(完整版)《找次品》优质课教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《找次品》教学设计
-----徐怀涛
教学目标:
1、通过比较、猜测、验证等活动,探索解决问题的策略,渗透优化思想,感受解决问题策略的多样性,培养观察、分析、推理的能力。
2、学习用图形,符号等直观方式清晰、简明的表示数学思维的过程,培养逻辑思维的能力。
教学重点:体会解决问题策略的多样性及优思想
教学难点:观察归纳找次品的最优策略
课前交流:
师:上课之前老师想先考考大家的眼力,看看谁的眼力最棒?
师:请不同。
生:(回答)
师:咦,怎么回事?
生:不好确定。。。。。
师:刚才这位同学分析的很对,从外观上看,它们一模一样,可实
际上其中有一瓶少了3片,在生产生活当中我们把这种不合格的产
品称为“次品“,那当遇见次品时需要把它找出来吗?
生:需要。
师:大家的声音里感觉少点什么,请看大屏幕
(播放航天飞机事故图片)
师:看完后你想说点什么?
生:次品的危害很大。。。。
师:再问大家一次,当有次品的时候要不要把它找出来?
生:要。
师:从同学们的回答声中老师感受到大家的社会责任感,今天我们就一起来研究《找次品》(板书)
(宣布上课)
师:大家请看课题,你希望从这节课的学习中了解到什么?
生:找次品的方法,如何最快找到次品。
师:那我们带着这样的学习目标咱们开始今天的学习,
一、探究新知
(一)探究2和3
师:这两瓶钙片,谁有办法找出其中的次品?
生:掂一掂,数一数。。。。。
生:可以用天平
师:天平咱们在以前的学习中已经接触过了,天平长什么样?谁能用身体模仿一下?
生:用身体模仿
师:多么美丽的一架天平啊,那么如何用天平找出其中的次品呢?谁来当天平给大家找一找?
生:天平两端各放1瓶,哪边轻就是次品。
师:你把钙片分成了几份?
生:两份。
师:天平这时候会出现什么情况呢?
生:(用身体表现出倾斜)
师:次品在哪里?指一指
师:如果次品多了几片呢?
生:哪边重就是次品。
师:需要称几次?
生:1次
师:看来从两瓶里找次品,只需要称1次就一定能找到。
如果是3瓶呢?请看屏幕,需要称几次?
师:猜一下?
生:2次,1次?
师:独立思考一会,然后跟大家说说你称的方法,你分成了几组? 需要称几次?
生:分成了三份,天平两端各放一瓶,
如果天平平衡,那么剩下的就是次品,(指一指)
如果天平不平衡,那么上升的就是次品,(抖一抖)
需要称一次
师:称1次可能会出现几种情况?
生:两种,平衡或不平衡
师:不论天平平衡或不平衡,只需称1次就能找出次品。
师:咱们一起来体验一下他的称法,伸出手,架起天平,任选两瓶放在天平两端,如果天平不平衡,那么次品在?如果天平平衡次品在?
师:称1次能保证找到次品吗?
生:能。。。。
师:大家观察次品的位置,你发现了什么?
师:就是说次品不在天平上就在。。。。
生:天平外
师:那么次品一定是我们用天平称出来的吗?
生:不是。
师:从表面上看,咱们比较的是天平上的两份,但加以科学推理咱同时比较的其实是三份。这里有几个位置可以利用?
师:多好的方法,咱们用数学的方式记录下来,同学们呢仔细看,对照流程图再把方法说一说。
(二)探究8
师:咱们用天平称的方法一次就从三个产品中找到了次品,那数量增加到8个呢?请看屏幕。
师:出示例题2:8个零件里有1个是次品(次品重一些)。假如用天平称,至少称几次能保证能找出次品?
师:通过读题你知道了什么?
生:次品重一些,下降的就是次品
师:问题是什么呢?
生:至少称几次能保证能找出次品?
师:这句话是什么意思?
生:保证找出次品的最少次数
师:大家先猜一猜,从8个当中找次品,需要几次?
生:3、4、。。
师:到底需要多少次呢?看到桌子上的教具了么?我们实验一下不就知道了么?
师:请看提示
(学生小组合作)
师:我们一起来看看你们找到的方法,谁先来展示?(站在侧面,让大家看到你的想法)
生:小组一我们分成了8份,1,1,1,1,1,1,1,1,。。。需要4次
师:看到他的方法,你想说点什么?
师:刚才这位同学的称法中,有可能一次就找到次品,还要不要继续称下去?
生:要,因为称一次就找到次品的概率不大,太幸运了,这种方式不能保证找出次品。
师:当我们选择一种方法分析问题时,对可能出现的结果要全面考虑,做最坏打算,只有这样才能保证找到次品(板书:保证)
有没有更少的称法?
生:小组二,我们分成了2,2,2,2共4份。。。。需要3次
生:小组三4,4两份,需要3次
生:小组四3,3,2,3份,需要2次。
师:还有更少的方案吗?
生:没有了
师:观察一下,最佳方案是?
生:第四种
师:四种方法,都能保证找到次品,发现没有?各组找次品时物品分法不同,保证找出次品的次数也就不一样,你认为保证着地次品的次数跟什么有关?
生:跟物品的分法有关
师:那到底怎么分,既能找出次品,用天平称的次数又最少呢?
生:回答。。。。
师:再看最佳方案,三份的个数不同,难道跟分成三份有关??
师:是不是和分成三组有关系呢?
(三)探究9
师:咱们再找个数字分成三份试试怎么样?
这次我们不摆学具,把天平移到脑海里,快速想像,推理,找出方案,从9个零件中里找出一个重一些的次品,至少几次保证找到?