大学物理A(上)静电学部分习题解答A

合集下载

大学物理课后习题答案

大学物理课后习题答案

第九章 静电场 (Electrostatic Field)二、计算题9.7 电荷为+q 和-2q 的两个点电荷分别置于x =1 m 和x =-1 m 处.一试验电荷置于x 轴上何处,它受到的合力等于零?解:设试验电荷0q 置于x 处所受合力为零,根据电力叠加原理可得()()()()022220000(2)(2)ˆˆ0041414141q q q q q q i i x x x x εεεε⋅-⋅-+=⇒+=π-π+π-π+即:2610(3x x x m -+=⇒=±。

因23-=x 点处于q 、-2q 两点电荷之间,该处场强不可能为零.故舍去.得()223+=x m9.8 一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如题图9.4所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在θ 处取微小电荷d q = λd l = 2Q d θ / π它在O 处产生场强θεεd 24d d 20220R QR q E π=π=按θ 角变化,将d E 分解成二个分量:θθεθd sin 2sin d d 202R QE E x π==θθεθd cos 2cos d d 202RQE E y π-=-= 对各分量分别积分,积分时考虑到一半是负电荷⎥⎦⎤⎢⎣⎡-π=⎰⎰πππθθθθε2/2/0202d sin d sin 2R QE x =02022/2/0202d cos d cos 2R QR Q E y εθθθθεππππ-=⎥⎦⎤⎢⎣⎡-π-=⎰⎰ 所以j R Q j E i E E y x202επ-=+=9.9如图9.5所示,一电荷线密度为λ的无限长带电直导线垂直纸面通过A 点;附近有一电量为Q 的均匀带电球体,其球心位于O 点。

AOP ∆是边长为a 的等边三角形。

已知P 处场强方向垂直于OP ,求:λ和Q 间的关系。

大学物理静电学题库及答案

大学物理静电学题库及答案

一、选择题:(每题3分)1、 在坐标原点放一正电荷Q ,它在P 点(x =+1,y =0)产生的电场强度为E.现在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使P 点的电场强度等于零?(A) x 轴上x >1.(B) x 轴上0<x <1.(C) x 轴上x <0. (D) y 轴上y >0.(E) y 轴上y <0.[ ]2、一均匀带电球面,电荷面密度为σ,球面内电场强度处处为零,球面上面元d S 带有σ d S 的电荷,该电荷在球面内各点产生的电场强度(A) 处处为零. (B) 不一定都为零.(C) 处处不为零. (D) 无法判定 .[]3、在边长为a 的正方体中心处放置一电荷为Q 的点电荷,则正方体顶角处的电场强度的大小为:(A) 2012a Q επ. (B) 206a Qεπ.(C) 203a Q επ. (D) 20a Qεπ. [ ]4、电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图放置,则其x 变化的关系曲线为:(设场强方向向右为正、向左为负) [ ]σ(D)5、设有一“无限大”均匀带正电荷的平面.取x 轴垂直带电平面,坐标原点在带电平面上,则其周围空间各点的电场强度E随距离平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):[ ](B)x6、设有一“无限大”均匀带负电荷的平面.取x 轴垂直带电平面,坐标原点位于带电平面上,则其周围空间各点的电场强度E 随距离平面的位置坐标x 变化的关系曲线为(规定场强方向沿x 轴正向为正、反之为负):[ ]7、关于电场强度定义式0/q F E=,下列说法中哪个是正确的?(A) 场强E 的大小与试探电荷q 0的大小成反比.(B) 对场中某点,试探电荷受力F 与q 0的比值不因q 0而变.(C) 试探电荷受力F 的方向就是场强E的方向.(D) 若场中某点不放试探电荷q 0,则F =0,从而E=0. [ ]8、将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则(A) F / q 0比P 点处原先的场强数值大.(B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值.(D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ ]9、下面列出的真空中静电场的场强公式,其中哪个是正确的? (A) 点电荷q 的电场:204rq E επ=.(r 为点电荷到场点的距离)(B) “无限长”均匀带电直线(电荷线密度λ)的电场:r r E302ελπ=(r为带电直线到场点的垂直于直线的矢量)(C) “无限大”均匀带电平面(电荷面密度σ)的电场:02εσ=E(D) 半径为R 的均匀带电球面(电荷面密度σ)外的电场:r rR E302εσ= (r为球心到场点的矢量)10、下列几个说法中哪一个是正确的?(A) 电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向.(B) 在以点电荷为中心的球面上, 由该点电荷所产生的场强处处相同.(C) 场强可由q F E /=定出,其中q 为试验电荷,q 可正、可负,F试验电荷所受的电场力.P 0(D) 以上说法都不正确. [ ]11、一电场强度为E 的均匀电场,E 的方向与沿x 轴正向,如图所示.则通过图中一半径为R 的半球面的电场强度通量为(A) πR 2E . (B) πR 2E / 2. (C) 2πR2E . (D) 0. []12、已知一高斯面所包围的体积内电荷代数和∑q =0,则可肯定:(A) 高斯面上各点场强均为零. (B) 穿过高斯面上每一面元的电场强度通量均为零.(C) 穿过整个高斯面的电场强度通量为零. (D) 以上说法都不对. [ ]13、一点电荷,放在球形高斯面的中心处.下列哪一种情况,通过高斯面的电场强度通量发生变化:(A) 将另一点电荷放在高斯面外. (B) 将另一点电荷放进高斯面内. (C) 将球心处的点电荷移开,但仍在高斯面内.(D) 将高斯面半径缩小. [ ]14、点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q至曲面外一点,如图所示,则引入前后: (A) 曲面S 的电场强度通量不变,曲面上各点场强不变. (B) 曲面S 的电场强度通量变化,曲面上各点场强不变. (C) 曲面S 的电场强度通量变化,曲面上各点场强变化. (D) 曲面S 的电场强度通量不变,曲面上各点场强变化. [ ]15、半径为R 的均匀带电球面的静电场中各点的电场强度的大小E 与距球心的距离r 之间的关系曲线为:[ ]qE O r (D) E ∝1/r 216、半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关系曲线为: [ ]17、半径为R 的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:[ ]18、半径为R 的均匀带电球面,若其电荷面密度为σ,则在距离球面R 处的电场强度大小为:(A)εσ. (B) 02εσ.(C) 04εσ. (D) 08εσ. [ ]19、高斯定理⎰⎰⋅=VSV S E 0/d d ερ(A) 适用于任何静电场.(B) 只适用于真空中的静电场. (C) 只适用于具有球对称性、轴对称性和平面对称性的静电场.(D) 只适用于虽然不具有(C)中所述的对称性、但可以找到合适的高斯面的静电场. [ ] 20、根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零. (C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷. [ ]21、关于高斯定理的理解有下面几种说法,其中正确的是:(A) 如果高斯面上E处处为零,则该面内必无电荷. (B) 如果高斯面内无电荷,则高斯面上E处处为零. (C) 如果高斯面上E处处不为零,则高斯面内必有电荷.(D) 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零. [ ]22、如图所示,两个同心均匀带电球面,内球面半径为R 1、带有电荷Q 1,外球面半径为R 2、带有电荷Q 2,则在外球面外面、距离球心为r 处的P 点的场强大小E 为:(A)20214rQ Q επ+. (B)()()2202210144R r Q R r Q -π+-πεε. (C) ()2120214R R Q Q -π+ε. (D) 2024r Q επ. [ ]23、 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面,均匀带电,沿轴线方向单位长度上的所带电荷分别为λ1和λ2,则在外圆柱面外面、距离轴线为r 处的P 点的电场强度大小E 为:(A)r0212ελλπ+.(B) ()()20210122R r R r -π+-πελελ.(C) ()20212R r -π+ελλ. (D) 20210122R R ελελπ+π. [ ]24、A 和B 为两个均匀带电球体,A 带电荷+q ,B 带电荷-q ,作一与A 同心的球面S 为高斯面,如图所示.则(A) 通过S 面的电场强度通量为零,S 面上各点的场强为零.(B) 通过S 面的电场强度通量为q / ε0,S 面上场强的大小为20π4rqE ε=.(C) 通过S 面的电场强度通量为(- q ) / ε0,S 面上场强的大小为20π4rqE ε=. (D) 通过S 面的电场强度通量为q / ε0,但S 面上各点的场强不能直接由高斯定理求出. [ ]25、在空间有一非均匀电场,其电场线分布如图所示.在电场中作一半径为R 的闭合球面S ,已知通过球面上某一面元∆S 的电场强度通量为∆Φe ,则通过该球面其余部分的电场强度通量为(A) - ∆Φe . (B)e SR Φ∆∆π24. (C) e SSR Φ∆∆∆-π24. (D) 0.[ ]26、半径为R 的“无限长”均匀带电圆柱面的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为: [ ]27、静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能. (B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能.(D)把单位正电荷从该点移到电势零点外力所作的功. [ ]28、如图所示,边长为l 的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O 处的场强值和电势值都等于零,则:(A) 顶点a 、b 、c 、d 处都是正电荷. (B) 顶点a 、b 处是正电荷,c 、d 处是负电荷. (C) 顶点a 、c 处是正电荷,b 、d 处是负电荷. (D) 顶点a 、b 、c 、d 处都是负电荷. [ ] 29、如图所示,边长为 0.3 m 的正三角形abc ,在顶点a 处有一电荷为10-8 C 的正点电荷,顶点b 处有一电荷为-10-8 C 的负点电荷,则顶点c 处的电场强度的大小E 和电势U 为: (41επ=9³10-9 N m /C 2)(A) E =0,U =0. (B) E =1000 V/m ,U =0.(C) E =1000 V/m ,U =600 V .(D) E =2000 V/m ,U =600 V . [ ]30、如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为:(A) E =0,r Q U 04επ=. (B) E =0,R Q U 04επ=.(C) 204r Q E επ=,r Q U 04επ= . (D) 204r Q E επ=,RQU 04επ=. [ ]31、关于静电场中某点电势值的正负,下列说法中正确的是:E O r (A) E ∝1/rb a(A) 电势值的正负取决于置于该点的试验电荷的正负. (B) 电势值的正负取决于电场力对试验电荷作功的正负. (C) 电势值的正负取决于电势零点的选取.(D) 电势值的正负取决于产生电场的电荷的正负. [ ]32、在边长为a 的正方体中心处放置一点电荷Q ,设无穷远处为电势零点,则在正方体顶角处的电势为:(A)aQ 034επ .(B) a Q032επ.(C) a Q 06επ. (D) aQ012επ . [ ]33、 图中所示为一球对称性静电场的电势分布曲线,r 表示离对称中心的距离.请指出该电场是由下列哪一种带电体产生的.(A) 半径为R 的均匀带正电球面.(B) 半径为R的均匀带正电球体. (C) 正点电荷.(D) 负点电荷. [ ]34、 图中所示为一球对称性静电场的电势分布曲线,r 表示离对称中心的距离.请指出该电场是由下列哪一种带电体产生的.(A) 半径为R 的均匀带负电球面. (B) 半径为R 的均匀带负电球体. (C) 正点电荷. (D) 负点电荷. [ ]35、一半径为R 的均匀带电球面,带有电荷Q .若规定该球面上的电势值为零,则无限远处的电势将等于 (A)R Q0π4ε. (B) 0.(C) RQ0π4ε-. (D) ∞. [ ]36、 真空中有一点电荷Q ,在与它相距为r 的a 点处有一试验电荷q .现使试验电荷q 从a 点沿半圆弧轨道运动到b 点,如图所示.则电场力对q 作功为(A)24220r r Qq π⋅πε. (B) r r Qq 2420επ. (C) r rQqππ204ε. (D) 0. [ ]37、点电荷-q 位于圆心O 处,A 、B 、C 、D 为同一圆周上的四点,如图所示.现将一试验电荷从A 点分别移动到B 、C 、D 各点,则 (A) 从A 到B ,电场力作功最大.(B) 从A 到C ,电场力作功最大.(C) 从A 到D ,电场力作功最大.(D) 从A 到各点,电场力作功相等. []38、如图所示,边长为a 的等边三角形的三个顶点上,分别放置着三个正的点电荷q 、2q 、3q .若将另一正点电荷Q从无穷远处移到三角形的中心O 处,外力所作的功为:(A) a qQ023επ . (B) aqQ 03επ.(C)a qQ 0233επ. (D) aqQ032επ. [ ]39、在已知静电场分布的条件下,任意两点P 1和P 2之间的电势差决定于 (A) P 1和P 2两点的位置. (B) P 1和P 2两点处的电场强度的大小和方向. (C) 试验电荷所带电荷的正负.(D) 试验电荷的电荷大小. [ ]40、如图所示,直线MN 长为2l ,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷+q ,M点有负电荷-q .今将一试验电荷+q 0从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A) A <0 , 且为有限常量. (B) A >0 ,且为有限常量.(C) A =∞. (D) A =0. [ ]41、已知某电场的电场线分布情况如图所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度E M <E N . (B) 电势U M <U N . (C) 电势能W M <W N . (D) 电场力的功A >0.[ ]42、已知某电场的电场线分布情况如图所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度E M >E N . (B) 电势U M >U N . (C) 电势能W M <W N . (D) 电场力的功A >0.[ ]43、在电荷为-Q 的点电荷A 的静电场中,将另一电荷为q 的点电荷B 从a 点移到b 点.a 、b 两点距离点电荷A 的距离分别为r 1和r 2,如图所示.则移动过程中电场力做的功为 Aq2q- r(A)⎪⎪⎭⎫ ⎝⎛-π-210114r r Qε. (B) ⎪⎪⎭⎫⎝⎛-π210114r r qQ ε. (C) ⎪⎪⎭⎫⎝⎛-π-210114r r qQ ε. (D) ()1204r r qQ -π-ε [ ]44、带有电荷-q 的一个质点垂直射入开有小孔的两带电平行板之间,如图所示.两平行板之间的电势差为U ,距离为d ,则此带电质点通过电场后它的动能增量等于(A) dqU-. (B) +qU .(C) -qU . (D) qU 21. [ ]45、在匀强电场中,将一负电荷从A 移到B ,如图所示.则: (A) 电场力作正功,负电荷的电势能减少. (B) 电场力作正功,负电荷的电势能增加. (C) 电场力作负功,负电荷的电势能减少.(D) 电场力作负功,负电荷的电势能增加. [ ]46、 图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出:(A) E A >E B >E C ,U A >U B >U C . (B) E A <E B <E C ,U A <U B <U C . (C) E A >E B >E C ,U A <U B <U C . (D) E A <E B <E C ,U A >U B >U C . [ ]47、电子的质量为m e ,电荷为-e ,绕静止的氢原子核(即质子)作半径为r 的匀速率圆周运动,则电子的速率为 (A) k r m ee . (B) rm ke e . (C) r m k ee 2. (D) rm ke e 2. (式中k =1 / (4πε0) )[ ]48、质量均为m ,相距为r 1的两个电子,由静止开始在电力作用下(忽略重力作用)运动至相距为r 2,此时每一个电子的速率为 (A)⎪⎪⎭⎫⎝⎛-21112r r m ke . (B) ⎪⎪⎭⎫⎝⎛-21112r r m ke . (C) ⎪⎪⎭⎫ ⎝⎛-21112r r m k e . (D) ⎪⎪⎭⎫⎝⎛-2111r r m k e (式中k =1 / (4πε0) ) [ ]49、相距为r 1的两个电子,在重力可忽略的情况下由静止开始运动到相距为r 2,从相距r 1到-q dO U-BE相距r 2期间,两电子系统的下列哪一个量是不变的? (A) 动能总和; (B) 电势能总和;(C) 动量总和; (D) 电相互作用力. [ ]50、一电偶极子放在均匀电场中,当电偶极矩的方向与场强方向不一致时,其所受的合力F和合力矩M为:(A) F =0,M = 0. (B) F = 0,M≠0.(C) F ≠0,M =0. (D) F ≠0,M≠0. [ ]51、真空中有两个点电荷M 、N ,相互间作用力为F,当另一点电荷Q 移近这两个点电荷时,M 、N两点电荷之间的作用力 (A) 大小不变,方向改变. (B) 大小改变,方向不变.(C) 大小和方向都不变. (D) 大小和方向都改. [ ]52、设有一带电油滴,处在带电的水平放置的大平行金属板之间保持稳定,如图所示.若油滴获得了附加的负电荷,为了继续使油滴保持稳定,应采取下面哪个措施?(A) 使两金属板相互靠近些.(B) 改变两极板上电荷的正负极性.(C) 使油滴离正极板远一些.(D) 减小两板间的电势差. [ ]53、正方形的两对角上,各置电荷Q ,在其余两对角上各置电荷q ,若Q 所受合力为零,则Q 与q 的大小关系为(A) Q =-22q . (B) Q =-2q .(C) Q =-4q . (D) Q =-2q . [ ]54、电荷之比为1∶3∶5的三个带同号电荷的小球A 、B 、C ,保持在一条直线上,相互间距离比小球直径大得多.若固定A 、C 不动,改变B的位置使B 所受电场力为零时,AB 与BC 的比值为(A) 5. (B) 1/5.(C)5. (D) 1/5. [ ]55、面积为S 的空气平行板电容器,极板上分别带电量±q ,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02ε. (B) Sq 022ε.(C) 2022S q ε. (D) 202Sq ε. [ ]56、充了电的平行板电容器两极板(看作很大的平板)间的静电作用力F 与两极板间的电压U 的关系是:(A) F ∝U . (B) F ∝1/U .(C) F ∝1/U 2. (D) F ∝U 2. [ ]-+57、 有一带正电荷的大导体,欲测其附近P 点处的场强,将一电荷量为q 0 (q 0 >0 )的点电荷放在P 点,如图所示,测得它所受的电场力为F .若电荷量q 0不是足够小,则(A) F / q 0比P 点处场强的数值大. (B) F / q 0比P 点处场强的数值小. (C) F / q 0与P 点处场强的数值相等.(D) F / q 0与P 点处场强的数值哪个大无法确定. [ ]58、关于高斯定理,下列说法中哪一个是正确的? (A) 高斯面内不包围自由电荷,则面上各点电位移矢量D为零. (B) 高斯面上处处D为零,则面内必不存在自由电荷.(C) 高斯面的D通量仅与面内自由电荷有关.(D) 以上说法都不正确. [ ]59、关于静电场中的电位移线,下列说法中,哪一个是正确的? (A) 起自正电荷,止于负电荷,不形成闭合线,不中断. (B) 任何两条电位移线互相平行.(C) 起自正自由电荷,止于负自由电荷,任何两条电位移线在无自由电荷的空间不相交. (D) 电位移线只出现在有电介质的空间. [ ]60、两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则(A) 空心球电容值大. (B) 实心球电容值大.(C) 两球电容值相等. (D) 大小关系无法确定. [ ]二、填空题(每题4分)61、静电场中某点的电场强度,其大小和方向与__________________________________________________________________相同.62、电荷为-5³10-9 C 的试验电荷放在电场中某点时,受到 20³10-9 N 的向下的力,则该点的电场强度大小为_____________________,方向____________.63、静电场场强的叠加原理的内容是:_________________________________________________________________________________________________________________________________________________________________.q 0P64、在静电场中,任意作一闭合曲面,通过该闭合曲面的电场强度通量⎰∙S Ed 的值仅取决于 ,而与 无关.65、半径为R 的半球面置于场强为E的均匀电场中,其对称轴与场强方向一致,如图所示.则通过该半球面的 电场强度通量为__________________.66、电荷分别为q 1和q 2的两个点电荷单独在空间各点产生的静电场强分别为1E 和2E,空间各点总场强为E =1E +2E.现在作一封闭曲面S ,如图所示,则以下两式分别给出通过S 的电场强度通量 ⎰⋅S E d 1=______________________________,⎰⋅S Ed =________________________________.67、一面积为S 的平面,放在场强为E 的均匀电场中,已知 E 与平面间的夹角为θ(<π/2),则通过该平面的电场强度通量的数值Φe =______________________.68、如图,点电荷q 和-q 被包围在高斯面S 内,则通过该高斯面的电场强度通量⎰⋅SS E d =_____________,式中E为_________________处的场强.69、一半径为R 的均匀带电球面,其电荷面密度为σ.该球面内、外的场强分布为(r表示从球心引出的矢径):()r E=______________________(r <R ),()r E=______________________(r >R ).70、一半径为R 的“无限长”均匀带电圆柱面,其电荷面密度为σ.该圆柱面内、外场强分布为(r表示在垂直于圆柱面的平面上,从轴线处引出的矢径):()r E=______________________(r <R ),()r E=______________________(r >R ).71、在点电荷+q 和-q 的静电场中,作出如图所示的三个闭合面S 1、S 2、S 3,则通过这些闭合面的电场强度通量分别是:Φ1=________,Φ2=___________,Φ3=__________72、在静电场中,任意作一闭合曲面,通过该闭合曲面的电场强度通量⎰∙S Ed 的值仅取决于 ,而与 无关.73、一闭合面包围着一个电偶极子,则通过此闭合面的电场强度通量Φe =_________________.74、图中曲线表示一种球对称性静电场的电势分布,r表示离对称中心的距离.这是____________________________________________的电场.75、一半径为R 的均匀带电球面,其电荷面密度为σ.若规定无穷远处为电势零点,则该球面上的电势U =____________________.76、电荷分别为q 1,q 2,q 3的三个点电荷分别位于同一圆周的三个点上,如图所示.设无穷远处为电势零点,圆半径为R ,则b 点处的电势U =___________ .77、描述静电场性质的两个基本物理量是______________;它们的定义式是________________和__________________________________________.78、静电场中某点的电势,其数值等于______________________________ 或_______________________________________.79、一点电荷q =10-9 C ,A 、B 、C 三点分别距离该点电荷10 cm 、20 cm 、30 cm .若选B 点的电势为零,则A 点的电势为______________,C 点的电势为________________.(真空介电常量ε0=8.85³10-12 C 2²N -1²m -2)80、电荷为-Q 的点电荷,置于圆心O 处,b 、c 、d 为同一圆周上的不同点,如图所示.现将试验电荷+q 0从图中a 点分别沿ab 、ac 、ad 路径移到相应的b 、c 、d 各点,设移动过程中电场力所作的功分别用A 1、1 23q 13qbA 2、A 3表示,则三者的大小的关系是______________________.(填>,<,=)81、如图所示,在一个点电荷的电场中分别作三个电势不同的等势面A ,B ,C .已知U A >U B >U C ,且U A -U B =U B -U C ,则相邻两等势面之间的距离的关系是:R B -R A ______ R C -R B . (填<,=,>)82、一电荷为Q 的点电荷固定在空间某点上,将另一电荷为q 的点电荷放在与Q 相距r 处.若设两点电荷相距无限远时电势能为零,则此时的电势能W e =________________________.83、如图所示,在电荷为q 的点电荷的静电场中,将一电荷为q 0的试验电荷从a 点经任意路径移动到b点,外力所作的功A =______________.84、真空中电荷分别为q 1和q 2的两个点电荷,当它们相距为r 时,该电荷系统的相互作用电势能W =________________.(设当两个点电荷相距无穷远时电势能为零)85、在静电场中,一质子(带电荷e =1.6³10-19 C)沿四分之一的圆弧轨道从A 点移到B 点(如图),电场力作功8.0³10-15 J .则当质子沿四分之三的圆弧轨道从B 点回到A 点时,电场力作功A =____________________.设A 点电势为零,则B 点电势U =____________________.86、静电力作功的特点是________________________________________________________________________________,因而静电力属于_________________力.87、静电场的环路定理的数学表示式为:______________________.该式的物理意义是:__________________________________________________________________________________________________________.该定理表明,静电场是____________________________________场.88、一电荷为Q 的点电荷固定在空间某点上,将另一电荷为q 的点电荷放在与Q 相距rA处.若设两点电荷相距无限远时电势能为零,则此时的电势能W e =________________________.89、 图示为某静电场的等势面图,在图中画出该电场的电场线.90、图中所示以O 为心的各圆弧为静电场的等势(位)线图,已知U 1<U 2<U 3,在图上画出a 、b 两点的电场强度的方向,并 比较它们的大小.E a ________ E b (填<、=、>).91、一质量为m ,电荷为q 的粒子,从电势为U A 的A 点,在电场力作用下运动到电势为U B 的B 点.若粒子到达B 点时的速率为v B ,则它在A 点时的速率v A=___________________________.92、一质量为m 、电荷为q 的小球,在电场力作用下,从电势为U 的a 点,移动到电势为零的b 点.若已知小球在b 点的速率为v b ,则小球在a 点的速率v a= ______________________.93、一质子和一α粒子进入到同一电场中,两者的加速度之比,a p ∶a α=________________.94、带有N 个电子的一个油滴,其质量为m ,电子的电荷大小为e .在重力场中由静止开始下落(重力加速度为g ),下落中穿越一均匀电场区域,欲使油滴在该区域中匀速下落,则电场的方向为__________________,大小为_____________.OU U95、在静电场中有一立方形均匀导体,边长为a .已知立方导体中心O 处的电势为U 0,则立方体顶点A 的电势为____________. 96、一孤立带电导体球,其表面处场强的方向____________表面;当把另一带电体放在这个导体球附近时,该导体球表面处场强的方向_________________表面.97、如图所示,将一负电荷从无穷远处移到一个不带电的导体附近,则导体内的电场强度______________,导体的电势 ______________.(填增大、不变、减小)98、一空气平行板电容器,两极板间距为d ,充电后板间电压为U .然后将电源断开,在两板间平行地插入一厚度为d /3的金属板,则板间电压变成U ' =________________ .99、一孤立带电导体球,其表面处场强的方向____________表面;当把另一带电体放在这个导体球附近时,该导体球表面处场强的方向_________________表面.100、A 、B 两个导体球,相距甚远,因此均可看成是孤立的.其中A 球原来带电,B 球不带电,现用一根细长导线将两球连接,则球上分配的电荷与球半径成______比.101、如图所示,两同心导体球壳,内球壳带电荷+q ,外球壳带电荷-2q .静电平衡时,外球壳的电荷分布为: 内表面___________ ; 外表面___________ .102、如图所示,将一负电荷从无穷远处移到一个不带电的导体附近,则导体内的电场强度______________,导体的电势______________.(填增大、不变、减小)103、一金属球壳的内、外半径分别为R 1和R 2,带电荷为Q .在球心处有一电荷为q 的点电荷,则球壳内表面上的电荷面密度σ =______________.104、一半径为R 的均匀带电导体球壳,带电荷为Q .球壳内、外均为真空.设无限远处为电势零点,则壳内各点电势U =______________.105、一平行板电容器,上极板带正电,下极板带负电,其间充满相对介电常量为εr = 2的各向同性均匀电介质,如图所示.在图上大致画出电介质内任一点P 处自由电荷产生的场强 0E, 束缚电荷产生的场强E '和总场强E.106、两个点电荷在真空中相距d 1 = 7 cm 时的相互作用力与在煤油中相距d 2 = 5cm时的相互作用力相等,则煤油的相对介电常量εr =___________________.107、如图所示,平行板电容器中充有各向同性均匀电介质.图中画出两组带有箭头的线分别表示电场线、电位移线.则其中(1)为__________________线,(2)为__________________线.108、一个半径为R 的薄金属球壳,带有电荷q ,壳内充满相对介电常量为εr 的各向同性均匀电介质.设无穷远处为电势零点,则球壳的电势 U = ________________________________.109、一平行板电容器,两板间充满各向同性均匀电介质,已知相对介电常量为εr .若极板上的自由电荷面密度为σ ,则介质中电位移的大小D =____________,电场强度的大小E =____________________.110、一个半径为R 的薄金属球壳,带有电荷q ,壳内真空,壳外是无限大的相对介电常量为εr 的各向同性均匀电介质.设无穷远处为电势零点,则球壳的电势 U =____________________________.111、一平行板电容器,充电后切断电源,然后使两极板间充满相对介电常量为εr 的各向同性均匀电介质.此时两极板间的电场强度是原来的____________倍;电场能量是原来的___________ 倍.112、一平行板电容器,充电后与电源保持联接,然后使两极板间充满相对介电常(1)(2)量为εr的各向同性均匀电介质,这时两极板上的电荷是原来的______倍;电场强度是原来的_________倍;电场能量是原来的_________倍.113、在相对介电常量为εr的各向同性的电介质中,电位移矢量与场强之间的关系是___________________ .114、分子的正负电荷中心重合的电介质叫做_______________ 电介质.在外电场作用下,分子的正负电荷中心发生相对位移,形成________________________.115、一平行板电容器,两板间充满各向同性均匀电介质,已知相对介电常量为εr .若极板上的自由电荷面密度为σ,则介质中电位移的大小D =____________,电场强度的大小E =____________________.116、一平行板电容器充电后切断电源,若使二极板间距离增加,则二极板间场强_________________,电容____________________.(填增大或减小或不变) 117、一个孤立导体,当它带有电荷q而电势为U时,则定义该导体的电容为C =______________,它是表征导体的________________的物理量.118、一个孤立导体,当它带有电荷q而电势为U时,则定义该导体的电容为C =______________,它是表征导体的________________的物理量.119、两个空气电容器1和2,并联后接在电压恒定的直流Array电源上,如图所示.今有一块各向同性均匀电介质板缓慢地插入电容器1中,则电容器组的总电荷将__________,电容器组储存的电能将__________.(填增大,减小或不变)120、真空中均匀带电的球面和球体,如果两者的半径和总电荷都相等,则带电球面的电场能量W1与带电球体的电场能量W2相比,W1________ W2 (填<、=、>).三、计算题:(每题10分)121、如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.122、用绝缘细线弯成的半圆环,半径为R ,其上均匀地带有正电荷Q ,试求圆心O 点的电场强度.123、如图所示,一长为10 cm 的均匀带正电细杆,其电荷为1.5³10-8 C ,试求在杆的延长线上距杆的端点5 cm 处的P 点的电场强度.(41επ=9³109 N ²m 2/C 2 )124、真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为:Ex =bx , E y =0 , E z =0.常量b =1000 N/(C ²m).试求通过该高斯面的电通量125、真空中有一半径为R 的圆平面.在通过圆心O 与平面垂直的轴线上一点P 处,有一电荷为q 的点电荷.O 、P 间距离为h ,如图所示.试求通过该圆平面的电场强度通量.126、若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85³10-12C 2 / N ²m 2 )127、如图所示,两个点电荷+q 和-3q ,相距为d . 试求: (1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远? (2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?128、一带有电荷q =3³10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6³10-5 J ,粒子动能的增量为4.5³10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?Lq PqdEq。

大学物理习题参考解答上静电场环路定理_电势能_电势和电势差

大学物理习题参考解答上静电场环路定理_电势能_电势和电势差

02. 如图所示, CDEF 是一矩形,边长分别为 l 和 2l 。在 DC 延长线上 CA l 处的 A 点有点电荷 q ,在 CF 的中点 B 点有点电荷 q ,若使单位正电荷从 C 点沿 CDEF 路径运动到 F 点,则电场
力所作的功等于:
【D】
(A)
q 4ol
5 1; 5l
(B)
q 4ol
三 判断题
09. 静电场中某点电势值的正负取决于电势零点的选取。
【对】
10. 在已知静电场分布的条件下,任意两点 P1 和 P2 之间的电势差决定于 P1 和 P2 两点的位置。【 对 】
11. 正电荷在电势高的地方,电势能也一定高。 12. 电场强度的方向总是指向电势降落最快的方向。
【对】 【对】
1 4 0
4 r12 r1
1 4 0
4 r22 r2
0

——
r1 ' r2 0
XCH
第3页
20XX-3-24
大学物理教程_上_习题集参考解答
r1 r2
—— 外球面带负电
外球面应放掉电荷: Q Q Q Q 4 r22 4 r22
Q
(1
r1 r2
)
4
r22
将 r1 10 cm and r2 20 cm , 8.85 109C / m2 代入上式得到:
13. 静电场的保守性体现在电场强度的环流等于零。
【对】
四 计算题
14. 如图所示, AB 2L , OCD 是以 B 为中心 L 为半径的半圆, A 和 B 两处分别有正负电荷 q 和 q ,试问:
1) 把单位正电荷从 O 沿 OCD 移动到 D ,电场力对它作了多少功?
XCH

大学物理学 第10章_静电场 习题解答 [王玉国 康山林 赵宝群]

大学物理学 第10章_静电场 习题解答 [王玉国 康山林 赵宝群]

q 6 0 q ;如果它包含 q 所在 24 0
2 2
对于边长 a 的正方形,如果它不包含 q 所在的顶点,则 e 顶点则 e 0 .
(3) 因为通过半径为 R 的圆平面的电通量等于通过半径为 R x 的球冠面的电通 量,而球冠面积*
S 2π( R 2 x 2 )[1
P R q r P'
2q a O a 3q a
+Q q a
R
d

题 10-10 图
题 10-11 图
题 10-12 图
10-12 如图所示.试验电荷 q , 在点电荷 Q 产生的电场中,沿半径为 R 的整个圆弧 的 3/4 圆弧轨道由 a 点移到 d 点的过程中电场力做功多大?从 d 点移到无穷远处的过程中, 电场力做功为多少? 解:因为在点电荷 Q 产生的电场中, U a U d 。故试验电荷 q 在点电荷 Q 产生的电 场中, 沿半径为 R 的整个圆弧的 3/4 圆弧轨道由 a 点移到 d 点的过程中电场力做功 Aad 0 ; 从 d 点移到无穷远处的过程中,电场力做功为
q0 2.0 105 C .试求该点电荷所受的电场力。
点电荷所在处产生场强为: d E
dx
4 0 d x
2 l
。整个杆上电荷在该点的场强为:
E
4 0
d x
0
dxLeabharlann 2l4 0 d d l
点电荷 q0 所受的电场力大小为:
F
方向:沿 x 轴负向
A q U d U qU d
[或另解: A
qQ 4 0 R
]


R
qE d r

大学物理静电学综合练习题(含答案)

大学物理静电学综合练习题(含答案)

解:利用高斯定理
r

a : E1
=
Qr 4 0a 3
;r

a : E2
=
Q 4 0r 2
we
=
1 E 2 , 2
W
=
0a
1 2

0
E12
dV
+
a
1 2
ቤተ መጻሕፍቲ ባይዱ
0
E
2 2
dV
=
3Q 2 20 0a
12.一个半径为 R1 的金属球带有正电荷 Q ,球外包围着一层同心的相对介电常数为 r 的均 匀 电 介 质 球 壳 层 , 其 内 半 径 为 R1 , 外 半 径 为 R2 , 在 电 介 质 内 的 点 a 距 离 球 心 为
(A) 0 ; (B) − q ; (C) r1 q ; (D) − r1 q 。
r2
r2
4-3
解:球心电势
U0
=
q 4 0r2
+ q 4 0r1
= 0,q = − r1 q r2
10.如图所示,一个封闭的空心导体,观察者 A (测量仪器)和电
荷 Q1 置于导体内,而观察者 B 和电荷 Q2 置于导体外,下列说
解:在圆环上任取一段d l ,d l 到o 点的连线与 x 轴夹角为 ,则d l 段
=
q0q 4 0

1 d

0

q0q 4 0

1 d

0
=
0
或 Ao = q0(Uo − U ) = 0
4.长度为 L 的细玻璃棒,沿着长度方向均匀地分布着电 荷,总电量为 Q ,如图所示。在棒的轴向有一点 P ,离 棒 左 端 的 距 离 为 r , 则 P 点 的 电 势 P•

大学物理上册A-西安交通大学出版社6.静电场中的导体和电介质.

大学物理上册A-西安交通大学出版社6.静电场中的导体和电介质.

q2 0S
)d
S 。设
C.
(q1 q2 )d 4 0 S
D.
(q1 q2 )d 2 0 S
二、填空题
1.如图所示,距球心 d 处的点电荷 q ,能在原不带电、外半径
为 R1 的空腔导体球壳的内表面感应出电量为
的电荷,而在
导体球壳的外表面会感应出电量为
的电荷;球心 O 处的
电势为
。若用导线把球壳接地,则球心
B. 球体的静电能等于球面的静电能;
C. 球体的静电能大于球面的静电能;
D. 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能。
2.真空中有一组带电导体,某一导体表面电荷面密度为 处,其表面附近的
场强 E 0 ,这场强 E 是由
A. 该处无穷小面元上的电荷产生的;
[] B. 该导体上全部电荷产生的;
第六次 静电场中的导体与电介质
班 级 ___________________
姓 名 ___________________
班内序号 ___________________
一. 选择题
1.真空中有一均匀带电球体和一均匀带电球面,如果它们的半径和所带电量均
相等,则它们的静电能之间的关系是:
[]
A. 球体的静电能小于球面的静电能;
;并联后系统电场能量为
;电场能量增量为

三.计算题
1.如图,平行放置两块面积为 A 、彼此相距为 d 的导体板, 两板分别带有电荷 Q 1 和 Q 2 , 假设每块导体板表面的电荷分
布都是均匀的。求:三个区域电场。
(1)
(2)
d
(3)
3
2.半、外半径分别为 R2 =4.0cm和 R3 =5.0cm,当内球带电荷 Q =3.0×10-8C 时,

《大学物理aⅰ》静电场中的导体和电介质习题、答案及解法(.6.4)

《大学物理aⅰ》静电场中的导体和电介质习题、答案及解法(.6.4)

静电场中的导体和电解质习题、答案及解法一.选择题1.一个不带电的空腔导体球壳,内半径为R 。

在腔内离球心的距离为a 处放一点电荷q +,如图1所示。

用导线把球壳接地后,再把地线撤去。

选无穷远处为电势零点,则球心O 处的电势为 [ D ] (A )aq 02πε; (B )0 ;(C )Rq 04πε-; (D )⎪⎭⎫ ⎝⎛-R a q 1140πε。

参考答案:)11(4)11(440020Ra q a R q dl Rq Edl V RaRa-=--===⎰⎰πεπεπε 2.三块互相平行的导体板之间的距离21d d 和比板面积线度小得多,如果122d d =外面二板用导线连接,中间板上带电。

设左右两面上电荷面密度分别为21σσ和,如图2所示,则21σσ为(A )1 ; (B )2 ; (C )3 ;(D )4 。

[ B ]解:相连的两个导体板电势相等2211d E d E =,所以202101d d εσεσ= 1221d d =σσ 3.一均匀带电球体如图所示,总电荷为Q +,其外部同心地罩一内、外半径分别为1r ,2r 的金属球壳。

设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势分别为[ B ] (A )204r q πε,0 ; (B )0,204r q πε ;(C )0,rq 04πε ; (D )0,0 。

1r 2r OPQ+q+aOR 1d 2σ2d 1σ参考答案:⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-∞-==∙+∙=∙=⎰⎰⎰⎰∞∞∞2020201411441222r Q rQdr r Q ld E l d E ld E U r r r rpp πεπεπε4.带电导体达到静电平衡时,其正确结论是 [ D ] (A ) 导体表面上曲率半径小处电荷密度较小; (B ) 表面曲率较小处电势较高; (C ) 导体内部任一点电势都为零;(D ) 导体内任一点与其表面上任一点的电势差等于零。

《大学物理学》习题解答静电场中的导体和电介质

《大学物理学》习题解答静电场中的导体和电介质

根据球形电容器的电容公式,得:
C
4 0
R1R2 R2 R1
4.58102 F
【12.7】半径分别为 a 和 b 的两个金属球,球心间距为 r(r>>a,r>>b),今用一根电容可忽略的细导线将 两球相连,试求:(1)该系统的电容;(2)当两球所带的总电荷是 Q 时,每一球上的电荷是多少?
【12.7 解】由于 r a , r b ,可也认为两金属球互相无影响。
以相对电容率 r ≈1 的气体。当电离粒子通过气体时,能使其电离,若两极间有电势差时,极间有电流,
从而可测出电离粒子的数量。若以 E1 表示半径为 R1 的长直导体附近的电场强度。(1)求两极间电势差的
关系式;(2)若 E1 2.0 106 V m1 , R1 0.30 mm , R2 20.00 mm , 两极间的电势差为多少?
, (R2
r) ;
外球面的电势 内外球面电势差
VR2
R2
E3 dr
Q1 Q2 4 0 R2
U
VR2
VR1
R2 R1
E2
dr
Q1 4 0
(1 R1
1) R2
可得:
Q1 6 109 C , Q2 4 109 C
【12.4】如图所示,三块平行导体平板 A,B,C 的面积均为 S,其中 A 板带电 Q,B,C 板不带电,A 和 B 间相距为 d1,A 和 C 之间相距为 d2,求(1)各导体板上的电荷分布和导体板间的电势差;(2)将 B,C 导体 板分别接地,再求导体板上的电荷分布和导体板间的电势差。
第 12 章 静电场中的导体和电介质
【12.1】半径为 R1 的金属球 A 位于同心的金属球壳内,球壳的内、外半径分别为 R2、R3 ( R2 R3 )。

大学物理A习题选解

大学物理A习题选解

大学物理A习题选解Last revision on 21 December 2020第六章 真空中的静电场习题选解6-1 三个电量为q -的点电荷各放在边长为r 的等边三角形的三个顶点上,电荷(0)Q Q >放在三角形的重心上。

为使每个负电荷受力为零,Q 之值应为多大解:以三角形上顶点所置的电荷(q -)为例,其余两个负电荷对其作用力的合力为1f ,方向如图所示,其大小为题6-1图中心处Q 对上顶点电荷的作用力为2f ,方向与1f 相反,如图所示,其大小为由12f f =,得3Q q =。

6-2 在某一时刻,从238U 的放射性衰变中跑出来的α粒子的中心离残核234Th 的中心为159.010r m -=⨯。

试问:(1)作用在α粒子上的力为多大(2)α粒子的加速度为多大解:(1)由反应238234492902U Th+He →,可知α粒子带两个单位正电荷,即 Th 离子带90个单位正电荷,即 它们距离为159.010r m -=⨯由库仑定律可得它们之间的相互作用力为:(2)α粒子的质量为: 由牛顿第二定律得:6-3 如图所示,有四个电量均为C q 610-=的点电荷,分别放置在如图所示的1,2,3,4点上,点1与点4距离等于点1与点2的距离,长m 1,第3个电荷位于2、4两电荷连线中点。

求作用在第3个点电荷上的力。

解:由图可知,第3个电荷与其它各电荷等距,均为2r m =。

各电荷之间均为斥力,且第2、4两电荷对第三电荷的作用力大小相等,方向相反,两力平衡。

由库仑定律,作用于电荷3的力为题6-3 图 题6-3 图力的方向沿第1电荷指向第3电荷,与x 轴成45角。

6-4 在直角三角形ABC 的A 点放置点电荷C q 91108.1-⨯=,B 点放置点电荷C q 92108.4-⨯-=,已知0.04,0.03BC m AC m ==,试求直角顶点C 处的场强E 。

解:A 点电荷在C 点产生的场强为1E ,方向向下B 点电荷在C 点产生的场强为2E ,方向向右题6-4图根据场强叠加原理,C 点场强 设E 与CB 夹角为θ,21tan E E =θ6-5 如图所示的电荷分布为电四极子,它由两个相同的电偶极子组成。

大学物理静电场习题答案

大学物理静电场习题答案

第12章 静电场P35.12.3 如图所示,在直角三角形ABCD 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -4.8×10-9C ,AC = 3cm ,BC = 4cm ,试求C 点的场强.[解答]根据点电荷的场强大小的公式22014q qE k r r ==πε, 其中1/(4πε0) = k = 9.0×109N·m 2·C -2.点电荷q 1在C 点产生的场强大小为112014q E AC =πε 994-1221.810910 1.810(N C )(310)--⨯=⨯⨯=⨯⋅⨯, 方向向下.点电荷q 2在C 点产生的场强大小为2220||14q E BC =πε994-1224.810910 2.710(N C )(410)--⨯=⨯⨯=⨯⋅⨯,方向向右.C 处的总场强大小为E =44-110 3.24510(N C )==⨯⋅,总场强与分场强E 2的夹角为12arctan33.69E E ==︒θ.12.4 半径为R 的一段圆弧,圆心角为60°,一半均匀带正电,另一半均匀带负电,其电线密度分别为+λ和-λ,求圆心处的场强.[解答]在带正电的圆弧上取一弧元 d s = R d θ,电荷元为d q = λd s ,在O 点产生的场强大小为220001d 1d d d 444q s E R R R λλθπεπεπε===, 场强的分量为d E x = d E cos θ,d E y = d E sin θ.对于带负电的圆弧,同样可得在O 点的场强的两个分量.由于弧形是对称的,x 方向的合场强为零,总场强沿着y 轴正方向,大小为2d sin y LE E E ==⎰θ/6/60000sin d (cos )22R R==-⎰ππλλθθθπεπε0(1)22R=-λπε.12.5 均匀带电细棒,棒长a = 20cm ,电荷线密度为λ = 3×10-8C·m -1,求:(1)棒的延长线上与棒的近端d 1 = 8cm 处的场强;(2)棒的垂直平分线上与棒的中点相距d 2 = 8cm 处的场强.[解答](1)建立坐标系,其中L = a /2 = 0.1(m),x = L+d 1 = 0.18(m).在细棒上取一线元d l ,所带的电量为d q = λd l ,根据点电荷的场强公式,电荷元在P 1点产图13.1生的场强的大小为1220d d d 4()q lE k r x l ==-λπε场强的方向沿x 轴正向.因此P 1点的总场强大小通过积分得120d 4()L L l E x l λπε-=-⎰014LLx lλπε-=-011()4x L x Lλπε=--+ 220124L x L λπε=-. ①将数值代入公式得P 1点的场强为8912220.13109100.180.1E -⨯⨯⨯=⨯⨯- = 2.41×103(N·C -1),方向沿着x 轴正向.(2)建立坐标系,y = d 2. 在细棒上取一线元d l ,所带的电量为 d q = λd l ,在棒的垂直平分线上的P 2点产生的场强的大小为2220d d d 4q lE kr r λπε==, 由于棒是对称的,x 方向的合场强为零,y 分量为 d E y = d E 2sin θ.由图可知:r = d 2/sin θ,l = d 2cot θ, 所以 d l = -d 2d θ/sin 2θ, 因此 02d sin d 4y E d λθθπε-=,总场强大小为02sin d 4Ly l LE d λθθπε=--=⎰02cos 4Ll Ld λθπε=-=LL=-==. ②将数值代入公式得P 2点的场强为89221/220.13109100.08(0.080.1)y E -⨯⨯⨯=⨯⨯+= 5.27×103(N·C -1). 方向沿着y 轴正向.[讨论](1)由于L = a /2,x = L+d 1,代入①式,化简得1011011144/1a E d d a d d a λλπεπε==++,保持d 1不变,当a →∞时,可得1014E d λπε→, ③这就是半无限长带电直线在相距为d 1的延长线上产生的场强大小.(2)由②式得y E ==,当a →∞时,得 022y E d λπε→, ④这就是无限长带电直线在线外产生的场强公式.如果d 1=d 2,则有大小关系E y = 2E 1.12.6 一均匀带电无限长细棒被弯成如图所示的对称形状,试问θ为何值时,圆心O 点处的场强为零.[解答]设电荷线密度为λ,先计算圆弧的电荷在圆心产生的场强.在圆弧上取一弧元 d s =R d φ, 所带的电量为d q = λd s ,在圆心处产生的场强的大小为2200d d d d 44q s E kr R Rλλϕπεπε===, 由于弧是对称的,场强只剩x 分量,取x 轴方向为正,场强为d E x = -d E cos φ. 总场强为2/20/2cos d 4x E R πθθλϕϕπε--=⎰2/20/2sin 4Rπθθλϕπε--=0sin 22R λθπε=,方向沿着x 轴正向.再计算两根半无限长带电直线在圆心产生的场强.根据上一题的公式③可得半无限长带电直线在延长上O 点产生的场强大小为`04E Rλπε=,由于两根半无限长带电直线对称放置,它们在O 点产生的合场强为``02coscos 222x E E R θλθπε==,方向沿着x 轴负向.当O 点合场强为零时,必有`x x E E =,可得 tan θ/2 = 1, 因此 θ/2 = π/4, 所以 θ = π/2.12.7 一宽为b 的无限长均匀带电平面薄板,其电荷密度为σ,如图所示.试求:(1)平板所在平面内,距薄板边缘为a处的场强.(2)通过薄板几何中心的垂直线上与薄板距离为d 处的场强.[解答](1)建立坐标系.在平面薄板上取一宽度为d x 的带电直线,电荷的线密度为d λ = σd x , 根据直线带电线的场强公式02E rλπε=, 得带电直线在P 点产生的场强为00d d d 22(/2)xE rb a x λσπεπε==+-,其方向沿x 轴正向.由于每条无限长直线在P 点的产生的场强方向相同,所以总场强为/20/21d 2/2b b E x b a x σπε-=+-⎰ /20/2ln(/2)2b b b a x σπε--=+-0ln(1)2baσπε=+. ①图13.4图13.5.场强方向沿x 轴正向.(2)为了便于观察,将薄板旋转建立坐标系.仍然在平面薄板上取一宽度为d x 的带电直线,电荷的线密度仍然为d λ = σd x ,带电直线在Q 点产生的场强为221/200d d d 22()xE rb x λσπεπε==+,沿z 轴方向的分量为221/20cos d d d cos 2()z xE E b x σθθπε==+,设x = d tan θ,则d x = d d θ/cos 2θ,因此d d cos d 2z E E σθθπε==积分得arctan(/2)0arctan(/2)d 2b d z b d E σθπε-=⎰ 0arctan()2bdσπε=. ② 场强方向沿z 轴正向.[讨论](1)薄板单位长度上电荷为λ = σb ,①式的场强可化为0ln(1/)2/b a E a b aλπε+=,当b →0时,薄板就变成一根直线,应用罗必塔法则或泰勒展开式,场强公式变为02E aλπε→, ③ 这正是带电直线的场强公式.(2)②也可以化为0arctan(/2)2/2z b d E d b dλπε=,当b →0时,薄板就变成一根直线,应用罗必塔法则或泰勒展开式,场强公式变为02z E dλπε→,这也是带电直线的场强公式.当b →∞时,可得2z E σε→, ④ 这是无限大带电平面所产生的场强公式.12.8 (1)点电荷q 位于一个边长为a 的立方体中心,试求在该点电荷电场中穿过立方体一面的电通量是多少?(2)如果将该场源点电荷移到立方体的的一个角上,这时通过立方体各面的电通量是多少?[解答]点电荷产生的电通量为Φe = q/ε0.(1)当点电荷放在中心时,电通量要穿过6个面,通过每一面的电通量为Φ1 = Φe /6 = q /6ε0.(2)当点电荷放在一个顶角时,电通量要穿过8个卦限,立方体的3个面在一个卦限中,通过每个面的电通量为Φ1 = Φe /24 = q /24ε0;立方体的另外3个面的法向与电力线垂直,通过每个面的电通量为零.12.9 面电荷密度为σ的均匀无限大带电平板,以平板上的一点O 为中心,R 为半径作一半球面,如图所示.求通过此半球面的电通量.[解答]设想在平板下面补一个半球面,与上面的半球面合成一个球面.球面内包含的电荷为q = πR 2σ, 通过球面的电通量为图13.7Φe = q /ε0, 通过半球面的电通量为Φ`e = Φe /2 = πR 2σ/2ε0.12.10 两无限长同轴圆柱面,半径分别为R 1和R 2(R 1 > R 2),带有等量异号电荷,单位长度的电量为λ和-λ,求(1)r < R 1;(2) R 1 < r < R 2;(3)r > R 2处各点的场强.[解答]由于电荷分布具有轴对称性,所以电场分布也具有轴对称性.(1)在内圆柱面内做一同轴圆柱形高斯面,由于高斯内没有电荷,所以E = 0,(r < R 1).(2)在两个圆柱之间做一长度为l ,半径为r 的同轴圆柱形高斯面,高斯面内包含的电荷为 q = λl , 穿过高斯面的电通量为d d 2e SSE S E rl Φπ=⋅==⎰⎰E S Ñ,根据高斯定理Φe = q /ε0,所以02E rλπε=, (R 1 < r < R 2). (3)在外圆柱面之外做一同轴圆柱形高斯面,由于高斯内电荷的代数和为零,所以E = 0,(r > R 2).12.11 一厚度为d 的均匀带电无限大平板,电荷体密度为ρ,求板内外各点的场强.[解答]方法一:高斯定理法.(1)由于平板具有面对称性,因此产生的场强的方向与平板垂直且对称于中心面:E = E`.在板内取一底面积为S ,高为2r 的圆柱面作为高斯面,场强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为d e SΦ=⋅⎰E S2d d d S S S =⋅+⋅+⋅⎰⎰⎰E S E S E S 1`02ES E S ES =++=,高斯面内的体积为 V = 2rS , 包含的电量为 q =ρV = 2ρrS , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρr/ε0,(0≦r ≦d /2).①(2)穿过平板作一底面积为S ,高为2r 的圆柱形高斯面,通过高斯面的电通量仍为 Φe = 2ES , 高斯面在板内的体积为V = Sd , 包含的电量为 q =ρV = ρSd , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρd /2ε0,(r ≧d /2). ②方法二:场强叠加法. (1)由于平板的可视很多薄板叠而成的,以r 为界,下面平板产生的场强方向向上,上面平板产生的场强方向向下.在下面板中取一薄层d y ,面电荷密度为d σ = ρd y ,产生的场强为 d E 1 = d σ/2ε0, 积分得100/2d ()222rd y dE r ρρεε-==+⎰,③ 同理,上面板产生的场强为/2200d ()222d ry d E r ρρεε==-⎰,④ r 处的总场强为E = E 1-E 2 = ρr/ε0.(2)在公式③和④中,令r = d /2,得E 2 = 0、E = E 1 = ρd /2ε0,E 就是平板表面的场强.平板外的场强是无数个无限薄的带电平板产生的电场叠加的结果,是均强电场,方向与平板垂直,大小等于平板表面的场强,也能得出②式.12.1212.13 一半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为R`<R的小球体,如图所示,试求两球心O 与O`处的电场强度,并证明小球空腔内的电场为均强电场.[解答]挖去一块小球体,相当于在该处填充一块电荷体密度为-ρ的小球体,因此,空间任何一点的场强是两个球体产生的场强的叠加.对于一个半径为R ,电荷体密度为ρ的球体来说,当场点P 在球内时,过P 点作一半径为r 的同心球形高斯面,根据高斯定理可得方程2301443E r r ππρε=P 点场强大小为3E r ρε=.当场点P 在球外时,过P 点作一半径为r 的同心球形高斯面,根据高斯定理可得方程2301443E r R ππρε=P 点场强大小为3203R E rρε=. O 点在大球体中心、小球体之外.大球体在O 点产生的场强为零,小球在O 点产生的场强大小为320`3O R E aρε=, 方向由O 指向O `.O`点在小球体中心、大球体之内.小球体在O`点产生的场强为零,大球在O 点产生的场强大小为`03O E a ρε=, 方向也由O 指向O `.[证明]在小球内任一点P ,大球和小球产生的场强大小分别为 03r E r ρε=, `0`3r E r ρε=,方向如图所示.设两场强之间的夹角为θ,合场强的平方为222``2cos r r r r E E E E E θ=++2220()(`2`cos )3r r rr ρθε=++, 根据余弦定理得222`2`c o s ()a r rr r πθ=+--, 所以 03E a ρε=, 可见:空腔内任意点的电场是一个常量.还可以证明:场强的方向沿着O 到O `的方向.因此空腔内的电场为匀强电场.12.14 如图所示,在A 、B 两点处放有电量分别为+q 和-q 的点电荷,AB 间距离为2R ,现将另一正试验电荷q 0从O 点经过半圆弧路径移到C点,求移动过程中电场力所做的功.[解答]正负电荷在O 点的电势的和为零:U O = 0;图13.10图13.11在C 点产生的电势为0004346C q q q U RRRπεπεπε--=+=,电场力将正电荷q 0从O 移到C 所做的功为W = q 0U OD = q 0(U O -U D ) = q 0q /6πε0R .12.15 真空中有两块相互平行的无限大均匀带电平面A 和B .A 平面的电荷面密度为2σ,B 平面的电荷面密度为σ,两面间的距离为d .当点电荷q 从A 面移到B 面时,电场力做的功为多少?[解答]两平面产生的电场强度大小分别为E A = 2σ/2ε0 = σ/ε0,E B = σ/2ε0,两平面在它们之间产生的场强方向相反,因此,总场强大小为E = E A - E B = σ/2ε0, 方向由A 平面指向B 平面.两平面间的电势差为U = Ed = σd /2ε0,当点电荷q 从A 面移到B 面时,电场力做的功为W = qU = qσd /2ε0.12.16 一半径为R 的均匀带电球面,带电量为Q .若规定该球面上电势值为零,则无限远处的电势为多少?[解答]带电球面在外部产生的场强为204Q E rπε=,由于d d R RRU U E r ∞∞∞-=⋅=⎰⎰E l200d 44RR QQr r r πεπε∞∞-==⎰04Q Rπε=,当U R = 0时,04Q U Rπε∞=-.12.17 电荷Q 均匀地分布在半径为R 的球体内,试证明离球心r (r <R )处的电势为2230(3)8Q R r U Rπε-=. [证明]球的体积为343V R π=, 电荷的体密度为 334Q QV R ρπ==. 利用13.10题的方法可求球内外的电场强度大小为30034QE r r R ρεπε==,(r ≦R ); 204Q E rπε=,(r ≧R ).取无穷远处的电势为零,则r 处的电势为d d d RrrRU E r E r ∞∞=⋅=+⎰⎰⎰E l3200d d 44RrRQ Qr r r R r πεπε∞=+⎰⎰230084R rRQQ rRrπεπε∞-=+22300()84Q Q R r RRπεπε=-+2230(3)8Q R r Rπε-=. 12.18 在y = -b 和y = b 两个“无限大”平面间均匀充满电荷,电荷体密度为ρ,其他地方无电荷.(1)求此带电系统的电场分布,画E-y 图;(2)以y = 0作为零电势面,求电势分布,画E-y 图.[解答]平板电荷产生的场强的方向与平板垂直且对称于中心面:E = E`,但方向相反.(1)在板内取一底面积为S ,高为2y 的圆柱面作为高斯面,场强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为d e SΦ=⋅⎰E Sd d d 2S S S ES =⋅+⋅+⋅=⎰⎰⎰E S E S E S 12.高斯面内的体积为 V = 2yS ,包含的电量为 q = ρV = 2ρSy , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρy/ε0, (-b ≦y ≦b ).穿过平板作一底面积为S ,高为2y 的圆柱形高斯面,通过高斯面的电通量仍为地Φe = 2ES ,高斯面在板内的体积为 V = S 2b , 包含的电量为 q = ρV = ρS 2b , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρb/ε0, (b ≦y );E = -ρb/ε0, (y ≦-b ).E-y 图如左图所示.(2)对于平面之间的点,电势为d d yU y ρε=-⋅=-⎰⎰E l 202y C ρε=-+,在y = 0处U = 0,所以C = 0,因此电势为22y U ρε=-,(-b ≦y ≦b ). 这是一条开口向下的抛物线.当y ≧b 时,电势为d d nqbnqbU y y C εε=-⋅=-=-+⎰⎰E l ,在y = b 处U = -ρb 2/2ε0,所以C = ρb 2/2ε0,因此电势为2002b b U y ρρεε=-+,(b ≦y ). 当y ≦-b 时,电势为00d d b bU y y C ρρεε=-⋅==+⎰⎰E l ,在y = -b 处U = -ρb 2/2ε0,所以C = ρd 2/2ε0,因此电势为2002b b U y ρρεε=+, 两个公式综合得200||2b b U y ρρεε=-+,(|y |≧d ). 这是两条直线.U-y 图如右图所示.U-y 图的斜率就形成E-y 图,在y = ±b 点,电场强度是连续的,因此,在U-y 图中两条直线与抛物线在y = ±b 点相切.[注意]根据电场求电势时,如果无法确定零势点,可不加积分的上下限,但是要在积分之后加一个积分常量.根据其他关系确定常量,就能求出电势,不过,线积分前面要加一个负号,即d U =-⋅⎰E l这是因为积分的起点位置是积分下限.12.19 两块“无限大”平行带电板如图所示,A 板带正电,B 板带负电并接地(地的电势为零),设A 和B 两板相隔5.0cm ,板上各带电荷σ=3.3×10-6C·m -2,求: (1)在两板之间离A板1.0cm 处P 点的电势;(2)A 板的电势.[解答]两板之间的电场强度为E=σ/ε0,方向从A 指向B .以B 板为原点建立坐标系,则r B = 0,r P = -0.04m ,r A = -0.05m . (1)P 点和B 板间的电势差为d d BBPPr r P B r r U U E r -=⋅=⎰⎰E l()B P r r σε=-, 由于U B = 0,所以P 点的电势为6123.3100.048.8410P U --⨯=⨯⨯=1.493×104(V). (2)同理可得A 板的电势为()A B A U r r σε=-=1.866×104(V).12.20 电量q 均匀分布在长为2L 的细直线上,试求:(1)带电直线延长线上离中点为r 处的电势;(2)带电直线中垂线上离中点为r 处的电势;(3)由电势梯度算出上述两点的场强. [解答]电荷的线密度为λ = q/2L . (1)建立坐标系,在细线上取一线元d l ,所带的电量为d q = λd l ,根据点电荷的电势公式,它在P 1点产生的电势为101d d 4lU r lλπε=-总电势为10d 4L L l U r lλπε-=-⎰ 0ln()4Ll Lr l λπε=--=-0ln8q r LLr Lπε+=-. (2)建立坐标系,在细线上取一线元d l ,所带的电量为d q = λd l ,在线的垂直平分线上的P 2点产生的电势为2221/20d d 4()lU r l λπε=+, 积分得2221/201d 4()LLU l r l λπε-=+⎰)4Ll Ll λπε=-=0ln8q Lπε=0ln4q LLrπε=.(3)P 1点的场强大小为11U E r∂=-∂ 011()8qL r L r L πε=--+22014qr L πε=-, ①方向沿着x 轴正向.P 2点的场强为22U E r∂=-∂01[4qL r πε==, ②方向沿着y 轴正向.[讨论]习题13.3的解答已经计算了带电线的延长线上的场强为1220124L E x L λπε=-, 由于2L λ = q ,取x = r ,就得公式①.(2)习题13.3的解答还计算了中垂线上的场强为y E =取d 2 = r ,可得公式②. 由此可见,电场强度可用场强叠加原理计算,也可以用电势的关系计算.12.21 如图所示,一个均匀带电,内、外半径分别为R 1和R 2的均匀带电球壳,所带电荷体密度为ρ,试计算:(1)A ,B 两点的电势;(2)利用电势梯度求A ,B 两点的场强.[解答](1)A 点在球壳的空腔内,空腔内的电势处处相等,因此A 点的电势就等于球心O 点的电势.在半径为r 的球壳处取一厚度为d r 的薄壳,其体积为d V = 4πr 2d r ,包含的电量为 d q = ρd V = 4πρr 2d r ,在球心处产生的电势为00d d d 4O q U r r rρπεε==, 球心处的总电势为2122210d ()2R O R U r r R R ρρεε==-⎰, 这就是A 点的电势U A .过B 点作一球面,B 的点电势是球面外的电荷和球面内的电荷共同产生的.球面外的电荷在B 点产生的电势就等于这些电荷在球心处产生的电势,根据上面的推导可得22120()2B U R r ρε=-. 球面内的电荷在B 点产生的电势等于这些电荷集中在球心处在B 点产生的电势.球壳在球面内的体积为3314()3B V r R π=-, 包含的电量为 Q = ρV ,这些电荷集中在球心时在B 点产生的电势为332100()43B BBQ U r R r r ρπεε==-. B 点的电势为U B = U 1 + U 2322120(32)6B BR R r r ρε=--. (2)A 点的场强为0AA AU E r ∂=-=∂. B 点的场强为3120()3B B B B BU R E r r r ρε∂=-=-∂.图13.18[讨论] 过空腔中A 点作一半径为r 的同心球形高斯面,由于面内没有电荷,根据高斯定理,可得空腔中A 点场强为E = 0, (r ≦R 1).过球壳中B 点作一半径为r 的同心球形高斯面,面内球壳的体积为3314()3V r R π=-,包含的电量为 q = ρV ,根据高斯定理得方程 4πr 2E = q/ε0, 可得B 点的场强为3120()3R E r rρε=-, (R 1≦r ≦R 2).这两个结果与上面计算的结果相同.在球壳外面作一半径为r 的同心球形高斯面,面内球壳的体积为33214()3V R R π=-,包含的电量为 q = ρV ,根据高斯定理得可得球壳外的场强为33212200()43R R qE r rρπεε-==,(R 2≦r ). A 点的电势为d d AAA r r U E r ∞∞=⋅=⎰⎰E l12131200d ()d 3AR R r RR r r r r ρε=+-⎰⎰2332120()d 3RR R r r ρε∞-+⎰ 22210()2R R ρε=-. B 点的电势为d d BBB r r U E r ∞∞=⋅=⎰⎰E l23120()d 3BR rR r r r ρε=-⎰2332120()d 3R R R r r ρε∞-+⎰ 322120(32)6B BR R r r ρε=--.A 和B 点的电势与前面计算的结果相同.12.21 (1)设地球表面附近的场强约为200V·m -1,方向指向地球中心,试求地球所带有的总电量.(2)在离地面1400m 高处,场强降为20V·m -1,方向仍指向地球中心,试计算在1400m 下大气层里的平均电荷密度.[解答]地球的平均半径为R =6.371×106m .(1)将地球当作导体,电荷分布在地球表面,由于场强方向指向地面,所以地球带负量.根据公式 E = -σ/ε0, 电荷面密度为 σ = -ε0E ; 地球表面积为 S = 4πR 2, 地球所带有的总电量为Q = σS = -4πε0R 2E = -R 2E /k ,k 是静电力常量,因此电量为629(6.37110)200910Q ⨯⨯=-⨯=-9.02×105(C). (2)在离地面高为h = 1400m 的球面内的电量为2()``R h E Q k+=-=-0.9×105(C),大气层中的电荷为q = Q - Q` = 8.12×105(C).由于大气层的厚度远小于地球的半径,其体积约为V = 4πR 2h = 0.714×1018(m 3), 平均电荷密度为ρ = q /V = 1.137×10-12(C·m -3).。

习题册习题解答(静电部分)

习题册习题解答(静电部分)

1.B 2.C 3.C4.E=05.E=204r L πελ ; E=r02πελ6.解:建立如图坐标,取dx 小窄条,dx 在P 点产生的电场强度为:dE=xdx02πεσ∴E=xdxaa022πεσ⎰=2πεσln2负号表示与坐标方向相反。

7.解:在圆环上取线元dl ,线元上带电量为: dq=Acos φdl 线元dl 在圆心产生的电场强度为dE = dl RA 204cos πεφdl RA dE X2024cos πεφ-=dl R A dEy204sin cos πεφφ-= dl = Rd φφπεφπd RA E X 02204cos ⎰-== RA 04ε-φπεφφπd RA E y 0204sin cos ⎰-= = 0∴=ERA 04ε-i8.解:建立如图坐标,取dx 宽度圆环,圆环带电量为:dq = 2πRdx σ 在0点产生的电场强度为: 2/3220)(42R x x dx R dE +-=πεσπ=2/3220)(2R x x dx R +-εσ负号表示沿x 轴负方向。

E = ⎰+-LR xdxx R2/322)(2εσ =9. 解:建立如图坐标,在带电直线上取线元dx ,线元dx 带电量为:dq = λdx 在0点产生的电场强度为:dE =-204x dxπελ 负号表示沿x 轴负方向。

E = -204xdxLa aπελ⎰+ = -04πελ⎥⎦⎤⎢⎣⎡+-L a a 11= -)(40L a a L +πελ10.D 11.C 12.C 13.C 14.C 15.0032εσE A-= 0034εσE B=16.无限长均匀带电圆柱面产生的电场。

17.λ= aQ ; 异号电荷18.解:令q 距圆心为x ,以q 为中心22R x +为半径作一球面,由高斯定理知: 通过球面的电通量为:0εqe =Φ 则通过圆板的电通量为:εq e =Φ)(4)(2222222R x x R x R x +-++ππ =)cos 1(20αε-q19.解:取r <R 区域内:由高斯定理⎰∑'=⋅sq s d E 01ε而∑⎰='rdr r kr q 0224π =554kr π∴E =35εkr(r <R )在r >R 区域内:球体的电荷为:q =⎰Rdr r kr 0224π=554kR π则由高斯定理可知,在球体外任一点的电场强度为: E =2055rkRε (r >R )20.(1)解:在球壳内任取一点距球心为r ,做半径为r 的球面为高斯面,由高斯定理:⎰'+=⋅sq Q s d E )(10ε='q⎰radr r rA 24π =⎰rardr A π4 = )(222a r A -πE =204rQ πε +)(422220a r rA -πεπ =204rQ πε+2εA 2022rAaε-(2)若使E 与r 无关,则有: 204rQ πε2022rAaε-= 0∴A =22aQ π21.解:在r <1R 区域内: E = 0 1R < r <2R 区域内: E =r02πελr >2R 区域内: E = 022.D 23.C 24.B 25.C26.b a U U -= — 2000伏27.U = rR0404ερ28.≈σc 101033.1-⨯29.U = aL a +ln 20πελ30.解:两球壳间电势差为:U =⎰badr rq24πε=aba b q baq 004)()11(4πεπε-=-∴ ab abU q -=04πε ∴ E =)(420a b a bU aq-=πε0=dadE 时,在内球表面上E 有极小值。

大学物理第六章静电场习题答案

大学物理第六章静电场习题答案

第六章 静电场习题6-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。

试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解:(1)如图任选一点电荷为研究对象,分析其受力有1230F F F F =++=合 y 轴方向有()()21322002032cos 242433304q qQ F F F a a q q Q aθπεπεπε=+=+=+=合得 33Q q =-(2)这种平衡与三角形的边长无关。

6-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如图所示。

设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量。

解:对其中任一小球受力分析如图所示,有⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 6-3 在氯化铯晶体中,一价氯离子Cl -与其最邻近的八个一价铯离子Cs +构成如图所示的立方晶格结构。

(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作晶格缺陷),求此时氯离子所受的库仑力。

(1)由对称性可知 F 1= 0(2)291222200 1.9210N 43q q e F r aπεπε-===⨯ 方向如图所示6-4 长l =15.0 cm 的直导线AB 上均匀地分布着线密度95.010C m λ-=⨯的正电荷。

试求:(1)在导线的延长线上与导线B 端相距1 5.0cm a =处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处Q 点的场强。

解:(1)如图所示,在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε2220)(d π4d x a x E E llP P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l -=ελ 用15=l cm ,9100.5-⨯=λ1m C -⋅,5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理 2220d d π41d +=x xE Q λε 方向如图所示由于对称性可知⎰=l QxE 0d ,即Q E只有y 分量22222220dd d d π41d ++=x x xE Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x 2220d 4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅ 方向沿y 轴正向*6-5 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量。

大学物理静电场作业题参考答案

大学物理静电场作业题参考答案

解得 q 2l sin 4 0mg tan 7.3.4 长 l =15.0cm的直导线AB上均匀地分布着线密度 =5.0x10-9C·m-1的正电荷.试
求:(1)在导线的延长线上与导线B端相距 a1 =5.0cm处 P 点的场强;(2)在导线的垂直 平分线上与导线中点相距 d2 =5.0cm 处 Q 点的场强.
S
(D) 曲 面 S 的 电 场 强 度 通 量 不 变 , 曲 面 上 各 点 场 强 变
化.
题 7.1(2)图
[答案 D ]
(3)在电场中的导体内部的 [ ] (A)电场和电势均为零; (B)电场不为零,电势均为零; (C)电势和表面电势相等; (D)电势低于表面电势。 [答案:C]
(4)两个同心均匀带电球面,半径分别为 Ra 和 Rb (Ra<Rb), 所带电荷分别为 Qa 和
Uo
4U1
4
8.99
109
1.25 5
108 102
8.99 103V
(2)根据电势差的定义,有UO q0 (U UO )
选取无穷远处为电势零点WO q0 (U UO ) 8.99 106 J
电场力做负功,说明实际需要外力克服电场力做功。
题 7.3.11 图 7.3.11 如题7.3.11图所示,在 A ,B 两点处放有电量分别为+ q ,- q 的点电荷,AB
解:如题 7.3.4 图所示
(1) 在带电直线上取线元 dx ,其上电量 dq 在 P 点产生场强为 dEP
1 4π 0
dx (a x)2
EP
dE P
4π 0
l 2 l 2
dx (a x)2
4π 0
[ a
1
l
1 a

大学物理第05章 静电场习题解答

大学物理第05章 静电场习题解答

第5章 静电场习题解答5.1一带电体可作为点电荷处理的条件是( C ) (A )电荷必须呈球形分布。

(B )带电体的线度很小。

(C )带电体的线度与其它有关长度相比可忽略不计。

(D )电量很小。

5.2图中所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ(x >0)和 -λ(x < 0),则 oxy 坐标平面上点(0,a )处的场强 E 为:( B ) ( A ) 0 ( B )02aλπεi ( C )04a λπεi ( D ) ()02aλπε+i j 5.3 两个均匀带电的同心球面,半径分别为R 1、R 2(R 1<R 2),小球带电Q ,大球带电-Q ,下列各图中哪一个正确表示了电场的分布 ( d )(C) (D)5.4 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且OP =OT ,那么 ( d )(A) 穿过S 面的电通量改变,O 点的场强大小不变; (B) 穿过S 面的电通量改变,O 点的场强大小改变; (C) 穿过S 面的电通量不变,O 点的场强大小改变;(D) 穿过S 面的电通量不变,O 点的场强大小不变。

5.5如图所示,a 、b 、c 是电场中某条电场线上的三个点,由此可知 ( c ) (A) E a >E b >E c ; (B) E a <E b <E c ; (C) U a >U b >U c ; (D) U a <U b <U c 。

5.6关于高斯定理的理解有下面几种说法,其中正确的是 ( c )(A) 如果高斯面内无电荷,则高斯面上E处处为零;(B) 如果高斯面上E处处不为零,则该面内必无电荷; (C) 如果高斯面内有净电荷,则通过该面的电通量必不为零;(D) 如果高斯面上E处处为零,则该面内必无电荷。

5.7 下面说法正确的是 [ D ](A)等势面上各点场强的大小一定相等; (B)在电势高处,电势能也一定高; (C)场强大处,电势一定高;(D)场强的方向总是从电势高处指向低处.5.8 已知一高斯面所包围的体积内电量代数和0i q =∑ ,则可肯定:[ C ] (A )高斯面上各点场强均为零。

大学物理静电场习题问题详解

大学物理静电场习题问题详解

第12章 静电场P35.12.3 如图所示,在直角三角形ABCD 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -4.8×10-9C ,AC = 3cm ,BC = 4cm ,试求C 点的场强.[解答]根据点电荷的场强大小的公式22014q qE kr r ==πε, 其中1/(4πε0) = k = 9.0×109N ·m 2·C -2.点电荷q 1在C 点产生的场强大小为112014q E AC =πε 994-1221.810910 1.810(N C )(310)--⨯=⨯⨯=⨯⋅⨯, 方向向下.点电荷q 2在C 点产生的场强大小为2220||14q E BC =πε 994-1224.810910 2.710(N C )(410)--⨯=⨯⨯=⨯⋅⨯,方向向右.C 处的总场强大小为E =44-110 3.24510(N C )==⨯⋅,总场强与分场强E 2的夹角为12arctan33.69E E ==︒θ.12.4 半径为R 的一段圆弧,圆心角为60°,一半均匀带正电,另一半均匀带负电,其电线密度分别为+λ和-λ,求圆心处的场强.[解答]在带正电的圆弧上取一弧元 d s = R d θ,电荷元为d q = λd s ,在O 点产生的场强大小为220001d 1d d d 444q s E R R R λλθπεπεπε===,场强的分量为d E x = d E cos θ,d E y = d E sin θ.对于带负电的圆弧,同样可得在O 点的场强的两个分量.由于弧形是对称的,x 方向的合场强为零,总场强沿着y 轴正方向,大小为2d sin y LE E E ==⎰θ/6/6000sin d (cos )22R R ==-⎰ππλλθθθπεπε0(12R=λπε.12.5 均匀带电细棒,棒长a = 20cm ,电荷线密度为λ = 3×10-8C ·m -1,求:(1)棒的延长线上与棒的近端d 1 = 8cm 处的场强;(2)棒的垂直平分线上与棒的中点相距d 2 = 8cm 处的场强.[解答](1)建立坐标系,其中L = a /2 = 0.1(m),x = L+d 1 = 0.18(m).在细棒上取一线元d l ,图13.1所带的电量为d q = λd l ,根据点电荷的场强公式,电荷元在P 1点产生的场强的大小为1220d d d 4()q lE k r x l ==-λπε场强的方向沿x 轴正向.因此P 1点的总场强大小通过积分得120d 4()L L l E x l λπε-=-⎰ 014LLx lλπε-=-011()4x L x Lλπε=--+ 220124L x Lλπε=-. ① 将数值代入公式得P 1点的场强为8912220.13109100.180.1E -⨯⨯⨯=⨯⨯-= 2.41×103(N ·C -1),方向沿着x 轴正向.(2)建立坐标系,y = d 2. 在细棒上取一线元d l ,所带的电量为 d q = λd l ,在棒的垂直平分线上的P 2点产生的场强的大小为2220d d d 4q lE kr rλπε==, 由于棒是对称的,x 方向的合场强为零,y 分量为 d E y = d E 2sin θ.由图可知:r = d 2/sin θ,l = d 2cot θ,所以 d l = -d 2d θ/sin 2θ,因此 02d sin d 4y E d λθθπε-=,总场强大小为02sin d 4Ly l LE d λθθπε=--=⎰02cos 4Ll Ld λθπε=-=LL=-==. ②将数值代入公式得P 2点的场强为89221/220.13109100.08(0.080.1)y E -⨯⨯⨯=⨯⨯+= 5.27×103(N ·C -1). 方向沿着y 轴正向.[讨论](1)由于L = a /2,x = L+d 1,代入①式,化简得1011011144/1a E d d a d d a λλπεπε==++,保持d 1不变,当a →∞时,可得1014E d λπε→, ③这就是半无限长带电直线在相距为d 1的延长线上产生的场强大小.(2)由②式得y E ==,当a →∞时,得 022y E d λπε→, ④这就是无限长带电直线在线外产生的场强公式.如果d 1=d 2,则有大小关系E y = 2E 1.12.6 一均匀带电无限长细棒被弯成如图所示的对称形状,试问θ为何值时,圆心O 点处的场强为零.[解答]设电荷线密度为λ,先计算圆弧的电荷在圆心产生的场强.在圆弧上取一弧元 d s =R d φ, 所带的电量为d q = λd s ,在圆心处产生的场强的大小为2200d d d d 44q s E kr R Rλλϕπεπε===, 由于弧是对称的,场强只剩x 分量,取x 轴方向为正,场强为d E x = -d E cos φ. 总场强为2/20/2cos d 4x E R πθθλϕϕπε--=⎰2/20/2sin 4Rπθθλϕπε--=0sin 22R λθπε=,方向沿着x 轴正向.再计算两根半无限长带电直线在圆心产生的场强.根据上一题的公式③可得半无限长带电直线在延长上O 点产生的场强大小为`04E Rλπε=,由于两根半无限长带电直线对称放置,它们在O 点产生的合场强为``02coscos 222x E E R θλθπε==,方向沿着x 轴负向.当O 点合场强为零时,必有`x x E E =,可得 tan θ/2 = 1, 因此 θ/2 = π/4, 所以 θ = π/2.12.7 一宽为b 的无限长均匀带电平面薄板,其电荷密度为σ,如图所示.试求:(1)平板所在平面内,距薄板边缘为a 处的场强.(2)通过薄板几何中心的垂直线上与薄板距离为d 处的场强.[解答](1)建立坐标系.在平面薄板上取一宽度为d x 的带电直线,电荷的线密度为d λ = σd x , 根据直线带电线的场强公式02E rλπε=, 得带电直线在P 点产生的场强为00d d d 22(/2)xE rb a x λσπεπε==+-,其方向沿x 轴正向.由于每条无限长直线在P 点的产生的场强方向相同,所以总场强为/20/21d 2/2b b E x b a x σπε-=+-⎰ 图13.4图13.5/20/2ln(/2)2b b b a x σπε--=+-0ln(1)2baσπε=+. ① 场强方向沿x 轴正向.(2)为了便于观察,将薄板旋转建立坐标系.仍然在平面薄板上取一宽度为d x 的带电直线,电荷的线密度仍然为d λ = σd x ,带电直线在Q 点产生的场强为221/200d d d 22()xE rb x λσπεπε==+,沿z 轴方向的分量为221/20cos d d d cos 2()z xE E b x σθθπε==+,设x = d tan θ,则d x = d d θ/cos 2θ,因此d d cos d 2z E E σθθπε==积分得arctan(/2)0arctan(/2)d 2b d z b d E σθπε-=⎰ 0arctan()2bdσπε=. ② 场强方向沿z 轴正向.[讨论](1)薄板单位长度上电荷为λ = σb ,①式的场强可化为0ln(1/)2/b a E a b aλπε+=,当b →0时,薄板就变成一根直线,应用罗必塔法则或泰勒展开式,场强公式变为02E aλπε→, ③ 这正是带电直线的场强公式.(2)②也可以化为0arctan(/2)2/2z b d E d b dλπε=,当b →0时,薄板就变成一根直线,应用罗必塔法则或泰勒展开式,场强公式变为02z E dλπε→,这也是带电直线的场强公式.当b →∞时,可得2z E σε→, ④ 这是无限大带电平面所产生的场强公式.12.8 (1)点电荷q 位于一个边长为a 的立方体中心,试求在该点电荷电场中穿过立方体一面的电通量是多少?(2)如果将该场源点电荷移到立方体的的一个角上,这时通过立方体各面的电通量是多少?[解答]点电荷产生的电通量为Φe = q/ε0.(1)当点电荷放在中心时,电通量要穿过6个面,通过每一面的电通量为Φ1 = Φe /6 = q /6ε0.(2)当点电荷放在一个顶角时,电通量要穿过8个卦限,立方体的3个面在一个卦限中,通过每个面的电通量为Φ1 = Φe /24 = q /24ε0;立方体的另外3个面的法向与电力线垂直,通过每个面的电通量为零.12.9 面电荷密度为σ的均匀无限大带电平板,以平板上的一点O 为中心,R 为半径作一半球面,如图所示.求通过此半球面的电通量.[解答]设想在平板下面补一个半球面,与上面的半球面合成一个球面.球面内包含的电荷为q = πR 2σ, 通过球面的电通量为Φe = q /ε0, 通过半球面的电通量为Φ`e = Φe /2 = πR 2σ/2ε0.12.10 两无限长同轴圆柱面,半径分别为R 1和R 2(R 1 > R 2),带有等量异号电荷,单位长度的电量为λ和-λ,求(1)r < R 1;(2) R 1 < r < R 2;(3)r > R 2处各点的场强.[解答]由于电荷分布具有轴对称性,所以电场分布也具有轴对称性.(1)在内圆柱面内做一同轴圆柱形高斯面,由于高斯内没有电荷,所以E = 0,(r < R 1).(2)在两个圆柱之间做一长度为l ,半径为r 的同轴圆柱形高斯面,高斯面内包含的电荷为 q = λl , 穿过高斯面的电通量为d d 2e SSE S E rl Φπ=⋅==⎰⎰E S Ñ,根据高斯定理Φe = q /ε0,所以02E rλπε=, (R 1 < r < R 2). (3)在外圆柱面之外做一同轴圆柱形高斯面,由于高斯内电荷的代数和为零,所以E = 0,(r > R 2).12.11 一厚度为d 的均匀带电无限大平板,电荷体密度为ρ,求板内外各点的场强.[解答]方法一:高斯定理法.(1)由于平板具有面对称性,因此产生的场强的方向与平板垂直且对称于中心面:E = E`.在板内取一底面积为S ,高为2r 的圆柱面作为高斯面,场强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为d e SΦ=⋅⎰E S2d d d S S S =⋅+⋅+⋅⎰⎰⎰E S E S E S 1`02ES E S ES =++=,高斯面内的体积为 V = 2rS ,包含的电量为 q =ρV = 2ρrS , 根据高斯定理 Φe = q/ε0, 可得场强为 E = ρr/ε0,(0≦r ≦d /2).①(2)穿过平板作一底面积为S ,高为2r 的圆柱形高斯面,通过高斯面的电通量仍为 Φe = 2ES , 高斯面在板内的体积为V = Sd ,包含的电量为 q =ρV = ρSd , 根据高斯定理 Φe = q/ε0, 可得场强为 E = ρd /2ε0,(r ≧d /2). ②方法二:场强叠加法. (1)由于平板的可视很多薄板叠而成的,以r 为界,下面平板产生的场强方向向上,上面平板产生的场强方向向下.在下面板中取一薄层d y ,面电荷密度为d σ = ρd y ,产生的场强为 d E 1 = d σ/2ε0, 积分得100/2d ()222rd y dE r ρρεε-==+⎰,③ 同理,上面板产生的场强为图13.7/2200d ()222d ry dE r ρρεε==-⎰,④ r 处的总场强为E = E 1-E 2 = ρr/ε0.(2)在公式③和④中,令r = d /2,得E 2 = 0、E = E 1 = ρd /2ε0,E 就是平板表面的场强.平板外的场强是无数个无限薄的带电平板产生的电场叠加的结果,是均强电场,方向与平板垂直,大小等于平板表面的场强,也能得出②式.12.1212.13 一半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为R`<R 的小球体,如图所示,试求两球心O 与O`处的电场强度,并证明小球空腔内的电场为均强电场.[解答]挖去一块小球体,相当于在该处填充一块电荷体密度为-ρ的小球体,因此,空间任何一点的场强是两个球体产生的场强的叠加.对于一个半径为R ,电荷体密度为ρ的球体来说,当场点P 在球内时,过P 点作一半径为r 的同心球形高斯面,根据高斯定理可得方程2301443E r r ππρε=P 点场强大小为3E r ρε=. 当场点P 在球外时,过P 点作一半径为r 的同心球形高斯面,根据高斯定理可得方程2301443E r R ππρε=P 点场强大小为3203R E rρε=. O 点在大球体中心、小球体之外.大球体在O 点产生的场强为零,小球在O 点产生的场强大小为320`3O R E aρε=, 方向由O 指向O `.O`点在小球体中心、大球体之内.小球体在O`点产生的场强为零,大球在O 点产生的场强大小为`03O E a ρε=, 方向也由O 指向O `.[证明]在小球内任一点P ,大球和小球产生的场强大小分别为 03r E r ρε=,`0`3r E r ρε=,方向如图所示.设两场强之间的夹角为θ,合场强的平方为222``2cos r r r r E E E E E θ=++2220()(`2`cos )3r r rr ρθε=++, 根据余弦定理得222`2`cos()a r r rr πθ=+--, 所以 03E a ρε=, 可见:空腔内任意点的电场是一个常图13.10量.还可以证明:场强的方向沿着O 到O `的方向.因此空腔内的电场为匀强电场.12.14 如图所示,在A 、B 两点处放有电量分别为+q 和-q 的点电荷,AB 间距离为2R ,现将另一正试验电荷q 0从O 点经过半圆弧路径移到C点,求移动过程中电场力所做的功.[解答]正负电荷在O 点的电势的和为零:U O = 0;在C 点产生的电势为0004346C q q q U RRRπεπεπε--=+=,电场力将正电荷q 0从O 移到C 所做的功为W = q 0U OD = q 0(U O -U D ) = q 0q /6πε0R .12.15 真空中有两块相互平行的无限大均匀带电平面A 和B .A 平面的电荷面密度为2σ,B 平面的电荷面密度为σ,两面间的距离为d .当点电荷q 从A 面移到B 面时,电场力做的功为多少?[解答]两平面产生的电场强度大小分别为E A = 2σ/2ε0 = σ/ε0,E B = σ/2ε0, 两平面在它们之间产生的场强方向相反,因此,总场强大小为E = E A - E B = σ/2ε0, 方向由A 平面指向B 平面.两平面间的电势差为U = Ed = σd /2ε0,当点电荷q 从A 面移到B 面时,电场力做的功为W = qU = q σd /2ε0.12.16 一半径为R 的均匀带电球面,带电量为Q .若规定该球面上电势值为零,则无限远处的电势为多少?[解答]带电球面在外部产生的场强为204Q E r πε=,由于d d R RRU U E r ∞∞∞-=⋅=⎰⎰E l200d 44RR QQr r r πεπε∞∞-==⎰04Q Rπε=,当U R = 0时,04Q U Rπε∞=-.12.17 电荷Q 均匀地分布在半径为R 的球体内,试证明离球心r (r <R )处的电势为2230(3)8Q R r U Rπε-=. [证明]球的体积为343V R π=, 电荷的体密度为 334Q QV Rρπ==. 利用13.10题的方法可求球内外的电场强度大小为30034Q E r r Rρεπε==,(r ≦R ); 204Q E r πε=,(r ≧R ).取无穷远处的电势为零,则r 处的电势为d d d RrrRU E r E r ∞∞=⋅=+⎰⎰⎰E l3200d d 44RrRQ Q r r r Rrπεπε∞=+⎰⎰图13.11230084RrRQ Q rRrπεπε∞-=+22300()84Q Q R r RRπεπε=-+2230(3)8Q R r Rπε-=.12.18 在y = -b 和y = b 两个“无限大”平面间均匀充满电荷,电荷体密度为ρ,其他地方无电荷.(1)求此带电系统的电场分布,画E-y 图;(2)以y = 0作为零电势面,求电势分布,画E-y 图.[解答]平板电荷产生的场强的方向与平板垂直且对称于中心面:E = E`,但方向相反.(1)在板内取一底面积为S ,高为2y 的圆柱面作为高斯面,场强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为d e SΦ=⋅⎰E Sd d d 2S S S ES=⋅+⋅+⋅=⎰⎰⎰E S E S E S 12.高斯面内的体积为 V = 2yS ,包含的电量为 q = ρV = 2ρSy , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρy/ε0, (-b ≦y ≦b ).穿过平板作一底面积为S ,高为2y 的圆柱形高斯面,通过高斯面的电通量仍为地Φe = 2ES ,高斯面在板内的体积为 V = S 2b , 包含的电量为 q = ρV = ρS 2b , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρb/ε0, (b ≦y );E = -ρb/ε0, (y ≦-b ).E-y 图如左图所示.(2)对于平面之间的点,电势为d d yU y ρε=-⋅=-⎰⎰E l 202y C ρε=-+,在y = 0处U = 0,所以C = 0,因此电势为22y U ρε=-,(-b ≦y ≦b ). 这是一条开口向下的抛物线.当y ≧b 时,电势为00d d nqb nqbU y y Cεε=-⋅=-=-+⎰⎰E l ,在y = b 处U = -ρb 2/2ε0,所以C = ρb 2/2ε0,因此电势为2002b b U y ρρεε=-+,(b ≦y ). 当y ≦-b 时,电势为00d d b bU y y C ρρεε=-⋅==+⎰⎰E l ,在y = -b 处U = -ρb 2/2ε0,所以C = ρd 2/2ε0,因此电势为2002b b U y ρρεε=+, 两个公式综合得200||2b b U y ρρεε=-+,(|y |≧d ). 这是两条直线.U-y 图如右图所示.U-y 图的斜率就形成E-y 图,在y = ±b 点,电场强度是连续的,因此,在U-y 图中两条直线与抛物线在y = ±b 点相切.[注意]根据电场求电势时,如果无法确定零势点,可不加积分的上下限,但是要在积分之后加一个积分常量.根据其他关系确定常量,就能求出电势,不过,线积分前面要加一个负号,即d U =-⋅⎰E l这是因为积分的起点位置是积分下限.12.19 两块“无限大”平行带电板如图所示,A 板带正电,B 板带负电并接地(地的电势为零),设A 和B 两板相隔5.0cm ,板上各带电荷σ=3.3×10-6C ·m -2,求: (1)在两板之间离A 板1.0cm 处P 点的电势;(2)A 板的电势.[解答]两板之间的电场强度为E=σ/ε0,方向从A 指向B .以B 板为原点建立坐标系,则r B = 0,r P = -0.04m ,r A = -0.05m . (1)P 点和B 板间的电势差为d d BBPPr r P B r r U U E r -=⋅=⎰⎰E l()B P r r σε=-, 由于U B = 0,所以P 点的电势为6123.3100.048.8410P U --⨯=⨯⨯=1.493×104(V).(2)同理可得A 板的电势为()A B A U r r σε=-=1.866×104(V).12.20 电量q 均匀分布在长为2L 的细直线上,试求:(1)带电直线延长线上离中点为r 处的电势;(2)带电直线中垂线上离中点为r 处的电势;(3)由电势梯度算出上述两点的场强. [解答]电荷的线密度为λ = q/2L . (1)建立坐标系,在细线上取一线元d l ,所带的电量为d q = λd l ,根据点电荷的电势公式,它在P 1点产生的电势为101d d 4lU r lλπε=-总电势为10d 4L L l U r lλπε-=-⎰ln()4Ll Lr l λπε=--=-0ln8q r LLr Lπε+=-. (2)建立坐标系,在细线上取一线元d l ,所带的电量为d q = λd l ,在线的垂直平分线上的P 2点产生的电势为2221/20d d 4()lU r l λπε=+,积分得2221/201d 4()LLU l r l λπε-=+⎰)4Ll Ll λπε=-=08q Lπε=04q Lπε=.(3)P 1点的场强大小为11U E r∂=-∂ 011()8qL r L r L πε=--+22014qr L πε=-, ①方向沿着x 轴正向.P 2点的场强为22U E r∂=-∂01[4qL r πε==, ②方向沿着y 轴正向.[讨论]习题13.3的解答已经计算了带电线的延长线上的场强为1220124L E x L λπε=-, 由于2L λ = q ,取x = r ,就得公式①.(2)习题13.3的解答还计算了中垂线上的场强为y E =取d 2 = r ,可得公式②.由此可见,电场强度可用场强叠加原理计算,也可以用电势的关系计算.12.21 如图所示,一个均匀带电,内、外半径分别为R 1和R 2的均匀带电球壳,所带电荷体密度为ρ,试计算:(1)A ,B 两点的电势;(2)利用电势梯度求A ,B 两点的场强.[解答](1)A 点在球壳的空腔内,空腔内的电势处处相等,因此A 点的电势就等于球心O 点的电势.在半径为r 的球壳处取一厚度为d r 的薄壳,其体积为d V = 4πr 2d r ,包含的电量为 d q = ρd V = 4πρr 2d r ,在球心处产生的电势为00d d d 4O q U r r rρπεε==, 球心处的总电势为2122210d ()2R O R U r r R R ρρεε==-⎰, 这就是A 点的电势U A .过B 点作一球面,B 的点电势是球面外的电荷和球面内的电荷共同产生的.球面外的电荷在B 点产生的电势就等于这些电荷在球心处产生的电势,根据上面的推导可得图13.1822120()2B U R r ρε=-.球面内的电荷在B 点产生的电势等于这些电荷集中在球心处在B 点产生的电势.球壳在球面内的体积为3314()3B V r R π=-, 包含的电量为 Q = ρV ,这些电荷集中在球心时在B 点产生的电势为332100()43B BBQ U r R r r ρπεε==-. B 点的电势为U B = U 1 + U 2322120(32)6B BR R r r ρε=--. (2)A 点的场强为0AA AU E r ∂=-=∂. B 点的场强为3120()3B B B B BU R E r r rρε∂=-=-∂. [讨论] 过空腔中A 点作一半径为r 的同心球形高斯面,由于面内没有电荷,根据高斯定理,可得空腔中A 点场强为E = 0, (r ≦R 1).过球壳中B 点作一半径为r 的同心球形高斯面,面内球壳的体积为3314()3V r R π=-,包含的电量为 q = ρV ,根据高斯定理得方程 4πr 2E = q/ε0, 可得B 点的场强为3120()3R E r rρε=-, (R 1≦r ≦R 2).这两个结果与上面计算的结果相同.在球壳外面作一半径为r 的同心球形高斯面,面内球壳的体积为33214()3V R R π=-,包含的电量为 q = ρV ,根据高斯定理得可得球壳外的场强为33212200()43R R qE r r ρπεε-==,(R 2≦r ). A 点的电势为d d AAA r r U E r ∞∞=⋅=⎰⎰E l12131200d ()d 3AR R r RR r r r r ρε=+-⎰⎰2332120()d 3RR R r r ρε∞-+⎰ 22210()2R R ρε=-. B 点的电势为d d BBB r r U E r ∞∞=⋅=⎰⎰E l23120()d 3BR r R r r r ρε=-⎰2332120()d 3R R R r r ρε∞-+⎰ 322120(32)6B BR R r r ρε=--.A 和B 点的电势与前面计算的结果相同.12.21 (1)设地球表面附近的场强约为200V ·m -1,方向指向地球中心,试求地球所带有的总电量.(2)在离地面1400m 高处,场强降为20V ·m -1,方向仍指向地球中心,试计算在1400m 下大气层里的平均电荷密度.[解答]地球的平均半径为R =6.371×106m .(1)将地球当作导体,电荷分布在地球表面,由于场强方向指向地面,所以地球带负量.根据公式 E = -σ/ε0,电荷面密度为 σ = -ε0E ;地球表面积为 S = 4πR 2, 地球所带有的总电量为Q = σS = -4πε0R 2E =-R 2E /k ,k 是静电力常量,因此电量为629(6.37110)200910Q ⨯⨯=-⨯=-9.02×105(C).(2)在离地面高为h = 1400m 的球面内的电量为2()``R h E Q k+=-=-0.9×105(C), 大气层中的电荷为q = Q - Q` = 8.12×105(C).由于大气层的厚度远小于地球的半径,其体积约为V = 4πR 2h = 0.714×1018(m 3), 平均电荷密度为ρ = q /V = 1.137×10-12(C ·m -3).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

静电学部分习题解答第11次课(上)1、解:由库仑定律:12214q qF rrπε=代入数据,求得库仑力大小: 3.78NF=2、解:取线元d x ,其电量d q 在P 点场强大小为:"211dd4()2=+-PxEld xλπε211dd d cos04()2==+-Px PxE Eld xλπε()23220011111() 2.4110N/C 44()2-==-=⨯++-⎰lPx ldxEl d l dd xλλπεπε3、解:建立如图坐标;取线元:'22300dd d44q QE lR Rπεπε==由对称性:0xE=()00d d siny yE Ey yE E Eπθ==+⎰⎰d dl Rθ="222200sind42yQ QER Rπθθπεπε=-=-⎰222yQE E j jRπε==-4、解:()()2200d d d dd4242q q x xFL x x L x xλλπεπε''==''+-+-)()()2200d d d dd d cos04242xq q x xF FL x x L x xλλπεπε''===''+-+-()22200d4d ln4342L LxxF xL x xλλπεπε'=='+-⎰⎰()24ln N43xF F i iλπε⎛⎫== ⎪⎝⎭第12次课(上)%1、解:具有面对称性,作闭合圆柱面为高斯面。

e S E dS Φ=⋅⎰⎰=⋅+⋅+⋅⎰⎰⎰⎰⎰⎰12侧S S S E dS E dS E dS1200/ES ES S σε=++=-02S ES σε=02E σε∴=方向如图所示。

2、解:过A 板作闭合圆柱面为高斯面e SE dSΦ=⋅⎰⎰!=⋅+⋅+⋅⎰⎰⎰⎰⎰⎰12侧S S S E dS E dS E dS=+=02010cos 0cos180/3A E S E S S σε00 23AEεσ=-¥同理,过B板作闭合圆柱面为高斯面e SE dSΦ=⋅⎰⎰=⋅+⋅+⋅⎰⎰⎰⎰⎰⎰12侧S S SE dS E dS E dS=+=1020cos0cos0/3BES E S Sσε"0043BEεσ=3、解:取同心球面为高斯面由高斯定理:()24224004d1144d⎧'''=⎪=⋅===⎨⎪'''=⎩⎰∑⎰⎰⎰re i RsSkr r r k r r RE dS E r qkr r r k R r RπππεεππΦ4344krr r REkRr r Rrεε⎧⎪⎪=⎨⎪⎪⎩…4、解:取同轴圆柱形高斯面, 由高斯定理:()()1120020 112 ⎧⎪=⋅===⎨⎪+-⎩∑⎰⎰e i s S r R E dS E rl q l R r R l l R rπλεελλΦ1122020 20 r R E r R r R r R r λπε⎧⎪⎪=⎨⎪⎪⎩'第13、14次课(上)1、解:由点电荷电势公式及电势叠加原理:~2、解:由高斯定理: :—()223230003d d d 448Rr rrRq R r qr q U E r r r RrRπεπεπε∞∞-==+=⎰⎰⎰#01()04=-=O q q U R Rπε01()43=-C q q U R R πε06=-q R πε000()6∴=-=OC O C qq A q U U Rπε()1=⋅=∑⎰⎰e isS E dS qεΦ()3333000413 43==∑i s rq qr q r RR R πεεεπ30 4∴=qr E r R Rπε()1=∑i s qq rR εε20 4∴=q E rRr πε3、解:(1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强相互抵消,BC 段电荷在O 点产生的场强由第11课练习题3可得:220022y Q E E j j j RRλπεπε-==-=(2) AB 段电荷在O 点产生的电势(以无穷远处电势为零) 2100d ln 244RRx U x λλπεπε--==⎰【同理CD 段:2200d ln 244RRx U x λλπεπε==⎰BC 段:3000d 44Rl U R πλλπεε==⎰ 12300ln 224O U U U U λλπεε=++=+4、解:(1) 外球壳内表面均匀带-q ,外内表面均匀带+q 222002d 44R R q q U r rR πεπε∞==⎰¥(2) 外壳接地时,外表面+q 电荷入地,外表面不带电,内表面电荷为-q .20R U =(3) 设此时内球壳带电量为q ' ,外球壳内表面均匀带q '-,外内表面均匀带q q '- 此时电场分布为:)()()120122020 4 4 r RE q r R r R q q r R r πεπε⎧⎪⎪'=⎨⎪'-⎪⎩211222000120211d d 04444R R R R q q q q q qU r r r r R R R πεπεπεπε∞⎛⎫''''--=+=-+= ⎪⎝⎭⎰⎰ 由此/12R q q R '=()22122200202d 444R R q R R q q q qU r r R R πεπεπε∞-''--===⎰第15次课(上)1、(1) 1q 对2q 作用力的大小为2210π41rq q F ε=。

由于静电屏蔽,1q 以及球壳A 和球壳B 上的感应电荷在球壳B 内部空间产生的合和场强为0,故2q 所受合和外力为0,没有加速度;(2) 1q 对2q 作用力的大小为2210π41r q q F ε=, 1q 以及球壳A 的感应电荷对2q 均有作用力,其合力使2q 产生加速度。

,2、(1)对图示封闭面(S)利用高斯定理,有()22010e S σσεΦ=+∆=即 23σσ=-%(2) 取向右为正方向,有3124000002222P E σσσσεεεε=---= 故有 14σσ=3、解:(1) 令A 板左侧电荷面密度为L σ,右侧为R σ,则根据静电感应,C 板右侧电荷面密度为L σ-,B 板左侧电荷面密度为R σ-'显然 ()L R S q σσ+= ①0R AB E σε=方向向右; 0L AC E σε=方向向左 由于A 板为等势体,有 AC AB U U = 即AC AC AB AB E d E d =2100L R d d σσεε= ② ;由①和②有52521.010C/m 0.510C/m L R σσ--=⨯=⨯771.010 C2.010C B R C L q S q S σσ--=-=⨯=-=⨯(2) ()22100() 2.2610V L R A AC AC AC AB AB AB U U E d d U E d d ======⨯σσεε4、 解:设内圆柱面单位长度柱面带电λ,则两柱面间电场分布为:120 2E R rR rλπε=两柱面的电势差为:2121212001d ln 22R R R R R U r U U r R λλπεπε===-⎰由此得 ()012212ln U U R R πελ-=两圆柱面间距轴线垂直距离为r 1和r 2两点的电势差为:()2121012222001112d ln ln 22ln r r r r U U r r U r R r r r R πελλπεπε-===⎰。

相关文档
最新文档