EAC=∠EAD-∠EAC,即∠BAE =∠CAD,在△ABE和△ACD中,∴△ABE≌△ACD,∴∠ABD=∠ACD;(2)∵∠BOC是△ABO和△DCO的外角,∴∠BOC=∠ABD+∠BAC,∠BOC=∠ACD +∠BDC,∴∠ABD+∠BAC=∠ACD+∠BDC,∵∠ABD=∠ACD,∴∠BAC=∠BDC,∵∠ACB=65º,AB=AC,∴∠ABC=∠ACB=65º ,∴∠BAC=180º-∠ABC-∠ACB=180º-65º-65º=50º ,∴∠BDC=∠BAC=50º.6.如图①,在△ABC中,△BAC=90°,AB=AC,点E在AC上(且不与点A、C重合),在△ABC 的外部作△CED,使△CED=90°,DE=CE,连接AD,分别以AB、AD为邻边作平行四边形ABFD,连接AF.(1)求证:EF=AE;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF、AE的数量关系,并证明你的结论.【答案】(1)见解析;(2)AF=,见解析.【详解】解:(1)如图,四边形ABFD是平行四边形,∴AB=DF,AB=AC,∴AC=DF,DE=EC∴AE=EF;(2)AF=,证明:连接EF,设DF交BC于K,四边形ABFD是平行四边形,∴AB//DF∴△DKE=△ABC=45°,∴△EKF=180°-△DKE=135°△ADE=180°-△EDC=180°-45°=135°,∴△EKF=△ADE,△DKC=△C,∴DK=DC ,DF=AB=AC,∴KF=AD在△EKF和△EDA中,EK DKEKF ADEKF AD=⎧⎪∠=∠⎨⎪=⎩,∴△EKF△△EDA(SAS)∴EF=EA, △KEF=△AED,∴△FEA=△BED=90°,∴△AEF是等腰直角三角形,AF=.7.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB =CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.【解答】(1)见解析;(2)见解析;(3)【解析】(1)证明,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵,∴△BCG≌△CAF(ASA),∴CF=BG;(2)∵PC∥AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)如图,过E作EM⊥AG,交AG于M,=AG•EM,∵S由(2)得△ACG≌△BCG,∴BG=AG=6,∴×6×EM,EM=,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM,∴M是AG的中点,∴AE=EG,∴BE=BG+EG=6+,在Rt△ECB中,∠EBC=30°,∴CE=BE=,∴AC=AE+EC.8.如图,在△ABC中,∠ABC=60°,点D,E分别为AB,BC上一点,BD=BE,连接DE,DC,AC=CD.(1)如图1,若AC=3,DE=2,求EC的长;(2)如图2,连接AE交DC于点F,点M为EC上一点,连接AM交DC于点N,若AE =AM,求证:2DE=MC;(3)在(2)的条件下,若∠ACB=45°,直接写出线段AD,MC,AC的等量关系.【解答】(1(2)见解析;(3【解析】(1)如图,过点C作CG⊥AB于G,∵AC=CD,∴AG=DG,设DG=a,∵BD=BE,∠ABC=60°,∴△BDE是等边三角形,∴BD=DE,∴BG=BD+DG+a,在Rt△BGC中,∠BCG=90°-∠ABC=30°,∴BC=2BG,CG=BG=6+a,在Rt△DGC中,CD=AC=3,根据勾股定理得,CG2+DG2=CD2,∴(6+a)2+a2=90,∴(舍),∴BC=EC+BE=EC+BD,∴EC+BD=2(BD+DG),∴EC=BD+2DG;(2)如图在MC上取一点P,使MP=DE,连接AP,∵△BDE是等边三角形,∴∠BED=60°,BE=DE,∴∠DEC=120°,BE=PM,∵AE=AM,∴∠AEM=∠AME,∴∠AEB=∠AMP,∴△ABE≌△APM(SAS),∴∠APM=∠ABC=60°,∴∠APC=120°=∠DEC,如图,过点M作AC的平行线交AP的延长线于Q,∴∠MPQ=∠APC=120°=∠DEC,∵AC=CD,∴∠ADC=∠DAC,∴∠CDE=180°-∠BDE-∠ADC=180°-60°-∠DAC=120°-∠DAC,在△ABC中,∠ACB=180°-∠ABC-∠DAC=120°-∠DAC=∠CDE,∵MQ∥AC,∴∠PMQ=∠ACB,∴∠PMQ=∠EDC,∴△MPQ≌△DEC(ASA),∴MQ=CD,∵AC=MQ,∴△APC≌△QPM(AAS),∴CP=MP,∴CM=MP+CP=2DE;(3)如图,在MC上取一点P,使PM=DE,由(2)知,MC=2CP=2DE,由(2)知,△ABE≌△APM,∴AB=AP,∵∠ABC=60°,∴△ABP是等边三角形,∴BP=AB,∵BE=BD,∴PE=AD,∴BC=BE+PE+CP=DE+PE+DE=2DE+AD=MC+AD,过点A作AH⊥BC于H,设BH=m,在Rt△ABH,在Rt△ACH中,∠ACB=45°,∴∠CAH=90°-∠ACB=45°=∠ACB,∴CH=AH,∵MC+AD=BC=BH+CH=,∴MC+AD=AC.。

决战中考之三角形专项突破专题10 利用公共角模型证明三角形全等(老师版)

决战中考之三角形专项突破专题10 利用公共角模型证明三角形全等(老师版)

专题10 利用公共角模型证明三角形全等知识对接考点一、三角形全等判定定理三角形全等是证明线段相等,角相等的最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.应用三角形全等的判别方法注意以下几点:1. 条件充足时直接应用判定定理要点补充:在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等.这种情况证明两个三角形全等的条件比较充分,只要认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.2. 条件不足,会增加条件用判定定理要点补充:此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,即从求证入手,逐步分析,探索结论成立的条件,从而得出答案.3. 条件比较隐蔽时,可通过添加辅助线用判定定理要点补充:在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.专项训练一、单选题1.(2021·广东九年级专题练习)“经过已知角一边上的一点作“个角等于已知角”的尺规作图过程如下:已知:如图(1),∠AOB和OA上一点C.求作:一个角等于∠AOB,使它的顶点为C,一边为CA.作法:如图(2),(1)在0A上取一点D(OD<OC),以点O为圆心,OD长为半径画弧,交OB于点E;(2)以点C为圆心,OD长为半径画弧,交CA于点F,以点F为圆心,DE长为半径画弧,两弧交于点C;(3)作射线CC.所以∠CCA就是所求作的角此作图的依据中不含有()A.三边分别相等的两个三角形全等B.全等三角形的对应角相等C.两直线平行同位角相等D.两点确定一条直线本号@资料皆来源于微信公众号#:数*学第六感【答案】C【分析】根据题意知,作图依据有全等三角形的判定定理SSS,全等三角形的性质和两点确定一条直线,直接判断即可.【详解】解:由题意可得:由全等三角形的判定定理SSS可以推知∠EOD∠∠GCF,故A正确;结合该全等三角形的性质对应角相等,故B正确;作射线CG,利用两点确定一条直线,故D正确;故选:C.【点睛】本题考查作一个角等于已知角和三角形全等的判定与性质,解题关键是明确作图原理,准确进行判断.2.(2021·湖南)如图,B、E、C、F在同一直线上,BE=CF,AB∠DE,请你添加一个合适的条件,使∠ABC∠∠DEF,其中不符合三角形全等的条件是()A.AC=DF B.AB=DE C.∠A=∠D D.∠ACB=∠F【答案】A【分析】根据全等三角形的判定方法逐项判断即可. 【详解】 解://AB DE ,B DEF ∴∠=∠,BE CF =,BE EC EC CF ∴+=+,即BC EF =,∴当AC DF =时,满足SSA ,无法判定ABC DEF ∆≅∆,故A 选项符合题意;当AB DE =时,满足SAS ,可以判定ABC DEF ∆≅∆,故B 选项不合题意; 当A D ∠=∠时,满足AAS ,可以判定ABC DEF ∆≅∆,故C 选项不合题意; 当ACB F ∠=∠时,满足ASA ,可以判定ABC DEF ∆≅∆,故D 选项不合题意; 故选:A . 【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .3.(2021·山东淄博·九年级)已知图中的两个三角形全等,则∠α等于( )A .50°B .60°C .70°D .80°【答案】C 【分析】利用全等三角形的性质及三角形内角和可求得答案. 【详解】 解:如图,∠两三角形全等, ∠∠2=60°,∠1=52°, ∠∠α=180°-50°-60°=70°, 故选:C . 【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.4.(2021·台湾九年级)已知ABC 与DEF 全等,A 、B 、C 的对应点分别为D 、E 、F ,且E 点在AE 上,B 、F 、C 、D 四点共线,如图所示.若=40A ∠︒,=35CED ∠︒,则下列叙述何者正确?( )A .=EF EC ,=AE FCB .=EF EC ,AE FC ≠ C .EF EC ≠,=AE FCD .EF EC ≠,AE FC ≠【答案】B 【分析】由ABC 与DEF 全等,A 、B 、C 的对应点分别为D 、E 、F ,可得==40A D ∠∠︒,AC=DF ,=ACB DFE ∠∠,可得=EF EC ;=35CED ∠︒,=40D ∠︒可得D CED ∠>∠,由大角对大边可得CE CD >;利用AC=DF ,可得AC CE DF CD -<-,即AE FC <,由上可得正确选项. 【详解】 解:ABC ∠DEF ,==40A D ∴∠∠︒,AC=DF ,=ACB DFE ∠∠, =ACB DFE ∠∠, =EF EC ∴.=35CED ∠︒,=40D ∠︒, D CED ∴∠>∠.CE CD ∴>.=AC DF ,AC CE DF CD ∴-<-,即AE FC <. AE FC ∴≠.=EF EC ∴,AE FC ≠.故选:B . 【点睛】本题主要考查了全等三角形的性质.利用全等三角形对应角相等,对应边相等是解题的关键.5.(2021·扬州市梅岭中学九年级)用直尺和圆规作一个角等于已知角,如图,能得出AOB AO B '''∠=∠的依据是( )A .SASB .SSSC .ASAD .AAS【答案】B 【分析】我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS ,答案可得. 【详解】 解:作图的步骤:∠以O 为圆心,任意长为半径画弧,分别交O A 、OB 于点D 、C ;∠任意作一点O ′,作射线O ′B ′,以O ′为圆心,OC 长为半径画弧,交O ′B ′于点C ′; ∠以C ′为圆心,CD 长为半径画弧,交前弧于点D ′; ∠过点D ′作射线O ′A ′.所以∠A ′O ′B ′就是与∠AOB 相等的角; 作图完毕.在∠OCD 与∠O ′C ′D ′,''''''OC O C OD O D CD C D =⎧⎪=⎨⎪=⎩, ∠∠OCD ∠∠O ′C ′D ′(SSS ),∠∠A ′O ′B ′=∠AOB ,显然运用的判定方法是SSS . 故选:B .【点睛】本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.6.(2021·河北邢台·九年级)嘉淇在用直尺和圆规作一个角等于已知角的步骤如下: 已知:AOB ∠求作:A O B '''∠,使A O B AOB '''∠=∠.作法:(1)如图,以点O 为圆心,m 为半径画弧,分别交OA ,OB 于点C ,D ; (2)画一条射线O A '',以点O '为圆心,n 为半径画弧,交O A ''于点C '; (3)以点C '为圆心,p 为半径画弧,与第(2)步中所画的弧相交于点D ; (4)过点D 画射线O B '',则A O B AOB '''∠=∠.下列说法正确的是( ) A .0m p => B .0n p => C .102p n =>D .0m n =>【答案】D 【分析】根据作一个角等于已知角的步骤作出A O B AOB '''∠=∠,再由SSS 定理得出OMN O M N '''≅△,根据全等三角形的性质即可得出结论. 【详解】由题中作法可得:OD OC O D O C ''''===,CD C D ''=,DOC D O C '''∴≅△,∴OD OC m ==,=O C O D n ''''=,CD C D p ''==, ∴m n =,∴线段都大于0,所以0m n =>,由题意OD 与CD 的关系无法得出, 故选:D . 【点睛】本题考查的是作图,掌握作一个角等于已知角的步骤及全等三角形的判定与性质是解答此题的关键. 7.(2021·浙江九年级期末)在学完八上《三角形》一章后,某班组织了一次数学活动课,老师让同学们自己谈谈对三角形相关知识的理解.小峰说:“存在这样的三角形,他的三条高的比为1:2:3”.小慧说:“存在这样的三角形,其一边上的中线不小于其他两边和的一半”. 对以上两位同学的说法,你认为( ) A .两人都不正确 B .小慧正确,小峰不正确 C .小峰正确,小慧不正确 D .两人都正确【答案】A 【分析】先分别假设这两个说法正确,先根据三角形高和中线的性质即可判断正误. 【详解】解:假设存在这样的三角形,他的三条高的比为1:2:3,根据等积法,得到此三角形三边比为6:3:2,这与三角形三边关系相矛盾,故假设错误,所以这样的三角形不存在; 本号资料皆#来源于微信公众号:*数学第六感假设存在这样的三角形,其一边上的中线不小于其他两边和的一半,延长中线成2倍,利用三角形全等,可得到三角形中线的2倍不小于(大于等于)其他两边之和,这与三角形三边关系矛盾,故假设错误,所以这样的三角形不存在; 故选A . 【点睛】本题考查了三角形的高及中线、等积法、三角形三边关系.等积法:两个三角形等底等高,则面积相等,由此可以推得:两个三角形高相等,底成倍数,面积也成同样的倍数关系;同理,两个三角形底相等、高成倍数关系、面积也成同样的倍数关系;三角形中任意两边之和大于第三边,任意两边之差小于第三边.熟练掌握以上知识点是解题的关键.8.(2021·河南省淮滨县第一中学九年级一模)如果一个三角形能被一条线段分割成两个等腰三角形,那么称这个三角形为特异三角形.若∠ABC是特异三角形,∠A=30°,∠B为钝角,则符合条件的∠B有()个.A.1B.2C.3D.4【答案】B【详解】如下图,当30°角为等腰三角形的底角时有两种情况:∠B=135°或90°,当30°角为等腰三角形的顶角时有一种情况:∠B=112.5°,所以符合条件的∠B有三个.又因为∠B为钝角,则符合答案的有两个,故本题应选B.点睛:因为不确定这个等腰三角形的底边,所以应当以点A为一个确定点进行分类讨论:∠当以B为顶点时,即以B为圆心,AB长为半径画弧交AC于点D,构成等腰∠BAD;∠当以点A为顶点时,即以点A为圆心,AB长为半径画弧,交AC于点D,构成等腰∠ABD;或作线段AB的垂直平分线交AC于点D构成等腰∠DAB.9.(2021·江苏盐城·中考真题)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在AOB∠=,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角的两边OA、OB上分别在取OC OD∠的平分线.这里构造全等三角形的依据是()尺顶点M的射线OM就是AOBA .SASB .ASAC .AASD .SSS【答案】D 【分析】根据全等三角形的判定条件判断即可. 【详解】解:由题意可知,OC OD MC MD == 在OCM ODM △和△中 OC OD OM OM MC MD =⎧⎪=⎨⎪=⎩∠OCM ODM ≅△△(SSS ) ∠COM DOM ∠=∠ ∠OM 就是AOB ∠的平分线 故选:D 【点睛】本题考查全等三角形的判定及性质、角平分线的判定、熟练掌握全等三角形的判定是关键.10.(2021·重庆中考真题)如图,在ABC 和DCB 中,ACB DBC ∠=∠ ,添加一个条件,不能..证明ABC 和DCB 全等的是( )A .ABC DCB ∠=∠ B .AB DC = C .AC DB =D .A D ∠=∠【答案】B 【分析】根据已知条件和添加条件,结合全等三角形的判断方法即可解答. 【详解】选项A ,添加ABC DCB ∠=∠, 在ABC 和DCB 中,ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠ABC ∠DCB (ASA ),选项B ,添加AB DC =, 在ABC 和DCB 中,AB DC =,BC CB =,ACB DBC ∠=∠,无法证明ABC ∠DCB ; 选项C ,添加AC DB =, 在ABC 和DCB 中,BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩, ∠ABC ∠DCB (SAS ); 选项D ,添加A D ∠=∠, 在ABC 和DCB 中,A D ACB DBC BC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∠ABC ∠DCB (AAS ); 综上,只有选项B 符合题意. 故选B . 【点睛】本题考查了全等三角形的判定方法,熟知全等三角形的判定方法是解决问题的关键. 二、填空题11.(2021·山东日照·中考真题)如图,在矩形ABCD 中,8cm AB =,12cm AD =,点P 从点B 出发,以2cm/s 的速度沿BC 边向点C 运动,到达点C 停止,同时,点Q 从点C 出发,以cm/s v 的速度沿CD 边向点D 运动,到达点D 停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当v 为_____时,ABP △与PCQ △全等.【答案】2或83【分析】可分两种情况:∠ABP PCQ ∆≅∆得到BP CQ =,AB PC =,∠ABP QCP ∆≅∆得到BA CQ =,PB PC =,然后分别计算出t 的值,进而得到v 的值. 【详解】解:∠当BP CQ =,AB PC =时,ABP PCQ ∆≅∆,8AB cm =,8PC cm ∴=,1284()BP cm ∴=-=,24t ,解得:2t =,4CQ BP cm ∴==, 24v ∴⨯=,解得:2v =;∠当BA CQ =,PB PC =时,ABP QCP ∆≅∆,PB PC =,6BP PC cm ∴==, 26t ∴=,解得:3t =,8CQ AB cm ==, 38v ∴⨯=,解得:83v =,综上所述,当2v =或83时,ABP ∆与PQC ∆全等,故答案为:2或83.【点睛】主要考查了全等三角形的性质,矩形的性质,解本题的关键是熟练掌握全等三角形的判定与性质. 12.(2021·广西九年级一模)如图,Rt ABC 和Rt DCE 全等,C ,D ,B 在同一直线上,连接AE ,与BC 交于点F ,130∠=︒,3CD =,则AF =____________.【详解】解:∠在Rt ∠ABC 中,∠1=30° ∠∠B =60°∠Rt ABC Rt DCE △≌△∠60B ECD ==∠∠,130CED ==∠∠,AE CE =,AB CD = ∠190ACE ECD =+=∠∠∠ ∠3CD =∠3AB =,6CE BC ==,AC =∠AE = ∠CFE AFB ∠=∠,B ECD ∠=∠ ∠ABF ECF ∽△△ ∠AF ABEF EC=∠()()12AB AE AF AB EF AF AF EC EC -===∠3AF =∠AF 【点睛】本题主要考查了全等三角形的性质,相似三角形的性质与判定,勾股定理等等,解题的关键在于能够熟练掌握相关知识进行求解计算.13.(2021·北京九年级模拟预测)如图,∠ABC 中,AB =AC =12厘米,BC =9厘米,点D 为AB 的中点,如果点P 在线段BC 上以v 厘米/秒的速度由B 点向C 点运动,同时点Q 在线段CA 上由C 点向A 点运动。

专题10 几何变换中的三角形全等模型--2024年中考数学核心几何模型重点突破(解析版)

专题10 几何变换中的三角形全等模型--2024年中考数学核心几何模型重点突破(解析版)

专题10几何变换中的三角形全等模型【模型1】全等三角形中的平移变换【说明】平移前后的三角形全等。

平移的基本性质:由平移的概念知,经过平移,图形上的每一个点都沿同一个方向移动相同的距离,平移不改变图形的形状和大小,因此平移具有下列性质:经过平移,对应点所连的线段平行且相等,对应角相等.【模型2】全等三角形中的折叠变换模型【说明】折叠问题实质上是利用了轴对称的性质。

轴对称变换的性质:①关于直线对称的两个图形是全等图形.②如果两个图形关于某直线对称,对称轴是对应点连线的垂直平分线.③两个图形关于某直线对称,如果它们对应线段或延长线相交,那么交点在对称轴上.④如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称.【模型3】全等三角形中的旋转变换模型旋转变换的性质:图形通过旋转,图形中每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等,旋转过程中,图形的形状、大小都没有发生变化.【例1】如图,DEF 是由ABC 经过平移得到的,AC 分别交DE 、EF 于点G 、H ,若120B ∠=︒,30C ∠=︒,则DGH ∠的度数为()A .150°B .140°C .120°D .30°【答案】A 【分析】根据平移可知:ABC DEF ≅ ,AC DF ∥,根据全等三角形对应角相等,得出120E B ∠=∠=︒,30F C ∠=∠=︒,即可得出∠D 的度数,再根据平行线的性质得出∠DGH 的度数即可.【解析】根据平移可知,ABC DEF ≅ ,AC DF ∥,∴120E B ∠=∠=︒,30F C ∠=∠=︒,∴180D E F∠=︒-∠-∠18012030=︒-︒-︒30=︒,∵AC DF ∥,∴180DGH D ∠+∠=︒,∴180********DGH D ∠=︒-∠=︒-︒=︒,故A 正确.故选:A .【例2】如图,纸片ABCD 的对边AD BC ∥,将纸片沿EF 折叠,CF 的对应边C F '交AD 于点G .若AG GF =,且144∠=︒,则2∠的大小是()A .44︒B .45︒C .46︒D .56︒【答案】C 【分析】利用等腰三角形和平行线的性质求得44AFG AFB ∠=∠=︒,再求得18092CFE C FE AFB AFG ∠+∠=︒-∠-∠=︒′,利用折叠的性质和平行线的性质即可求解.【解析】解:∵AG GF =,144∠=︒,∴144AFG ∠=∠=︒,∵AD BC ∥,144∠=︒,∴144AFB ∠=∠=︒,∴18092CFE C FE AFB AFG ∠+∠=︒-∠-∠=︒′,由折叠的性质可得CFE C FE '∠=∠,∴192=462CFE ∠=⨯︒︒,∵AD BC ∥,∴2==46CFE ∠∠︒,故选C【例3】如图,在等腰Rt ABC 和等腰Rt CDE 中,90ACB DCE ∠=∠=︒.(1)观察猜想:如图1,点E 在BC 上,线段AE 与BD 的关系是_________;(2)探究证明:把CDE △绕直角顶点C 旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把CDE △绕点C 在平面内转动一周,若10AC BC ==,5CE CD ==,AE 、BD 交于点P 时,连接CP ,直接写出BCP 最大面积_________.【答案】(1)AE BD =,AE BD ⊥;(2)结论仍成立,理由见解析;(3)252+.【分析】(1)先根据等腰三角形的定义可得AC BC =,CE CD =,再根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,然后根据直角三角形两锐角互余、等量代换即可得90AHD ∠=︒即可;(2)先根据三角形全等的判定定理与性质可得AE BD =,EAC DBC ∠=∠,再根据直角三角形两锐角互余可得90EAC AOC ∠+∠=︒,然后根据对顶角相等、等量代换可得90BOH DBC ∠∠+=︒,从而可得90OHB ∠=︒即可;(3)如图:由题意可知点P 在以AB 为直径的O 上运动,点D 在C 上运动,观察图形,可知当BP 与C 相切时,BCP 面积最大;此时,四边形CDPE 为正方形,5PD CD ==;然后在Rt BDC 运用勾股定理求出BD ,进而求出BP 的最大值,最后运用三角形的面积公式求解即可.【解析】(1)解:AE BD =,AE BD ⊥,理由如下:如图1,延长AE 交BD 于H ,由题意得:AC BC =,90ACE BCD ∠=∠=︒,CE CD =,∴()ACE BCD SAS ≅ ,∴AE BD =,EAC DBC ∠=∠,∵90DBC BDC ∠+∠=︒,∴90EAC BDC ∠+∠=︒,∴0)9018(EAC BD A D C H ∠+∠∠︒==-︒,即AE BD ⊥,故答案为:AE BD =,AE BD ⊥.(2)解:结论仍成立,仍有:AE BD =,AE BD ⊥;理由如下:如图2,延长AE 交BD 于H ,交BC 于O ,∵90ACB ECD ∠=∠=︒,∴ACB BCE ECD BCE ∠-∠=∠-∠,即ACE BCD ∠=∠,在ACE 和BCD △中,AC BC ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴()ACE BCD SAS ≅ ,∴AE BD =,EAC DBC ∠=∠,∵90ACB ∠=︒,∴90EAC AOC ∠+∠=︒,∵AOC BOH ∠=∠,∴90BOH DBC ∠∠+=︒,即90OBH BOH ∠+∠=︒,∴180()90OHB OBH BOH ∠=︒-∠+∠=︒,即AE BD ⊥.(3)解:如图:∵90APB ∠=︒,∴点P 在以AB 为直径的O 上运动.∵5CD CE ==,∴点D 在C 上运动,观察图形,可知当BP 与C 相切时,BCP 面积最大.此时,四边形CDPE 为正方形,5PD CD ==.在Rt BDC中,BD ==当BCP的面积最大时,5BP BD DP =+=+,12S BP CD =⋅=一、单选题1.如图,三角形ABC ,三角形EFG 均为边长为4的等边三角形,点D 是BC 、EF 的中点,直线AG 、FC 相交于点M ,三角形EFG 绕点D 旋转时,线段BM 长的最小值为()A .43B .23C .232-D .434【答案】C 【分析】首先证明90AMF ∠=︒,判定出点M 在以AC 为直径的圆上运动,当M 运动到BM AC ⊥时,BM 最短来解决问题.【解析】解:如图,连接AE 、EC 、CG ,AD ,DE CD DF,==∠=∠,DEC DCE∴∠=∠,DFC DCF,∠+∠+∠+∠=︒180DEC DCE DFC DCFECF∴∠=︒,90∆是等边三角形,D是BC、EF的中点, 、EFG∆ABC∴∠=∠=︒,90ADC GDE∴∠=∠,ADE GDC∴∆≅∆,()ADE GDC SAS∴=,DAE DGCAE CG∠=∠,DA DG,=∴∠=∠,DAG DGAGAE AGC∴∠=∠,∴∆≅∆,AGE GAC SAS()∴∠=∠,GAK AGK∴=,KA KG,=AC EG∴=,EK KCKEC KCE∴∠=∠,,∠=∠AKG EKC∴∠=∠,KAG KCE\∥,EC AG∴∠=∠=︒,90AMF ECF∴点M在以AC为直径的圆上运动,∴当BM AC⊥时,且B、M在AC的同侧时,BM最短,Q,AB=4∴=2OB==,AO OM∴的最小值为2-.BM故选:C .2.如图,在正方形ABCD 中,AB =4,点M 在CD 的边上,且DM =1,△AEM 与△ADM 关于AM 所在的直线对称,将△ADM 按顺时针方向绕点A 旋转90°得到△ABF ,连接EF ,则线段EF 的长为()A .3B .C .5D 【答案】C 【分析】连接BM .先判定FAE MAB ∆∆≌,即可得到EF BM =.再根据4BC CD AB ===,3CM =,利用勾股定理即可得到,Rt BCM ∆中,5BM =,进而得出EF 的长.【解析】解:如图,连接BM .AEM ∆ 与ADM ∆关于AM 所在的直线对称,AE AD ∴=,MAD MAE ∠=∠.ADM ∆ 按照顺时针方向绕点A 旋转90︒得到ABF ∆,AF AM ∴=,FAB MAD ∠=∠.FAB MAE ∴∠=∠,FAB BAE BAE MAE ∴∠+∠=∠+∠.FAE MAB ∴∠=∠.FAE MAB ∴∆∆≌(SAS ).EF BM ∴=.四边形ABCD 是正方形,4BC CD AB ∴===.1DM = ,3CM ∴=.∴在Rt BCM ∆中,5BM ,5EF ∴=,故选:C .3.如图,ABCD 是一张矩形纸片,AB =20,BC =4,将纸片沿MN 折叠,点B ',C '分别是B ,C 的对应点,MB′与DC 交于K ,若△MNK 的面积为10,则DN 的最大值是()A .7.5B .12.5C .15D .17【答案】D 【分析】作NE ⊥B M '于E ,NF ⊥BM 于F ,由折叠得∠1=∠2,根据角平分线的性质得NE =NF ,可得四边形BCNF 是矩形,则NF =BC =4,根据△MNK 的面积为10得NK =MK =5,根据勾股定理得KE =3,则MF =ME =MK ﹣KE =5﹣3=2,设DN =x ,则CN =20﹣x ,BM =BF +MF =20﹣x +2=22﹣x ,由折叠可得BM ≥KM ,即22﹣x ≥5.可得x ≤17,即可得DN ≤17,则DN 的最大值是17.【解析】解:如图所示,过点N 作NE ⊥B M '于E ,NF ⊥BM 于F ,由折叠得∠1=∠2,∴NE =NF ,∵四边形ABCD 是矩形,∴∠B =∠C =∠BFN =90°,AB CD ∥,∴四边形BCNF 是矩形,∠DNM =∠2,∴NE =NF =BC =4,∠1=∠DNM ,∴NK =MK ,∵△MNK 的面积为10,∴12KM •NE =12KN •NF =10,∴NK =MK =5,∴KE 22KN NE -3,在△MEN 和△MFN 中,12MEN MFN ME NF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△MEN ≌△MFN (AAS ),∴MF =ME =MK ﹣KE =5﹣3=2,设DN =x ,则CN =BF =20﹣x ,∴BM =BF +MF =20﹣x +2=22﹣x ,由折叠得BM ≥KM ,即22﹣x ≥5.∴x ≤17,即DN ≤17,∴DN 的最大值是17.故选:D .4.如图,现有一张矩形纸片ABCD ,AB =4,BC =8,点M ,N 分别在矩形的边AD ,BC 上,将矩形纸片沿直线MN 折叠,使点C 落在矩形的边AD 上,记为点P ,点D 落在G 处,连接PC ,交MN 于点Q ,连接CM .下列结论:①CQ =CD ;②四边形CMPN 是菱形;③P ,A 重合时,MN =PQM 的面积S 的取值范围是3≤S ≤5.其中正确的是()A .①②③④B .②③C .①②④D .①③④【答案】B 【分析】先判断出四边形CNPM 是平行四边形,再根据翻折的性质可得CN =NP ,然后根据邻边相等的平行四边形是菱形证明,判断出②正确;假设CQ =CD ,得Rt △CMQ ≌△CMD ,进而得∠DCM =∠QCM =∠BCP =30°,这个不一定成立,判断①错误;点P 与点A 重合时,设BN =x ,表示出AN =NC =8−x ,利用勾股定理列出方程求解得x 的值,进而用勾股定理求得MN ,判断出③正确;当MN 过D 点时,求得四边形CMPN 的最小面积,进而得S 的最小值,当P 与A 重合时,S 的值最大,求得最大值即可.【解析】解:如图1,∵四边形ABCD是矩形,∴PM∥CN,∴∠PMN=∠MNC,∵∠MNC=∠PNM(折叠的性质),∴∠PMN=∠PNM,∴PM=PN,∵NC=NP(折叠的性质),∴PM=CN,∴四边形CNPM是平行四边形,∵CN=NP,∴四边形CNPM是菱形,故②正确;∴CP⊥MN,∠BCP=∠MCP,∴∠MQC=∠D=90°,∵CM=CM,若CQ=CD,则Rt△CMQ≌Rt△CMD(HL),∴∠DCM=∠QCM=∠BCP=30°,这个不一定成立,故①错误;点P与点A重合时,如图2所示:设BN=x,则AN=NC=8−x,在Rt△ABN中,AB2+BN2=AN2,即42+x2=(8−x)2,解得x =3,∴CN =8−3=5,AC∴CQ =12AC =∴QN∴MN =2QN =当MN 过点D 时,如图3所示:此时,CN 最短,四边形CMPN 的面积最小(四边形CNPM 的边CN 上的高固定为AB 的长),此时四边形CNPM 是正方形,则S 最小=14S 菱形CMPN =14×4×4=4,当P 点与A 点重合时,CN 最长,四边形CMPN 的面积最大,则S 最大=14×5×4=5,∴4≤S ≤5,故④错误.故选:B .5.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,直角MDN ∠绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:①DEF 是等腰直角三角形;②AE CF =;③12ABC AEDF S S =△四边形;④BE CF EF +=,其中正确结论的个数是()A .1B .2C .3D .4【答案】C 【分析】根据等腰直角三角形的性质可得∠CAD =∠B =45°,根据同角的余角相等求出∠ADF =∠BDE ,然后利用“角边角”证明△BDE 和△ADF 全等,判断出③正确;根据全等三角形对应边相等可得DE =DF 、BE =AF ,从而得到△DEF 是等腰直角三角形,判断出①正确;再求出AE =CF ,判断出②正确;根据BE +CF =AF +AE ,利用三角形的任意两边之和大于第三边可得BE +CF >EF ,判断出④错误.【解析】∵∠BAC =90°,AB =AC ,∴△ABC 是等腰直角三角形,∠B =45°,∵点D 为BC 中点,∴AD =CD =BD ,AD ⊥BC ,∠CAD =45°,∴∠CAD =∠B ,∠BDE +∠ADE =∠ADB =90°∵∠MDN 是直角,∴∠ADF +∠ADE =90°,∴∠ADF =∠BDE ,在△BDE 和△ADF 中,CAD B AD BD ADF BDE ∠∠⎧⎪⎨⎪∠∠⎩===,∴△BDE ≌△ADF (ASA ),∴DE =DF ,BE =AF ,∴△DEF 是等腰直角三角形,故①正确;∵AE =AB -BE ,CF =AC -AF ,∴AE =CF ,故②正确;∵△BDE ≌△ADF∴BDE ADFS S = ∴12ADE ADF ADE BDE BDA ABC AEDF S S S S S S S =+=+==△△△△△△四边形故③正确;∵BE +CF =AF +AE >EF ,∴BE +CF >EF ,故④错误;综上所述,正确的是①②③,故选:C.6.如图,在ABC 中,AB BC =,将ABC 绕点B 顺时针旋转,得到11A BC V ,1A B 交AC 于点E ,11A C 分别交AC ,BC 于点D ,F ,则下列结论一定正确的是()A .CDF A∠=∠B .1AE CF =C .11A DE C ∠=∠D .DF FC=【答案】B 【分析】根据将△ABC 绕点B 顺时针旋转,得到△A 1BC 1,可证明△A 1BF ≌△CBE ,从而可得A 1E =CF ,即可得到答案.【解析】解:∵AB =BC ,∴∠A =∠C ,∵将△ABC 绕点B 顺时针旋转,得到△A 1BC 1,∴A 1B =AB =BC ,∠A 1=∠A =∠C ,在△A 1BF 和△CBE 中111A C AB CB A BF CBE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△A 1BF ≌△CBE (ASA ),∴BF =BE ,∴A 1B -BE =BC -BF ,即A 1E =CF ,故B 正确,其它选项的结论都不能证明,故选:B .7.如图,在矩形ABCD 中,点M 在AB 边上,把BCM 沿直线CM 折叠,使点B 落在AD 边上的点E 处,连接EC ,过点B 作BF EC ⊥,垂足为F ,若1,2CD CF ==,则线段AE 的长为()A2B1C .13D .12【答案】A 【分析】先证明△BFC ≌△CDE ,可得DE =CF =2,再用勾股定理求得CEAD =BCAE 的长.【解析】解:∵四边形ABCD 是矩形,∴BC =AD ,∠ABC =∠D =90°,AD ∥BC ,∴∠DEC =∠FCB ,∵BF EC ⊥,∴∠BFC =∠CDE ,∵把BCM 沿直线CM 折叠,使点B 落在AD 边上的点E 处,∴BC =EC ,在△BFC 与△CDE 中,DEC FCB BFC CDE BC EC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BFC ≌△CDE (AAS ),∴DE =CF =2,∴CE ===∴AD =BC =CE∴AE =AD -DE2,故选:A .8.如图,正方形ABCD 中,AB =12,点E 在边BC 上,BE =EC ,将△DCE 沿DE 对折至△DFE ,延长EF 交边AB 于点G ,连接DG 、BF ,给出以下结论:①△DAG ≌△DFG ;②BG =2AG ;③S △DGF =48;④S △BEF =725.其中所有正确结论的个数是()A .4B .3C .2D .1【答案】B 【分析】①根据正方形的性质和折叠的性质可得AD =DF ,∠A =∠GFD =90°,于是根据“HL ”判定Rt △ADG ≌Rt △FDG ;②再由GF +GB =GA +GB =12,EB =EF ,△BGE 为直角三角形,可通过勾股定理列方程求出AG =4,BG =8,即可判断;③根据①即可求出三角形DGF 的面积;④结合①可得AG =GF ,根据等高的两个三角形的面积的比等于底与底的比即可求出三角形BEF 的面积.【解析】解:①∵四边形ABCD 是正方形,∴AD =DC ,∠C =∠A =90°,由折叠可知,DF =DC =DA ,∠DFE =∠C =90°,∴∠DFG =180°-∠DFE =90°,∴∠DFG =∠A =90°,在Rt △ADG 和Rt △FDG 中,AD DF DG DG=⎧⎨=⎩,∴Rt △ADG ≌Rt △FDG (HL ),故①正确;②∵正方形边长是12,∴BE =EC =EF =6,设AG =FG =x ,则EG =x +6,BG =12﹣x ,由勾股定理得:EG 2=BE 2+BG 2,即:(x +6)2=62+(12﹣x )2,解得:x =4,∴AG =GF =4,BG =8,BG =2AG ,故②正确;③∵Rt △ADG ≌Rt △FDG ,∴S △DGF =S △ADG =12×AG •AD =12×4×12=24,故③错误;④∵S △GBE =12BE •BG =12×6×8=24,∵GF =AG =4,EF =BE =6,∴23BFG BEF S GF S EF ==△△,∴337224555BEF GBE S S ==⨯=△△,故④正确.综上可知正确的结论的是3个,故选:B .二、填空题9.如图,矩形纸片ABCD 中,AB =8cm ,把矩形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,若AD =6cm ,则∠EAD 的正弦值为_____.【答案】724【分析】首先根据勾股定理计算出AC 的长,再根据折叠的方法可得△ABC ≌△AEC ,△ADF ≌△CEF ,进而可得到可知AE =AB =8cm,CE =BC =AD =6cm,再设AF =x ,则EF =DF =(8-x )cm,在Rt △ADF 中利用勾股定理可得22268x x +-=(),求得AF 的长,再通过勾股定理求得DF 的长,最后可得结果.【解析】解:∵四边形ABCD 是矩形,AD =6cm,∴BC =AD =6cm,∵AB =8cm,∴10cm AC =,矩形纸片沿直线AC 折叠,则△ABC ≌△AEC ,∠E =∠B =90°,∵四边形ABCD 为矩形,∴AD =BC=CE ,∠D =∠B =90°,∴∠E =∠D =90°,又∵∠AFD =∠EFC ,∴△ADF ≌△CEF (AAS ),可知AE =AB =8cm,CE =BC =AD =6cm,设AF =x ,则EF =DF =(8-x )cm,在Rt △ADF 中,222AD DF AF +=,即:22268x x +-=(),解得x =254.∴AF =254,∴74DF ===,∴774tan 624DF EAD AD ∠===故答案为:724.10.如图,已知正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°,将 DAE 绕点D 逆时针旋转90°,得到 DCM .若AE =1,则FM 的长为__.【答案】2.5【分析】由旋转可得DE =DM ,∠EDM 为直角,可得出∠EDF +∠MDF =90°,由∠EDF =45°,得到∠MDF 为45°,可得出∠EDF =∠MDF ,再由DF =DF ,利用SAS 可得出三角形DEF 与三角形MDF 全等,由全等三角形的对应边相等可得出EF =MF ;则可得到AE =CM =1,正方形的边长为3,用AB -AE 求出EB 的长,再由BC +CM 求出BM 的长,设EF =MF =x ,可得出BF =BM -FM =BM -EF =4-x ,在直角三角形BEF 中,利用勾股定理列出关于x 的方程,求出方程的解得到x 的值,即为FM 的长.【解析】解:∵△DAE 逆时针旋转90°得到△DCM ,∴∠FCM =∠FCD +∠DCM =180°,∴F 、C 、M 三点共线,∴DE =DM ,∠EDM =90°,∴∠EDF +∠FDM =90°,∵∠EDF =45°,∴∠FDM =∠EDF =45°,在△DEF 和△DMF 中,DE DM EDF FDM DF DF =⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△DMF (SAS ),∴EF =MF ,设EF =MF =x ,∵AE =CM =1,且BC =3,∴BM =BC +CM =3+1=4,∴BF =BM -MF =BM -EF =4-x ,∵EB =AB -AE =3-1=2,在Rt △EBF 中,由勾股定理得222EB BF EF +=,2222(4)x x +-=,解得: 2.5x =.故答案为:2.5.11.如图,点E 在正方形ABCD 的CD 边上,连结BE ,将正方形折叠,使点B 与E 重合,折痕MN 交BC 边于点M ,交AD 边于点N ,若tan ∠EMC =34,ME +CE =8,则折痕MN 的长为___________.【答案】【分析】过N 作NH ⊥BC 于H ,得到四边形ABHN 是矩形,根据矩形的性质得到NH =AB ,∠NHM =90°,证明△BCE ≌△NHM ,根据全等三角形的性质得到HM =CE ,设CE =3x ,则CM =4x ,根据勾股定理得到EM =5x ,求出x ,可得NH =9,再利用勾股定理计算即可.【解析】解:过N 作NH ⊥BC 于H ,则四边形ABHN是矩形,∴NH =AB ,∠NHM =90°,∵四边形ABCD 是正方形,∴∠C =90°,AB =BC ,∴NH =BC ,∵将正方形折叠,使点B 与E 重合,∴MN ⊥BE ,BM =ME ,∴∠HNM +∠NMH =∠EBC +∠BMN =90°,∴∠EBC =∠HNM ,在△BCE 与△NHM 中,NHM C NH BC HNM CBE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BCE ≌△NHM (ASA ),∴HM=CE,在Rt△EMC中,∵tan∠EMC=34 CECM=,∴设CE=3x,则CM=4x,由勾股定理得:EM=5x,∵ME+CE=8,∴5x+3x=8,∴x=1,∴EM=5,HM=CE=3,CM=4,∴BC=BM+CM=EM+CM=9,∴NH=9,∴MN=故答案为:12.如图,△ABC,△DEP是两个全等的等腰直角三角形,∠BAC=∠PDE=90°.使△DEP 的顶点P与△ABC的顶点A重合,PD,PE分别与BC相交于点F、G,若BF=6,CG=4,则FG=_____.【答案】【分析】将△ABF绕A点逆时针旋转,使AB与AC重合,即可构建出直角三角形CGH,由勾股定理可求出GH的长度,再证明△FAG≌△GAH即可.【解析】解:将△ABF绕A点逆时针旋转,使AB与AC重合,∵△ACH由△ABF旋转得到,∴∠BAF=∠CAH,CH=BF=6,AF=AH,∠B=∠ACH∵△ABC,△DEP是两个全等的等腰直角三角形∴∠B=45°,∠ACB=45°∴∠HCG=90°在Rt△HCG中,由勾股定理得:GH=∵∠FAG=45°∴∠BAF+∠GAC=45°∴∠CAH+∠GAC=45°,即∠GAH=45°在△FAG和△GAH中,AF=AH,∠FAG=∠GAH,AG=AG∴△FAG≌△GAH∴FG=GH=故答案为:13.如图,四边形ABCD为正方形,点E是BC的中点,将正方形ABCD沿AE折叠,得到AB=,则DP的长度为___________.点B的对应点为点F,延长EF交线段DC于点P,若6【答案】2【分析】连接AP,根据正方形的性质和翻折的性质证明Rt△AFP≌Rt△ADP(HL),可得PF=PD,设PF=PD=x,则CP=CD−PD=6−x,EP=EF+FP=3+x,然后根据勾股定理即可解决问题.【解析】解:连接AP,如图所示,∵四边形ABCD为正方形,∴AB=BC=AD=6,∠B=∠C=∠D=90°,∵点E 是BC 的中点,∴BE =CE =12AB =3,由翻折可知:AF =AB ,EF =BE =3,∠AFE =∠B =90°,∴AD =AF ,∠AFP =∠D =90°,在Rt △AFP 和Rt △ADP 中,AP AP AF AD =⎧⎨=⎩,∴Rt △AFP ≌Rt △ADP (HL ),∴PF =PD ,设PF =PD =x ,则CP =CD −PD =6−x ,EP =EF +FP =3+x ,在Rt △PEC 中,根据勾股定理得:EP 2=EC 2+CP 2,∴(3+x )2=32+(6−x )2,解得x =2,则DP 的长度为2,故答案为:2.14.如图,在边长为6的正方形ABCD 内作45EAF ∠=︒,AE 交BC 于点E ,AF 交CD 于点F ,连接EF ,将ADF 绕点A 顺时针旋转90°得到ABG ,若3DF =,则BE 的长为__________.【答案】2【分析】根据旋转的性质可知,△ADF ≌△ABG ,然后即可得到DF =BG ,∠DAF =∠BAG ,然后根据已知条件证明△EAG ≌△EAF ,设BE x =,在Rt CEF 中,由勾股定理可以求出BE 的长.【解析】解:由旋转可知,△ADF ≌△ABG ,∴3DF BG ==,∠DAF =∠BAG ,∵∠DAB =90°,∠EAF =45°,∴∠DAF +∠EAB =45°,∴∠BAG +∠EAB =45°,∴∠EAF =∠EAG ,在△EAG 和△EAF 中,AG AF EAG EAF AE AE =⎧⎪∠=∠⎨⎪=⎩,∴GE =FE ,设BE x =,则3GE GB BE x =+=+,6CE x =-,∴3EF GE x ==+,∵CD =6,DF =3,∴633CF CD DF =-=-=,∵∠C =90°,∴在Rt CEF 中,222CE CF EF +=,即222(6)3(3)x x -+=+,解得,2x =,即BE =2.故答案为:2.三、解答题15.如图,在ΔABC 中,∠ACB =90°,AC =BC ,D 是AB 边上一点(点D 与A ,B 不重合),连接CD ,将线CD 绕点C 按逆时针方向旋转90°得到线段CE ,连接DE 交BC 于点F ,连接BE.(1)求证:ΔACD ≌ΔBCE ;(2)当AD =BF 时,求∠BEF 的度数.【答案】(1)证明见解析;(2)67.5BEF ∠= 【分析】(1)利用边角边证明三角形全等即可;(2)先推理得到△BEF 是等腰三角形,再由全等得到∠CBE =45 ,即可得到∠BEF 的度数.【解析】(1)证明:∵90ACB ∠=90ACD DCB ∴∠+∠=又∵CD 绕点C 按逆时针方向旋转90°得到线段CE∴90DCE ∠= ,CD =CE∴90BCE DCB ∠+∠=∴ACD BCE∠=∠在ACD △和BCE 中:AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩(2)解:由第一问知,ACD BCE≅△△∴AD =BE ,∠CAD =∠CBE又∵AD =BF∴BE =BF在ACB △中,AC =BC ,90ACB ∠=∴45CAD CBA ∠=∠=在BEF 中,BE =BF ,∠CBE =45 ∴1(18045)67.52BEF BFE ∠=∠=-= 16.如图,ABC 中,AB AC =,42BAC ∠=︒,D 为ABC 内一点,连接AD ,将AD 绕点A 逆时针旋转42︒,得到AE ,连接DE ,BD ,CE .(1)求证:BD CE =;(2)若DE AC ⊥,求BAD ∠的度数.【答案】(1)证明见解析;(2)21︒【分析】(1)根据旋转的性质得到AD AE =,42DAE ∠=︒,可得CAE BAD ∠=∠,然后证明ABD ACE △≌△,最后利用全等三角形的性质即可证明结论;(2)根据等腰三角形的性质得到1212CAE DAE ∠=∠=︒,根据全等三角形的性质可得到结论.【解析】(1)证明:∵将AD 绕点A 逆时针旋转42︒,得到AE ,∴AD AE =,42DAE ∠=︒,∵42BAC ∠=︒,∴BAC DAE ∠=∠,∴BAD CAE ∠=∠,在ABD △与ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABD ACE SAS ≌,∴BD CE =.(2)解:由(1)知:AD AE =,42DAE ∠=︒,∵DE AC ⊥,∴1212CAE DAE ∠=∠=︒,∵BAD CAE ∠=∠,∴21BAD ∠=︒.17.如图(1),已知△ABC 的面积为3,且AB =AC ,现将△ABC 沿CA 方向平移CA 长度得到△EF A.(1)求△ABC 所扫过的图形面积;(2)试判断,AF 与BE 的位置关系,并说明理由;(3)若∠BEC =15°,求AC 的长.【答案】(1)9;(2)BE ⊥AF ,理由见解析;(3)【分析】(1)根据平移的性质及平行四边形的性质可得到S △EFA =S △BAF =S △ABC ,从而便可得到四边形CEFB 的面积;(2)由已知可证得平行四边形EFBA 为菱形,根据菱形的对角线互相垂直平分可得到AF 与BE 的位置关系为垂直;(3)作BD ⊥AC 于D ,结合三角形的面积求解.【解析】解:(1)由平移的性质得AF ∥BC ,且AF =BC ,△EFA ≌△ABC∴四边形AFBC 为平行四边形S △EFA =S △BAF =S △ABC =3∴四边形EFBC 的面积为9;(2)BE⊥AF证明:由(1)知四边形AFBC为平行四边形∴BF∥AC,且BF=AC又∵AE=CA∴BF∥AE且BF=AE∴四边形EFBA为平行四边形又已知AB=AC ∴AB=AE∴平行四边形EFBA为菱形∴BE⊥AF;(3)如上图,作BD⊥AC于D∵∠BEC=15°,AE=AB∴∠EBA=∠BEC=15°∴∠BAC=2∠BEC=30°∴在Rt△BAD中,AB=2BD设BD=x,则AC=AB=2x∵S△ABC =3,且S△ABC=12AC•BD=12•2x•x=x2∴x2=3∵x为正数∴x3∴AC318.已知:点D是等腰直角三角形ABC斜边BC所在直线上一点(不与点B重合),连接AD.(1)如图1,当点D在线段BC上时,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE.直接写出BD和CE数量关系和位置关系.(2)如图2,当点D在线段BC延长线上时,将线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE,画出图形.(1)的结论还成立吗?若成立,请证明;若不成立,说明理由.【答案】(1)BD和CE的数量关系是相等,位置关系是互相垂直,理由见详解;(2)成立,理由见详解.【分析】(1)由题意易得AB=AC,∠BAC=∠DAE=90°,AD=AE,则有∠BAD=∠CAE,然后可证△ABD≌△ACE,进而问题可求解;(2)如图,然后根据(1)中的证明过程可进行求解.【解析】(1)解:BD⊥CE且BD=CE,理由如下:∵△ABC是等腰直角三角形,∴AB=AC,∠BAC=90°,∠ABC=∠ACB=45°,由旋转的性质可得:∠DAE=90°,AD=AE,∴∠BAD+∠DAC=∠CAE+∠DAC=90°,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE=45°,BD=CE,∴∠ACE+∠ACB=90°,即∠BCE=90°,∴BD⊥CE;(2)解:(1)中结论仍成立,理由如下:由题意可得如图所示:∵△ABC 是等腰直角三角形,∴AB =AC ,∠BAC =90°,∠ABC =∠ACB =45°,由旋转的性质可得:∠DAE =90°,AD =AE ,∴∠BAC +∠DAC =∠EAD +∠DAC ,∴∠BAD =∠CAE ,∴△ABD ≌△ACE (SAS ),∴∠ABD =∠ACE =45°,BD =CE ,∴∠ACE +∠ACB =90°,即∠BCE =90°,∴BD ⊥CE .19.如图,在ABC 中,45B ︒∠=,60C ︒∠=,点E 为线段AB 的中点,点F 在边AC 上,连结EF ,沿EF 将AEF 折叠得到PEF .(1)如图1,当点P 落在BC 上时,求AEP ∠的度数.(2)如图2,当PF AC ⊥时,求BEP ∠的度数.【答案】(1)90°;(2)60°【分析】(1)证明BE=EP ,可得∠EPB=∠B=45°解决问题.(2)根据折叠的性质求出∠AFE=45°,根据三角形内角和求出∠BAC ,从而得到∠AEF 和∠PEF ,再根据平角的定义求出∠BEP .【解析】解:(1)如图1中,∵折叠,∴△AEF ≌△PEF ,∴AE=EP ,∵点E 是AB 中点,即AE=EB ,∴BE=EP ,∴∠EPB=∠B=45°,∴∠PEB=90°,∴∠AEP=180°-90°=90°.(2)∵PF ⊥AC ,∴∠PFA=90°,∵沿EF 将△AEF 折叠得到△PEF .∴△AEF ≌△PEF ,∴∠AFE=∠PFE=45°,∵∠B=45°,∠C=60°,∴∠BAC=180°-45°-60°=75°,∴∠AEF=∠PEF=180°-75°-45°=60°,∴∠BEP=180°-60°-60°=60°.20.如图1,AB AC =,EF EG =,ABC ≌EFG ,AD BC ⊥于点D ,EH FG ⊥于点H .(1)直接写出AD 、EH 的数量关系:______;(2)将EFG 沿EH 剪开,让点E 和点C 重合.①按图2放置EHG ,将线段CD 沿EH 平移至HN ,连接AN 、GN ,求证:AN GN ⊥;②按图3放置EHG ,B 、()C E 、H 三点共线,连接AG 交EH 于点M ,若1BD =,3AD =,求CM 的长度.【答案】(1)AD EH =;(2)①见解析;②2【分析】(1)利用全等三角形的性质即可解决问题;(2)①设∠CDN =a ,证明∠AND =∠HNG =45°-2a ,即可解决问题;②易证明AD =DM ,可得CM =DM -DC =3-1=2.【解析】(1)∵△ABC ≌△EFG ,AD ⊥BC 于点D ,EH ⊥FG 于点H ,∴AD =EH ;(2)①如图2中,由题意可知:△ABD ≌△ACD ≌△EFH ≌△EGH ,CD =HG ,AD =CH ,∠ADC =∠CHG =90°,∵DC 沿CH 平移至HN ,∴DN =CH ,DN //CH ,DC=NH ,∴AD=DN ,NH=GH ,∴∠DAN =∠DNA ,∠HNG =∠HGN ,设∠CDN =α,∵DC //NH ,DN //CH ,∴∠CDN +∠DNH =∠DNH +∠CHN =180°,∴∠DNH =180°−α,∠CDN =∠CHN =α,∴∠NHG =90°+α,∴∠AND =∠HNG =45°−2a ,∴∠ANG =∠DNH −∠AND −∠HNG =90°,∴AN ⊥GN .②解:如图3中,∵AC =GC ,∴∠CAG =∠CGA ,又∵∠CAD =∠GCH ,∴∠CAG +∠CAD =∠CGA +∠GCH ,即∠DAM =∠DMA ,又∵∠ADM =90°,∴∠DAM =∠DMA =45°,∴AD=DM =3,∵DC=BD =1,∴CM =DM −DC =3−1=2.21.如图1,已知在Rt △ABC 中,∠ACB =90°,∠A =30°,将Rt △ABC 绕C 点顺时针旋转α(0°<α<90°)得到Rt △DCE(1)当α=15°,则∠ACE =°;(2)如图2,过点C 作CM ⊥BF 于M ,作CN ⊥EF 于N ,求证:CF 平分∠BFE .(3)求Rt △ABC 绕C 点顺时针旋转,当旋转角α(0°<α<90°)为多少度时,△CFG 为等腰三角形.【答案】(1)15;(2)见解析;(3)40゜或20゜【分析】(1)由旋转性质知:∠ACE DCB α=∠=,求出∠ACE 即可;(2)由等面积法证明出CM =CN ,再结合角平分线的判定,即可证CF 平分∠BFE ;(3)根据旋转性质得BFD BCD α∠=∠=,由CF 平分∠BFE 得1190,22CFG CFB BFE α︒∠=∠=∠=-由∠A 为30°得1602ACF α∠=︒-,由AFG BFD α∠=∠=得∠CGF =30°+α,再分CF =CG 或CF =FG 或CG =FG 三种情况讨论,求出α即可.【解析】解:(1)由旋转性质,得:15ACE DCB α∠=∠==︒,故答案为:15;(2)证明:由旋转性质,得:≌ACB ECD △△;∴ABC EDC AB DE S S == ,,∵CM BF CN EF ⊥⊥,,∴1122AB CM DE CN ⋅⋅=,∴CM CN =,∴CF 平分∠BFE ;(3)∵9030ACB A ∠=︒∠=︒,,∴9060B A ∠=︒-∠=︒,由旋转性质,得:60B D BCD α∠=∠=︒∠=,,∵B BCD D BFD ∠+∠=∠+∠,∴BFD BCD α∠=∠=,∴AFG BFD α∠=∠=,∴30180180CGF BFE BFD αα∠=︒+∠=︒-∠=︒-,,由(2)知CF 平分∠BFE ,∴119022CFG CFB BFE α∠=∠=∠=︒-,∴1602ACF CFB A α∠=∠-∠=︒-,①当CF =CG 时,∠CFG =∠CGF ,∴190302αα︒-=︒+,解得:α=40°,②当CF =FG 时,∠FCG =∠CGF ,∴160302αα︒-=︒+,解得:α=20°,③当CG =FG 时,∠FCG =∠CFG ,∴11906022αα︒-=︒-,此方程无解,综上所述,α=20°或40°时,△CFG 为等腰三角形.22.如图1,在Rt △ABC 中,∠A =90°,AB =AC 1,点D ,E 分别在边AB ,AC 上,且1AD AE ==,连接DE .现将△ADE 绕点A 顺时针方向旋转,旋转角为α,如图2,连接CE ,BD ,CD .(1)当0180α︒<<︒时,求证:CE BD =;(2)如图3,当90α=︒时,延长CE 交BD 于点F ,求证:CF 垂直平分BD .【答案】(1)证明见解析;(2)证明见解析【分析】(1)利用“SAS ”证得ACE ABD ≌即可得到结论;(2)利用“SAS ”证得ACE ABD ≌,由性质推出ACE ABD ∠=∠,计算得出22CD BC =,再利用等腰三角形“三线合一”的性质即可得到结论;【解析】(1)证明:根据题意:AB =AC ,AD =AE ,∠CAB =∠EAD =90︒,∵∠CAE +∠BAE =∠BAD +∠BAE =90︒,∴∠CAE =∠BAD ,在△ACE 和△ABD 中,AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≅△ABD (SAS),∴CE =BD ;(2)根据题意:AB =AC ,AD =AE ,∠CAB =∠EAD =90︒,在△ACE 和△ABD 中,AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△ABD (SAS),∴∠ACE =∠ABD ,∵∠ACE +∠AEC =90︒,且∠AEC =∠FEB ,∴∠ABD +∠FEB =90︒,∴∠EFB =90︒,∴CF ⊥BD ,∵AB =AC 21,AD =AE =1,∠CAB =∠EAD =90︒,∴BC2+,CD =AC +AD2+,∴BC =CD ,∵CF ⊥BD ,∴CF 是线段BD 的垂直平分线.23.【问题提出】如图①,在ABC 中,若8,4AB AC ==,求BC 边上的中线AD 的取值范围.【问题解决】解决此问题可以用如下方法:延长AD 到点E ,使DE AD =,再连结BE (或将ACD △绕着点D 逆时针旋转180︒得到EBD △),把AB 、AC 、2AD 集中在ABE △中,利用三角形三边的关系即可判断.由此得出中线AD 的取值范围是____________.【应用】如图②,在ABC 中,D 为边BC 的中点、已知5,3,2AB AC AD ===.求BC 的长.【拓展】如图③,在ABC 中,90A ∠=︒,点D 是边BC 的中点,点E 在边AB 上,过点D 作DE DE ⊥交边AC 于点F ,连结EF .已知10,12BE CF ==,则EF 的长为____________.【答案】[问题解决]26AD <<;[应用][拓展]【分析】[问题解决]证明DAC DEB ∆≅∆得AC EB =,再根据三角形三边关系求得AE 的取值范围,进而得结论;[应用]延长AD 到E ,使得AD DE =,连接BE ,证明DAC DEB ∆≅∆得AC EB =,再证明90AEB =︒∠,由勾股定理求得BD ,进而得BC ;[拓展]延长FD 到G ,使得DG FD =,连接BG ,EG ,证明CDF BDG ∆≅∆,得BG CF =,DCF DBG ∠=∠,再证明90EBG ∠=︒,由勾股定理求得EG ,由线段垂直平分线性质得EF .【解析】解:[问题解决]在DAC ∆和DEB ∆中,AD ED ADC EDB CD BD =⎧⎪∠=∠⎨⎪=⎩,()DAC DEB SAS ∴∆≅∆,4AC EB ∴==,AB BE AE AB BE -<<+ ,8AB =,412AE ∴<<,26AD ∴<<,故答案为:26AD <<;[应用]延长AD 到E ,使得AD DE =,连接BE,如图②,在DAC ∆和DEB ∆中,AD ED ADC EDB CD BD =⎧⎪∠=∠⎨⎪=⎩,()DAC DEB SAS ∴∆≅∆,6AC EB ∴==,28AE AD == ,10AB =,2226810+= ,222BE AE AB ∴+=,90AEB ∴∠=︒,BD ∴===2BC BD ∴==[拓展]延长FD 到G ,使得DG FD =,连接BG ,EG,如图③,在BDG ∆和CDF ∆中,BD CD BDG CDF DG DF =⎧⎪∠=∠⎨⎪=⎩,()BDG CDF SAS ∴∆≅∆,6BG CF ∴==,DG DF =,DBG DCF ∠=∠,DE DF ⊥ ,EG EF ∴=,90A ∠=︒ ,90ABC ACB ∴∠+∠=︒,90ABC DBG ∴∠+∠=︒,EG ∴==EF ∴=故答案为:24.已知,四边形ABCD 是正方形,DEF 绕点D 旋转(DE AB <),90EDF ∠=︒,DE DF =,连接AE ,CF .(1)如图1,求证:ADE ≌CDF ;(2)直线AE 与CF 相交于点G .①如图2,BM AG ⊥于点M ,⊥BN CF 于点N ,求证:四边形BMGN 是正方形;②如图3,连接BG ,若4AB =,2DE =,直接写出在DEF 旋转的过程中,线段BG 长度的最小值.【答案】(1)见解析;(2)①见解析②【分析】()1根据SAS 证明三角形全等即可;()2①根据邻边相等的矩形是正方形证明即可;②作DH AG ⊥交AG 于点H ,作BM AG ⊥于点M ,证明BMG △是等腰直角三角形,求出BM 的最小值,可得结论.【解析】(1)证明: 四边形ABCD 是正方形,AD DC ∴=,90ADC ∠=︒.DE DF = ,90EDF ∠=︒.ADC EDF ∴∠=∠,ADE CDF \Ð=Ð,在ADE 和CDF 中,DA DC ADE CDF DE DF =⎧⎪∠=∠⎨⎪=⎩ADE ∴V ≌()SAS CDF △;(2)①证明:如图2中,设AG 与CD 相交于点P.90ADP ∠=︒ ,90DAP DPA ∴∠+∠=︒.ADE ≌CDF ,DAE DCF ∴∠=∠.DPA GPC ∠∠= ,90DAE DPA GPC GCP ∠∠∠∠∴+=+=︒.90PGN ∠∴=︒,BM AG ⊥ ,BN GN ⊥,∴四边形BMGN 是矩形,90MBN ∴∠=︒.四边形ABCD 是正方形,AB BC ∴=,90ABC MBN ∠∠==︒.ABM CBN ∴∠=∠.又90AMB BNC ∠∠==︒ ,AMB ∴ ≌CNB △.MB NB ∴=.∴矩形BMGN 是正方形;②解:作DH AG ⊥交AG 于点H ,作BM AG ⊥于点M ,∵90,90,DHA AMB ADH DAH BAM AD AB∠=∠=︒∠=︒-∠=∠=∴AMB ≌DHA .BM AH ∴=.222AH AD DH =- ,4=AD ,DH ∴最大时,AH 最小,2DH DE ==最大值.23BM AH ∴==最小值最小值由()2①可知,BGM 是等腰直角三角形,226BG BM ∴==最小值25.折纸是一项有趣的活动,同学们小时候都玩过折纸,如折小花、飞机、小船等,在折纸过程中,我们通过研究图形的性质发展空间观念,在思考问题的过程中建立几何直观.【操作发现】(1)如图1将一个正方形先沿EF 折叠得到图2,再将图2进行第二次折叠,使点E 和点F 重合,折痕与正方形的边交于点M 、N ,如图3,打开这张正方形的纸得到两条折痕EF 和MN ,如图4这两条折痕的位置关系为,EF MN =.【探究证明】(2)如图5,将AB =1,AD =3的长方形按(1)的方式进行折叠,同样得到两条折痕EF 和MN ,(1)中的结论是否还成立,如果成立请证明,如果不成立请说明理由.【拓展延伸】(3)Rt △ABC 中,BC =1,AC =3,将△ABC 沿着斜边AB 翻折后得的三角形与原来三角形组合成一个四边形ACBD ,将四边形ACBD 分别沿着顶点A 和顶点D 折叠得到两条互相垂直的折痕,交四边形的另两条边于点M 和点N ,AN DM =.【答案】(1)垂直,1;(2)位置关系成立,EF MN=1不成立,理由见解析(3)53【分析】(1)过点没M 作MG ⊥BC 于G ,过点E 作EH ⊥CD 于H ,利用ASA 证明△EHF ≌△MGN ,得MN =EF ,即可得出答案;(2)过点M 作MG ⊥BC 于G ,过点E 作EH ⊥CD 于H ,根据两个角相等证明△EHF ∽△MGN ,得3EF EH AD M N M G AB===;(3)连接CD ,交AB 于G ,则AB 垂直平分CD ,证明△DCM ∽△ABN ,得AN AB DM CD =,利用勾股定理求出AB ,利用等积法求出CG ,从而得出CD ,即可解决问题.【解析】解:(1)如图,过点M 作MG ⊥BC 于G ,过点E 作EH ⊥CD 于H ,则MG =EH=AB=BC ,∠EHF =∠MGN ,MG ⊥EH ,由折叠知,∠MOE =90°,∴∠GMN =∠HEF ,∴△EHF ≌△MGN (ASA ),∴MN =EF ,∴EF MN=1,故答案为:垂直,1;(2)位置关系成立,EF MN =1不成立,过点M 作MG ⊥BC 于G ,过点E 作EH ⊥CD 于H ,则∠EHF =∠MGN =90°,MG ⊥EH ,由折叠知,∠MOE =90°,∴∠GMN =∠HEF ,∴△EHF ∽△MGN ,∴3EF EH AD M N M G AB===;(3)连接CD ,交AB 于G ,∵AC =AD ,BC =BD ,∴AB 垂直平分CD ,∵AN ⊥DM ,∴∠BAN =∠CDM ,∵∠ACB =∠CGB =90°,∴∠MCD =∠ABN ,∴△DCM ∽△ABN ,∴AN AB DM CD=,∵Rt △ABC 中,BC =1,AC =3,∴AB ,∴CG=⋅=AC BC AB10,∴CD =2CG=10,∴=AB CD 53,∴53AN DM =,故答案为:53.26.如图1所示,将一个长为6宽为4的长方形ABEF ,裁成一个边长为4的正方形ABCD 和一个长为4、宽为2的长方形CEFD 如图2.现将小长方形CEFD 绕点C 顺时针旋转至CE F D ''',旋转角为a.(1)当点D ¢恰好落在EF 边上时,求旋转角a 的值;(2)如图3,G 为BC 中点,且0°<a <90°,求证:GD E D ''=;(3)小军是一个爱动手研究数学问题的孩子,他发现在小长方形CEFD 绕点C 顺时针旋转一周的过程中,DCD ' 与CBD '△存在两次全等,请你帮助小军直接写出当DCD ' 与CBD '△全等时,旋转角a 的值.【答案】(1)30°;(2)见解析;(3)135°,315°【分析】(1)由含30°角的直角三角形的性质可知∠CD ′E =30°,再根据平行线的性质即得出∠α=30°;(2)由题意可得出CE =CE ′=CG =2,由矩形的性质和旋转的性质可得出∠GCD ′=∠DCE ′=90°+α,进而可利用“SAS”证明△GCD ′≌△E ′CD ,即得出GD ′=E ′D ;(3)根据正方形的性质可得CB =CD ,而CD CD '=,则BCD ' 和DCD ' 为腰相等的两个等腰三角形,所以当两个三角形顶角相等时它们全等.再分类讨论①当BCD ' 和DCD ' 为钝角三角形时,则旋转角135α=︒;②当BCD ' 和DCD ' 为锐角三角形时,则315α=︒.【解析】(1)∵长为4,宽为2的长方形CEFD 绕点C 顺时针旋转至CE ′F ′D ′,∴CD ′=CD =4,在Rt △CED ′中,CD ′=4,CE =2,。

专题01 全等三角形中的手拉手旋转模型(解析版)

专题01 全等三角形中的手拉手旋转模型(解析版)

专题01 全等三角形中的手拉手旋转模型【模型展示】【模型证明】ECDABC CD CE ACD BCE AC BC ECD ABC ACD BCE ACE ECD ACE ACB ECDACB ECD ACB CD CE AC BC ECD ABC ∆≅∆∴⎪⎩⎪⎨⎧=∠=∠=∆∆∠=∠∴∠+∠=∠+∠∴∠=∠=∠=∠==∴∆∆中与在为等边三角形与 60,,BDMN NCD MNC NCD MNC MCN MCN MCN CN CM ACN BCM AFB AFM BCM AFM BMC AMF MAF AFM BMC CBM BCM AFM AMF MAF BCM BMC CBM CADCBE ACD BCE ADBE ACD BCE //60606060,60)(180)(180180180∴∠=∠∴=∠=∠∴∆∆∴=∠=∴∆≅∆=∠=∠=∠∴∠=∠∠+∠-=∠∠+∠-=∠∴=∠+∠+∠=∠+∠+∠∠=∠∴∆≅∆=∴∆≅∆为等边三角形为等边三角形即P Q NMFECABD【模型拓展】【题型演练】一、单选题1.如图,在ABCV中,90ABC∠=°,分别以AB,AC为边作等边ABD△和等边ACEV,连结DE,若3AB=,5AC=,则ED=()A.B.C.4D.【答案】C【分析】在Rt△ABC中可直接运用勾股定理求出BC,然后结合“手拉手”模型证得△ABC≌△ADE,即可得到DE=BC,从而求解即可.【详解】解:在Rt△ABC中,AB=3,AC=5,∴由勾股定理得:BC=4,∵ABD △和ACE V 均为等边三角形,∴AB =AD ,AC =AE ,∠BAD =∠CAE =60°,∴∠BAD -∠CAD =∠CAE -∠CAD ,即:∠BAC =∠DAE ,在△ABC 和△ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ADE (SAS ),∴DE =BC =4,故选:C .【点睛】本题考查全等三角形的判定与性质,勾股定理的应用,掌握全等三角形的判定与性质,熟练运用勾股定理解三角形是解题关键.2.如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作等边三角形ABC 和等边三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下结论错误的是( )A .∠AOB =60°B .AP =BQC .PQ ∥AED .DE =DP【答案】D【分析】利用等边三角形的性质,BC ∥DE ,再根据平行线的性质得到∠CBE =∠DEO ,于是∠AOB =∠DAC +∠BEC =∠BEC +∠DEO =∠DEC =60°,得出A 正确;根据△CQB ≌△CPA (ASA ),得出B 正确;由△ACD ≌△BCE 得∠CBE =∠DAC ,加之∠ACB =∠DCE =60°,AC =BC ,得到△CQB ≌△CPA (ASA ),再根据∠PCQ =60°推出△PCQ 为等边三角形,又由∠PQC =∠DCE ,根据内错角相等,两直线平行,得出C 正确;根据∠CDE =60°,∠DQE =∠ECQ +∠CEQ =60°+∠CEQ ,可知∠DQE ≠∠CDE ,得出D 错误.【详解】解:∵等边△ABC 和等边△CDE ,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠BCD =∠DCE +∠BCD ,即∠ACD =∠BCE,在△ACD 与△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴∠CBE =∠DAC ,又∵∠ACB =∠DCE =60°,∴∠BCD =60°,即∠ACP =∠BCQ ,又∵AC =BC ,在△CQB 与△CPA 中,ACP BCQ AC BCPAC CBQ ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CQB ≌△CPA (ASA ),∴CP =CQ ,又∵∠PCQ =60°可知△PCQ 为等边三角形,∴∠PQC =∠DCE =60°,∴PQ ∥AE ,故C 正确,∵△CQB ≌△CPA ,∴AP =BQ ,故B 正确,∵AD =BE ,AP =BQ ,∴AD -AP =BE -BQ ,即DP =QE ,∵∠DQE =∠ECQ +∠CEQ =60°+∠CEQ ,∠CDE =60°,∴∠DQE ≠∠CDE ,故D 错误;∵∠ACB =∠DCE =60°,∴∠BCD =60°,∵等边△DCE ,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,故A正确.故选:D.【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质,利用旋转不变性,解题的关键是找到不变量.3.如图,在Rt△ABC和Rt△ADE中,∠BAC=∠DAE=90°,AB=AC=5,AD=AE=2,点P,Q,R分别是BC,DC,DE的中点.把△ADE绕点A在平面自由旋转,则△PQR的面积不可能是()A.8B.6C.4D.2【答案】A【分析】连接BD、CE,BD的延长线交CE的延长线于O,AC交BO于H.证明△BAD≌△CAE,然后可推出△PQR是等腰直角三角形,S△PQR=12•PQ2,由AB=5,AD=2可知3≤BD≤7,从而得到32≤PQ≤72,那么9 8≤12•PQ2≤498,即可得出答案.【详解】解:连接BD、CE,BD的延长线交CE的延长线于O,AC交BO于H.∵AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ABH=∠OCH,∵∠AHB=∠CHO,∴∠O=∠BAH=90°,∵点P ,Q ,R 分别是BC ,DC ,DE 的中点,∴PQ =12BD ,PQ ∥BO ,QR =12EC ,QR ∥CO ,∵BO ⊥OC ,∴PQ ⊥RQ ,PQ =QR ,∴△PQR 是等腰直角三角形,∴S △PQR =12•PQ 2,∵AB =5,AD =2,∴3≤BD ≤7,∴32≤PQ ≤72,∴98≤12•PQ 2≤498,∴△PQR 的面积不可能是8,故答案为:A .【点睛】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,三角形的中位线定理,解题的关键是灵活运用所学知识解决问题.4.如图,在ABC V 中,AB AC =,点D 、F 是射线BC 上两点,且AD AF ⊥,若AE AD =,15BAD CAF ∠=∠=°;则下列结论中正确的有( )①CE BF ⊥;②ABD ACE △≌△;③ABC ADCE S S =四边形△;④122BC EF AD CF-=-A .1个B .2个C .3个D .4个【答案】D【分析】由AD ⊥AF ,∠BAD=∠CAF ,得出∠BAC=90°,由等腰直角三角形的性质得出∠B=∠ACB=45°,由SAS 证得△ABD ≌△ACE (SAS ),得出BD=CE ,∠B=∠ACE=45°,S △ABC =S 四边形ADCE ,则∠ECB=90°,即EC ⊥BF ,易证∠ADF=60°,∠F=30°,由含30°直角三角形的性质得出EF=2CE=2BD ,DF=2AD ,则BD=12EF ,由BC-BD=DF-CF ,得出BC-12EF=2AD-CF ,即可得出结果.【详解】∵AD ⊥AF ,∠BAD=∠CAF ,∴∠BAC=90°,∵AB=AC ,∴∠B=∠ACB=45°,在△ABD 和△ACE 中,AB AC BAD CAE AD AE =∠=∠=⎧⎪⎨⎪⎩,∴△ABD ≌△ACE (SAS ),∴BD=CE ,∠B=∠ACE=45°,S △ABC =S 四边形ADCE ,∴∠ECB=90°,∴EC ⊥BF ,∵∠B=45°,∠BAD=15°,∴∠ADF=60°,∴∠F=30°,∴EF=2CE=2BD ,DF=2AD ,∴BD=12EF ,∵BC-BD=DF-CF ,∴BC-12EF=2AD-CF ,∴①、②、③、④正确.故选:D .【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、含30°角直角三角形的性质、外角的定义等知识,熟练掌握直角三角形的性质、证明三角形全等是解题的关键.5.如图,正ABC V 和正CDE △中,B 、C 、D 共线,且3BC CD =,连接AD 和BE 相交于点F ,以下结论中正确的有( )个①60AFB ∠=° ②连接FC ,则CF 平分BFD ∠ ③3BF DF = ④BF AF FC=+A .4B .3C .2D .1【答案】A【分析】根据“手拉手”模型证明BCE ACD V V ≌,从而得到CBE CAD ∠=∠,再结合三角形的外角性质即可求解60AFB ACB ∠=∠=°,即可证明①;作CM BE ⊥于M 点,CN AD ⊥于N 点,证明CEM CDN V V ≌,结合角平分线的判定定理即可证明②;利用面积法表示BCF △和DCF V 的面积,然后利用比值即可证明③;利用“截长补短”的思想,在AD 上取点Q ,使得FC FQ =,首先判断出FCQ V 为等边三角形,再结合“手拉手”模型推出BCF ACQ V V ≌即可证明④.【详解】解:①∵ABC V 和CDE △均为等边三角形,∴60ACB ECD ∠=∠=°,AC BC =,EC DC =,∴ACB ACE ECD ACE ∠+∠=∠+∠,∴BCE ACD ∠=∠,在BCE V 和ACD △中,BC AC BCE ACDEC DC =⎧⎪∠=∠⎨⎪=⎩∴()BCE ACD SAS V V ≌,∴CBE CAD ∠=∠,∵AFB CBE CDA ∠=∠+∠,ACB CDA CAD ∠=∠+∠,∴60AFB ACB ∠=∠=°,故①正确;②如图所示,作CM BE ⊥于M 点,CN AD ⊥于N 点,则90CME CND ∠=∠=°,∵BCE ACD V V ≌,∴CEM CDN ∠=∠,在CEM V 和CDN △中,CME CND CEM CDNCE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CEM CDN AAS V V ≌,∴CM CN =,∴CF 平分BFD ∠,故②正确;③如图所示,作FP BD ⊥于P 点,∵1122BCF S BF CM BC FP ==V g g ,1122DCF S DF CN CD FP ==V g g ,∴11221122BCFDCF BF CM BC FP S S DF CN CD FP ==V V g g g g ,∵CM CN =,∴整理得:BF BC DF CD=,∵3BC CD =,∴33BF CD DF CD==,∴3BF DF =,故③正确;④如图所示,在AD 上取点Q ,使得FC FQ =,∵60AFB ACB ∠=∠=°,CF 平分BFD ∠,∴120BFD ∠=°,1602CFD BFD ∠=∠=°,∴FCQ V 为等边三角形,∴60FCQ ∠=°,CF CQ =,∵60ACB ∠=°,∴ACB ACF FCQ ACF ∠+∠=∠+∠,∴BCF ACQ ∠=∠,在BCF △和ACQ V 中,BC AC BCF ACQCF CQ =⎧⎪∠=∠⎨⎪=⎩∴()BCF ACQ SAS V V ≌,∴BF AQ =,∵AQ AF FQ =+,FQ FC =,∴BF AF FC =+,故④正确;综上,①②③④均正确;故选:A .【点睛】本题考查等边三角形的判定与性质,全等三角形的判定与性质等,理解等边三角形的基本性质,掌握全等三角形中的辅助线的基本模型,包括“手拉手”模型,截长补短的思想等是解题关键.6.如图,点C 是线段AE 上一动点(不与A ,E 重合),在AE 同侧分别作等边三角形ABC 和等边三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ,有以下5个结论:①AD=BE ;②PQ ∥AE ;③AP=BQ ;④DE=DP ;⑤∠AOB=60°.其中一定成立的结论有( )个A .1B .2C .3D .4【答案】D 【分析】①由于△ABC 和△CDE 是等边三角形,可知AC=BC ,CD=CE ,∠ACB=∠DCE=60°,从而证出△ACD ≌△BCE ,可推知AD=BE;③由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ(ASA),所以AP=BQ;故③正确;②根据②△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正确.【详解】①∵等边△ABC和等边△DCE,∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60∘,∴∠ACD=∠BCE,在△ACD和△BCE中,AC=BC,∠ACD=∠BCE,DC=CE,∴△ACD≌△BCE(SAS),∴AD=BE;故①正确;③∵△ACD≌△BCE(已证),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已证),∴∠BCQ=180°-60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP与△BCQ中,∠CAD=∠CBE,AC=BC,∠ACB=∠BCQ=60°,∴△ACP≌△BCQ(ASA),∴AP=BQ;故③正确;②∵△ACP≌△BCQ,∴PC=QC,∴△PCQ是等边三角形,∴∠CPQ=60∘,∴∠ACB=∠CPQ ,∴PQ ∥AE ;故②正确;④∵AD=BE ,AP=BQ ,∴AD−AP=BE−BQ ,即DP=QE ,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ ,∠CDE=60°,∴∠DQE≠∠CDE ,∴DE≠QE ,则DP≠DE ,故④错误;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等边△DCE ,∠EDC=60°=∠BCD ,∴BC ∥DE ,∴∠CBE=∠DEO ,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故⑤正确;综上所述,正确的结论有:①②③⑤,错误的结论只有④,故选D .【点睛】本题考查全等三角形的判定和性质,以及等边三角形的判定和性质,此图形是典型的“手拉手”模型,熟练掌握此模型的特点是解题的关键.二、填空题7.如图,ABD △、CDE △是两个等边三角形,连接BC 、BE .若30DBC ∠=°,6BD =,8BC =,则BE =________.【答案】BE =10【分析】连接AC ,根据题意易证△ACD ≌△BED(SAS),根据全等三角形的性质可得AC=BE ,再根据勾股定理求出AC 的值即可得出结论.【详解】如图,连接AC ,∵ABD △、CDE △是两个等边三角形,∴AB=BD=AD=2,CD=DE ,∠ABD=∠ADB=∠CDE=60,∴∠ADB+∠BDC=∠CDE+∠BDC ,∴∠ADC=∠BDE ,在△ACD 与△BDE 中AD BD ADC BDE CD DE =⎧⎪=⎨⎪=⎩∠∠,∴△ACD ≌△BED (SAS ),∴AC=BE ,∵30DBC ∠=°,∴∠ABC=∠ABD+∠DBC=60°+30°=90°,在Rt △ABC 中,AB=6,BC=8,∴10=,∴BE=10,故答案为:10.【点睛】本题考查了等边三角形的性质,全等三角形的判定与性质,勾股定理,孰练的掌握知识点是解题关键.8.如图,△ABC 中,∠C =90°,AC =BC =△ABC 绕点A 顺时针方向旋转60°到△AB 'C '的位置,连接BC ',BC '的延长线交AB '于点D ,则BD 的长为 _____.【分析】连接BB ′,根据旋转的性质可得AB =AB ′,判断出△ABB ′是等边三角形,根据等边三角形的三条边都相等可得AB =BB ′,然后利用“边边边”证明△ABC ′和△B ′BC ′全等,根据全等三角形对应角相等可得∠ABC ′=∠B ′BC ′,延长BC ′交AB ′于D ,根据等边三角形的性质可得BD ⊥AB ′,利用勾股定理列式求出AB ,然后根据等边三角形的性质和等腰直角三角形的性质求出BD .【详解】解:如图,连接BB ′,∵△ABC 绕点A 顺时针方向旋转60°得到△AB ′C ′,∴AB =AB ′,∠BAB ′=60°,∴△ABB ′是等边三角形,∴AB =BB ′,在△ABC ′和△B ′BC ′中,AB BB AC B C BC BC =¢⎧⎪¢=¢¢⎨⎪¢=¢⎩,∴△ABC ′≌△B ′BC ′(SSS ),∴∠ABC ′=∠B ′BC ′30=° ,延长BC ′交AB ′于D ,则BD ⊥AB ′,∵∠C =90°,AC =BC ,∴AB 2=AB ’,∴AD =112AB =∴BD =,【点睛】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC ′在等边三角形的高上是解题的关键,也是本题的难点.9.如图,ABC V 是边长为5的等边三角形,BD CD =,120BDC ∠=°.E 、F 分别在AB 、AC 上,且60EDF ∠=°,则三角形AEF 的周长为______.【答案】10【分析】延长AB 到N ,使BN =CF ,连接DN ,求出∠FCD =∠EBD =∠NBD =90°,根据SAS 证△NBD ≌△FCD ,推出DN =DF ,∠NDB =∠FDC ,求出∠EDF =∠EDN ,根据SAS 证△EDF ≌△EDN ,推出EF =EN ,易得△AEF 的周长等于AB +AC .【详解】解:延长AB 到N ,使BN =CF ,连接DN ,∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,∵BD =CD ,∠BDC =120°,∴∠DBC =∠DCB =30°,∴∠ACD =∠ABD =30°+60°=90°=∠NBD ,∵在△NBD 和△FCD 中,BD DC NBD FCD BN CF =⎧⎪∠=∠⎨⎪=⎩,∴△NBD ≌△FCD (SAS ),∴DN =DF ,∠NDB =∠FDC ,∵∠BDC =120°,∠EDF =60°,∴∠EDB +∠FDC =60°,∴∠EDB +∠BDN =60°,即∠EDF =∠EDN ,在△EDN 和△EDF 中,DE DE EDF EDN DN DF =⎧⎪∠=∠⎨⎪=⎩,∴△EDN ≌△EDF (SAS ),∴EF =EN =BE +BN =BE +CF ,即BE +CF =EF .∵△ABC 是边长为5的等边三角形,∴AB =AC =5,∵BE +CF =EF ,∴△AEF 的周长为:AE +EF +AF =AE +EB +FC +AF =AB +AC =10,故答案为:10.【点睛】本题考查了等边三角形性质和判定,等腰三角形的性质,三角形的内角和定理,全等三角形的性质和判定的综合运用.注意掌握辅助线的作法,注意掌握数形结合思想的应用.10.如图,C 为线段AE 上一动点(不与点A 、E 重合),在AE 同侧分别作正△ABC 和正△CDE ,AD 与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ P AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有_____.(把你认为正确的序号都填上)【答案】①②③⑤为等边三角形,再证【分析】根据等边三角形的性质及SAS即可证明;根据全等三角形的性质证明MCN明△ACD≌△BCE即可求解.【详解】解:①△ABC和△DCE均是等边三角形,点A,C,E在同一条直线上,∴AC=BC,EC=DC,∠BCE=∠ACD=120°∴△ACD≌△ECB∴AD=BE,故本选项正确,符合题意;②∵△ACD≌△ECB∴∠CBQ=∠CAP,又∵∠PCQ=∠ACB=60°,CB=AC,∴△BCQ≌△ACP,∴CQ=CP,又∠PCQ=60°,∴△PCQ为等边三角形,∴∠QPC=60°=∠ACB,∴PQ P AE,故本选项正确,符合题意;③∵∠ACB=∠DCE=60°,∴∠BCD=60°,∴∠ACP=∠BCQ,∵AC=BC,∠DAC=∠QBC,∴△ACP≌△BCQ(ASA),∴CP=CQ,AP=BQ,故本选项正确,符合题意;④已知△ABC 、△DCE 为正三角形,故∠DCE =∠BCA =60°⇒∠DCB =60°,又因为∠DPC =∠DAC +∠BCA ,∠BCA =60°⇒∠DPC >60°,故DP 不等于DE ,故本选项错误,不符合题意;⑤∵△ABC 、△DCE 为正三角形,∴∠ACB =∠DCE =60°,AC =BC ,DC =EC ,∴∠ACB +∠BCD =∠DCE +∠BCD ,∴∠ACD =∠BCE ,∴△ACD ≌△BCE (SAS ),∴∠CAD =∠CBE ,∴∠AOB =∠CAD +∠CEB =∠CBE +∠CEB ,∵∠ACB =∠CBE +∠CEB =60°,∴∠AOB =60°,故本选项正确,符合题意.综上所述,正确的结论是①②③⑤.三、解答题11.如图,ACB △和ECD V 都是等腰直角三角形,,,CA CB CD CE ACB ==△的顶点A 在ECD V 的斜边DE 上,连接BD .(1)求证:BD AE =.(2)若3cm,6cm AE AD ==,求AC 的长.【答案】(1)证明见解析;(2)AC =.【分析】(1)根据同角的余角相等得出∠BCD=∠ACE ,然后根据SAS 定理证明△BCD ≌△ACE ,从而得出结论;(2)根据全等三角形的性质得出∠BDC=∠AEC ,然后结合等腰直角三角形的性质求得∠BDA 是直角三角形,从而利用勾股定理求解.【详解】(1)∵ACB △和ECD V 都是等腰直角三角形,∴90ACB ECD ∠=∠=°,∴90,90ACD BCD ACD ACE ∠+∠=°∠+∠=°,∴BCD ACE ∠=∠,在BCD △和ACB △中,CB CA BCD ACECD CE =⎧⎪∠=∠⎨⎪=⎩∴()BCD ACE SAS V V ≌,∴BD AE =.(2)∵BCD ACE V V ≌,∴BDC AEC ∠=∠,又∵ECD V 是等腰直角三角形,∴45CDE CED ∠=∠=°,∴45BDC ∠=°,∴90BDC CDE ∠+∠=°,∴BDA ∠是直角三角形,∴22222223645AB BD AD AE AD =+=+=+=,在等腰直角三角形ACB 中,22222AB AC BC AC =+=,∴AC =【点睛】本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键.12.如图,A 、B 、C 在同一直线上,且△ABD ,△BCE 都是等边三角形,AE 交BD 于点M ,CD 交BE 于点N ,MN ∥AC ,求证:(1)∠BDN=∠BAM ;(2)△BMN 是等边三角形.【答案】(1)证明过程见详解;(2)证明过程见详解。

(完整版)全等三角形常见的几何模型

(完整版)全等三角形常见的几何模型

1、绕点型(手拉手模型)(1)自旋转:⎪⎪⎩⎪⎪⎨⎧,造中心对称遇中点旋全等遇等腰旋顶角,造旋转,造等腰直角旋遇,造等边三角形旋遇自旋转构造方法0000018090906060(2)共旋转(典型的手拉手模型)例1、在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC(2) AE=DC(3) AE 与DC 的夹角为60。

(4) △AGB ≌△DFB (5) △EGB ≌△CFB (6) BH 平分∠AHC(7) GF ∥AC变式练习1、如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: (1) △ABE ≌△DBC (2) AE=DC(3) AE 与DC 的夹角为60。

(4) AE 与DC 的交点设为H,BH 平分∠AHCHFG E DEBD变式练习2、如果两个等边三角形△ABD和△BCE,连接AE与CD,证明:(1)△ABE≌△DBC(2)AE=DC(3)AE与DC的夹角为60。

(4)AE与DC的交点设为H,BH平分∠AHC(1)如图1,点C是线段AB上一点,分别以AC,BC为边在AB的同侧作等边△ACM和△CBN,连接AN,BM.分别取BM,AN的中点E,F,连接CE,CF,EF.观察并猜想△CEF的形状,并说明理由.(2)若将(1)中的“以AC,BC为边作等边△ACM和△CBN”改为“以AC,BC为腰在AB的同侧作等腰△ACM 和△CBN,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由.例4、例题讲解:1. 已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B,C重合),以AD为边作菱形ADEF(按A,D,E,F 逆时针排列),使∠DAF=60°,连接CF.(1) 如图1,当点D在边BC上时,求证:① BD=CF ‚②AC=CF+CD.(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CF+CD是否成立?若不成立,请写出AC、CF、CD之间存在的数量关系,并说明理由;(3)如图3,当点D在边BC的延长线上且其他条件不变时,补全图形,并直接写出AC、CF、CD之间存在的数量关系。

初中数学全等三角形旋转模型(讲义及答案)及答案(1)

初中数学全等三角形旋转模型(讲义及答案)及答案(1)

初中数学全等三角形旋转模型(讲义及答案)及答案(1)一、全等三角形旋转模型1.如图1,在等腰Rt △ABC 中,∠ABC =90°,AB =BC =6,过点B 作BD ⊥AC 交AC 于点D ,点E 、F 分别是线段AB 、BC 上两点,且BE =BF ,连接AF 交BD 于点Q ,过点E 作EH ⊥AF 交AF 于点P ,交AC 于点H .(1)若BF =4,求△ADQ 的面积;(2)求证:CH =2BQ ;(3)如图2,BE =3,连接EF ,将△EBF 绕点B 在平面内任意旋转,取EF 的中点M ,连接AM ,CM ,将线段AM 绕点A 逆时针旋转90°得线段AN ,连接MN 、CN ,过点N 作NR ⊥AC 交AC 于点R .当线段NR 的长最小时,直接写出△CMN 的周长.答案:A解析:(1)1.8;(2)证明见解析;(3)3263351022+. 【分析】(1)利用等腰直角三角形的性质求出1322BD AD CD AC ====积相等和勾股定理分别求出AQ 和QD ,最后利用三角形面积公式即可求解;(2)如图,先作辅助线构造()AEH CFG ASA ∆∆≌,得到AH CG =,再通过转化得到2AH DQ =,最后利用AC ,得到一个相等关系,即()2AH HC BQ QD +=+,利用等式性质即可得到所求;(3)如图,通过做辅助线构造全等三角形确定出当HN ⊥AC ,且N 点位于H 、R 之间时,此时NR 的长最小,接着利用勾股定理和等腰直角三角形的性质,分别求出CM 、MN 、CN 的长,相加即可.【详解】解:6AB BC ==,°90ABC =∠,262AC ==∴又∵AC BD ⊥∴BD 平分AC ,且BD 是∠ABC 的角平分线∴12BD AD CD AC ====Q 点到BA 和BC 边的距离相等; ∵4BF =, ∴6342ABQ BFQ S S ∆∆==, ∴32AQ FQ =,∵AF ===∴355AQ AF ==,∴5QD ===,∴1 1.82ADQ S ∆==, ∴△ADQ 的面积为1.8.(2)如图,作CG ⊥AC ,垂足为C ,交AF 的延长线于点G ,∴°90ACG =∠∵°45ACB CAB ==∠∠,∴°45GCB CAB ==∠∠,∵EH ⊥AF ,∴°90EAP AEP +=∠∠,又∵°90EAP AFB +=∠∠∴AEP AFB =∠∠,∴AEP CFG =∠∠∵BE BF =,BA BC =∴AE CF =,在AEH ∆和CFG ∆中,AEH CFG AE CFEAH FCG ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()AEH CFG ASA ∆∆≌∴AH CG =;∵BD ⊥AC ,CG ⊥AC ,∴BD ∥CG ,∵D 点是AC 的中点,且BD ∥CG ,∴DQ 是ACG ∆的中位线,∴12DQ CG =, ∴2DQ CG AH ==; ∵AC =2BD ,∴()2AH HC BQ QD +=+,∵2AH DQ =,∴CH =2BQ .(3)如图①,作AH ⊥AB ,且AH =AB ,∴∠NAH +∠HAM =∠HAM +∠BAM =90°,∴∠BAM =∠NAH ,∵AB =AH ,AM =AN ,∴()ABM AHN SAS ∆∆≌, ∴HN =BM ,∵BE =BF =3,∠EBF =90°, ∴232EF BE ==∴由M 点是EF 的中点,可得13222BM EF ==, ∴32NH =, ∴N 点在以H 点为圆心,322为半径的圆上, 如图②,当HN ⊥AC ,且N 点位于H 、R 之间时,此时NR 的长最小, 为322NR HR HN HR =-=-, ∵∠BAC =45°,∴∠HAC =45°,∴∠AHN =45°,HR =AR ,∵222HR AR AH +=,∴6322HR AR ===, ∴323222NR HR =-=, ∵262AC AB ==,∴32CR AC AR =-=,∴()22333221022CN AN ⎛⎫==+= ⎪⎝⎭, ∵∠MAN =90°,AM =AN ,∴235MN AN ==,∴∠ABM =45°,∴∠EBM =45°,∴F 点在BA 上,E 点在CB 延长线上,如图,作MP ⊥EC ,垂足为P ,∴1322BP MP EB ===, ∴315622PC PB BC =+=+=, ∴223262MC MP PC =+=, ∴3263351022MC MN CN ++=++, ∴△CMN 的周长为3263351022++.【点睛】本题综合考查了等腰直角三角形的性质、全等三角形的判定与性质、旋转的性质、勾股定理、圆等知识,要求学生熟练掌握相关概念并能灵活应用它们,本题的综合性较强,难点在于作辅助线构造全等三角形以及线段之间的关系转化等,考查了学生综合分析和推理论证以及计算的能力,本题属于压轴题,蕴含了数形结合和转化的思想方法等.2.如图,点B ,C ,D 在同一条直线上,△BCF 和△ACD 都是等腰直角三角形,连接AB ,DF ,延长DF 交AB 于点E .(1)如图1,若AD =BD ,DE 是∠ADB 的平分线,BC =1,求CD 的长度;(2)如图2,连接CE ,求证:DE =2CE +AE ;(3)如图3,改变△BCF 的大小,始终保持点在线段AC 上(点F 与点A ,C 不重合).将ED 绕点E 顺时针旋转90°得到EP ,取AD 的中点O ,连接OP .当AC =2时,直接写出OP 长度的最大值.解析:(1)21CD =;(2)证明见解析;(3)22+【分析】 (1)根据等腰直角三角形的性质,求出1FC BC ==,再判断出FA FB =,即可得出结论;(2)先判断出ABC DFC ≅△△,得出BAC CDF ∠=∠,进而判断出ACE DCH ≅△△,得出AE DH =,CE CH =,即可得出结论;(3)先判断出2OE OQ ==,再判断出OED QEP ≅△△,进而求出2PQ OD ==得出结论.【详解】(1)解:BCF 和ACD △都是等腰直角三角形,AC CD ∴=,1FC BC ==,2FB =,AD BD =,DE 是ABD ∆的平分线,DE ∴垂直平分AB ,2FA FB ∴==,21AC FA FC ∴=+=,21CD ∴=;(2)证明:如图2,过点C 作CH CE ⊥交ED 于点H ,BCF 和ACD △都是等腰直角三角形,AC DC ∴=,FC BC =,90ACB DCF ∠=∠=︒;()ABC DFC SAS ∴≅△△,BAC CDF ∴∠=∠,90ECH ∠=︒,90ACE ACH ∴∠+∠=︒,90ACD ∠=︒,90DCH ACH ∴∠+∠=︒,ACE DCH ∴∠=∠.在ACE 和DCH 中,BAC CDF AC DCACE DCH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ACE DCH ASA ∴≅△△,AE DH ∴=,CE CH =,2EH CE ∴=.2DE EH DH CE AE =+=+;(3)OP 的最大值是22+解:如图3,连接OE ,将OE 绕点E 顺时针旋转90︒得到EQ ,连接OQ ,PQ ,则2OQ OE =.由(2)知,90AED ABC CDF ABC BAC ∠=∠+∠=∠+∠=︒,在Rt AED △中,点O 是斜边AD 的中点,122222OE OD AD AC ∴===== 2222OQ OE ∴===,在OED 和QEP △中,OE QE OED QEP DE PE =⎧⎪∠=∠⎨⎪=⎩,()OED QEP SAS ∴≅△△,2PQ OD ∴==22OP OQ PQ +=+O 、P 、Q 三点共线时,取“=”号,OP ∴的最大值是22+【点睛】此题是几何变换综合题,主要等腰直角三角形的性质,全等三角形的判定和性质,构造出全等三角形是解本题的关键.3.如图.四边形ABCD 、BEFG 均为正方形.(1)如图1,连接AG 、CE ,请直接写出.....AG 和CE 的数量和位置关系(不必证明).(2)将正方形BEFG 绕点B 顺时针旋转β角(0180β︒︒<<),如图2,直线AG 、CE 相交于点M .①AG 和CE 是否仍然满足(1)中的结论?如果是,请说明理由:如果不是,请举出反例:②连结MB ,求证:MB 平分AME ∠.(3)在(2)的条件下,过点A 作AN MB ⊥交MB 的延长线于点N ,请直接写出.....线段CM 与BN 的数量关系.答案:A解析:(1)AG=EC ,AG ⊥EC ;(2)①满足,理由见解析;②见解析;(3)2.【分析】(1)由正方形BEFG 与正方形ABCD ,利用正方形的性质得到两对边相等,一对直角相等,利用SAS 得出三角形ABG 与三角形CBE 全等,利用全等三角形的对应边相等,对应角相等得到CE=AG ,∠BCE=∠BAG ,再利用同角的余角相等即可得证;(2)①利用SAS 得出△ABG ≌△CEB 即可解决问题;②过B 作BP ⊥EC ,BH ⊥AM ,由全等三角形的面积相等得到两三角形面积相等,而AG=EC ,可得出BP=BH ,利用到角两边距离相等的点在角的平分线上得到BM 为角平分线;(3)在AN 上截取NQ=NB ,可得出三角形BNQ 为等腰直角三角形,利用等腰直角三角形的性质得到2BN ,接下来证明BQ=CM ,即要证明三角形ABQ 与三角形BCM 全等,利用同角的余角相等得到一对角相等,再由三角形ANM 为等腰直角三角形得到NA=NM ,利用等式的性质得到AQ=BM ,利用SAS 可得出全等,根据全等三角形的对应边相等即可得证.【详解】解:(1)AG=EC ,AG ⊥EC ,理由为:∵正方形BEFG ,正方形ABCD ,∴GB=BE ,∠ABG=90°,AB=BC ,∠ABC=90°,在△ABG 和△BEC 中,BG BE ABC EBC BA BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABG ≌△BEC (SAS ),∴CE=AG ,∠BCE=∠BAG ,延长CE 交AG 于点M ,∴∠BEC=∠AEM ,∴∠ABC=∠AME=90°,∴AG=EC ,AG ⊥EC ;(2)①满足,理由是:如图2中,设AM 交BC 于O .∵∠EBG=∠ABC=90°,∴∠ABG=∠EBC ,在△ABG 和△CEB 中,AB BC ABG CBE BG EB =⎧⎪∠=∠⎨⎪=⎩,∴△ABG ≌△CEB (SAS ),∴AG=EC ,∠BAG=∠BCE ,∵∠BAG+∠AOB=90°,∠AOB=∠COM ,∴∠BCE+∠COM=90°,∴∠OMC=90°,∴AG ⊥EC .②过B 作BP ⊥EC ,BH ⊥AM ,∵△ABG ≌△CEB ,∴S △ABG =S △EBC ,AG=EC , ∴12EC•BP=12AG•BH , ∴BP=BH ,∴MB 平分∠AME ;(3)CM=2BN ,理由为:在NA 上截取NQ=NB ,连接BQ ,∴△BNQ 为等腰直角三角形,即BQ=2BN ,∵∠AMN=45°,∠N=90°,∴△AMN 为等腰直角三角形,即AN=MN ,∴MN-BN=AN-NQ ,即AQ=BM ,∵∠MBC+∠ABN=90°,∠BAN+∠ABN=90°,∴∠MBC=∠BAN ,在△ABQ 和△BCM 中,AQ BM BAN MBC AB BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABQ ≌△BCM (SAS ),∴CM=BQ ,则CM=2BN .【点睛】此题考查了正方形,全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线的判定,熟练掌握正方形的性质是解本题的关键.4.探究:(1)如图①,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,若∠B =28°,则∠ACD 的度数是 .拓展:(2)如图②,∠MCN =90°,射线CP 在∠MCN 的内部,点A 、B 分别存CM 、CN 上,分别过点A 、B 作AD ⊥CP 、BE ⊥CP 于点D 、E ,若AC =CB ,则AD 、DE 、BE 三者间的数量关系为 .请说明理由;应用:(3)如图③,点A 、B 分别在∠MCN 的边CM 、CN 上,射线CP 在∠MCN 的内部,点D 、E 在射线CP 上,连结AD 、BE 、AE ,且使∠MCN =∠ADP =∠BEP .当AC =BC 时,△ ≌△ ;此时如果CD =2DE ,且S △CBE =6,则△ACE 的面积是 .答案:D解析:(1)28° (2)DE =AD ﹣BE ;理由见解析 (3)ACD ;CBE ;9【分析】(1)利用直角三角形的两锐角互余,即可得出结论;(2)利用同角的余角相等判断出∠CAD =∠BCE ,进而判断出△ACD ≌△CBE ,即可得出结论;(3)利用等式的性质判断出∠ADC =∠CEB ,进而判断出△ACD ≌△CBE ,得出S △ACD =S △CBE ,再求出S △ADE =3,即可得出结论.【详解】解:探究:∵CD ⊥AB ,∴∠CDB =90°,∵∠B =28°,∴∠BCD =90°﹣∠B =68°,∵∠ACB =90°,∴∠ACD =90°﹣∠BCD =28°,故答案为:28°;拓展:(2)∵∠MCN =90°,∴∠ACD+∠BCE =90°,∵AD ⊥CP ,BE ⊥CP ,∴∠ADC =∠BEC =90°,∴∠ACD+∠CAD =90°,∴∠CAD =∠BCE ,在△ACD 和△CBE 中,ADC CEB CAD BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS ),∴CD =BE ,AD =CE ,∴DE =CE ﹣CD =AD ﹣BE ,故答案为:DE =AD ﹣BE ;应用:(3)∵∠MCN =∠ACD+∠BCD ,∠MCN =∠ADP ,∴∠ADP =∠ACD+∠BCD ,∵∠ADP =∠ACD+∠CAD ,∴∠CAD =∠BCE ,∵∠ADP =∠BEP ,∴∠ADC =∠CEB ,在△ACD 和△CBE 中,ADC CEB CAD BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS ),∴S △ACD =S △CBE ,∵S △CBE =6,∴S △ACD =6,∵CD =2DE ,∴S △ACD =2S △ADE ,∴S △ADE =12S △ACD =3, ∴S △ACE =S △ACD +S △ADE =9,故答案为:ACD ,CBE ,9.【点睛】此题是三角形综合题,主要考查了直角三角形的性质,同角的余角相等,等式的性质,全等三角形的判定和性质,判断出△ACD ≌△CBE 是解本题的关键.5.如图1,在△ABC 和△ADE 中,∠DAE=∠BAC ,AD=AE ,AB=AC .(1)求证:△ABD ≌△ACE ;(2)如图2,在△ABC 和△ADE 中,∠DAE=∠BAC ,AD=AE ,AB=AC ,∠ADB=90°,点E 在△ABC 内,延长DE 交BC 于点F ,求证:点F 是BC 中点;(3)△ABC 为等腰三角形,∠BAC=120°,AB=AC ,点P 为△ABC 所在平面内一点,∠APB=120°,AP=2,BP=4,请直接写出 CP 的长.答案:D解析:(1)证明见详解;(2)证明见详解;(3)27或213.【分析】(1)因为∠DAE=∠BAC ,可以得到∠DAB=∠EAC ,因为AD=AE ,AB=AC ,即可得到△ABD ≌△ACE ;(2)连接CE ,延长EF 至点H ,取CF=CH ,连接CH ,由(1)可得△ABD ≌△ACE ,所以∠AEC=90°和CE=BD ,可以推出∠BDF=∠CEF ,再证明△DBF ≌△ECH ,所以BF=CH ,等量代换即可得到BF=FC ,即可解决;(3)点P 在△ABC 内部,将△ABP 逆时针旋转120°,得到ACP ∆',连接PP '和PC ,可以得到△PP C '是直角三角形,利用勾股定理即可求出PC 的值;当点P 在△ABC 外部,将△APB 绕点A 逆时针旋转120︒得到PDC ∆,连接PP '和PC ,过点P 作PD ⊥'CP 于点D ,连接PD 可以得到△PP D ',△PP D '是直角三角形和,利用勾股定理即可求出'DP 及PC 的值.【详解】解:(1)证明:∵∠DAE=∠BAC∴∠DAB=∠EAC∵AD=AE ,AB=AC∴△ABD ≌△ACE(2)证明:连接CE ,延长EF 至点H ,取CF=CH ,连接CH ,如图所示:∵△ADB ≌△AEC∴BD=EC ,∠ADB=∠AEC=90°∵AD=AE∴∠ADE=∠AED∵∠ADE+∠EDB=∠AED+∠CEH=90°∴∠EDB=∠CEH∵CF=CH∴∠CFH=∠CHF∴∠DFB=∠H∵CE=BD∴△DBF ≌△ECH∴BF=CH∴BF=CF∴点F 是BC 的中点(3)当点P 在△ABC 内部,如图所示,将△ABP 逆时针旋转120°,得到ACP ∆',连接PP '和PC∵将△ABP 旋转120°得到ACP ∆'∴∠PAP '=120°,AP='AP =2,BP=CP '=4∴PP '=23,∵∠AP C '=120°,∠AP P '=30°,∴∠PP C '=90°,∴PC=()2223427+=. 当点P 在△ABC 外部,如图所示,将△APB 绕点A 逆时针旋转120︒到△'AP C ,过点P 作PD ⊥'CP 于点D ,连接PD , ∵将△ABP 旋转120°得到ACP ∆'∴∠PAP '=120°,AP='AP =2,BP=CP '=4,∴PP '3∵∠AP C '=120°,∠AP P '=30°,∴∠PP C '=150°,∴∠PP D '=30°,在Rt 'PDP 中,1'32PD PP ==, 22''3DP PP PD ∴=-=,''347DC DP P C ∴=+=+=,()222237213PC PD DC ∴=+=+=.综上所述,27213PC =或【点睛】本题主要考查了全等三角形以及旋转,合理的作出辅助线以及熟练旋转的性质是解决本题的关键.6.问题:如图(1),点M、N分别在正方形ABCD的边BC、CD上,∠MAN=45°,试判断BM、MN、ND之间的数量关系.(1)研究发现如图1,小聪把△ADN绕点A顺时针旋转90°至△ABG,从而发现BM、MN、DN之间的数量关系为(直接写出结果,不用证明)(2)类比引申如图2,在(1)的条件下,AM、AN分别交正方形ABCD的对角线BD于点E、F.已知EF =5,DF=4.求BE的长.(3)拓展提升如图3,在(2)的条件下,AM、AN分别交正方形ABCD的两个外角平分线于Q、P,连接PQ.请直接写出以BQ、PQ、DP为边构成的三角形的面积.答案:B解析:(1)BM+DN=MN,理由见解析;(2)BE=3;(3)以BQ、PQ、DP为边构成的三角形的面积为36.【分析】(1)结论是:BM+DN=MN,如图1,利用三角形AND旋转90º得三角形ABG,∠DAN=∠BAG,可证∠GAM=∠GAB+∠BAM=∠MAN,利用SAS证△AMN≌△AMG即可;(2)如图2,按同样方法△AFD顺时针旋转90º,使AD与AB重合,得△ABF′,连结EF′,△BEF′是直角三角形,用勾股定理求EF′=5,再证△AEF≌△AEF即可;(3)如图3,由(2)可得BD=12,可求正方形边长,构建△P′AQ,P′B=DP,将△ADP顺时针转90º,AD与AB重合,得△BQP′,连OP′,可证△BQP′是直角三角形,可证PQ=P′Q,再证△ABQ∽△PDA,将△P′BQ面积=12BQ•BP′=12BQ•DP=12AD•AB可求.【详解】(1)如图1,BM+DN=MN,理由如下:∵四边形ABCD 是正方形,∴AB =AD ,∠D =∠ABC =∠BAD =90°,小聪把△ADN 绕点A 顺时针旋转90°至△ABG ,由旋转可得:BG =DN ,AN =AG ,∠1=∠2,∠ABG =∠D =90°,∴∠ABG +∠ABM =90°+90°=180°,因此,点G ,B ,M 在同一条直线上,∵∠MAN =45°,∴∠2+∠3=∠BAD ﹣∠MAN =90°﹣45°=45°,∵∠1=∠2,∴∠1+∠3=45°,∴∠GAM =∠MAN ,∵AM =AM ,∴△AMN ≌△AMG (SAS ),∴MN =GM ,∵GM =BM +BG =BM +DN ,∴BM +DN =MN ;故答案为:BM +DN =MN ;(2)如图2,把△ADF 绕点A 顺时针旋转90°至△ABF ',连接EF ',∴AF ′ =AF ,∠DAF =∠BAF ',∠ABF ′ =∠ADF =45°,B F ′ =DF =4,∵∠ABE =45°,∴∠EBF ′ =45°+45°=90°,∵AE =AE ,同理得△EAF ≌△EAF '(SAS ),∴EF '=EF =5,在Rt △EBF '中,由勾股定理得:BE ()()2222EF +BF 5-4=3''=3;(3)由(2)知:BE=3,EF=5,DF=4,∴BD=3+4+5=12,由勾股定理得:AB2+AD2=BD2,∵AB=AD,∴AB2=72,如图3,把△ADP绕点A顺时针旋转90°至△ABP ',连接BP ′,则∠ABP′=∠ADP,PD=P ′B,AP=AP ′,∵AM、AN分别交正方形ABCD的两个外角平分线于Q、P,∴∠ADP=∠ABQ=135°,∴∠DAP+∠APD=45°,∵∠DAP+∠BAQ=45°,∴∠BAQ=∠APD,∴△ADP∽△QBA,∴AD PD=BQ AB,∴BQ•PD=AD•AB=72,∵∠ABP'=∠ABQ=135°,∴∠QBP'=360°﹣135°﹣135°=90°,∴S△BP'Q=12BQ•BP′=12BQ•DP=12×72=36,∵AP=AP',∠PAQ=∠P'AQ,AQ=AQ,∴△QAP≌△QAP'(SAS),∴PQ=P'Q,∴以BQ、PQ、DP为边构成的三角形的面积为36.【点睛】本题是感知,探究,创新新题型,主要考查了学生对正方形的性质,旋转变换,勾股定理及全等三角形与相似三角形的判定方法的综合运用.关键是灵活掌握所学知识,同时会从感知中学到方法,结合下一图形,找到解决问题的方法,以及突破口,在创新中,注意把给出的问题进行转化,利用转化思想来解决.7.如图,BC⊥CA,BC=CA,DC⊥CE,DC=CE,直线BD与AE交于点F,交AC于点G,连接CF .(1)求证:△ACE ≌△BCD ;(2)求证:BF ⊥AE ;(3)请判断∠CFE 与∠CAB 的大小关系并说明理由.答案:C解析:(1)见解析;(2)见解析;(3)∠CFE =∠CAB ,见解析【分析】(1)根据垂直的定义得到∠ACB =∠DCE =90°,由角的和差得到∠BCD =∠ACE ,即可得到结论;(2)根据全等三角形的性质得到∠CBD =∠CAE ,根据对顶角的性质得到∠BGC =∠AGE ,由三角形的内角和即可得到结论;(3)过C 作CH ⊥AE 于H ,CI ⊥BF 于I ,根据全等三角形的性质得到AE =BD ,S △ACE =S △BCD ,根据三角形的面积公式得到CH =CI ,于是得到CF 平分∠BFH ,推出△ABC 是等腰直角三角形,即可得到结论.【详解】(1)证明:∵BC ⊥CA ,DC ⊥CE ,∴∠ACB =∠DCE =90°,∴∠BCD =∠ACE ,在△BCD 与△ACE 中,BC CA ACD ACE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD ;(2)∵△BCD ≌△ACE ,∴∠CBD =∠CAE ,∵∠BGC =∠AGE ,∴∠AFB =∠ACB =90°,∴BF ⊥AE ;(3)∠CFE =∠CAB ,过C 作CH ⊥AE 于H ,CI ⊥BF 于I ,∵△BCD ≌△ACE ,∴ACE BCD AE BD,S S ∆∆==,∴CH =CI , ∴CF 平分∠BFH ,∵BF ⊥AE ,∴∠BFH =90°,∠CFE =45°,∵BC ⊥CA ,BC =CA ,∴△ABC 是等腰直角三角形,∴∠CAB =45°,∴∠CFE =∠CAB .【点睛】角的和差、对顶角的性质这些知识点在证明全等和垂直过程中经常会遇到,需要掌握。

中考数学专题模型—【专题12】几何图形的旋转模型研究(学生版+教师版)

中考数学专题模型—【专题12】几何图形的旋转模型研究(学生版+教师版)

【专题12】几何图形的旋转模型研究【回归概念】旋转变换是由一个图形改变为另一个图形,在改变过程中,原图上所有的点都绕一个固定的点换同一方向,转动同一个角度。

旋转模型主要体现在以下几个情况:【规律探寻】1.共顶点旋转模型(证明基本思想“SAS”)2.利用旋转思想构造辅助线(1)根据相等的边先找出被旋转的三角形(2)根据对应边找出旋转角度(3)根据旋转角度画出对应的旋转的三角形3.旋转变换前后具有以下性质:(1)对应线段相等,对应角相等(2)对应点位置的排列次序相同(3)任意两条对应线段所在直线的夹角都等于旋转角 .4.旋转变换还用于处理:①几何最值问题:几何最值两个重要公理依据是:两点之间线段最短和垂线段最短;②有关线段的不等关系;③自己构造绕某点旋转某角度(特别是60度),把共顶点的几条线段变为首尾相接的几条线段,再变为共线取得最小值问题,计算中常用到等腰三角形或勾股定理等知识。

【典例解析】【例题1】(2019•湖北省随州市•3分)如图,在平面直角坐标系中,Rt△ABC的直角顶点C的坐标为(1,0),点A在x轴正半轴上,且AC=2.将△ABC先绕点C逆时针旋转90°,再向左平移3个单位,则变换后点A的对应点的坐标为______.【例题2】(2019•浙江绍兴•12分)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.【例题3】(2018•自贡)如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC的数量关系,并说明理由;(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段OD、OE与OC之间又有怎样的数量关系?请写出你的猜想,不需证明.【达标检测】1. (2018海南)(3.00分)如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.6 B.8 C.10 D.122. (2017山东泰安)如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30°B.60° C.90° D.120°3. (2019•湖北省荆门市•3分)如图,Rt△OCB的斜边在y轴上,OC=3,含30°角的顶点与原点重合,直角顶点C在第二象限,将Rt△OCB绕原点顺时针旋转120°后得到△OC′B',则B点的对应点B′的坐标是()A3,﹣1)B.(13)C.(2,0)D3,0)4. 如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF 中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C. D.5.(2019浙江丽水3分)将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕.若正方形EFGH与五边形MCNGF的面积相等,则的值是()A.522B.2﹣1 C.D.226. (2019•湖南常德•3分)如图,已知△ABC是等腰三角形,AB=AC,∠BAC=45°,点D在AC边上,将△ABD绕点A逆时针旋转45°得到△ACD′,且点D′、D、B三点在同一条直线上,则∠ABD的度数是.7. (2019•湖南益阳•4分)在如图所示的方格纸(1格长为1个单位长度)中,△ABC的顶点都在格点上,将△ABC绕点O按顺时针方向旋转得到△A'B'C',使各顶点仍在格点上,则其旋转角的度数是.8. (2019•海南省•4分)如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连结EF.若AB=3,AC=2,且α+β=∠B,则EF=.9. (2019,山西,3分)如图,在△ABC中,∠BAC=90°,AB=AC=10cm,点D为△ABC内一点,∠BAD=15°,AD=6cm,连接BD,将△ABD绕点A逆时针方向旋转,使AB与AC重合,点D的对应点E,连接DE,DE 交AC于点F,则CF的长为 cm.10. (2019•广西北部湾•8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,-1)、B(1,-2)、C(3,-3).(1)将△ABC向上平移4个单位长度得到△A1B1C1,请画出△A1B1C1;(2)请画出△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.11. (2018•宁波)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.14,点D,E分别在边12. (2019•浙江丽水•12分)如图,在等腰Rt△ABC中,∠ACB=90°,AB=2AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO.(2)已知点G为AF的中点.①如图2,若AD=BD,CE=2,求DG的长.②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.【参考答案】【典例解析】【例题1】(2019•湖北省随州市•3分)如图,在平面直角坐标系中,Rt△ABC的直角顶点C的坐标为(1,0),点A在x轴正半轴上,且AC=2.将△ABC先绕点C逆时针旋转90°,再向左平移3个单位,则变换后点A的对应点的坐标为______.【答案】(-2,2)【解析】解:∵点C的坐标为(1,0),AC=2,∴点A的坐标为(3,0),如图所示,将Rt△ABC先绕点C逆时针旋转90°,则点A′的坐标为(1,2),再向左平移3个单位长度,则变换后点A′的对应点坐标为(-2,2),故答案为:(-2,2).根据旋转变换的性质得到旋转变换后点A的对应点坐标,根据平移的性质解答即可.本题考查的是坐标与图形变化旋转和平移,掌握旋转变换、平移变换的性质是解题的关键.【例题2】(2019•浙江绍兴•12分)如图1是实验室中的一种摆动装置,BC在地面上,支架ABC是底边为BC的等腰直角三角形,摆动臂AD可绕点A旋转,摆动臂DM可绕点D旋转,AD=30,DM=10.(1)在旋转过程中,①当A,D,M三点在同一直线上时,求AM的长.②当A,D,M三点为同一直角三角形的顶点时,求AM的长.(2)若摆动臂AD顺时针旋转90°,点D的位置由△ABC外的点D1转到其内的点D2处,连结D1D2,如图2,此时∠AD2C=135°,CD2=60,求BD2的长.【分析】(1)①分两种情形分别求解即可.②显然∠MAD不能为直角.当∠AMD为直角时,根据AM2=AD2﹣DM2,计算即可,当∠ADM=90°时,根据AM2=AD2+DM2,计算即可.(2)连接CD.首先利用勾股定理求出CD1,再利用全等三角形的性质证明BD2=CD1即可.【解答】解:(1)①AM=AD+DM=40,或AM=AD﹣DM=20.②显然∠MAD不能为直角.当∠AMD为直角时,AM2=AD2﹣DM2=302﹣102=800,∴AM=202或(﹣202舍弃).当∠ADM=90°时,AM2=AD2+DM2=302+102=1000,∴AM=1010或(﹣1010舍弃).综上所述,满足条件的AM的值为202或1010.(2)如图2中,连接CD.由题意:∠D1AD2=90°,AD1=AD2=30,∴∠AD2D1=45°,D1D2=302,∵∠AD2C=135°,∴∠CD2D1=90°,∴CD1==6,∵∠BAC=∠A1AD2=90°,∴∠BAC﹣∠CAD2=∠D2AD1﹣∠CAD2,∴∠BAD1=∠CAD2,∵AB=AC,AD2=AD1,∴△BAD2≌△CAD1(SAS),∴BD2=CD1=6.【点评】本题属于四边形综合题,考查了等腰直角三角形的性质,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.【例题3】(2018•自贡)如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC的数量关系,并说明理由;(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段OD、OE与OC之间又有怎样的数量关系?请写出你的猜想,不需证明.【分析】(1)先判断出∠OCE=60°,再利用特殊角的三角函数得出OD=OC,同OE=OC,即可得出结论;(2)同(1)的方法得OF+OG=OC,再判断出△CFD≌△CGE,得出DF=EG,最后等量代换即可得出结论;(3)同(2)的方法即可得出结论.【解答】解:(1)∵OM是∠AOB的角平分线,∴∠AOC=∠BOC=∠AOB=30°,∵CD⊥OA,∴∠ODC=90°,∴∠OCD=60°,∴∠OCE=∠DCE﹣∠OCD=60°,在Rt△OCD中,OD=OC•cos30°=OC,同理:OE=OC,∴OD+OE=OC;(2)(1)中结论仍然成立,理由:过点C作CF⊥OA于F,CG⊥OB于G,∴∠OFC=∠OGC=90°,∵∠AOB=60°,∴∠FCG=120°,同(1)的方法得,OF=OC,OG=OC,∴OF+OG=OC,∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG,∵∠DCE=120°,∠FCG=120°,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=OD+DF=OD+EG,OG=OE﹣EG,∴OF+OG=OD+EG+OE﹣EG=OD+OE,∴OD+OE=OC;(3)(1)中结论不成立,结论为:OE﹣OD=OC,理由:过点C作CF⊥OA于F,CG⊥OB于G,∴∠OFC=∠OGC=90°,∵∠AOB=60°,∴∠FCG=120°,同(1)的方法得,OF=OC,OG=OC,∴OF+OG=OC,∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG,∵∠DCE=120°,∠FCG=120°,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=DF﹣OD=EG﹣OD,OG=OE﹣EG,∴OF+OG=EG﹣OD+OE﹣EG=OE﹣OD,∴OE﹣OD=OC.【达标检测】1. (2018海南)(3.00分)如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.6 B.8 C.10 D.12【分析】根据旋转的性质得出AC=AC1,∠BAC1=90°,进而利用勾股定理解答即可.【解答】解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1,∠CAC1=90°,∵AB=8,AC=6,∠BAC=30°,∴∠BAC1=90°,AB=8,AC1=6,∴在Rt△BAC1中,BC1的长=,故选:C.2. (2017山东泰安)如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30° B.60° C.90° D.120°【分析】根据题意确定旋转中心后即可确定旋转角的大小.【解答】解:如图:显然,旋转角为90°,故选C.3. (2019•湖北省荆门市•3分)如图,Rt△OCB的斜边在y轴上,OC3,含30°角的顶点与原点重合,直角顶点C在第二象限,将Rt△OCB绕原点顺时针旋转120°后得到△OC′B',则B点的对应点B′的坐标是()A.(3,﹣1)B.(1,﹣3)C.(2,0)D.(3,0)【分析】如图,利用含30度的直角三角形三边的关系得到BC=1,再利用旋转的性质得到OC′=OC =3,B′C′=BC=1,∠B′C′O=∠BCO=90°,然后利用第四象限点的坐标特征写出点B′的坐标.【解答】解:如图,在Rt△OCB中,∵∠BOC=30°,∴BC=33OC=33×3=1,∵Rt△OCB绕原点顺时针旋转120°后得到△OC′B',∴OC′=OC=3,B′C′=BC=1,∠B′C′O=∠BCO=90°,∴点B′的坐标为(3,﹣1).故选:A.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.4. 如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard point)是法国数学家和数学教育家克洛尔(A.L.Crelle 1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard 1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF 中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=()A.5 B.4 C.D.【分析】由△DQF∽△FQE,推出===,由此求出EQ、FQ即可解决问题.【解答】解:如图,在等腰直角三角形△DEF中,∠EDF=90°,DE=DF,∠1=∠2=∠3,∵∠1+∠QEF=∠3+∠DFQ=45°,∴∠QEF=∠DFQ,∵∠2=∠3,∴△DQF∽△FQE,∴===,∵DQ=1,∴FQ=,EQ=2,∴EQ+FQ=2+,故选D【点评】1.应用旋转解决几何问题时:(1)抓住旋转中的“变”与“不变”;(2)找准旋转前后的对应点和对应线段、旋转角等;(3)充分利用旋转过程中线段、角之间的关系.2.当旋转方向没有确定时,需要分类,即分逆时针和顺时针两种情况讨论.5. (2019浙江丽水3分)将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕.若正方形EFGH与五边形MCNGF的面积相等,则的值是()A.522- B .2﹣1 C . D .22【分析】连接HF ,设直线MH 与AD 边的交点为P ,根据剪纸的过程以及折叠的性质得PH =MF 且正方形EFGH 的面积=×正方形ABCD 的面积,从而用a 分别表示出线段GF 和线段MF 的长即可求解.【解答】解:连接HF ,设直线MH 与AD 边的交点为P ,如图:由折叠可知点P 、H 、F 、M 四点共线,且PH =MF ,设正方形ABCD 的边长为2a ,则正方形ABCD 的面积为4a 2,∵若正方形EFGH 与五边形MCNGF 的面积相等∴由折叠可知正方形EFGH 的面积=15×正方形ABCD 的面积=245a , ∴正方形EFGH 的边长GF =245a =255a ∴HF=2GF =2105a ∴MF=PH =210252a a -=5105a - ∴510-2552- 故选:A .【点评】本题主要考查了剪纸问题、正方形的性质以及折叠的性质,由剪纸的过程得到图形中边的关系是解题关键.6. (2019•湖南常德•3分)如图,已知△ABC 是等腰三角形,AB =AC ,∠BAC=45°,点D 在AC 边上,将△ABD 绕点A 逆时针旋转45°得到△ACD′,且点D′、D 、B 三点在同一条直线上,则∠ABD 的度数是 .【考点】旋转.【分析】由旋转的性质可得∠BAC=∠CAD'=45°,AD=AD',由等腰三角形的性质可得∠AD'D=67.5°,∠D'AB=90°,即可求∠ABD的度数.【解答】解:∵将△ABD绕点A逆时针旋转45°得到△ACD′,∴∠BAC=∠CAD'=45°,AD=AD',∴∠AD'D=67.5°,∠D'AB=90°,∴∠ABD=22.5°.故答案为22.5°.【点评】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.7. (2019•湖南益阳•4分)在如图所示的方格纸(1格长为1个单位长度)中,△ABC的顶点都在格点上,将△ABC绕点O按顺时针方向旋转得到△A'B'C',使各顶点仍在格点上,则其旋转角的度数是.【考点】旋转.【分析】根据旋转角的概念找到∠BOB′是旋转角,从图形中可求出其度数.【解答】解:根据旋转角的概念:对应点与旋转中心连线的夹角,可知∠BOB′是旋转角,且∠BOB′=90°,故答案为90°.【点评】本题主要考查了旋转角的概念,解题的关键是根据旋转角的概念找到旋转角.8. (2019•海南省•4分)如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连结EF.若AB=3,AC=2,且α+β=∠B,则EF=.【分析】由旋转的性质可得AE =AB =3,AC =AF =2,由勾股定理可求EF 的长.【解答】解:由旋转的性质可得AE =AB =3,AC =AF =2,∵∠B+∠BAC =90°,且α+β=∠B ,∴∠BAC+α+β=90°∴∠EAF =90°∴EF == 故答案为: 【点评】本题考查了旋转的性质,勾股定理,灵活运用旋转的性质是本题的关键.9. (2019,山西,3分)如图,在△ABC 中,∠BAC=90°,AB=AC=10cm ,点D 为△ABC 内一点,∠BAD=15°,AD=6cm ,连接BD ,将△ABD 绕点A 逆时针方向旋转,使AB 与AC 重合,点D 的对应点E ,连接DE ,DE 交AC 于点F ,则CF 的长为 cm.【解析】过点A 作AG⊥DE 于点G ,由旋转可知:AD=AE ,∠DAE=90°,∠CAE=∠BAD=15° ∴∠AED=45°;在△AEF 中:∠AFD=∠AED+∠CAE=60°在Rt△ADG 中:AG=DG=232=AD 在Rt△AF G 中:622,63====FG AF AG GF ∴6210-=-=AF AC CF故答案为:6210-10. (2019•广西北部湾•8分)如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别是A (2,-1)、B (1,-2)、C (3,-3).(1)将△ABC 向上平移4个单位长度得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)请画出△ABC关于y轴对称的△A2B2C2;(3)请写出A1、A2的坐标.【答案】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)A1(2,3),A2(-2,-1).【解析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用轴对称的性质得出对应点位置进而得出答案;(3)利用所画图象得出对应点坐标.此题主要考查了轴对称变换以及平移变换,正确得出对应点位置是解题关键.11. (2018•宁波)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.【分析】(1)由题意可知:CD=CE,∠DCE=90°,由于∠ACB=90°,所以∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,所以∠ACD=∠BCE,从而可证明△ACD≌△BCE(SAS)(2)由△ACD≌△BCE(SAS)可知:∠A=∠CBE=45°,BE=BF,从而可求出∠BEF的度数.【解答】解:(1)由题意可知:CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,在△ACD与△BCE中,∴△ACD≌△BCE(SAS)(2)∵∠ACB=90°,AC=BC,∴∠A=45°,由(1)可知:∠A=∠CBE=45°,∵AD=BF,∴BE=BF,∴∠BEF=67.5°【点评】图形在旋转过程中,图中的每一个点与旋转中心的连线都绕着旋转中心转动了相同的角度,对应线段相等,对应角相等.在利用此性质解决问题时,应充分寻找对应线段、对应角.14,点D,E分别在边12. (2019•浙江丽水•12分)如图,在等腰Rt△ABC中,∠ACB=90°,AB=2AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF.(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O.求证:BD=2DO.(2)已知点G为AF的中点.①如图2,若AD=BD,CE=2,求DG的长.②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由.【考点】三角形综合.【分析】(1)如图1中,首先证明CD=BD=AD,再证明四边形ADFC是平行四边形即可解决问题.(2)①作DT⊥BC于点T,FH⊥BC于H.证明DG是△ABF的中位线,想办法求出BF即可解决问题.②分三种情形情形:如图3﹣1中,当∠DEG=90°时,F,E,G,A共线,作DT⊥BC于点T,FH⊥BC 于H.设EC=x.构建方程解决问题即可.如图3﹣2中,当∠EDG=90°时,取AB的中点O,连接OG.作EH⊥AB于H.构建方程解决问题即可.如图3﹣3中,当∠DGE=90°时,构造相似三角形,利用相似三角形的性质构建方程解决问题即可.【解答】(1)证明:如图1,∵CA=CB,∠ACB=90°,BD=AD,∴CD⊥AB,CD=AD=BD,∵CD=CF,∴AD=CF,∵∠ADC=∠DCF=90°,∴AD∥CF,∴四边形ADFC是平行四边形,∴OD=OC,∴BD=2OD.(2)①解:如图2,作DT⊥BC于点T,FH⊥BC于H.由题意:BD=AD=CD=2,BC2BD=14,∵DT⊥BC,∴BT=TC=7,∵EC=2,∴TE=5,∵∠DTE=∠EHF=∠DEF=90°,∴∠DET+∠TDE=90°,∠DET+∠FEH=90°,∴∠TDE=∠FEH,∵ED=EF ,∴△DTE≌△EHF(AAS),∴FH=ET =5,∵∠DDBE=∠DFE=45°,∴B,D ,E ,F 四点共圆,∴∠DBF+∠DEF=90°,∴∠DBF=90°,∵∠DBE=45°,∴∠FBH=45°,∵∠BHF=90°,∴∠HBF=∠HFB=45°,∴BH=FH =5,∴BF=52, ∵∠ADC=∠ABF=90°,∴DG∥BF, ∵AD=DB ,∴AG=GF ,∴DG=12BF =522. ②解:如图3﹣1中,当∠DEG=90°时,F ,E ,G ,A 共线,作DT⊥BC 于点T ,FH⊥BC 于H .设EC =x .∵AD=6BD ,∴BD=AB =22,∵DT⊥BC,∠DBT=45°,∴DT=BT =2,∵△DTE≌△EHF,∴EH=DT =2,∴BH=FH =12-x ,∵FH∥AC,∴=,∴14122x x -=, 整理得:x 2-12x+28=0,解得x 2. 如图3﹣2中,当∠EDG=90°时,取AB 的中点O ,连接OG .作EH⊥AB 于H .设EC =x ,由2①可知BF 2 (12-x),OG =12BF 2 (12-x),∵∠EHD=∠EDG=∠DOG=90°,∴∠ODG+∠OGD=90°,∠ODG+∠EDH=90°,∴∠DGO=∠HDE,∴△EHD∽△DOG,∴=,∴=,整理得:x2-36x+268=0,解得x=18-2或18+2(舍弃),如图3﹣3中,当∠DGE=90°时,取AB的中点O,连接OG,CG,作DT⊥BC于T,FH⊥BC于H,EK⊥CG 于K.设EC=x.∵∠DBE=∠DFE=45°,∴D,B,F,E四点共圆,∴∠DBF+∠DEF=90°,∵∠DEF=90°,∴∠DBF=90°,∵AO=OB,AG=GF,∴OG∥BF,∴∠AOG=∠ABF=90°,∴OG⊥AB,∵OG垂直平分线段AB,∵CA=CB,∴O,G,C共线,由△DTE≌△EHF,可得EH=DT=BT=2,ET=FH=12-x,BF=2 (12-x),OG=BF=22(12-x),CK=EK=22x,GK=72-22(12-x)-22x,由△OGD∽△KEG,可得=,∴=,解得x=2.综上所述,满足条件的EC的值为2或18-142.【点评】本题属于几何变换综合题,考查了等腰直角三角形的性质,平行四边形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.。

全等三角形基本模型一、旋转型(手拉手型)

全等三角形基本模型一、旋转型(手拉手型)

全等三角形基本模型一、旋转型(手拉手型)本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March全等三角形基本模型一、旋转型(手拉手型)1.如图,在△ABC 中,AB =m ,AC =n ,以BC 为边向外作正方形BCDE ,连接AE ,则AE 的最大值为 .DCE B A【解答】将△ABE 绕点B 逆时针旋转90°得到△FBC ,连接AF ,FAB E CD则AE =FC ,△ABF 是等腰直角三角形,∴AE =FC ≤AF +ACm +n .2.如图,△ABC 是直角三角形,△ABD 是等腰直角三角形,∠ACB =∠ADB =90°,连接CD ,若AC =6,BC =8,则CD 的长为 .DCBA【解答】作DE ⊥CD 交BC 于点E ,EA B CD可证△ACD ≌△BED (ASA ),∴BE =AC =6,∴CE =2,△DCE 是等腰直角三角形,∴CDCE. 3.如图,正方形ABCD 中,O 是对角线BD 的中点,O 是正方形内一点,∠BEC =90°,作DF ⊥EC 于F ,连接OE 、OF ,求证:△OEF 是等腰直角三角形.FOEDC B A【解答】连接OC ,A B C DEOF∵四边形ABCD 是正方形,∴OB =OC ,∠BOC =90°∵∠BEC =90°,∴∠OBE =∠OCF ,可证△BCE ≌△CDF (AAS ),∴BE =CF ∴△OBE ≌△OCF (SAS ),∴OE =OF ,∠BOE =∠COF∴∠EOF =∠BOC =90°,∴△OEF 是等腰直角三角形4.如图,在Rt △ABC 中,∠ACB =90°,AC =BC ,AD 平分∠BAC 交BC 于D ,若△ABD 的面积为9,则AD 的长为 .D C B A【解答】延长AC 至E ,使CE =CD ,连接BE ,E H ABCD则△ACD ≌△BCE (SAS )∴AD =BE ,∠CAD =∠CBE延长AD 交BE 于H ,∵∠ADC =∠BDH ,∴∠BHD =∠ACD =90°∴△ABH ≌△AEH (ASA ),∴BH =EH =12BE =AD∴S △ABD =12AD ·BH =12AD ·12AD =14AD 2=9,∴AD =65.如图,在等边△ABC 中,AD ⊥BC 于D ,点E 、F 分别在线段AD 、AC 上,∠BEF =120°(1)求证:BE =EF ;(2)猜想线段AB 、AE 、AF 三者之间的数量关系,说明理由.FED C B A【解答】(1)延长AB 至G ,使BG =AF ,连接EG 、EC ,G HABC D EF∵△ABC 是等边三角形,AD ⊥BC ,∴BD =CD∴BE =CE ,∴∠EBC =∠ECB ,∴∠ABE =∠ECF在四边形ABEF 中,∵∠BAF =60°,∠BEF =120°∴∠ABE +∠EFC ,∴CE =EF ,∴BE =EF(2)猜想:AB +AF,作EH ⊥AB 于H∵∠ABE +∠AFE =180°,∠ABE +∠GBE =180°,∴∠AFE =∠GBE又∵BG =AF ,BE =EF ,∴△AEF ≌△GEB ,∴AE =EG ,∴AH =GHAE ∴AG =AH=,∴AB +BG,∴AB +AF6.如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,D 为△ABC 外一点,∠ADC =45°,若CD =6,则△BCD 的面积为 .DC B A【解答】过点A 作AE ⊥AD 交DC 的延长线于点 E ,连接BE ,AB CDE∵∠ADC =45°,∴∠AEC =45°,∴AD =AE ,∵∠EAD =∠BAC =90°,∴∠CAD =∠BAE ,又∵AB =AC ,∴△ABE ≌△ACD ,∴BE =CD =6,∠AEB =∠ADC =45°∴∠BED =90°,∴S △BCD =12CD ·BE =12×6×6=187.如图,△ABC 和△DEC 都是等腰直角三角形,∠ACB =∠DCE =90°,连接BE 并延长交AD 于F ,连接CF .(1)求证:BF ⊥AD ;(2)求∠CFD 的度数.D E FB A【解答】∵△ABC 和△DEC 都是等腰直角三角形,∠ACB =∠DCE =90° ∴AC =BC ,DC =EC ,∴△ACD ≌△BCE ,∴∠CAD =∠CBE∵∠AEF =∠BEC ,∴∠AFE =∠ACB =90°,∴BF =AD(2)过点C 作CG ⊥CF 交BF 于G ,G AB FE D∵∠ACB =90°,∴∠ACF =∠BCG又∵AC =BC ,∠CAF =∠CBG ,∴△ACF ≌△BCG ,∴CF =CG∴∠CFG =∠CGF =45°,∵BF ⊥AD ,∴∠CFD =45°8.如图,在等边△ABC 中,D 为AB 的中点,E 为射线BC 上一点,连接DE ,以DE 为边向右作等边△DEF ,连接FC ,求证:FC =FE .E FDC B A【解答】在BC 上截取BG =BD ,连接DG 、FG ,AB DFE∵△ABC 是等边三角形,∴∠B =60°∴△BDG 是等边三角形,∴DB =DG ,∠BDG =∠BGD =60°∵△DEF 是等边三角形,∴DE =DF ,∠EDF =60°∴∠BDE =∠GDF ,∴△BDE ≌△GDF (SAS ),∴∠DGF =∠B =60° ∴∠CGF =60°,∴△DFG ≌△CFG (SAS ),∴FC =FD =FE9.如图,在五边形ABCDE 中,∠ABC =∠CDE =∠DEB =90°,AB =BC ,CD =DE ,若BD =4,则五边形ABCDE 的面积为 .EDC B A【解答】连接EC ,过点B 作BF ⊥BE 交EC 的延长线于点F ,F AB CDE∵∠CDE =90°,CD =DE ,∴∠DEC =∠DCE =45°∵∠DEB =90°,∴∠BEF =45°,∴∠F =45°,∴BE =BF ,∵∠ABC =∠EBF =90°,∴∠ABE =∠CBF ,又∵AB =BC ,∴△ABE ≌△CBF∴S △ABE =S △CBF ,∴S 五边形ABCDE =S △BEF +S △DEC =12BE 2+12DE 2=12BD 2=810.如图,在△ABC 中,AB =AC ,AD ⊥AC 交BC 于D ,点E 为AB 上一点,DE =BD ,连接CE ,求证:∠DEC =90°.C EAB【解答】将△ADC 绕点A 逆时针旋转至△AFB ,连接FD ,FB AED C则AF =AD ,BF =CD ,∠BAF =∠CAD =90°,∠ABF =∠ACD∴∠DAF =∠BAC ,∵AB =AC ,∴∠AFD =∠ADF =∠ABD∴∠BDF =∠BAF =90°,∵AB =AC ,∴∠ABD =∠ACD∴∠ABF =∠ABD ,∴∠FBD =2∠ABD ,∵DE =BD ,∴∠ABD =∠BED ∴∠CDE =2∠ABD ,∴∠FBD =∠CDE ,∴△FBD ≌△CDE (SAS ) ∴∠DEC =∠BDF =90°。

数学全等三角形旋转模型(讲义及答案)附解析

数学全等三角形旋转模型(讲义及答案)附解析

数学全等三角形旋转模型(讲义及答案)附解析一、全等三角形旋转模型1.已知OP平分∠AOB,∠DCE的顶点C在射线OP上,射线CD交射线OA于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.答案:C解析:(1)CF=CG;(2)CF=CG,见解析【分析】(1)结论CF=CG,由角平分线性质定理即可判断.(2)结论:CF=CG,作CM⊥OA于M,CN⊥OB于N,证明△CMF≌△CNG,利用全等三角形的性质即可解决问题.【详解】解:(1)结论:CF=CG;证明:∵OP平分∠AOB,CF⊥OA,CG⊥OB,∴CF=CG(角平分线上的点到角两边的距离相等);(2)CF=CG.理由如下:如图,过点C作CM⊥OA,CN⊥OB,∵OP平分∠AOB,CM⊥OA,CN⊥OB,∠AOB=120º,∴CM=CN(角平分线上的点到角两边的距离相等),∴∠AOC=∠BOC=60º(角平分线的性质),∵∠DCE=∠AOC,∴∠AOC=∠BOC=∠DCE=60º,∴∠MCO=90º-60º =30º,∠NCO=90º-60º =30º, ∴∠MCN=30º+30º=60º, ∴∠MCN=∠DCE ,∵∠MCF=∠MCN-∠DCN ,∠NCG=∠DCE-∠DCN , ∴∠MCF=∠NCG , 在△MCF 和△NCG 中,CMF CNG CM CNMCF NCG ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MCF ≌△NCG (ASA ), ∴CF=CG (全等三角形对应边相等); 【点睛】本题考查三角形综合题、角平分线的性质、全等三角形的判定和性质,解题的关键是掌握角平分线的性质的应用,熟练证明三角形全等 .2.我们定义:有一组对角为直角的四边形叫做“对直角四边形”.(1)如图①,四边形ABCD 为对直角四边形,∠B=90°,若AB 2-AD 2=4,求CD 2-BC 2的值; (2)如图②,四边形ABCD 中,∠ABC=90°,AB=BC ,若BD 平分∠ADC ,求证:四边形ABCD 为对直角四边形;(3)在(2)的条件下,如图③,连结AC ,若35ACD ABCS S=,求tan ∠ACD 的值.答案:A解析:⑴ 4;⑵见解析 ;⑶tan ∠ACD 的值为3或13. 【分析】(1)利用勾股定理即可解决问题;(2)如图②中,作BE ⊥CD 于E ,BF ⊥DA 交DA 的延长线于F .只要证明∠EBF=90°即可解决问题;(3)如图③中,设AD=x ,BD=y .根据35ACD ABCSS=,构建方程即可解决问题. 【详解】解:如图①中,∵四边形ABCD为对直角四边形,∠B=90°,∴∠D=∠B=90°,∴AC2=AB2+BC2=AD2+DC2,∴CD2-BC2=AB2-AD2=4.(2)证明:如图②中,作BE⊥CD于E,BF⊥DA交DA的延长线于F.∵BD平分∠ADC,BE⊥CD,BF⊥AD,∴BE=BF,∵∠BFA=∠BEC=90°,BA=BC,BF=BE,∴Rt△BFA≌Rt△BEC(HL),∴∠ABF=∠CBE,∴∠EBF=∠ABC=90°,∴ADC=360°-90°-90°-90°=90°,∵∠ABC=∠ADC=90°,∴四边形ABCD为对直角四边形.(3)解:如图③中,设AD=x,BD=y.∵∠ADC=90°,∴tan ∠ACD=xy,AC=22x y +, ∵AB=AC ,∠ABC=90°, ∴AB=BC=22•22x y +, ∵35ACD ABCS S=, ∴()22132154xy x y =+, 整理得:3x 2-10xy+3y 2,∴3(x y )2-10•xy +3=0,∴x y =3或13. ∴tan ∠ACD 的值为3或13. 【点睛】本题属于四边形综合题,考查了勾股定理,三角形的面积,全等三角形的判定和性质,角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数,构建方程解决问题,属于中考压轴题.3.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.解析:(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论. 【详解】 解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点, //PM CE ∴,12PM CE =, AB AC =,AD AE =, BD CE ∴=, PM PN ∴=, //PN BD ,DPN ADC ∴∠=∠, //PM CE ,DPM DCA ∴∠=∠, 90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒, PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥; (2)PMN ∆是等腰直角三角形. 由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =,利用三角形的中位线得,12PN BD =,12PM CE =,PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE , DPM DCE ∴∠=∠,同(1)的方法得,//PN BD , PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠, MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠, 90BAC ∠=︒,90ACB ABC ∴∠+∠=︒, 90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大, //DE BC ∴且DE 在顶点A 上面, MN ∴最大AM AN =+, 连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒, 22AM ∴=在Rt ABC ∆中,10AB AC ==,52AN = 22522MN ∴=最大,222111149(72)22242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大, ∴点D 在BA 的延长线上, 14BD AB AD ∴=+=, 7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大.【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大. 4.问题提出:(1)如图1,在ABC 中,AB AC BC =≠,点D 和点A 在直线BC 的同侧,BD BC =,90BAC ∠=︒,30DBC ∠=︒,连接AD ,将ABD △绕点A 逆时针旋转90︒得到ACD ',连接BD '(如图2),可求出ADB ∠的度数为______. 问题探究:(2)如图3,在(1)的条件下,若BAC α∠=,DBC β∠=,且120αβ+=︒,DBC ABC ∠<∠ , ①求ADB ∠的度数.②过点A 作直线AE BD ⊥,交直线BD 于点E ,7,2BC AD ==.请求出线段BE 的长.答案:A解析:(1)30°;(2)①30︒;②73-【分析】(1)由旋转的性质,得△ABD ≌ACD '∆,则ADB AD C '∠=∠,然后证明BCD '∆是等边三角形,即可得到30ADB AD C '∠=∠=︒;(2)①将ABD △绕点A 逆时针旋转,使点B 与点C 重合,得到'ACD △,连接'BD .与(1)同理证明D BC '∆为等边三角形,然后利用全等三角形的判定和性质,即可得到答案;②由解直角三角形求出3DE =【详解】解:(1)根据题意,∵AB AC BC =≠,90BAC ∠=︒, ∴ABC ∆是等腰直角三角形, ∴45ABC ACB ∠=∠=︒, ∵30DBC ∠=︒, ∴15ABD ∠=︒,由旋转的性质,则△ABD ≌ACD '∆,∴ADB AD C '∠=∠,15ABD ACD '∠=∠=︒,BC CD '=, ∴60BCD '∠=︒, ∴BCD '∆是等边三角形, ∴60BD C '∠=︒,BD CD ''= ∵AB AC =,AD AD ''=, ∴ABD '∆≌ACD '∆, ∴30AD B AD C ''∠=∠=︒, ∴30ADB AD C '∠=∠=︒; (2)①DBC ABC ∠<∠,60120α︒︒∴<<.如图1,将ABD △绕点A 逆时针旋转,使点B 与点C 重合,得到'ACD △,连接'BD .AB AC =,ABC ACB ∴∠=∠, BAC α∠=,()111809022ABC αα︒︒∴∠=-=-,1902ABD ABC DBC αβ︒∴∠=∠-∠=--,119090180()22D CB ACD ACB αβααβ''︒︒︒∴∠=∠+∠=--+-=-+.120,αβ︒+=60D CB '︒∴∠=.,BD BC BD CD '==,,BC CD '∴=D BC '∴为等边三角形, D B D C ''∴=, AD B AD C ''∴≌, AD B AD C ''∴∠=∠,1302AD B BD C ''︒∴∠=∠=,30ADB ︒∴∠=.②如图2,由①知,30ADB ︒∠=,在Rt ADE △中,30,2ADB AD ︒∠==,3DE ∴=.BCD '是等边三角形, 7BD BC '∴==, 7BD BD '∴==,73BE BD DE ∴=-=-.【点睛】本题考查了解直角三角形,旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰直角三角形的性质,以及三角形的内角和定理,解题的关键是熟练掌握所学的知识,正确利用旋转模型进行解题.5.如图,已知ABC 和ADE 均为等腰三角形,AC =BC ,DE =AE ,将这两个三角形放置在一起. (1)问题发现:如图①,当60ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,则CEB ∠= °,线段BD 、CE 之间的数量关系是 ; (2)拓展探究:如图②,当90ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,请判断CEB ∠的度数及线段BD 、CE 之间的数量关系,并说明理由; (3)解决问题:如图③,90ACB AED ∠∠︒==,25AC =,AE =2,连接CE 、BD ,在AED 绕点A 旋转的过程中,当DE BD ⊥时,请直接写出EC 的长.答案:C解析:(1)60BD CE ,=;(2)452CEB BD CE ∠︒=,=,理由见解析;(3)CE 的长为2或2 【分析】(1)证明ACE ABD ≌,得出CE =BD ,AEC ADB ∠=∠,即可得出结论;(2)证明ACE ABD ∽,得出AEC ADB ∠=∠,BD =,即可得出结论;(3)先判断出BD =,再求出AB =:①当点E 在点D 上方时,先判断出四边形APDE 是矩形,求出AP =DP =AE =2,再根据勾股定理求出,BP =6,得出BD =4;②当点E 在点D 下方时,同①的方法得,AP =DP =AE =1,BP =6,进而得出BD =BP +DP =8,即可得出结论. 【详解】解:(1)ABC 为等腰三角形,60AC BC ACB ∠︒=,=,∴ABC 是等边三角形, 同理可得ADE 是等边三角形6018012060BAD DAC DAC CAE BAD CAEAD AE AB ACEAC DAB ACE ABD SAS BD CEAEC ADB ADE AEC AED CEB CEB ∠+∠=∠+∠=︒∴∠=∠=⎧⎪=⎨⎪∠∠⎩∴∴=∠=∠=︒-∠=︒∠=∠+∠∴∠=︒=≌()故答案为:60CEB BD CE ∠=︒=;. (2)45CEB BD ∠︒=,,理由如下: 在等腰三角形ABC 中,AC =BC ,90ACB ∠︒=,45AB CAB ∴∠︒,= ,同理,45AD ADE DAE ∠∠︒,==,∴AE ACAD AB=,DAE CAB ∠∠=, EAC DAB ∴∠∠=, ACE ABD ∴∽ ,∴BD ADCE AE==∴AEC ADB BD ∠∠=,,点B 、D 、E 在同一条直线上:180135ADB ADE ∴∠︒-∠︒==135AEC ∴∠︒=45CEB AEC AED ∴∠∠-∠︒==;(3)由(2)知,ACE ABD ∽, 2BD CE ∴=, 在Rt ABC 中,25AC =,2210AB AC ∴== ,①当点E 在点D 上方时,如图③,过点A 作AP BD ⊥交BD 的延长线于P ,DE BD ⊥,PDE AED APD ∴∠∠∠==,∴四边形APDE 是矩形,AE DE = ,∴矩形APDE 是正方形,2AP DP AE ∴===,在Rt APB △中,根据勾股定理得,226BP AB AP -==,4BD BP AP ∴-==,1222CE BD ∴==; ②当点E 在点D 下方时,如图④同①的方法得,AP =DP =AE =2,BP =6,∴BD =BP +DP =8,122CE BD ∴==4, 综上CE 的长为22或42.【点睛】本题是几何变换的综合题,主要考查了旋转的性质,全等三角形的判定和定理,相似三角形的判定和性质,勾股定理,等边三角形的性质,判断出三角形ACE 和三角形ABD 相似是关键.6.如图.四边形ABCD 、BEFG 均为正方形.(1)如图1,连接AG 、CE ,请直接写出.....AG 和CE 的数量和位置关系(不必证明).(2)将正方形BEFG 绕点B 顺时针旋转β角(0180β︒︒<<),如图2,直线AG 、CE 相交于点M .①AG 和CE 是否仍然满足(1)中的结论?如果是,请说明理由:如果不是,请举出反例:②连结MB ,求证:MB 平分AME ∠.(3)在(2)的条件下,过点A 作AN MB ⊥交MB 的延长线于点N ,请直接写出.....线段CM 与BN 的数量关系.答案:A解析:(1)AG=EC ,AG ⊥EC ;(2)①满足,理由见解析;②见解析;(3)2.【分析】(1)由正方形BEFG 与正方形ABCD ,利用正方形的性质得到两对边相等,一对直角相等,利用SAS 得出三角形ABG 与三角形CBE 全等,利用全等三角形的对应边相等,对应角相等得到CE=AG ,∠BCE=∠BAG ,再利用同角的余角相等即可得证;(2)①利用SAS 得出△ABG ≌△CEB 即可解决问题;②过B 作BP ⊥EC ,BH ⊥AM ,由全等三角形的面积相等得到两三角形面积相等,而AG=EC ,可得出BP=BH ,利用到角两边距离相等的点在角的平分线上得到BM 为角平分线;(3)在AN 上截取NQ=NB ,可得出三角形BNQ 为等腰直角三角形,利用等腰直角三角形的性质得到2BN ,接下来证明BQ=CM ,即要证明三角形ABQ 与三角形BCM 全等,利用同角的余角相等得到一对角相等,再由三角形ANM 为等腰直角三角形得到NA=NM ,利用等式的性质得到AQ=BM ,利用SAS 可得出全等,根据全等三角形的对应边相等即可得证.【详解】解:(1)AG=EC ,AG ⊥EC ,理由为:∵正方形BEFG ,正方形ABCD ,∴GB=BE ,∠ABG=90°,AB=BC ,∠ABC=90°,在△ABG 和△BEC 中,BG BE ABC EBC BA BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABG ≌△BEC (SAS ),∴CE=AG ,∠BCE=∠BAG ,延长CE 交AG 于点M ,∴∠BEC=∠AEM ,∴∠ABC=∠AME=90°,∴AG=EC ,AG ⊥EC ;(2)①满足,理由是:如图2中,设AM 交BC 于O .∵∠EBG=∠ABC=90°,∴∠ABG=∠EBC ,在△ABG 和△CEB 中,AB BC ABG CBE BG EB =⎧⎪∠=∠⎨⎪=⎩,∴△ABG ≌△CEB (SAS ),∴AG=EC ,∠BAG=∠BCE ,∵∠BAG+∠AOB=90°,∠AOB=∠COM ,∴∠BCE+∠COM=90°,∴∠OMC=90°,∴AG ⊥EC .②过B 作BP ⊥EC ,BH ⊥AM ,∵△ABG ≌△CEB ,∴S △ABG =S △EBC ,AG=EC , ∴12EC•BP=12AG•BH , ∴BP=BH ,∴MB 平分∠AME ;(3)CM=2BN ,理由为:在NA 上截取NQ=NB ,连接BQ ,∴△BNQ 为等腰直角三角形,即BQ=2BN ,∵∠AMN=45°,∠N=90°,∴△AMN 为等腰直角三角形,即AN=MN ,∴MN-BN=AN-NQ ,即AQ=BM ,∵∠MBC+∠ABN=90°,∠BAN+∠ABN=90°,∴∠MBC=∠BAN ,在△ABQ 和△BCM 中,AQ BM BAN MBC AB BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABQ ≌△BCM (SAS ),∴CM=BQ ,则CM=2BN .【点睛】此题考查了正方形,全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线的判定,熟练掌握正方形的性质是解本题的关键.7.如图,ABD △和ACE △都是等边三角形.(1)连接CD 、BE 交于点P ,求∠BPD ;(2)连接PA ,判断线段PA 、PB 、PD 之间的数量关系并证明;(3)如图,等腰ABC 中AB =AC ,∠BAC =α(0<α<90),在ABC 内有一点M ,连接MA 、MB 、MC .当MA +MB +MC 最小时,∠ABM = (用含α的式子表示)答案:D解析:(1)60BPD ∠=︒(2)PD PB PA =+,证明见详解(3)1602α︒-【分析】(1)证明()DAC BAE SAS ≅,得ADC ABE ∠=∠,就可以证明60BPD DAB ∠=∠=︒;(2)在DP 上截取PF=PB ,连接BF ,证明()DBF ABP SAS ≅,得DF PA =,即可证明PD PB PA =+;(3)分别以AB 和AC 为边,向两边作等边三角形ABD 和等边三角形ACE ,连接BE 和CD ,交于点M ,连接AM ,此时MA MB MC ++最小,然后利用等腰三角形ADC ,求出ADC ∠的度数,即可得到ABM ∠的度数.【详解】解:(1)∵ABD △和ACE △是等边三角形,∴AD AB =,AC AE =,60DAB CAE ∠=∠=︒,∵DAB BAC CAE BAC ∠+∠=∠+∠,∴DAC BAE ∠=∠,在DAC △和BAE △中,AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴()DAC BAE SAS ≅,∴ADC ABE ∠=∠,∵ADC DAB ABE BPD ∠+∠=∠+∠,∴60BPD DAB ∠=∠=︒;(2)如图,在DP 上截取PF=PB ,连接BF ,∵60BPD ∠=︒,PF PB =,∴PFB △是等边三角形,∴BF BP =,60FBP ∠=︒,∴DBA FBP ∠=∠,∵DBA FBA FBP FBA ∠-∠=∠-∠,∴DBF ABP ∠=∠,在DBF 和ABP △中,DB AB DBF ABP BF BP =⎧⎪∠=∠⎨⎪=⎩,∴()DBF ABP SAS ≅,∴DF PA =,∵PD PF FD =+,∴PD PB PA =+;(3)如图,分别以AB 和AC 为边,作等边三角形ABD 和等边三角形ACE ,连接BE 和CD ,交于点M ,连接AM ,此时MA MB MC ++最小,由(2)中的结论可得MD MA MB =+,则当D 、M 、C 三点共线时MA MB MC ++最小,即CD 的长,由(1)得ADC ABM ∠=∠,∵AD AB AC ==,60DAC α∠=︒+,∴()1806016022ADC αα︒-︒+∠==︒-, ∴1602ABM α∠=︒-,故答案是:1602α︒-.【点睛】本题考查全等三角形的性质和判定,等边三角形的性质,解题的关键是做辅助线构造全等三角形来进行证明求解.8.在等腰Rt ABC △中,AB AC =、90BAC ∠=︒.(1)如图1,D ,E 是等腰Rt ABC △斜边BC 上两动点,且45DAE ∠=︒,将ABE △绕点A 逆时针旋转90后,得到AFC △,连接DF .①求证:AED AFD ≌.②当3BE =,9CE =时,求DE 的长.(2)如图2,点D 是等腰Rt ABC △斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt ADE △(E 点在直线BC 的上方),当3BD =,9BC =时,求DE 的长.答案:D解析:(1)①证明见解析;②5;(2)35或317【分析】(1)①证明∠DAE=∠DAF=45°即可利用SAS 证明全等;②由①中全等可得DE=DF ,再在Rt △FDC 中利用勾股定理计算即可;(2)连接BE ,根据共顶点等腰直角三角形证明全等,再利用勾股定理计算即可。

著名机构七年级数学春季班讲义10全等三角形的判定及性质(教师)

著名机构七年级数学春季班讲义10全等三角形的判定及性质(教师)

全等三角形的判定及性质课时目标1. 理解全等三角形的概念及性质,并灵活运用;2. 掌握全等三角形的判定方法,并熟练应用于证明题.知识精要1. 全等形能够重合的两个图形叫做全等形.2. 全等三角形(1)两个三角形是全等形,就说它们是全等三角形.(2)两个全等三角形,经过运动后一定能够重合,相互重合的顶点叫做对应顶点;相互重合的边叫做对应边;相互重合的角叫做对应角.注:(1)全等三角形不一定是两个图形之间的关系,还可能是多个图形之间的关系. (2)全等图形也可以看作是把图形翻折,旋转、平移等变换而得到的图形;反过来说,两个全等图形经过这样的变换一定能够重合.3. 全等三角形的性质(1)全等三角形的对应边相等;(2)全等三角形的对应角相等;4. 确定三角形形状和大小的三个元素有四种情况(1)两角及夹边(2)两边及其夹角(3)三边(4)两角及其中一角的对边注:知道两边及其中一边的对角时,一般不能确定三角形的形状,大小.5. 全等三角形的判定判定1:在两个三角形中,如果有两条边及它们的夹角对应相等地,那么这两个三角形全等.(两边及其夹角对应相等的两个三角形全等SAS)判定2:在两个三角形中,如果有两个角及它们的夹边对应相等地,那么这两个三角形全等.(两角及其夹边对应相等的两个三角形全等ASA)判定3:在两个三角形中,如果有两个角及其中一个角的对边对应相等,那么这两个三角形全等(两角及其中一角的对边相等的两个三角形全等AAS)DBEDB判定4:在两个三角形中,如果有三条边对应相等,那么这两个三角形全等(三边对应相等的两个三角形全等SSS )热身练习1. AC 与BD 交于点O ,且AB ∥CD ,AO=CO ,OB=OD ,AB=CD. 求证:△ABD ≌△ACE. 证明:在△ABD 和△ACE 中,⎪⎩⎪⎨⎧===)()()(已知已知已知CD AB OD OB CO AO∴△ABD ≌△ACE (SSS )2. 已知△ABD ≌△ACE ,AD=3cm ,BD=1cm ,BC=6cm ,求△ADE 的周长. 解:∵△ABD ≌△ACE∴AE=AD=3cm ,CE=BD=1cm 又∵BC=6cm ∴DE=4cm ∴ADE C ∆=10cm3. 已知△ABC ≌△DBC ,如果∠ABC=72°,∠ACB=45° (1)求∠D 的度数. (2)求∠ABD 的度数. 解:∠A=180°-72°-45°=63°∵△ABC ≌△DBC∴∠D=∠A=63°(全等三角形的对应角相等) 同理:∠DBC=∠ACB=45° ∴∠ABD=72°-45°=27°4. 在水平桌面上放置了一块三角形木块,∠A=30°,∠B=90°,AC=2cm ,经过AECBDBEDBDCA运动后△ABC 到A B C '''∆的位置. (1)求ACB '∆的度数.(2)点A 的运动路线是什么图形?求出它的长度. 解:(1)60°(2)运动路线是圆弧:ππ342231=⋅⋅=l5. 已知AD=AE ,∠ADB=∠AEC ,BE=DC (1)试说明:△ABE ≌△ACD. (2)AB 与AC 相等吗?为什么? 证明: 在△ABE 和△ACD 中,⎪⎩⎪⎨⎧=∠=∠=DC BE AEC ADB AEAD∴△ABE ≌△ACD (SAS) ∴AB=AC(全等三角形的对应边相等)6. 已知AC ∥BE 且AC=BE ,点B 是AD 的中点,试说明△ABC ≌△BDF. 证明:∵AC ∥BE ∴∠A=∠EBD ∵AC=BE ,AB=BD ∴△ABC ≌△BDF (SAS )7. 已知AD=AE ,∠ADC=∠AEBCBDA (1)△ADC 和△AEB 全等吗?为什么? (2)BD 与CE 相等吗?为什么? 解:(1)△ADC ≌△AEB 全等, 证明略(ASA ) (2)∵△ADC ≌△AEB ∴AB=AC∴AB -AD=AC -AE即 BD=CE精解名题例1 △ABC ≌△DEF ,∠A=30°,∠B=50°,BF=2,求∠DFE 的度数与EC 的长.解:∵△ABC ≌△DEF∴∠DEF=∠ACB=180°-30°-50°=100° EC=BF=2例2 P 为∠AOB 的平分线OC 上任意一点,PE ⊥OA 于E ,PF ⊥OB 于F ,求证:OP 是EF 的垂直平分线. 证明:易证 △OEP ≌△OFP (AAS ) ∴OE=OF∴△OME ≌△OMF ∴EM=FM ,∠OME=90° ∴OP 是EF 的垂直平分线例3 在△ABC 中,∠A=2∠B ,CD 是∠ACB 的平分线,求证:BC=AC+AD. 证明:在BC 上截取EC=ACFBO∵CD 是∠ACB 的平分线 ∴∠DCB=∠DCA易证△DEC ≌△ACD (SAS ) ∴∠A=∠DEC=2∠B ,AD=DE ∴∠BDE=∠B ∴BE=DE=AD ∴BC=AC+AD例4 △ABC 是边长为1的等边三角形,△BDC 是顶角为∠BDC=120°的等腰三角形,以D 为顶点作一个60°,角的两边分别交AB 于M ,交AC 于N ,连结MN ,形面一个△AMN ,求△AMN 的周长. 解:延长NC 到L ,使CL=BM ,连接DL先证BDM DCL ≅V V (SAS ) DMN DLN ≅V V (SAS ) ∴MN NL NC CL NC BM ==+=+ ∴AMN C AM AN MN =++V AM BM AN NC =+++= 2巩固练习1. 如图,△ABC ≌△ DEF ,这两个三角形的对应边是 AB 与 AC , BC 与 DE , CA 与 FE .ACDBA(1题图)2. △ABC≌△DEF,那么∠A=∠D3. △ABC以点B为旋转中心,A旋转到E,CDA B D CB(3题图) (4题图)4. AD,BE,CF是△ABC的高,沿AD翻折,点F与点E,点B与点C重合,那么图中全等的三角形有( D )A. 3对B. 5对C. 6对D. 7对5. 给定一个三角形的六个元素中的下列条件画三角形,所画的三角形的大小形状可能不唯一确定的是( D )A. 两角及夹边B. 两角及其中一个角的对边C. 两边及夹角D. 两边及其中一条边的对角6. 下列判断错误的是( A )A. 全等三角形的所有边都相等B. 全等形的周长、面积一定对应相等C. 已知三角形的两条边及其中一条边的对角,所画的三角形不一定是唯一的D.确定一个三角形至少要有一个元素是边7. 下列判断中错误的是( C )A. 成轴对称的两个图形全等B. 成中心对称的两个图形全等C.两个正方形一定是全等形 D. 运动后能重合的两个三角形全等8. 已知△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,EEBAED CB求∠DFB 和∠DGB 的度数. 解:∠DFB =90°,∠DGB =65°9. 已知:△ABD ≌△ACE.求证:∠EBO ≌∠DCO. 证明:∵△ABD ≌△ACE ∴∠D=∠E ,DC=BE ∵∠DOC=∠BOE ∴∠EBO ≌∠DCO (AAS )10. 已知BE=CD ,∠ADE=∠AED ,∠B=∠C 解:∵BE=CD∴BD=EC ∵∠ADE=∠AED ∴∠ADB=∠AEC 又∵∠B=∠C∴△ABD ≌△ACE (ASA )自我测试1. 如图1,已知△ABC ≌ △CDA ,则对应边是 AB 和CD ,BC 和DA , AC 和CA , 对应角是 ∠ABC 和∠CDA ,∠BCA 和∠DAC , ∠BAC 和∠DCA .DC图2 图32. 已知ABC∆≌'''CBA∆,A与'A,B与'B是对应顶点,ABC∆的周长为10cm,AB =3cm,BC =4cm.则''BA= 3 cm,''CB= 4cm,''CA= 3 cm.3. 已知ABC∆≌DEF∆,A与D,B与E分别是对应顶点,︒=∠52A,︒=∠67B,BC =15cm,则F∠= 61°,FE = 15 cm.4. 填空题:(1)如图2,已知AC =DB,要使ABC∆≌DCB∆,需增加一个条件是AB=CD等. (2)如图3,已知ABC∆中,090=∠C,AM平分CAB∠,CM =20cm那么M到AB的距离是20cm.(3)如图4,AB =EB,∠1=∠2,∠ADE =120°,AE、BD相交于F,则∠3的度数为30°.(4)如图5,已知:∠1 =∠2,∠3 =∠4,要证BD =CD,需先证△AEB ≌△AEC,根据是ASA ,再证△BDE ≌△BCE ,根据是SAS .(5)如图6,AC⊥BC于C,DE⊥AC于E,AD⊥AB于A,BC =AE.若AB = 5,则AD = 5 .5. 如图,D在AB上,E在AC上,AB=AC,B=C∠∠,求证:AD=AE.证明:先证△AEB ≌△ADC(ASA)∴AD=AE(全等三角形的对应边相等)图1E图5 图6图4AACDFEAB6. 如图,DF=AE ,AE ⊥BC ,DF ⊥BC ,CE=BF.求证:∠A=∠D. 证明:先证△CDF ≌△BAE (SAS)∴∠A=∠D(全等三角形的对应角相等)7. 如图,已知:在梯形ABCD 中,AB//CD ,E 是BC 的中点,直线AE 与DC 的延长线交于点F. 求证:△ABE ≌△FCE. 证明:∵AB//CD∴∠FCE=∠B ,∠F=∠EAB 又E 是BC 的中点 ∴CE=BE∴△ABE ≌△FCE (AAS)8. 求证:△ABE ≌△FCE 如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D ,求证:BE=CD. 证明:∵BE ⊥CE ,AD ⊥CE ∴∠E=∠CDA=90°EFDCBA∴∠BCE+∠EBC=90°∵∠ACB=90°∴∠BCE+∠ACD=90°∴∠EBC=∠ACD∴△CBE≌△ACD(AAS)∴BE=CD(全等三角形的对应边相等)9. 已知,△ABC和△ECD都是等边三角形,且点B,C,D在一条直线上.求证:(1)△ACD≌△BCE (2)CF=CG (3)△FCG是等边三角形证明:(1)△ACD≌△BCE (SAS)(2)∵△ACD≌△BCE∴∠ADC=∠BEC∴△CDG≌△CEF(ASA)∴CF=CG(3)∵CF=CG,∠ACE=60°∴△FCG是等边三角形G F。

中考数学一轮复习全等三角形旋转模型知识归纳总结附解析

中考数学一轮复习全等三角形旋转模型知识归纳总结附解析

中考数学一轮复习全等三角形旋转模型知识归纳总结附解析一、全等三角形旋转模型1.(课题研究)旋转图形中对应线段所在直线的夹角(小于等于90°的角)与旋转角的关系.(问题初探)线段AB 绕点O 顺时针旋转得到线段CD ,其中点A 与点C 对应,点B 与点D 对应,旋转角的度数为α,且0°<α<180°.(1)如图①,当α=60°时,线段AB 、CD 所在直线夹角(锐角)为 ;(2)如图②,当90°<α<180°时,直线AB 与直线CD 所夹锐角与旋转角α存在怎样的数量关系?请说明理由;(形成结论)旋转图形中,当旋转角小于平角时,对应线段所在直线的夹角与旋转角 .(运用拓广)运用所形成的结论解决问题:(3)如图③,四边形ABCD 中,∠ABC =60°,∠ADC =30°,AB =BC ,CD =3,BD =19,求AD 的长.解析:(1)60°;(2)互补,理由见解析;【形成结论】相等或互补;(310【分析】(1)由旋转的性质可得AB CD =,OA OC =,BO DO =,可证()AOB COD SSS ,可得B D ∠=∠,由三角形内角和定理可求解;(2)由旋转的性质可得AB CD =,OA OC =,BO DO =,可证()AOBCOD SSS ,可得B D ∠=∠,由平角的定义和四边形内角和定理可求解; 【形成结论】由(1)(2)可知对应线段所在直线的所夹锐角角与旋转角:相等或互补;【运用拓广】(3)将BCD ∆绕点B 顺时针旋转60︒,得到BAF ∆,连接FD ,由旋转的性质可得BF BD =,3AF CD ==,由三角形内角和定理可求90FAD ∠=︒,由勾股定理可求解.【详解】解:(1)如图1,延长DC 交AB 于F ,交BO 于E ,α=︒,60∴∠=︒,60BOD线段AB绕点O顺时针旋转得线段CD,=,AB CD=,BO DO∴=,OA OCAOB COD SSS,()B D∴∠=∠,∠=∠,OED BEF,B DBFE EOD,60故答案为:60︒;(2)直线AB与直线CD所夹锐角角与旋转角α互补,理由如下:如图2,延长AB,DC交于点E,线段AB绕点O顺时针旋转得线段CD,=,=,BO DO∴=,OA OCAB CDAOB COD SSS,()ABO D,ABO EBO,180D EBO,180360EBO E D BOD,E BOD,180∴直线AB与直线CD所夹锐角角与旋转角α互补.形成结论由(1)(2)(3)可知:旋转图形中,当旋转角小于平角时,对应线段所在直线的所夹锐角角与旋转角:相等或互补.故答案为:相等或互补.运用拓广(3)如图3,将BCD ∆绕点B 顺时针旋转60︒,得到BAF ∆,连接FD ,延长FA ,DC 交于点E ,∴旋转角60ABC ∠=︒,BCD BAF ,60AED ABC ∴∠=∠=︒,3AF CD ==,BD BF =,30ADC ∠=︒,90FAD AED ADC ,又60FBD ABC ,BF BD =, BFD ∴∆是等边三角形,BF BD DF ,∴在Rt DAF 中,2219910ADDF AF .【点睛】本题是几何变换综合题,考查了旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质等知识,添加辅助线构造全等三角形是本题的关键.2.一位同学拿了两块45︒三角尺MNK ∆,ACB ∆做了一个探究活动:将MNK ∆的直角顶点M 放在ACB ∆的斜边AB 的中点处,设4AC BC ==.(1)如图1所示,两三角尺的重叠部分为ACM ∆,则重叠部分的面积为______,周长为______.(2)将如图1所示中的MNK ∆绕顶点M 逆时针旋转45︒,得到如图2所示,此时重叠部分的面积为______,周长为______.(3)如果将MNK ∆绕M 旋转到不同于如图1所示和如图2所示的图形,如图3所示,请你猜想此时重叠部分的面积为______.(4)在如图3所示情况下,若1AD =,求出重叠部分图形的周长.答案:A解析:(1)4,442+;(2)4,8;(3)4;(4)425+【分析】()1根据4AC BC ==,90ACB ∠=,得出AB 的值,再根据M 是AB 的中点,得出AM MC =,求出重叠部分的面积,再根据AM ,MC ,AC 的值即可求出周长;()2易得重叠部分是正方形,边长为12AC ,面积为214AC ,周长为2.AC ()3过点M 分别作AC 、BC 的垂线MH 、ME ,垂足为H 、.E 求得Rt MHD ≌Rt MEG ,则阴影部分的面积等于正方形CEMH 的面积. ()4先过点M 作ME BC ⊥于点E ,MH AC ⊥于点H ,根据DMH EMH ∠∠=,MH ME =,得出Rt DHM ≌Rt EMG ,从而得出HD GE =,CE AD =,最后根据AD 和DF 的值,算出DM =.【详解】解:()14AC BC ==,90ACB ∠=,AB ∴== M 是AB 的中点,AM ∴=45ACM ∠=,AM MC ∴=,∴4=, ∴周长为:44AM MC AC ++==+故答案为4,4+;()2重叠部分是正方形,∴边长为1422⨯=,面积为14444⨯⨯=, 周长为248⨯=.故答案为4,8.()3过点M 分别作AC 、BC 的垂线MH 、ME ,垂足为H 、E , M 是ABC 斜边AB 的中点,4AC BC ==,12MH BC ∴=, 12ME AC =, MH ME ∴=,又90NMK HME ∠∠==,90NMH HMK ∠∠∴+=,90EMG HMK ∠∠+=,HMD EMG ∠∠∴=,在MHD 和MEG 中,HMD GME MH MEDHM MEG ∠=∠⎧⎪=⎨⎪∠=∠⎩, MHD ∴≌()MEG ASA ,∴阴影部分的面积等于正方形CEMH 的面积, 正方形CEMH 的面积是1144422ME MH ⋅=⨯⨯⨯=; ∴阴影部分的面积是4; 故答案为4.()4如图所示, 过点M 作ME BC ⊥于点E ,MH AC ⊥于点H ,∴四边形MECH 是矩形,MH CE ∴=,45A ∠=,45AMH ∠∴=,AH MH ∴=,AH CE ∴=,在Rt DHM 和Rt GEM 中,DMH EMG MH MEDHM GEM ∠=∠⎧⎪=⎨⎪∠=∠⎩, Rt DHM ∴≌.Rt GEMGE DH ∴=,AH DH CE GE ∴-=-,CG AD ∴=,1AD =,1.DH ∴=145DM ∴=+=.∴四边形DMGC 的周长为:CE CD DM ME +++2AD CD DM =++425=+.【点睛】此题考查了等腰直角三角形,利用等腰直角三角形的性质,等腰直角三角形的面积公式,正方形的面积公式,全等三角形的判定和性质求解.3.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.解析:(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【分析】 (1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【详解】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点,//PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =, PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,22AM ∴=在Rt ABC ∆中,10AB AC ==,52AN =22522MN ∴=最大,222111149(72)22242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.4.△CDE 和△AOB 是两个等腰直角三角形,∠CDE =∠AOB =90°,DC =DE =1,OA =OB =a (a >1).(1)将△CDE 的顶点D 与点O 重合,连接AE ,BC ,取线段BC 的中点M ,连接OM . ①如图1,若CD ,DE 分别与OA ,OB 边重合,则线段OM 与AE 有怎样的数量关系?请直接写出你的结果;②如图2,若CD 在△AOB 内部,请你在图2中画出完整图形,判断OM 与AE 之间的数量关系是否有变化?写出你的猜想,并加以证明;③将△CDE 绕点O 任意转动,写出OM 的取值范围(用含a 式子表示);(2)是否存在边长最大的△AOB ,使△CDE 的三个顶点分别在△AOB 的三条边上(都不与顶点重合)?如果存在,请你画出此时的图形,并求出边长a 的值;如果不存在,请说明理由.答案:A解析:(1)①OM =12AE ;②OM =12AE ,证明详见解析;③12a -≤OM ≤12a +;(2)5【分析】(1)①利用△CDE ≌△AOB 得出BC =AE ,再由直角三角形斜边的中线等于斜边的一半求解.②作辅助线,利用△COF ≌△EOA 及三角形中位线得出OM =12AE . ③分两种情况,当OC 与OB 重合时OM 最大,当OC 在BO 的延长线上时OM 最小,据此求出OM 的取值范围.(2)分两种情况:当顶点D 在斜边AB 上时,设点C ,点E 分别在OB ,OA 上.由DM +OM ≥OF 求出直角边a 的最大值;当顶点D 在直角边AO 上时,点C ,点E 分别在OB ,AB 上时,利用△EHD ≌△DOC ,得出OD =EH ,在Rt △DHE 中,运用勾股定理ED 2=DH 2+EH 2,得出方程,由△判定出a 的最大值.【详解】解:(1)①∵△CDE 和△AOB 是两个等腰直角三角形,∴CD =ED ,AO =B 0,∠CDE =∠AOB ,在△CDE 和△AOB 中,CD ED CDE AOB AO BO =⎧⎪∠=∠⎨⎪=⎩∴△CDE ≌△AOB (SAS ),∴BC =AE∵M 为BC 中点,∴OM =12BC , ∴OM =12AE . ②猜想:OM =12AE . 证明:如图2,延长BO 到F ,使OF =OB ,连接CF ,∵M 为BC 中点,∴OM =12CF , ∵△CDE 和△AOB 是两个等腰直角三角形, ∴CD =ED ,AO =BO =OF ,∠CDE =∠AOB , ∵∠AOC +∠COB =∠BOE +∠COB =90°,∴∠AOC =∠BOE ,∠FOC =∠AOE ,在△COF 和△EOA 中,CD ED FOC AOE OF AO =⎧⎪∠=∠⎨⎪=⎩∴△COF ≌△EOA ,∴CF =AE ,∴OM =12AE . ③Ⅰ、如图3,当OC 与OB 重合时,OM 最大,OM=11122 a a-++=Ⅱ、如图4,当OC在BO的延长线上时,OM最小,OM=12a+﹣1=12a-,所以12a-≤OM≤12a+,(2)解:根据△CDE的对称性,只需分两种情况:①如图5,当顶点D在斜边AB上时,设点C,点E分别在OB,OA上.作OF⊥AB于点F,取CE的中点M,连接OD,MD,OM.∵△AOB和△CDE是等腰直角三角形,∠AOB=∠CDE=90°,OA=OB=a(a>1),DC=DE=1,∴AB =2a ,OF =12AB =22a , ∴CE =2,DM =12CE =22, 在RT △COE 中,OM =12CE =22, 在RT △DOM 中,DM +OM ≥OD ,又∵OD ≥OF , ∵DM +OM ≥OF ,即22+22≥22a , ∴a ≤2,∴直角边a 的最大值为2.②如图6,当顶点D 在直角边AO 上时,点C ,点E 分别在OB ,AB 上,作EH ⊥AO 于点H . ∵∠AOB =∠CDE =∠DHE =90°,∵∠HED +∠EDH =∠CDO +∠EDH =90°,∴∠HED =∠CDO ,∵DC =DE ,在△EHD 和△DOC 中,EHD COD HED CDO DE DC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EHD ≌△DOC (AAS )设OD =x ,∴OD =EH =AH =x ,DH =a ﹣2x ,在Rt △DHE 中,ED 2=DH 2+EH 2,∴1=x 2+(a ﹣2x )2,整理得,5x 2﹣4ax +a 2﹣1=0,∵x 是实数,∴△=(4a )2﹣4×5×(a 2﹣1)=20﹣4a 2≥0,∴a 2≤5,∴a 2的最大值为5,∴a 的最大值为5.综上所述,a 的最大值为5.【点睛】本题主要考查了几何变换综合题及三角形全等的判定和性质,解题的关键是在取最大值时,对三角形的位置进行讨论分别求值.5.在ABC 中,,AB AC BAC α=∠=,点P 为线段CA 延长线上一动点,连接PB ,将线段PB 绕点P 逆时针旋转,旋转角为α,得到线段PD ,连接,DB DC .(1)如图1,当60α=︒时,请直接写出线段PA 与线段CD 的数量关系是__________,DCP ∠为______度;(2)如图2,当120α=︒时,写出线段PA 和线段DC 的数量关系,并说明理由; (3)如图2,在(2)的条件下,当23AB =13BP PC +的最小值. 答案:A解析:(1)PA =DC ,60;(2)CD 3PA .理由见详解;(232【分析】(1)先证明△ABC ,△PBD 是等边三角形,再证明△PBA ≌△DBC ,进而线段PA 与线段CD 的数量关系,利用全等三角形的性质以及三角形内角和等于180°,解决问题即可;(2)证明△CBD ∽△ABP ,可得3CD BC PA AB== (3)过点C 作射线CM ,使得sin ∠ACM =13,过点P 作PN ⊥CM 于点N ,则PN =13PC , 过点B 作BG ⊥BA 于点G ,当点B 、P 、N 共线时,BP +PN 最小,即13BP PC +最小,由BGP CNP ∽,得13GP NP BP CP ==,结合勾股定理求出GP ,从而得CP ,进而即可求解. 【详解】(1)①证明: ∵将线段PB 绕点P 逆时针旋转,旋转角为α,得到线段PD ,∴PB =PD ,∵AB =AC ,PB =PD ,∠BAC =∠BPD =60°,∴△ABC ,△PBD 是等边三角形,∴∠ABC =∠PBD =60°,∴∠PBA =∠DBC ,∵BP =BD ,BA =BC ,∴△PBA ≌△DBC (SAS ),∴PA =DC .设BD 交PC 于点O ,如图1,∵△PBA ≌△DBC ,∴∠BPA =∠BDC ,∵∠BOP =∠COD ,∴∠OBP =∠OCD =60°,即∠DCP =60°.故答案是:PA =DC ,60;(2)解:结论:CD 3.理由如下:∵AB =AC ,PB =PD ,∠BAC =∠BPD =120°,∴BC =2•AB •cos30°3,BD ═2BP •cos30°3, ∴BC BD BA BP=3 ∵∠ABC =∠PBD =30°,∴∠ABP =∠CBD ,∴△CBD ∽△ABP , ∴3CD BC PA AB== ∴CD 3; (3) 过点C 作射线CM ,使得sin ∠ACM =13,过点P 作PN ⊥CM 于点N ,则PN =13PC , 过点B 作BG CA ⊥于点G ,则BG =AB ×sin ∠BAG 3=3,AG = AB ×cos ∠BAG 3 当点B 、P 、N 共线时,BP +PN 最小,即13BP PC +最小, ∵∠BGP =∠CNP =90°,∠BPG =∠CPN ,∴BGP CNP ∽, ∴13GP NP BP CP ==, 设GP =x ,则AP =3-x ,BP =3x ,∴()22233x x +=,解得:x =324, ∴BP =924,AP =3-324, ∴CP =AC +AP =23+3-324=33-324, ∴13BP PC +最小值=924+13×(33-324)=3+22.【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,第(1)(2)题解题的关键是正确寻找全等三角形或相似三角形解决问题,第(3)题的关键是过点C 作射线CM ,使得sin ∠ACM =13,过点P 作PN ⊥CM 于点N .6.已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”.请利用上面信息解决以下问题:已知Rt ABC 中,AC BC =,90C ∠=︒,D 为AB 边的中点,90EDF ∠=︒,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .(1)当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图①),求证:12DEF CEF ABC S S S +=△△△; (2)当EDF ∠绕D 点旋转到DE 和AC 不垂直时,在图②和图③这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S又有怎样的数量关系?请写出你的猜想,不需要证明.答案:D解析:(1)见解析;(2)图2成立,图3不成立:12DEF CEF ABC S S S -=△△△ 【分析】(1)根据等腰直角三角形和正方形的性质得到AED 、DFB △、EDF 、ECF △为全等的等腰直角三角形,据此即可证明;(2)对于图2:过点D 作DM AC ⊥,DN BC ⊥,根据中位线的性质和等量代换证得MD ND =和MDE NDF ∠=∠,结合90DME DNF ∠=∠=︒,证得DME DNF ∆≅∆,根据全等三角形的性质即可求证;对于图3:根据ASA 证明DME DNF ∆≅∆,根据全等三角形的性质即可求证.【详解】(1)证明:连接CD∵D 为AB 边的中点,AC BC =∴AD=CD=BD∴45DAC DCA DCB DBC ∠=∠=∠=∠=︒又∵DE AC ⊥,90EDF ∠=︒,90C ∠=︒,∴四边形ECFD 为矩形∴∠CFD=90°又∵∠DCF=45°∴CF=DF∴四边形ECFD 是正方形∴DE=DF∴DEF CEF DEC DFC S S S S +=+△△△△又∵12DCF DBF ABC S S S +=△△△,且DCF DBF S S =△△ ∴12DEF CEF ABC S S S +=△△△ (2)图2成立,图3不成立对于图2:过点D 作DM AC ⊥,DN BC ⊥,如图2,则90DME DNF MDN ∠=∠=∠=︒又∵90C ∠=︒∴DM BC ,DN AC∵D 为AB 边的中点 ∴根据中位线定理得到:12DN AC =,12MD BC = ∵AC=BC∴MD=ND∵90EDF ∠=︒∴90MDE EDN ∠+∠=︒,90NDF EDN ∠+∠=︒∴MDE NDF ∠=∠在DME ∆与DNF ∆中DME DNF MD NDMDE NDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴DME DNF ∆≅∆∴DME DNF S S ∆∆=∴DEF CEF DMCN DECF S S S S ∆∆==+四边形四边形∴12DMCN ABC S S =△ ∴12DEF CEF ABC S S S +=△△△ 对于图3:连接DC ,在DEC ∆与DBF ∆中135DCE DBF DC DBCDE BDF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴DEC DBF ∆≅∆ ∴12DEF CFE DBC CFE ABC DBFEC S S S S S S ∆∆∆∆∆==+=+五边形 ∴12DEF CEF ABC S S S ∆∆∆-=. 【点睛】本题考查了全等三角形的判定和性质,中位线的性质,等腰直角三角形的性质,题目较为综合,利用作出的辅助线将不规则的三角形转化为直角三角形进行解决.7.如图1,在△ABC 和△ADE 中,∠DAE=∠BAC ,AD=AE ,AB=AC .(1)求证:△ABD ≌△ACE ;(2)如图2,在△ABC 和△ADE 中,∠DAE=∠BAC ,AD=AE ,AB=AC ,∠ADB=90°,点E 在△ABC 内,延长DE 交BC 于点F ,求证:点F 是BC 中点;(3)△ABC 为等腰三角形,∠BAC=120°,AB=AC ,点P 为△ABC 所在平面内一点,∠APB=120°,AP=2,BP=4,请直接写出 CP 的长.答案:D解析:(1)证明见详解;(2)证明见详解;(3)2713【分析】(1)因为∠DAE=∠BAC ,可以得到∠DAB=∠EAC ,因为AD=AE ,AB=AC ,即可得到△ABD ≌△ACE ;(2)连接CE ,延长EF 至点H ,取CF=CH ,连接CH ,由(1)可得△ABD ≌△ACE ,所以∠AEC=90°和CE=BD ,可以推出∠BDF=∠CEF ,再证明△DBF ≌△ECH ,所以BF=CH ,等量代换即可得到BF=FC ,即可解决;(3)点P 在△ABC 内部,将△ABP 逆时针旋转120°,得到ACP ∆',连接PP '和PC ,可以得到△PP C '是直角三角形,利用勾股定理即可求出PC 的值;当点P 在△ABC 外部,将△APB 绕点A 逆时针旋转120︒得到PDC ∆,连接PP '和PC ,过点P 作PD ⊥'CP 于点D ,连接PD 可以得到△PP D ',△PP D '是直角三角形和,利用勾股定理即可求出'DP 及PC 的值.【详解】解:(1)证明:∵∠DAE=∠BAC∴∠DAB=∠EAC∵AD=AE ,AB=AC∴△ABD ≌△ACE(2)证明:连接CE ,延长EF 至点H ,取CF=CH ,连接CH ,如图所示:∵△ADB ≌△AEC∴BD=EC ,∠ADB=∠AEC=90°∵AD=AE∴∠ADE=∠AED∵∠ADE+∠EDB=∠AED+∠CEH=90°∴∠EDB=∠CEH∵CF=CH∴∠CFH=∠CHF∴∠DFB=∠H∵CE=BD∴△DBF ≌△ECH∴BF=CH∴BF=CF∴点F 是BC 的中点(3)当点P 在△ABC 内部,如图所示,将△ABP 逆时针旋转120°,得到ACP ∆',连接PP '和PC∵将△ABP 旋转120°得到ACP ∆'∴∠PAP '=120°,AP='AP =2,BP=CP '=4∴PP '=23,∵∠AP C '=120°,∠AP P '=30°,∴∠PP C '=90°,∴PC=()2223427+=.当点P 在△ABC 外部,如图所示,将△APB 绕点A 逆时针旋转120︒到△'AP C ,过点P 作PD ⊥'CP 于点D ,连接PD , ∵将△ABP 旋转120°得到ACP ∆'∴∠PAP '=120°,AP='AP =2,BP=CP '=4,∴PP '3∵∠AP C '=120°,∠AP P '=30°,∴∠PP C '=150°,∴∠PP D '=30°,在Rt 'PDP 中,1'32PD PP ==, 22''3DP PP PD ∴=-=,''347DC DP P C ∴=+=+=,()222237213PC PD DC ∴=+=+=.综上所述,27213PC =或【点睛】本题主要考查了全等三角形以及旋转,合理的作出辅助线以及熟练旋转的性质是解决本题的关键.8.问题:如图(1),点M 、N 分别在正方形ABCD 的边BC 、CD 上,∠MAN =45°,试判断 BM 、MN 、ND 之间的数量关系.(1)研究发现如图1,小聪把△ADN绕点A顺时针旋转90°至△ABG,从而发现BM、MN、DN之间的数量关系为(直接写出结果,不用证明)(2)类比引申如图2,在(1)的条件下,AM、AN分别交正方形ABCD的对角线BD于点E、F.已知EF =5,DF=4.求BE的长.(3)拓展提升如图3,在(2)的条件下,AM、AN分别交正方形ABCD的两个外角平分线于Q、P,连接PQ.请直接写出以BQ、PQ、DP为边构成的三角形的面积.答案:B解析:(1)BM+DN=MN,理由见解析;(2)BE=3;(3)以BQ、PQ、DP为边构成的三角形的面积为36.【分析】(1)结论是:BM+DN=MN,如图1,利用三角形AND旋转90º得三角形ABG,∠DAN=∠BAG,可证∠GAM=∠GAB+∠BAM=∠MAN,利用SAS证△AMN≌△AMG即可;(2)如图2,按同样方法△AFD顺时针旋转90º,使AD与AB重合,得△ABF′,连结EF′,△BEF′是直角三角形,用勾股定理求EF′=5,再证△AEF≌△AEF即可;(3)如图3,由(2)可得BD=12,可求正方形边长,构建△P′AQ,P′B=DP,将△ADP顺时针转90º,AD与AB重合,得△BQP′,连OP′,可证△BQP′是直角三角形,可证PQ=P′Q,再证△ABQ∽△PDA,将△P′BQ面积=12BQ•BP′=12BQ•DP=12AD•AB可求.【详解】(1)如图1,BM+DN=MN,理由如下:∵四边形ABCD是正方形,∴AB=AD,∠D=∠ABC=∠BAD=90°,小聪把△ADN 绕点A 顺时针旋转90°至△ABG ,由旋转可得:BG =DN ,AN =AG ,∠1=∠2,∠ABG =∠D =90°, ∴∠ABG +∠ABM =90°+90°=180°, 因此,点G ,B ,M 在同一条直线上, ∵∠MAN =45°,∴∠2+∠3=∠BAD ﹣∠MAN =90°﹣45°=45°, ∵∠1=∠2, ∴∠1+∠3=45°, ∴∠GAM =∠MAN , ∵AM =AM ,∴△AMN ≌△AMG (SAS ), ∴MN =GM ,∵GM =BM +BG =BM +DN , ∴BM +DN =MN ; 故答案为:BM +DN =MN ;(2)如图2,把△ADF 绕点A 顺时针旋转90°至△ABF ',连接EF ',∴AF ′ =AF ,∠DAF =∠BAF ',∠ABF ′ =∠ADF =45°,BF ′ =DF =4, ∵∠ABE =45°,∴∠EBF ′ =45°+45°=90°, ∵AE =AE ,同理得△EAF ≌△EAF '(SAS ), ∴EF '=EF =5,在Rt △EBF '中,由勾股定理得:BE ()()2222EF +BF 5-4=3''=3;(3)由(2)知:BE =3,EF =5,DF =4, ∴BD =3+4+5=12,由勾股定理得:AB 2+AD 2=BD 2, ∵AB =AD , ∴AB 2=72,如图3,把△ADP 绕点A 顺时针旋转90°至△ABP ',连接BP ′,则∠ABP′=∠ADP ,PD =P ′B ,AP =AP ′,∵AM 、AN 分别交正方形ABCD 的两个外角平分线于Q 、P , ∴∠ADP =∠ABQ =135°, ∴∠DAP +∠APD =45°, ∵∠DAP +∠BAQ =45°, ∴∠BAQ =∠APD , ∴△ADP ∽△QBA , ∴AD PD=BQ AB, ∴BQ •PD =AD •AB =72, ∵∠ABP '=∠ABQ =135°, ∴∠QBP '=360°﹣135°﹣135°=90°, ∴S △BP 'Q =12BQ•BP′=12BQ•DP =12×72=36, ∵AP =AP ',∠PAQ =∠P 'AQ ,AQ =AQ , ∴△QAP ≌△QAP '(SAS ), ∴PQ =P 'Q ,∴以BQ 、PQ 、DP 为边构成的三角形的面积为36. 【点睛】本题是感知,探究,创新新题型,主要考查了学生对正方形的性质,旋转变换,勾股定理及全等三角形与相似三角形的判定方法的综合运用.关键是灵活掌握所学知识,同时会从感知中学到方法,结合下一图形,找到解决问题的方法,以及突破口,在创新中,注意把给出的问题进行转化,利用转化思想来解决.9.如图,在四边形ABCD 中,AB AC =,AD 是对角线,60BAC ∠=︒,4B C ADB BAC ∠+∠+∠=∠,(1)求ADC ∠的度数;(2)若AD BD CD =+,求证:AD 平分BDC ∠;(3)在(2)的条件下,E 、F 分别在AC 、AB 上,连接BE 、CF ,交于点P ,使得BPC BDC ∠=∠,若7BD EF ==,15AD =,求EFP ∆的面积答案:A解析:(1)=60∠︒ADC ;(2)证明见详解;(3)4003129. 【分析】(1)先由四边形内角和得到++300B C BDC ∠∠∠=︒,再由4B C ADB BAC ∠+∠+∠=∠可得答案;(2)把ABD △绕点A 逆时针旋转60︒得到ACE △,由(1)及题意易得D 、C 、E 三点共线,从而得到ADE 是等边三角形,由等边三角形的性质及旋转的性质易得60ADB E ∠=∠=︒,故得证;(3)过点B 、点F 分别作BG ⊥CD ,FH ⊥AC ,分别交CD 的延长线于点G 、AC 于点H ,连接BC ,由(2)及题意易得DC=8,由BPC BDC ∠=∠易得EBC FCA ∠=∠,进而得到AFC CEB △≌△,设AF=CE=x ,根据勾股定理得到AF 、CE 、BC 的长,最后根据BFE BPC 、的面积比等于FP 与PC 的比,进而求解即可. 【详解】(1)解:=60BAC ∠︒,∴++36060300B C BDC ∠∠∠=︒-︒=︒, 又BDC ADB ADC ∠=∠+∠,4B C ADB BAC ∠+∠+∠=∠,∴30024060ADC ∠=︒-︒=︒; (2)证明:把ABD △绕点A 逆时针旋转60︒得到ACE △,由(1)得:∴AD=AE ,BD=CE ,=ADC=60DAE ∠∠︒AD BD CD =+,DE=DC+CE ,∴D 、C 、E 三点共线,∴ADE 是等边三角形,∴60ADB E ∠=∠=︒, ∴60ADB ADC ∠=∠=︒,∴AD 平分BDC ∠;(3)解:过点B 、点F 分别作BG ⊥CD ,FH ⊥AC ,分别交CD 的延长线于点G 、AC 于点H ,连接BC ,由题意及(2)可得:ABC 是等边三角形,120BDC ∠=︒,∴AB=AC=BC ,60BDG ∠=︒,7BD EF ==,15AD =,∴72DG =,73BG =,DC=AD-BD=8, ∴723822GC GD DC =+=+=, 在Rt BGC △中,222273231322BC BG GC ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭, 又=120BPC BDC ∠=∠︒,∴18012060PBC PCB ∠+∠=︒-︒=︒,60ECP PCB ∠+∠=︒,∴=ECP EBC ∠∠,=60,FAC BCA AC BC ∠∠=︒=,∴AFC CEB △≌△,∴CE=AF ,设133,131322CE AF x AE x AH x FH x EH x ==∴=-==∴=-,,,, ∴在Rt FHE 中,222FH EH EF +=即222331372x x ⎛⎫+-= ⎪⎝⎭⎝⎭,解得125,8x x ==,①当CE=AF=5时,则AE=8,∴1153653132224BECAFCSSAC FH ==⋅=⨯⨯=169365326344ABEABCBECSSS =-=-= ∴263103163BFE ABEAFESSS=-==设BFPEFPBPCEPCSa Sb Sc Sd ====,,,,则有:a cb d FP PC ==∶∶∶,,BFEBFPFEPBECBPCEPCS SSSSS=+=+,∴BFEBECSSFP PC =∶∶,∴6465BFE BECSS FP PC =∶∶,又1152224FECSCE FH =⋅=⨯⨯=,∴64641291294129EFP FECSS ==⨯=; ②当CE=AF=8时,AE=5,则有:∴111322BEAAFCSSAC FH ==⋅=⨯=,16944CBEABCBECSSS =-=-=∴654BFEABEAFESSS=-=-=由①可得:25=4104BFEBECSS FP PC =∶∶∶,又11822FECSCE FH =⋅=⨯⨯=∴2525129129129EFPFECSS ==⨯=综上所述:129EFPS =. 【点睛】本题主要考查三角形与四边形的综合问题,主要是利用全等三角形、等边三角形、三角形面积比的转换及勾股定理,熟练掌握各个知识点是解题的关键,尤其是第三问的面积转换问题是本题的难点.10.如图,抛物线y =﹣x 2+bx+c 与x 轴交于A ,B 两点,其中A (3,0),B (﹣1,0),与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,直线y =kx+b 1经过点A ,C ,连接CD . (1)求抛物线和直线AC 的解析式:(2)若抛物线上存在一点P ,使△ACP 的面积是△ACD 面积的2倍,求点P 的坐标; (3)在抛物线的对称轴上是否存在一点Q ,使线段AQ 绕Q 点顺时针旋转90°得到线段QA 1,且A 1好落在抛物线上?若存在,求出点Q 的坐标;若不存在,请说明理由.答案:A解析:(1)2y x 2x 3=-++;3y x =-+ ;(2)(﹣1,0)或(4,﹣5);(3)存在;(1,2)和(1,﹣3) 【分析】(1)将点A ,B 坐标代入抛物线解析式中,求出b ,c 得出抛物线的解析式,进而求出点C 的坐标,再将点A ,C 坐标代入直线AC 的解析式中,即可得出结论;(2)利用抛物线的对称性得出BD =AD ,进而判断出△ABC 的面积和△ACP 的面积相等,即可得出结论;(3)分点Q 在x 轴上方和在x 轴下方,构造全等三角形即可得出结论. 【详解】解:(1)把A (3,0),B (﹣1,0)代入y =﹣x 2+bc+c 中,得93010b c b c -++=⎧⎨--+=⎩,∴23b c =⎧⎨=⎩, ∴抛物线的解析式为y =﹣x 2+2x+3, 当x =0时,y =3, ∴点C 的坐标是(0,3),把A (3,0)和C (0,3)代入y =kx+b 1中,得11303k b b +=⎧⎨=⎩,∴113k b =-⎧⎨=⎩∴直线AC 的解析式为y =﹣x+3; (2)如图,连接BC , ∵点D 是抛物线与x 轴的交点, ∴AD =BD , ∴S △ABC =2S △ACD , ∵S △ACP =2S △ACD ,∴S △ACP =S △ABC ,此时,点P 与点B 重合, 即:P (﹣1,0),过B 点作PB ∥AC 交抛物线于点P ,则直线BP 的解析式为y =﹣x ﹣1①,∵抛物线的解析式为y=﹣x2+2x+3②,联立①②解得,1xy=-⎧⎨=⎩或45xy=⎧⎨=-⎩,∴P(4,﹣5),∴即点P的坐标为(﹣1,0)或(4,﹣5);(3)如图,①当点Q在x轴上方时,设AC与对称轴交点为Q',由(1)知,直线AC的解析式为y=﹣x+3,当x=1时,y=2,∴Q'坐标为(1,2),∵Q'D=AD=BD=2,∴∠Q'AB=∠Q'BA=45°,∴∠AQ'B=90°,∴点Q'为所求,②当点Q在x轴下方时,设点Q(1,m),过点A1'作A1'E⊥DQ于E,∴∠A1'EQ=∠QDA=90°,∴∠DAQ+∠AQD=90°,由旋转知,AQ=A1'Q,∠AQA1'=90°,∴∠AQD+∠A1'QE=90°,∴∠DAQ=∠A1'QE,∴△ADQ≌△QEA1'(AAS),∴AD=QE=2,DQ=A1'E=﹣m,∴点A1'的坐标为(﹣m+1,m﹣2),代入y=﹣x2+2x+3中,解得,m=﹣3或m=2(舍),∴Q的坐标为(1,﹣3),∴点Q的坐标为(1,2)和(1,﹣3).【点睛】本题考查的是二次函数的综合题,涉及解析式的求解,与三角形面积有关的问题,三角形“k”字型全等,解题的关键是利用数形结合的思想,设点坐标并结合几何图形的性质列式求解.11.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)将图①中BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).答案:E解析:(1)见解析;(2)依然成立,见解析;(3)依然成立,EG⊥CG【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG;(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG;(3)结论依然成立,证明方法类似(2).【详解】(1)证明:∵四边形ABCD是正方形,∴∠DCF=90°,在Rt△FCD中,∵G为DF的中点,∴CG=12FD,同理,在Rt△DEF中,EG=12 FD,∴CG=EG.(2)解:(1)中结论仍然成立,即EG=CG.证法:如图,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG(ASA),∴MG=NG;∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN,在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.(3)解:(1)中的结论仍然成立.理由如下:如图,过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N,∵G 为FD 中点,∴FG =GD ,∵MF ∥CD ,∴∠FMG =∠DCG ,∠GDC =∠GFM ,∴△CDG ≌△MFG ,∴CD =FM ,∵NF ∥BC ,∴∠NFH +∠NHF =∠EHB +∠EBH ,又∵∠NHF =∠EBH ,∴∠NFH =∠EBH ,∴∠EFM =∠EBC ,又∵BE =EF ,则△EFM ≌△EBC ,∠FEM =∠BEC ,EM =EC∵∠FEC +∠BEC =90°,∴∠FEC +∠FEM =90°,即∠MEC =90°,∴△MEC 是等腰直角三角形,∵G 为CM 中点,∴EG =CG ,EG ⊥CG .【点睛】本题考查全等三角形的判定和性质、矩形的判定与性质,正方形的性质,旋转的性质,解题的关键是掌握相关性质.12.如图1,在正方形ABCD 中,点,E F 分别在边,AB AD 上,且AE AF =,延长FD 到点G ,使得DG DF =,连接,,EF GE CE .(特例感知)(1)图1中GE 与CE 的数量关系是______________.(结论探索)(2)图2,将图1中的AEF 绕着点A 逆时针旋转()090αα︒<<︒,连接FD 并延长到点G ,使得DC DF =,连接,,GE CE BE ,此时GE 与CE 还存在(1)中的数量关系吗?判断并说明理由.(拓展应用)(3)在(2)的条件下,若5,32AB AE ==EFG 是以EF 为直角边的直角三角形时,请直接写出GE 的长.答案:G解析:(1) GE 2CE ,(2)存在,证明见解析,(3)25810或16或4.【分析】(1)连接GC ,证△CDG ≌△CBE ,得出△GCE 为等腰直角三角形即可;(2)类似(1)的方法,先证△AFD ≌△AEB ,再证△CDG ≌△CBE ,得出△GCE 为等腰直角三角形即可;(3)根据E 、F 是直角顶点分类讨论,结合(2)中结论,利用勾股定理求解即可.【详解】解:(1)连接GC ,∵AE =AF ,AD =AB ,∴DF =BE ,∵DG DF =,∴DG = BE ,∵∠GDC =∠B =90°,DC =BC ,∴△CDG ≌△CBE ,∴CE =CG ,∠GCD =∠ECB ,∵∠ECB +∠DCE =90°,∴∠GCE =∠GCD +∠DCE =90°,∴GE 2CE ;故答案为:GE 2CE ;(2) 存在,连接GC,∵AE=AF,AD=AB,∠FAE=∠DAB=90°,∴∠FAD=∠EAB,∴△FAD≌△EAB,∴FD=EB=GD,∠FDA=∠EBA,∵∠GDC+∠FDA=90°,∠EBC+∠EBA=90°,∴∠GDC=∠EBC,∵DC=BD,∴△CDG≌△CBE,与(1)同理,GE=2CE;(3)当∠FEG=90°时,如图1,因为∠FEA=∠GEC=45°,所以,A、E、C在一条直线上,∵AB =5,∴AC =52, CE =52-32=22,GE =2EC =4;如图2,E 在CA 延长线上,同理可得,EC =82,GE =2EC =16;当∠EFG =90°时,如图3,∠AFD =∠EFG +∠AFE =135°,由(2)得,∠AFD =∠AEB =135°,DF =BE ,所以,B 、E 、F 在一条直线上,作AM ⊥EF ,垂足为M ,∵5,32AB AE ==∴EF =6,AM =ME =MF =3,224BM AB AM =-=,BE=DF=1,FG=2,22210=+=;GE FG EF如图4,同图3,BE=DF=7,FG=14,EF=6,22258=+=,GE FG EF综上,GE的长为258210或16或4.【点睛】本题考查了旋转的性质、全等三角形的判定与性质、勾股定理和等腰直角三角形的性质,解题关键是恰当的连接辅助线,构造全等三角形;会分类讨论,结合题目前后联系,解决问题.13.如图,在等边三角形ABC中,点D是射线CB上一动点,连接DA,将线段DA绕点D 逆时针旋转60°得到线段DE,过点E作EF∥BC交直线AB于点F,连接CF.(1)如图1,若点D为线段BC的中点,则四边形EDCF是;(2)如图2,若点D为线段CB延长线上任意一点,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若点D为射线CB上任意一点,当∠DAB=15°,△ABC的边长为2时,请直接写出线段BD的长.答案:A解析:(1)平行四边形;(2)成立,见解析;(3)423-或31-.【分析】(1)证明△ADB ≌△DEO (AAS )和四边形EOBF 为平行四边形,进而求解;(2)证明△OED ≌△DAC (SAS ),则∠EOD =∠ACD =60°=∠ABC ,故OE ∥AB ,进而求解;(3)分点D 在线段BC 上、点D (D ′)在BC 的延长线上两种情况,利用勾股定理和等腰直角三角形的性质分别求解即可.【详解】解:(1)过点E 作DE 的垂线交CB 的延长线于点O ,设BA 交ED 于点R ,∵点D 为线段BC 的中点,则AD ⊥BC 且∠BAD =30°,∵∠ADE =60°,∴∠EDB =∠ADB ﹣ADE =90°﹣60°=30°,∵EF ∥BC ,∴∠EFD =∠ABC =60°,∠FED =∠EDO =30°,∴∠ERF =90°,∴DE ⊥AB ,∵AD =ED ,∠BAD =∠EDO =30°,∠ADB =∠DEO =90°,∴△ADB ≌△DEO (AAS ),∴OE =BD =12BC =12AB ,则OB =OD ﹣BD =AB ﹣12AB =12AB , ∴OB =BD =CD ,∵OE ⊥DE ,DE ⊥AB ,∴OE ∥AB ,∵EF∥BC,∴四边形EOBF为平行四边形,∴EF=OB=CD,而EF∥CD,∴四边形EFCD为平行四边形,故答案为:平行四边形;(2)如图2,在CD的延长线上截取DO=AC,连接OE,设∠ADC的度数为α,∵∠EDO=180°﹣∠EDA﹣∠ADC=180°﹣60°﹣α=120°﹣α,∠DAC=180°﹣∠ACD﹣∠ADC=120°﹣α=∠EDO,而AC=OD,DE=AD,∴△OED≌△DAC(SAS),∴∠EOD=∠ACD=60°=∠ABC,∴OE∥AB,而EF∥BC,∴四边形EFCD为平行四边形;(3)①当点D在线段BC时,过点A作AH⊥BC,则∠BAH=30°,而∠DAB=15°,BH=12BC=1,即BD是∠BAH的角平分线,过点D作DG⊥AB于点G,设DH=x,则DG=DH=x,BD=BH﹣DH=1﹣x,在△BDG中,∠BDG=30°,则BG=12BD=12x由勾股定理得:()21x -=212x -⎛⎫ ⎪⎝⎭+2x ,解得:x =233-, ∴BD =1﹣x =423-,②当点D (D ′)在BC 的延长线上时,∵∠BAD ′=15°,∴∠D ′AH =30°+15°=45°,则D ′H =AH =2213-=,∴BD ′=D ′H ﹣BH =31-;综上,BD 的长度为423-或31-.【点评】本题是四边形综合题,主要考查了平行四边形性质、三角形全等、等边三角形性质等知识点,综合性强,难度较大.14.探究问题:(1)方法感悟:如图①,在正方形ABCD 中,点E ,F 分别为DC ,BC 边上的点,且满足∠BAF =45°,连接EF ,求证DE +BF =EF .感悟解题方法,并完成下列填空:将△ADE 绕点A 顺时针旋转90°得到△ABG ,此时AB 与AD 重合,由旋转可得:AB =AD ,BG =DE ,∠1=∠2,∠ABG =∠D =90°,∴ ∠ABG +∠ABF =90°+90°=180°,因此,点G ,B ,F 在同一条直线上.∵ ∠EAF =45°∴ ∠2+∠3=∠BAD -∠EAF =90°-45°=45°.∵ ∠1=∠2,∠1+∠3=45°.即∠GAF =∠________.又AG =AE ,AF =AE∴ △GAF ≌△________.∴ _________=EF ,故DE +BF =EF .(2)方法迁移:如图②,将Rt △ABC 沿斜边翻折得到△ADC ,点E ,F 分别为DC ,BC 边上的点,且∠EAF =∠DAB .试猜想DE ,BF ,EF 之间有何数量关系,并证明你的猜想.答案:E。

初中数学全等三角形旋转模型(讲义及答案)及解析(1)

初中数学全等三角形旋转模型(讲义及答案)及解析(1)

初中数学全等三角形旋转模型(讲义及答案)及解析(1)一、全等三角形旋转模型1.发现规律:(1)如图①,ABC 与ADE 都是等边三角形,直线,BD CE 交于点F .直线BD ,AC 交于点H .求BFC ∠的度数(2)已知:ABC 与ADE 的位置如图②所示,直线,BD CE 交于点F .直线BD ,AC 交于点H .若ABC ADE α∠=∠=,ACB AED β∠=∠=,求BFC ∠的度数 应用结论:(3)如图③,在平面直角坐标系中,点O 的坐标为(0,0),点M 的坐标为(3,0),N 为y 轴上一动点,连接MN .将线段MN 绕点M 逆时针旋转60得到线段MK ,连接NK ,OK ,求线段OK 长度的最小值答案:A解析:(1)BFC ∠的度数为60︒;(2)BFC ∠的度数为180αβ︒--;(3)线段OK 长度的最小值为32【分析】(1)通过证明BAD CAE ≅△△可得ABD ACE ∠=∠,再由三角形内角和定理进行求解即可;(2)通过证明ABC ADE 可得BAC DAE ∠=∠,AB AC AD AE=,可证ABD ACE ,可得ABD ACE ∠=∠,由外角性质可得BFC BAC ∠=∠,再有三角形内角和定理进行求解即可;(3)由旋转的性质可得MNK △是等边三角形,可得MK MN NK ==,60NMK NKM KNM ∠=∠=∠=︒,如图③将MOK 绕点M 顺时针旋转60︒,得到MQN △,连接OQ ,可得60OMQ ∠=︒,OK =NQ ,MO =MQ ,则当NQ 为最小值时,OK 有最小值,由垂线段最短可得当QN y ⊥轴时,NQ 有最小值,由直角三角形的性质即可求解.【详解】 (1)∵ABC 与ADE 是等边三角形∴AB=AC ,AD=AE ,60BAC DAE ABC ACB ∠=∠=∠=∠=︒∴BAD CAE ∠=∠∴()BAD CAE SAS ≅ ∴ABD ACE ∠=∠∵60ABD DBC ABC ∠+∠=∠=︒∴60ACE DBC ∠+∠=︒∴18060BFC DBC ACE ACB ∠=︒-∠-∠-∠=︒;(2)∵ABC ADE α∠=∠=,ACB AED β∠=∠=∴ABC ADE∴BAC DAE ∠=∠,AB AC AD AE= ∴BAD CAE ∠=∠,AB AD AC AE = ∴ABD ACE ∴ABD ACE ∠=∠ ∵BHC ABD BAC BFC ACE ∠=∠+∠=∠+∠ ∴BFC BAC ∠=∠ ∵180BAC ABC ACB ∠+∠+∠=︒ ∴180BFC αβ∠++=︒∴180BFC αβ∠=︒--;(3)∵将线段MN 绕点M 逆时针旋转60︒得到线段MK∴MN MK =,60NMK ∠=︒∴MNK △是等边三角形∴MK MN NK ==,60NMK NKM KNM ∠=∠=∠=︒如下图,将MOK 绕点M 顺时针旋转60︒,得到MQN △,连接OQ∴MOK MQN ≅,60OMQ ∠=︒∴OK =NQ ,MO =MQ∴MOQ △是等边三角形∴60QOM ∠=︒∴30NOQ ∠=︒∵OK =NQ∴当NQ 为最小值时,OK 有最小值,由垂线段最短可得当QN y ⊥轴时,NQ 有最小值 ∵点M 的坐标为(3,0)∴3OM OQ ==∵QN y ⊥轴,30NOQ ∠=︒ ∴1322NQ OQ == ∴线段OK 长度的最小值为32. 【点睛】本题属于几何变换综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,旋转的性质,三角形内角和定理等知识,灵活运用这些性质进行推理是解决本题的关键.2.△CDE 和△AOB 是两个等腰直角三角形,∠CDE =∠AOB =90°,DC =DE =1,OA =OB =a (a >1).(1)将△CDE 的顶点D 与点O 重合,连接AE ,BC ,取线段BC 的中点M ,连接OM . ①如图1,若CD ,DE 分别与OA ,OB 边重合,则线段OM 与AE 有怎样的数量关系?请直接写出你的结果;②如图2,若CD 在△AOB 内部,请你在图2中画出完整图形,判断OM 与AE 之间的数量关系是否有变化?写出你的猜想,并加以证明;③将△CDE 绕点O 任意转动,写出OM 的取值范围(用含a 式子表示);(2)是否存在边长最大的△AOB ,使△CDE 的三个顶点分别在△AOB 的三条边上(都不与顶点重合)?如果存在,请你画出此时的图形,并求出边长a 的值;如果不存在,请说明理由.答案:A解析:(1)①OM =12AE ;②OM =12AE ,证明详见解析;③12a -≤OM ≤12a +;(2)5【分析】(1)①利用△CDE ≌△AOB 得出BC =AE ,再由直角三角形斜边的中线等于斜边的一半求解.②作辅助线,利用△COF ≌△EOA 及三角形中位线得出OM =12AE . ③分两种情况,当OC 与OB 重合时OM 最大,当OC 在BO 的延长线上时OM 最小,据此求出OM 的取值范围.(2)分两种情况:当顶点D 在斜边AB 上时,设点C ,点E 分别在OB ,OA 上.由DM +OM ≥OF 求出直角边a 的最大值;当顶点D 在直角边AO 上时,点C ,点E 分别在OB ,AB 上时,利用△EHD ≌△DOC ,得出OD =EH ,在Rt △DHE 中,运用勾股定理ED 2=DH 2+EH 2,得出方程,由△判定出a 的最大值.【详解】解:(1)①∵△CDE 和△AOB 是两个等腰直角三角形,∴CD =ED ,AO =B 0,∠CDE =∠AOB ,在△CDE 和△AOB 中,CD ED CDE AOB AO BO =⎧⎪∠=∠⎨⎪=⎩∴△CDE ≌△AOB (SAS ),∴BC =AE∵M 为BC 中点,∴OM =12BC ,∴OM =12AE . ②猜想:OM =12AE . 证明:如图2,延长BO 到F ,使OF =OB ,连接CF ,∵M 为BC 中点,∴OM =12CF , ∵△CDE 和△AOB 是两个等腰直角三角形,∴CD =ED ,AO =BO =OF ,∠CDE =∠AOB ,∵∠AOC +∠COB =∠BOE +∠COB =90°,∴∠AOC =∠BOE ,∠FOC =∠AOE ,在△COF 和△EOA 中,CD ED FOC AOE OF AO =⎧⎪∠=∠⎨⎪=⎩∴△COF ≌△EOA ,∴CF =AE ,∴OM =12AE . ③Ⅰ、如图3,当OC 与OB 重合时,OM 最大,OM=11122 a a-++=Ⅱ、如图4,当OC在BO的延长线上时,OM最小,OM=12a+﹣1=12a-,所以12a-≤OM≤12a+,(2)解:根据△CDE的对称性,只需分两种情况:①如图5,当顶点D在斜边AB上时,设点C,点E分别在OB,OA上.作OF⊥AB于点F,取CE的中点M,连接OD,MD,OM.∵△AOB和△CDE是等腰直角三角形,∠AOB=∠CDE=90°,OA=OB=a(a>1),DC=DE=1,∴AB =2a ,OF =12AB =22a , ∴CE =2,DM =12CE =22, 在RT △COE 中,OM =12CE =22, 在RT △DOM 中,DM +OM ≥OD ,又∵OD ≥OF , ∵DM +OM ≥OF ,即22+22≥22a , ∴a ≤2,∴直角边a 的最大值为2.②如图6,当顶点D 在直角边AO 上时,点C ,点E 分别在OB ,AB 上,作EH ⊥AO 于点H . ∵∠AOB =∠CDE =∠DHE =90°,∵∠HED +∠EDH =∠CDO +∠EDH =90°,∴∠HED =∠CDO ,∵DC =DE ,在△EHD 和△DOC 中,EHD COD HED CDO DE DC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EHD ≌△DOC (AAS )设OD =x ,∴OD =EH =AH =x ,DH =a ﹣2x ,在Rt △DHE 中,ED 2=DH 2+EH 2,∴1=x 2+(a ﹣2x )2,整理得,5x 2﹣4ax +a 2﹣1=0,∵x 是实数,∴△=(4a )2﹣4×5×(a 2﹣1)=20﹣4a 2≥0,∴a 2≤5,∴a 2的最大值为5,∴a的最大值为5.综上所述,a的最大值为5.【点睛】本题主要考查了几何变换综合题及三角形全等的判定和性质,解题的关键是在取最大值时,对三角形的位置进行讨论分别求值.3.已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,请直接写出线段BD与CF的数量关系:;(2)如图2,当点D在线段BC的延长线上时,其它条件不变,若AC=2,CD=1,则CF= ;(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:①请直接写出CF、BC、CD三条线段之间的关系:;②若连接正方形对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.答案:B解析:(1)BD=CF;(2)221;(3)①CD=CF+BC,②等腰三角形,见解析【分析】(1)△ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF;(2)同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF=CD+BC,然后求出答案;(3)中的①与(1)相同,可证明BD=CF,又点D、B、C共线,故:CD=BC+CF;②由(1)猜想并证明BD⊥CF,从而可知△FCD为直角三角形,再由正方形的对角线的性质判定△AOC三边的特点,再进一步判定其形状.【详解】解:(1)证明:∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△CAF (SAS ),∴BD=CF ,(2)与(1)同理,证△BAD ≌△CAF ;∴BD=CF ,∴CF=BC+CD ,∵AC=AB=2,CD=1,∴BC ==∴CF=1;(3)①BC 、CD 与CF 的关系:CD=BC+CF理由:与(1)同法可证△BAD ≌△CAF ,从而可得:BD=CF ,即:CD=BC+CF②△AOC 是等腰三角形理由:与(1)同法可证△BAD ≌△CAF ,可得:∠DBA=∠FCA ,又∵∠BAC=90°,AB=AC ,∴∠ABC=∠ACB=45°,则∠ABD=180°-45°=135°,∴∠ABD=∠FCA=135°∴∠DCF=135°-45°=90°∴△FCD 为直角三角形.又∵四边形ADEF 是正方形,对角线AE 与DF 相交于点O ,∴OC=12DF , ∴OC=OA ∴△AOC 是等腰三角形.【点睛】本题考查了等腰三角形、正方形的性质及全等三角形的判定与性质等知识点,一般情况下,要证明两条线段相等,就得证明这两条线段所在的两个三角形全等,关键是掌握图形特点挖掘题目所隐含的条件.4.如图1,在等腰Rt △ABC 中,∠ABC =90°,AB =BC =6,过点B 作BD ⊥AC 交AC 于点D ,点E 、F 分别是线段AB 、BC 上两点,且BE =BF ,连接AF 交BD 于点Q ,过点E 作EH ⊥AF 交AF 于点P ,交AC 于点H .(1)若BF =4,求△ADQ 的面积;(2)求证:CH =2BQ ;(3)如图2,BE =3,连接EF ,将△EBF 绕点B 在平面内任意旋转,取EF 的中点M ,连接AM ,CM ,将线段AM 绕点A 逆时针旋转90°得线段AN ,连接MN 、CN ,过点N 作NR ⊥AC 交AC 于点R .当线段NR 的长最小时,直接写出△CMN 的周长.答案:A解析:(1)1.8;(2)证明见解析;(3)3263351022+. 【分析】(1)利用等腰直角三角形的性质求出1322BD AD CD AC ====积相等和勾股定理分别求出AQ 和QD ,最后利用三角形面积公式即可求解;(2)如图,先作辅助线构造()AEH CFG ASA ∆∆≌,得到AH CG =,再通过转化得到2AH DQ =,最后利用AC ,得到一个相等关系,即()2AH HC BQ QD +=+,利用等式性质即可得到所求;(3)如图,通过做辅助线构造全等三角形确定出当HN ⊥AC ,且N 点位于H 、R 之间时,此时NR 的长最小,接着利用勾股定理和等腰直角三角形的性质,分别求出CM 、MN 、CN 的长,相加即可.【详解】解:6AB BC ==,°90ABC =∠,262AC ==∴又∵AC BD ⊥∴BD 平分AC ,且BD 是∠ABC 的角平分线 ∴1322BD AD CD AC ====Q 点到BA 和BC 边的距离相等; ∵4BF =, ∴6342ABQBFQ S S ∆∆==,∴32AQ FQ =,∵AF ===∴355AQ AF ==,∴5QD ===,∴1 1.825ADQ S ∆=⨯⨯=, ∴△ADQ 的面积为1.8.(2)如图,作CG ⊥AC ,垂足为C ,交AF 的延长线于点G ,∴°90ACG =∠∵°45ACB CAB ==∠∠,∴°45GCB CAB ==∠∠,∵EH ⊥AF ,∴°90EAP AEP +=∠∠,又∵°90EAP AFB +=∠∠∴AEP AFB =∠∠,∴AEP CFG =∠∠∵BE BF =,BA BC =∴AE CF =,在AEH ∆和CFG ∆中,AEH CFG AE CFEAH FCG ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()AEH CFG ASA ∆∆≌∴AH CG =;∵BD ⊥AC ,CG ⊥AC ,∴BD ∥CG ,∵D 点是AC 的中点,且BD ∥CG ,∴DQ 是ACG ∆的中位线,∴12DQ CG =, ∴2DQ CG AH ==; ∵AC =2BD ,∴()2AH HC BQ QD +=+,∵2AH DQ =,∴CH =2BQ .(3)如图①,作AH ⊥AB ,且AH =AB ,∴∠NAH +∠HAM =∠HAM +∠BAM =90°,∴∠BAM =∠NAH ,∵AB =AH ,AM =AN ,∴()ABM AHN SAS ∆∆≌,∴HN =BM ,∵BE =BF =3,∠EBF =90°, ∴232EF BE ==∴由M 点是EF 的中点,可得1322BM EF == ∴32NH =, ∴N 点在以H 点为圆心,322为半径的圆上, 如图②,当HN ⊥AC ,且N 点位于H 、R 之间时,此时NR 的长最小, 为32NR HR HN HR =-=-∵∠BAC =45°,∴∠HAC =45°,∴∠AHN =45°,HR =AR ,∵222HR AR AH +=, ∴322HR AR ===, ∴323222NR HR =-=, ∵262AC AB ==∴32CR AC AR =-=, ∴()22333221022CN AN ⎛⎫==+= ⎪⎝⎭, ∵∠MAN =90°,AM =AN ,∴235MN AN ==,∴∠ABM =45°,∴∠EBM =45°,∴F 点在BA 上,E 点在CB 延长线上,如图,作MP ⊥EC ,垂足为P ,∴1322BP MP EB ===, ∴315622PC PB BC =+=+=, ∴223262MC MP PC =+=, ∴3263351022MC MN CN ++=++, ∴△CMN 的周长为3263351022++.【点睛】本题综合考查了等腰直角三角形的性质、全等三角形的判定与性质、旋转的性质、勾股定理、圆等知识,要求学生熟练掌握相关概念并能灵活应用它们,本题的综合性较强,难点在于作辅助线构造全等三角形以及线段之间的关系转化等,考查了学生综合分析和推理论证以及计算的能力,本题属于压轴题,蕴含了数形结合和转化的思想方法等.5.如图.四边形ABCD 、BEFG 均为正方形.(1)如图1,连接AG 、CE ,请直接写出.....AG 和CE 的数量和位置关系(不必证明).(2)将正方形BEFG 绕点B 顺时针旋转β角(0180β︒︒<<),如图2,直线AG 、CE 相交于点M .①AG 和CE 是否仍然满足(1)中的结论?如果是,请说明理由:如果不是,请举出反例:②连结MB ,求证:MB 平分AME ∠.(3)在(2)的条件下,过点A 作AN MB ⊥交MB 的延长线于点N ,请直接写出.....线段CM 与BN 的数量关系.答案:A解析:(1)AG=EC ,AG ⊥EC ;(2)①满足,理由见解析;②见解析;(3)2.【分析】(1)由正方形BEFG 与正方形ABCD ,利用正方形的性质得到两对边相等,一对直角相等,利用SAS 得出三角形ABG 与三角形CBE 全等,利用全等三角形的对应边相等,对应角相等得到CE=AG ,∠BCE=∠BAG ,再利用同角的余角相等即可得证;(2)①利用SAS 得出△ABG ≌△CEB 即可解决问题;②过B 作BP ⊥EC ,BH ⊥AM ,由全等三角形的面积相等得到两三角形面积相等,而AG=EC ,可得出BP=BH ,利用到角两边距离相等的点在角的平分线上得到BM 为角平分线;(3)在AN 上截取NQ=NB ,可得出三角形BNQ 为等腰直角三角形,利用等腰直角三角形的性质得到2BN ,接下来证明BQ=CM ,即要证明三角形ABQ 与三角形BCM 全等,利用同角的余角相等得到一对角相等,再由三角形ANM 为等腰直角三角形得到NA=NM ,利用等式的性质得到AQ=BM ,利用SAS 可得出全等,根据全等三角形的对应边相等即可得证.【详解】解:(1)AG=EC ,AG ⊥EC ,理由为:∵正方形BEFG ,正方形ABCD ,∴GB=BE ,∠ABG=90°,AB=BC ,∠ABC=90°,在△ABG 和△BEC 中,BG BE ABC EBC BA BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABG ≌△BEC (SAS ),∴CE=AG ,∠BCE=∠BAG ,延长CE 交AG 于点M ,∴∠BEC=∠AEM ,∴∠ABC=∠AME=90°,∴AG=EC ,AG ⊥EC ;(2)①满足,理由是:如图2中,设AM 交BC 于O .∵∠EBG=∠ABC=90°,∴∠ABG=∠EBC ,在△ABG 和△CEB 中,AB BC ABG CBE BG EB =⎧⎪∠=∠⎨⎪=⎩,∴△ABG ≌△CEB (SAS ),∴AG=EC ,∠BAG=∠BCE ,∵∠BAG+∠AOB=90°,∠AOB=∠COM ,∴∠BCE+∠COM=90°,∴∠OMC=90°,∴AG ⊥EC .②过B 作BP ⊥EC ,BH ⊥AM ,∵△ABG ≌△CEB ,∴S △ABG =S △EBC ,AG=EC , ∴12EC•BP=12AG•BH , ∴BP=BH ,∴MB 平分∠AME ;(3)CM=2BN ,理由为:在NA 上截取NQ=NB ,连接BQ ,∴△BNQ 为等腰直角三角形,即BQ=2BN ,∵∠AMN=45°,∠N=90°,∴△AMN 为等腰直角三角形,即AN=MN ,∴MN-BN=AN-NQ ,即AQ=BM ,∵∠MBC+∠ABN=90°,∠BAN+∠ABN=90°,∴∠MBC=∠BAN ,在△ABQ 和△BCM 中,AQ BM BAN MBC AB BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABQ ≌△BCM (SAS ),∴CM=BQ ,则CM=2BN .【点睛】此题考查了正方形,全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线的判定,熟练掌握正方形的性质是解本题的关键.6.如图1所示,矩形ABCD中,点E,F分别为边AB,AD的中点,将△AEF绕点A逆时针旋转α(0°<α≤360°),直线BE、DF相交于点P.(1)若AB=AD,将△AEF绕点A逆时针旋转至如图2所示的位置,则线段BE与DF的数量关系是.(2)若AD=nAB(n≠1),将△AEF绕点A逆时针旋转,则(1)中的结论是否仍然成立?若成立,请就图3所示的情况加以证明,若不成立,请写出正确结论,并说明理由.(3)若AB=8,BC=12,将△AEF旋转至AE⊥BE,请算出DP的长.答案:B解析:(1)BE=DF;(2)不成立,结论:DF=nBE;理由见解析(3)634或634【分析】(1)如图2中,结论:BE=DF,BE⊥DF.证明△ABE≌△ADF(SAS),利用全等三角形的性质可得结论;(2)结论:DF=nBE,BE⊥DF,证明△ABE∽△ADF(SAS),利用相似三角形的性质可得结论;(3)分两种情形画出图形,利用相似三角形的性质以及勾股定理求解即可.【详解】解:(1)结论:BE=DF,BE⊥DF,理由:∵四边形ABCD是矩形,AB=AD,∴四边形ABCD是正方形,AE=12AB,AF=12AD,∴AE=AF,∵∠DAB=∠EAF=90°,∴∠BAE=∠DAF,∴△ABE≌△ADF(SAS),∴BE=DF,故答案为:BE=DF;(2)结论不成立,结论:DF=nBE,∵AE=12AB,AF=12AD,AD=nAB,∴AF=nAE,∴AF∶AE=AD∶AB,∴AF∶AE=AD∶AB,∵∠DAB=∠EAF=90°,∴∠BAE=∠DAF,∴△BAE∽△DAF,∴DF∶BE=AF∶AE=n,∠ABE=∠ADF,∴DF=nBE;(3)如图4-1中,当点P在BE的延长线上时,在Rt△AEB中,∵∠AEB=90°,AB=8,AE=12AB=4,∴BE=22AB AE-=43,∵△ABE∽△ADF,∴ABAD =BE DF,∴812=43DF,∴DF=63,∵四边形AEPF是矩形,∴AE=PF=4,∴PD=DF-PF=634-;如图4-2中,当点P在线段BE上时,同法可得DF=63PF=AE=4,∴PD=DF +PF=634+, 综上所述,满足条件的PD 的值为634-或634+.【点睛】 此题考查了矩形的性质,全等三角形的判定及性质,旋转的性质,相似三角形的判定及性质,勾股定理,注意应用分类思想解决问题, 是一道较难的几何综合题.7.如图,ABD △和ACE △都是等边三角形.(1)连接CD 、BE 交于点P ,求∠BPD ;(2)连接PA ,判断线段PA 、PB 、PD 之间的数量关系并证明;(3)如图,等腰ABC 中AB =AC ,∠BAC =α(0<α<90),在ABC 内有一点M ,连接MA 、MB 、MC .当MA +MB +MC 最小时,∠ABM = (用含α的式子表示)答案:D解析:(1)60BPD ∠=︒(2)PD PB PA =+,证明见详解(3)1602α︒-【分析】(1)证明()DAC BAE SAS ≅,得ADC ABE ∠=∠,就可以证明60BPD DAB ∠=∠=︒;(2)在DP 上截取PF=PB ,连接BF ,证明()DBF ABP SAS ≅,得DF PA =,即可证明PD PB PA =+;(3)分别以AB 和AC 为边,向两边作等边三角形ABD 和等边三角形ACE ,连接BE 和CD ,交于点M ,连接AM ,此时MA MB MC ++最小,然后利用等腰三角形ADC ,求出ADC ∠的度数,即可得到ABM ∠的度数.【详解】解:(1)∵ABD △和ACE △是等边三角形,∴AD AB =,AC AE =,60DAB CAE ∠=∠=︒,∵DAB BAC CAE BAC ∠+∠=∠+∠,∴DAC BAE ∠=∠,在DAC △和BAE △中,AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴()DAC BAE SAS ≅,∴ADC ABE ∠=∠,∵ADC DAB ABE BPD ∠+∠=∠+∠,∴60BPD DAB ∠=∠=︒;(2)如图,在DP 上截取PF=PB ,连接BF ,∵60BPD ∠=︒,PF PB =,∴PFB △是等边三角形,∴BF BP =,60FBP ∠=︒,∴DBA FBP ∠=∠,∵DBA FBA FBP FBA ∠-∠=∠-∠,∴DBF ABP ∠=∠,在DBF 和ABP △中,DB AB DBF ABP BF BP =⎧⎪∠=∠⎨⎪=⎩,∴()DBF ABP SAS ≅,∴DF PA =,∵PD PF FD =+,∴PD PB PA =+;(3)如图,分别以AB 和AC 为边,作等边三角形ABD 和等边三角形ACE ,连接BE 和CD ,交于点M ,连接AM ,此时MA MB MC ++最小,由(2)中的结论可得MD MA MB =+,则当D 、M 、C 三点共线时MA MB MC ++最小,即CD 的长,由(1)得ADC ABM ∠=∠,∵AD AB AC ==,60DAC α∠=︒+,∴()1806016022ADC αα︒-︒+∠==︒-, ∴1602ABM α∠=︒-,故答案是:1602α︒-.【点睛】本题考查全等三角形的性质和判定,等边三角形的性质,解题的关键是做辅助线构造全等三角形来进行证明求解.8.(1)ABC 和CDE △是两个等腰直角三角形,如图1,其中90ACB DCE ∠=∠=︒,连接AD 、BE ,求证:ACD △≌BCE .(2)ABC 和CDE △是两个含30°的直角三角形,中90ACB DCE ∠=∠=︒,∠=CAB CDE ∠30=︒,CD AC <,CDE △从边CD 与AC 重合开始绕点C 逆时针旋转一定角度()0180αα︒<<︒.①如图2,DE 与BC 交于点F ,交AB 于G ,连接AD ,若四边形ADEC 为平行四边形,求BG AG的值. ②若12AB =,当点D 落在AB 上时,求BE 的长.答案:A解析:(1)见解析;(2)①13BG AG =;②2212312cos 4sin 1ααα+- 【分析】(1)利用SAS 证明即可; (2)①连接CG ,根据平行四边形的性质推出//AD CE ,求出120ADE ∠=︒,得到90ADC ADE CDE ∠=∠-∠=︒,根据30CAB CDE ∠=∠=︒证得A 、D 、G 、C 四点共圆,从而得到90AGC ADC ∠=∠=︒,利用直角三角形中30度角的性质求出3AG CG =, 3CG BG =,即可求出答案;②先证明ACD △∽BCE ,由此推出∠DBE=90°,得到DBE 为直角三角形,设BE a =,则3AD a =,123BD a =-,过D 点作DH AC ⊥于H ,利用30A ∠=︒得到3sin 302DH AD a =︒=,由ACD α∠=,得到3sin 2sin HD a CD αα==,由此求出cos30sin CD a DE α==︒,由勾股定理得222DE BE BD =+,即()2222221231443243sin a a a a a a α=+-=++-,解方程求出a.【详解】 (1)∵ABC 和CDE △是两个等腰直角三角形,∴AC BC =,CD CE =,ACB DCE ∠=∠,∴∠ACB-∠DCB=∠DCE-∠DCB ,∴ACD BCE ∠=∠, 在ACD △和BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴ACD △≌BCE (SAS ).(2)①连接CG ,如图所示,∵四边形ADEC 为平行四边形,∴//AD CE ,∴180ADE CED ∠+∠=︒,∵90903060CED CDE ∠=︒-∠=︒-︒=︒,∴120ADE ∠=︒,∴90ADC ADE CDE ∠=∠-∠=︒,∵30CAB CDE ∠=∠=︒,∴A 、D 、G 、C 四点共圆,∴90AGC ADC ∠=∠=︒,∵30CAB ∠=︒,∴12CG AC =,3AG CG =,30BCG ∠=︒, ∴3CG BG =,即33BG CG =, ∴13BG AG =;②∵90ACB DCE ∠=∠=︒,∴ACB DCB DCE DCB ∠-∠=∠-∠,∴ACD BCE ∠=∠,∵30CAB CDE ∠=∠=︒,∴3AC DC BC CE ==, ∴ACD △∽BCE ,∴CAD CBE ∠=∠,∴90DBE DBC CBE DBC CAD ∠=∠+∠=∠+∠=︒,∴DBE 为直角三角形,设BE a =,∴3AD a =,∴123BD a =-,过D 点作DH AC ⊥于H ,30A ∠=︒, 则3sin 302DH AD a =︒=, 又∵ACD α∠=,∴3sin 2sin HD a CD αα==, 又在Rt CDE △中,30∠=︒CDE ,∴cos30sin CD a DE α==︒, ∴在Rt BDE △中,由勾股定理得222DE BE BD =+,即()2222221231443243sin a a a a a a α=+-=++-,∴22142431440sin a a α⎛⎫--+= ⎪⎝⎭, 解得22576243576sin 28sin a αα±-=-, 即222243sin 241sin 8sin 2a ααα+-=- 2222243sin 24cos 123sin 12cos 8sin 24sin 1αααααα++==--, 故BE 的长为22123sin 12cos 4sin 1ααα+-.【点睛】此题考查等腰直角三角形的性质,三角形全等的判定及性质,旋转的性质,平行四边形的性质,四点共圆,含30度角的直角三角形的性质,相似三角形的判定及性质,锐角三角函数,是一道较难的几何综合题.9.在等腰Rt ABC △中,AB AC =、90BAC ∠=︒.(1)如图1,D ,E 是等腰Rt ABC △斜边BC 上两动点,且45DAE ∠=︒,将ABE △绕点A 逆时针旋转90后,得到AFC △,连接DF .①求证:AED AFD ≌.②当3BE =,9CE =时,求DE 的长.(2)如图2,点D 是等腰Rt ABC △斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt ADE △(E 点在直线BC 的上方),当3BD =,9BC =时,求DE 的长.答案:D解析:(1)①证明见解析;②5;(2)35或317【分析】(1)①证明∠DAE=∠DAF=45°即可利用SAS 证明全等;②由①中全等可得DE=DF ,再在Rt △FDC 中利用勾股定理计算即可;(2)连接BE ,根据共顶点等腰直角三角形证明全等,再利用勾股定理计算即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∠ADB = ∠DEC
ቤተ መጻሕፍቲ ባይዱ∠B =∠C
,∴△ABD≌△DCE( AAS) ;
AB = DC
8
(3) 当 ∠BDA 的度数为110° 或 80° 时, △ADE 的形状是等腰三角形, D∠BDA =110° 时, ∴∠ADC= 70° , ∠C = 40° , ∴∠DAC= 70° , ∴△ADE 的形状是等腰三角形;
∴∠BCE = ∠CAD ,
∠BCE = ∠CAD 在 △ACD 和 △CBE 中, ∠CEB = ∠ADC = 90° ,
AC = BC ∴△ACD≌△CBE( AAS) . 2. (1)证明:△ABC 是等腰直角三角形,
∴ AB = AC . ∠ABC =90° , AD ⊥ l , CE ⊥ l ,
∠CAM = ∠CDN , ∠ACM = ∠DCN = 60° , CA = CD , D
7
∴△ACM≌△DCN ( AAS) ,∴CM = CN ,所以②正确; ∴ AM = DN , ∠AMC > ∠MCE ,
∴∠AMC > ∠ACM , ∴ AC > AM , ∴ AC > AN ,所以③错误; 作 CG ⊥ AE 于 G , CH ⊥ BD 于 H ,如图, D△ACE≌△DCB , ∴CG = CH , ∴ PC 平分 ∠APC ,所以④正确; ∠APD = ∠PAB + ∠PBA = ∠CDB + ∠DBC = ∠ACD = 60° ,所以⑤正确. 故选: B .
6
参考答案: 【模块一】
1.
解: D
∠ACB
= ∠ECD
= 90° ,
∴∠BCD = ∠ACE ,
在 △BDC 和 △AEC 中,
AC = BC ∠BCD = ∠ACE DC = EC
∴△BDC≌△AEC(SAS) ,故①正确;
∴∠DBC = ∠EAC , BD = AE ,故③正确; ∠EBD = ∠DBC + ∠EBC = 38° ,
10
且 A 、 C 、 B 在同一直线上,有如下结论:其中正确结论有 ( )
① △ACE≌△DCB ;
② CM = CN ;
③ AC = DN ;
④ PC 平分 ∠APB ;
⑤ ∠APD =60° ,
A.①②③④⑤
B.①②④⑤
C.①②③⑤
D.①②⑤
3
3. 如图, 在 △ABC 中, A=B A=C 2 ,∠B = 40° ,点 D 在线段 BC 上运动( D 不与 B 、C
① △BDC≌△AEC ; ②若 ∠EBD =38° ,则 ∠AEB =128° ;③ BD = AE ; ④ AE 所在的直线 ⊥ BD . 其中正确的有 ( )
A.1 个
B.2 个
C.3 个
D.4 个
2. 如图,△DAC 和 △EBC 均是等边三角形, AE 、 BD 分别与 CD 、CE 交于点 M 、 N ,
D ∴∠EAC + ∠EBC= 38° ,
∴∠ABE + ∠EAB= 90° − 38°= 52° , ∴∠AE=B 180° − (∠ABE + ∠EAB=) 180° − 52=° 128° ,故②正确;
∠3 =∠4 ,∴∠BFE = ∠ACE = 90° , ∴ AE ⊥ BD ,故④正确;
重合) ,连接 AD ,作 ∠ADE =40° , DE 与 AC 交于 E .
(1)当 ∠BDA =115° 时, ∠BAD = ° , ∠DEC = ° ;当点 D 从 B 向 C
运动时, ∠BDA 逐渐变
(填 “大”或“小” ) ;
(2)当 DC 等于多少时, △ABD 与 △DCE 全等?请说明理由;
D ∴∠ADB = ∠BEC = ∠ABC = 90° , ∴∠DAB + ∠DBA= 90° , ∠DBA + ∠CBE= 90° , ∴∠DAB = ∠CBE , ∴△ADB≌△BEC ,
9
(2)解:设运动时间为 t 秒时, ∆PEC ≅ ∆QFC , △PEC≌△QFC ,∴斜边 CP = CQ , 有四种情况: ① P 在 AC 上, Q 在 BC 上,如图 2 所示: CP= 6 − t , CQ= 8 − 3t , ∴6 − t = 8 − 3t , ∴t =1; ② P 、 Q 都在 AC 上,此时 P 、 Q 重合,如图 3 所示: ∴CP = 6 − t = 3t − 8 , ∴t =3.5 ; ③ P 在 BC 上, Q 在 AC 时,此时不存在;如图 4 所示: 理由是: 8 ÷ 3×1 < 6 , Q 到 AC 上时, P 应也在 AC 上; ④当 Q 到 A 点(和 A 重合), P 在 BC 上时,如图 5 所示: CQ = CP , C=Q A=C 6 , CP= t − 6 , ∴t − 6 =6 ∴t =12 t < 14 ∴t =12 符合题意 即点 P 运动 1 或 3.5 或 12 秒时, ∆PEC 与 ∆QFC 全等.
故选: D .
2. 解:D△DAC 和 △EBC 均是等边三角形,
∴CA = CD , CB = CE , ∠ACD = ∠BCD = 60° , ∴∠ACE = ∠BCD = 120° , 在 △ACE 和 △DCB 中
CA = CD ∠ACE = ∠DCB , CE = CB ∴△ACE≌△DCB(SAS) ,所以①正确; ∴∠CAE = ∠CDB ,
当 ∠BDA 的度数为 80° 时,
∴∠AD=C 100° , ∠C = 40° ,
∴∠DAC= 40° , ∴△ADE 的形状是等腰三角形 .
【模块二】
1.
证明:
BE

CE

AD

CE

D

∴∠CEB = ∠ADC = 90° ,
∠BCE + ∠ACD = ∠ACB = 90° , D ∠CAD + ∠ACD= 180° − 90°= 90° ,
(3)在点 D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以, 请直接写出
∠BDA 的度数;若不可以, 请说明理由 .
4
【模块二】一线三等角模型 1. 如图 ∠ACB =90° , AC = BC , BE ⊥ CE , AD ⊥ CE 于 D ,
求证: △ACD≌△CBE .
5
2. (1)如图 1 中, ∠ABC =90° , AB = BC ,点 B 在直线上 L 上,过 A 、 C 两点的直线 L 的连线段垂足分别为点 D 、点 E ,求证: △ADB≌△BEC ;
(2)如图 2,△ABC 中, ∠ACB =90° , AC = 6 , BC = 8 ,点 P 从 A 点出发沿 A − C − B 路径向终点运动,终点为 B 点,点 Q 从 B 点出发沿 B − C − A 路径向终点运动,终点 为 A 点,点 P 与 Q 分别以 1 和 3 的迳动速度同时开始运动,两点都要到相应的终点 才能停止运动,在某时刻,分别过 P 和 Q 作 PF ⊥ l 于 B ,QF 垂直 l 于 F .问:点 P 运动多少时间时, ∆PEC 与 QFC 全等?请说明理由.
当点 D 从 B 向 C 运动时, ∠BDA 逐渐变小;
(2)当 DC = 2 时, △ABD≌△DCE ,
理由: ∠C = 40° ,
∴∠DEC + ∠ED=C 140° ,又 ∠ADE =40° , D
∴∠ADB + ∠ED=C 140° ,∴∠ADB = ∠DEC ,
又 A=B D=C 2 ,在 △ABD 和 △DCE 中, D
全等三角形之旋转模型
知识概述 ☆旋转模型——手拉手模型(根据不同的图形找到条件和写出结论)
条件:
结论:
条件:
结论:
条件:
结论:
条件:
结论:
1
☆旋转模型——一线三等角模型 条件:
结论:
条件:
结论:
条件:
结论:
条件:
结论:
2
好题专练 【模块一】手拉手模型 1. 如图,已知: AC = BC , DC = EC , ∠ACB = ∠ECD = 90° ,现有下列结论:
3. (1)∠B = 40° , ∠ADB =115° ,
∴∠BAD= 180° − 40° −115°= 25° ;
D∠ADE =40° , ∠ADB =115° , ∴∠EDC= 180° − ∠ADB − ∠AD=E 180° −115° − 40=° 25° .
∴∠DEC= 180° − 40° − 25=° 115° ,
相关文档
最新文档