三角恒等变换中的综合问题

合集下载

三角函数和向量的综合

三角函数和向量的综合

三角函数和向量的综合复习要点:1、 熟练应用三角恒等变换和向量数量积等公式2、 三角函数和向量综合问题的处理思路典例剖析:1、已知向量.1,43),1,1(-=⋅=且的夹角为与向量向量π (1)求向量n ;(2)设向量)sin ,,(cos ),0,1(x x ==向量,其中R x ∈,若0=⋅,试求||+的取值范围.2、已知向量552sin ,(cos ,sin ,cos =-==b a ββαα)( (1)求)cos(βα-的值 (2)若02,20<<-<<βππα且135sin -=β,求αsin 的值3、 已知向量⎥⎦⎤⎢⎣⎡∈-==2,0)2sin ,2(cos ),23sin ,23(cos πx x x b x x a 且向量。

求(1)+⋅;(2)若x f +-⋅=2)(的最小值是23-,求实数λ的值。

4、已知函数2()2cos2sin cos 1(0)f x x x x x ωωωω=++∈R >,的最小正周期是2π. (Ⅰ)求ω的值; (Ⅱ)求函数()f x 的最大值,并且求使()f x 取得最大值的x 的集合.17题、如图,函数y=2sin(πx+ϕ),(x ∈R)(其中0≤ϕ≤2π)的图象与y 轴交于点(0,1);①、求ϕ的值;②、设P 为图象上的最高点,M ,N是图象与x 轴的交点,求→PM 与→PN 的夹角。

课后作业:1、已知向量(sin ,cos ),(1,2)m A A n ==- ,且0.m n ⋅=(Ⅰ)求tan A 的值;(Ⅱ)求函数()cos 2tan sin (f x x A x x =+∈R )的值域.2、已知向量)1,2sin 2(cos .22x x a -=)sin ,1(.x b =,函数f (x )=b a ⋅ (Ⅰ)求函数f (x )的最小正周期;(Ⅱ)当x 0∈(0,4π)且f (x 0)=524时,求f (x 0+6π)的值.3、(山东17)(本小题满分12分)已知函数())cos()f x x x ωϕωϕ=+-+(0πϕ<<,0ω>)为偶函数,且函数()y f x =图象的两相邻对称轴间的距离为π2. (Ⅰ)求π8f ⎛⎫ ⎪⎝⎭的值; (Ⅱ)将函数()y f x =的图象向右平移π6个单位后,得到函数()y g x =的图象,求()g x 的单调递减区间.4.(上海18)(本题满分15分)已知函数f (x )=sin2x ,g (x )=cos π26x ⎛⎫+⎪⎝⎭,直线()x t t =∈R 与函数()()f x g x ,的图像分别交于M 、N 两点.(1)当π4t =时,求|MN |的值; (2)求|MN |在π02t ⎡⎤∈⎢⎥⎣⎦,时的最大值.5、如图在长方体ABCD 中,,,AB a AD b N == 是CD 的中点,M 是线段AB 上的点,2,1a b == ,(1)若M 是AB 的中点,求证:AN 与CM 共线;(2)在线段AB 上是否存在点M ,使得BD 与CM 垂直?若不存在请说明理由,若存在请求出M 点的位置;(3)若动点P 在长方体ABCD 上运动,试求AP AB ⋅ 的最大值及取得最大值时P点的位置。

三角恒等变换

三角恒等变换

2, π 2cos4=-1, 2,最小值为-
3π f 4 =
3π π 2sin 2 -4=-
所以函数 1.
π 3π f(x)在区间8, 4 上的最大值为
【考情分析】
两角和与差的三角函数公式及倍角公式一直是高考数学的 热点内容之一,可对其直接考查,主要是作为工具在有关三角 函数的解答题中进行考查,各种题型均可能出现,难度不大, 分值4~6分.
π α α 2 cos2 . α,再升幂或化为sin2± 1± cos2±
(4)asin α + bcos α→ 辅 助 角 公 式 asin α + bcos α = b a +b · sin(α + φ) , 其 中 tan φ = a 或 asin α + b cos α =
2
升幂:1+cos 2α=2cos2 α, 1-cos 2α=2sin2 α.
(4) 角的变换.角的变换沟通了已知角与未知角之间的联 系,使公式顺利运用,解题过程被简化.常见的变换有: α=(α+β)-β, 1 α=β-(β-α),α=2[(α+β)+(α-β)] , 1 α=2[(α+β)-(β-α)] , α+β=(2α+β)-α 等. (5)公式的逆用和变用.
sin 47° -sin 17° cos 30° 6.(2013· 重庆高考) =( cos 17° 3 A.- 2 1 C.2 1 B.-2 3 D. 2
)
sin 47° -sin 17° cos 30° 解析: cos 17° sin17° +30° -sin 17° cos 30° = cos 17° sin 17° cos 30° +cos 17°sin 30° -sin 17°cos 30° = cos 17° 1 =sin 30° =2,选 C. 答案:C

高考解答题专项突破(二) 三角函数的综合问题--2025年高考数学复习讲义及练习解析

高考解答题专项突破(二)  三角函数的综合问题--2025年高考数学复习讲义及练习解析

[考情分析]以三角形、三角函数为载体,以三角函数的图象与性质、正弦定理、余弦定理为工具,以三角恒等变换为手段来考查三角函数的综合问题是高考的热点题型,主要考查内容有正、余弦定理、三角形面积的计算、三角恒等变换和三角函数的性质.解题时要充分利用三角函数的图象与性质,交替使用正弦定理、余弦定理,利用数形结合、函数与方程思想等进行求解.考点一三角函数图象与性质的综合例1已知函数f (x )=A sin(ωx +φ>0,ω>0,|φ(1)求f (x )=2的解集;(2)求函数g (x )=f 解(1)由图象可知,周期T =5π12+7π12=π,∴ω=2ππ=2,∵,∴A 2×5π12+0,∴0,解得5π6+φ=π+2k π,φ=2k π+π6,k ∈Z ,∵|φ|<π2,∴φ=π6,∵点(0,1)在函数图象上,∴A sin π6=1,A =2,∴函数f (x )的解析式为f (x )=x由f (x )=x 2,得x 1,即2x +π6=π2+2k π,k ∈Z ,解得x =π6+k π,k ∈Z ,∴f (x )=2|x =π6k π,k ∈(2)g (x )=由(1)知f (x )=xg (x )=2sin 2+π6-2sin 2+π6=2sin2x -2sinx =2sin2x -x +32cos2sin2x -3cos2x=x 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z ,∴函数g (x )=f k π-π12,k π+5π12,k ∈Z .解决三角函数图象与性质综合问题的方法利用图象讨论三角函数的性质,应先把函数化成y =A sin(ωx +φ)(ω>0)或y =A cos(ωx +φ)(ω>0)的形式,然后通过换元法令t =ωx +φ,转化为研究y =A sin t 或y =A cos t 的性质.1.已知函数f (x )=2sin ωx cos φ+2sin φ-4sin 2ωx 2sin φ(ω>0,|φ|<π),其图象的一条对称轴与相邻对称中心的横坐标相差π4,________,从以下两个条件中任选一个补充在空白横线中.①函数f (x )的图象向左平移π6个单位长度后得到的图象关于y 轴对称且f (0)<0;②函数f (x )的图象的一条对称轴为直线x =-π3且f (1).(1)求函数f (x )的解析式;(2)若x ∈π2,3π4,函数h (x )=f (x )-a 存在两个不同零点x 1,x 2,求x 1+x 2的值.解(1)f (x )=2sin ωx cos φ+2sin φ-2(1-cos ωx )sin φ=2sin(ωx +φ),又函数f (x )的最小正周期为T =4×π4=π,所以ω=2πT=2,若选条件①:将函数f (x )的图象向左平移π6个单位长度得到的图象关于y 轴对称,所得函数为y =2sin 2φ=x +π3+由函数y =2sin x +π3+y 轴对称,可得π3+φ=π2+k π(k ∈Z ),解得φ=π6+k π(k ∈Z ),因为|φ|<π,所以φ的可能取值为-5π6,π6,若φ=-5π6,则f (x )=xf (0)=1,符合题意;若φ=π6,则f (x )=x f (0)=2sin π6=1,不符合题意.所以f (x )=x若选条件②:因为函数f (x )图象的一条对称轴为直线x =-π3,所以φ=π2+k π(k ∈Z ),解得φ=7π6+k π(k ∈Z ),因为|φ|<π,所以φ的可能取值为-5π6,π6,若φ=-5π6,则f (x )=x则2<f (1),符合题意;若φ=π6,则f (x )=x则2sin π2=2>f (1),不符合题意.所以f (x )=x(2)令t =2x -5π6∈π6,2π3,此时函数h (x )=f (x )-a 存在两个不同零点x 1,x 2等价于直线y =a 与函数y =2sin t ,t ∈π6,2π3的图象有两个不同交点.当t =π2时,函数取到最大值,所以t 1+t 2=π,即2x 1-5π6+2x 2-5π6=π,所以x 1+x 2=4π3.考点二三角函数与解三角形的综合例2(2023·河北石家庄二中模拟)设函数f (x )=2sin(ωx +φ)(ω>0,0<φ<π),该函数图象上相邻两个最高点间的距离为4π,且f (x )为偶函数.(1)求ω和φ的值;(2)已知角A ,B ,C 为△ABC 的三个内角,若(2sin A -sin C )cos B =sin B cos C ,求[f (A )]2+[f (C )]2的取值范围.解(1)因为f (x )=2sin(ωx +φ)的图象上相邻两个最高点间的距离为4π,所以2πω=4π,解得ω=12,所以f (x )=2sin +又因为f (x )为偶函数,所以φ=k π+π2,k ∈Z .又因为0<φ<π,所以φ=π2.(2)因为(2sin A -sin C )cos B =sin B cos C ,所以2sin A cos B -sin C cos B =sin B cos C ,所以2sin A cos B =sin(B +C ),又因为A +B +C =π,且0<A <π,所以sin(B +C )=sin A ≠0,所以cos B =12,因为0<B <π,所以B =π3,则A +C =2π3,即C =2π3-A ,由(1)知,函数f (x )=2cos 12x ,所以[f (A )]2+[f (C )]2=2cos 212A +2cos 212C =cos A +cos C +2=cos A +2=cos A -12cos A +32sin A +2=32sin A +12cos A +2=2,因为0<A <2π3,所以π6<A +π6<5π6,所以1,则23,即[f (A )]2+[f (C )]23.解三角形与三角函数的综合应用主要体现在以下两个方面:(1)利用三角恒等变换化简三角函数式进行解三角形;(2)解三角形与三角函数图象和性质的综合应用.2.设f (x )=sin x cos x -cos x ∈[0,π].(1)求f (x )的单调递增区间;(2)在锐角三角形ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若0,a =1,求△ABC面积的最大值.解(1)由题意,得f (x )=12sin2x -12cos x 1=sin2x -12,因为0≤x ≤π,所以0≤2x ≤2π,由正弦函数的单调性可知,当0≤2x ≤π2或3π2≤2x ≤2π,即0≤x ≤π4或3π4≤x ≤π时,函数f (x )=sin2x -12单调递增,所以f (x )的单调递增区间是0,π4和3π4,π.(2)由题意,得sin A -12=0,所以sin A =12,因为△ABC 为锐角三角形,所以A 故A =π6.由余弦定理,得b 2+c 2-2bc cos A =a 2,故b 2+c 2-3bc =1,由基本不等式,得b 2+c 2≥2bc ,故bc ≤2+3,当且仅当b =c 时,等号成立.因此S △ABC =12bc sin A ≤2+34,当且仅当b =c 时,△ABC 的面积取得最大值2+34.考点三三角函数与平面向量的综合例3已知向量a =(sin x ,3sin(π+x )),b =(cos x ,-sin x ),函数f (x )=a ·b -32.(1)求f (x )的最小正周期及f (x )图象的对称轴方程;(2)先将f (x )的图象上每个点的纵坐标不变,横坐标变为原来的2倍,再向左平移π3个单位长度得到函数g (x )的图象,若函数y =g (x )-m 在区间π6,5π6内有两个零点,求m 的取值范围.解(1)因为f (x )=a ·b -32sin x cos x +3sin 2x -32=12sin2x -32cos2x =x 故f (x )的最小正周期为T =2π2=π.由2x -π3=k π+π2,k ∈Z ,得x =k π2+5π12,k ∈Z ,所以f (x )的最小正周期为π,对称轴方程为x =k π2+5π12,k ∈Z .(2)由(1),知f (x )=x由题意,得g (x )=sin x .函数y =g (x )-m 在区间π6,5π6内有两个零点,转化为函数y =sin x ,x ∈π6,5π6的图象与直线y =m 有两个交点.由图象可得,m 的取值范围为12,当题目条件给出的向量坐标中含有三角函数的形式时,首先运用向量数量积的定义、向量共线、向量垂直等,得到三角函数的关系式,然后利用三角函数的图象、性质解决问题.3.已知向量a x b =(cos x ,-1).(1)当a ∥b 时,求2cos 2x -sin2x 的值;(2)求f (x )=(a +b )·b 在-π2,0上的单调递增区间.解(1)由a ∥b ,得(-1)sin x =32cos x ,所以tan x =-32,所以2cos 2x -sin2x =2cos 2x -2sin x cos x cos 2x +sin 2x =2-2tan x 1+tan 2x =2+31+94=2013.(2)f (x )=a ·b +b 2=sin x cos x -32+cos 2x +1=12sin2x +1+cos2x 2-12=22sin x 当x ∈-π2,0时,2x +π4∈-3π4,π4,令-π2≤2x +π4≤π4,得-3π8≤x ≤0.故函数f (x )在-π2,0上的单调递增区间为-3π8,0.考点四解三角形与平面向量的综合例4(2024·四川成都调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且m =(2b +c ,a ),n =(cos A ,cos C ),m ⊥n .(1)求角A 的大小;(2)D 是线段BC 上的点,且AD =BD =2,CD =3,求△ABD 的面积.解(1)因为m =(2b +c ,a ),n =(cos A ,cos C ),m ⊥n ,所以m ·n =(2b +c )cos A +a cos C =0,由正弦定理可得2sin B cos A +(sin A cos C +cos A sin C )=0,即2sin B cos A +sin(A +C )=0,又A +C =π-B ,所以2sin B cos A +sin B =0,又B ∈(0,π),则sin B >0,所以cos A =-12,又A ∈(0,π),因此A =2π3.(2)设B =θ,因为A =2π3,则C =π-2π3-θ=π3-θ,因为AD =BD =2,所以∠BAD =B =θ,∠ADC =2θ,∠DAC =2π3-θ,在△ACD 中,由正弦定理可知AD sin C =CD sin ∠DAC,即23即θ-12sin θ+12sin 化简可得5sin θ=3cos θ,即tan θ=35,所以sin2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=5314,所以S △ABD =12AD ·BD sin(π-2θ)=12AD ·BD sin2θ=12×22×5314=537.解决解三角形与平面向量综合问题的关键:准确利用向量的坐标运算化简已知条件,将其转化为三角函数的问题解决.4.(2023·广东广州天河区模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足b cos B +C 2=a sin B .(1)求A ;(2)若a =19,BA →·AC →=3,AD 是△ABC 的中线,求AD 的长.解(1)因为cos B +C 2=sin A 2,所以b sin A 2=a sin B .由正弦定理,得sin B sin A 2=sin A sin B .因为sin B ≠0,所以sin A 2=sin A .所以sin A 2=2sin A 2cos A 2.因为A ∈(0,π),A 2∈所以sin A 2≠0,所以cos A 2=12.所以A 2=π3.所以A =2π3.(2)因为BA →·AC →=3,所以bc cos(π-A )=3.又A =2π3,所以bc =6.由余弦定理,得b 2+c 2=a 2+2bc cos A =13.又AD →=12(AB →+AC →),所以|AD →|2=14(AB →+AC →)2=14(c 2+b 2+2bc cos A )=74.所以|AD →|=72,即AD 的长为72.课时作业1.(2023·广东佛山模拟)已知函数f (x )=cos 4x +23sin x cos x -sin 4x .(1)求f (x )的最小正周期和单调递减区间;(2)已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=1,BC 边的中线AD 的长为7,求△ABC 面积的最大值.解(1)∵f (x )=cos 4x +23sin x cos x -sin 4x =(cos 2x -sin 2x )(cos 2x +sin 2x )+3sin2x =cos2x +3sin2x =x 故f (x )的最小正周期T =π,由π2+2k π≤2x +π6≤3π2+2k π,k ∈Z ,得π6+k π≤x ≤2π3+k π,k ∈Z ,∴f (x )的单调递减区间为π6+k π,2π3+k π(k ∈Z ).(2)由(1)得,f (A )=A 1,即A =12,∵0<A <π,∴2A +π6=5π6,∴A =π3,又AD →=12(AB →+AC →),∴AD →2=14(AB →2+AC →2+2AB →·AC →),∴7=14(c 2+b 2+2bc cos A )=14(b 2+c 2+bc ),∵b 2+c 2≥2bc ,∴b 2+c 2+bc ≥3bc ,∴bc ≤283,当且仅当b =c =2213时取等号,∴S △ABC =12bc sin A =34bc ≤34×283=733,∴△ABC 面积的最大值为733.2.(2024·江西南昌模拟)如图为函数f (x )=A sin(ωx +φ>0,ω>0,|φ|<π2,x ∈(1)求函数f (x )的解析式和单调递增区间;(2)若将y =f (x )的图象向右平移π12个单位长度,然后再将横坐标缩短为原来的12得到y =g (x )的图象,求函数g (x )在区间-π4,π12上的最大值和最小值.解(1)由图象知,A =2,T 4=π3-π12=π4,T =π,又ω>0,则ω=2ππ=2,则f (x )=2sin(2x +φ),,2,得π6+φ=2k π+π2,k ∈Z ,解得φ=2k π+π3,k ∈Z ,因为|φ|<π2,所以φ=π3,所以f (x )=x 令-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,得-5π12+k π≤x ≤π12+k π,k ∈Z ,所以f (x )的单调递增区间为-5π12+k π,π12+k π(k ∈Z ).(2)将f (x )=2sin x 的图象向右平移π12个单位长度,得2sin 2+π3=2sin x ,然后再将横坐标缩短为原来的12,得g (x )=2sin x .因为x ∈-π4,π12,则4x +π6∈-5π6,π2,所以-1≤x 1.故当4x +π6=-π2,即x =-π6时,g (x )取得最小值,为-2;当4x +π6=π2,即x =π12时,g (x )取得最大值,为2.3.设函数f (x )=m ·n ,其中向量m =(2cos x ,1),n =(cos x ,3sin2x )(x ∈R ).(1)求f (x )的最小值;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知f (A )=2,b =1,△ABC 的面积为32,求b sin B的值.解(1)因为m =(2cos x ,1),n =(cos x ,3sin2x ),所以f (x )=2cos 2x +3sin2x =3sin2x +cos2x +1=x 1,所以当x 1,即2x +π6=-π2+2k π,k ∈Z ,即x =-π3+k π,k ∈Z 时,f (x )取得最小值,为-1.(2)由f (A )=2,得A 1=2,则A =12,又A ∈(0,π),所以2A +π6∈故2A +π6=5π6,则A =π3,由S △ABC =12bc sin A =12×1×c ×32=32,可得c =2,在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A =1+4-2×1×2×12=3,所以a =3,所以b sin B =a sin A =332=2.4.(2023·四川成都模拟)已知函数f (x )=2cos 2x +3sin2x .(1)求函数f (x )的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且f (C )=3,c =1,ab =23,求△ABC 的周长.解(1)依题意,f (x )=2cos 2x +3sin2x =1+cos2x +3sin2x =x 1,由-π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,得-π3+k π≤x ≤π6+k π,k ∈Z ,所以函数f (x )的单调递增区间是-π3+k π,π6+k π(k ∈Z ).(2)由(1)知,f (C )=C 1=3,即C 1,而C ∈(0,π),则2C +π6∈于是2C +π6=π2,解得C =π6,由余弦定理c 2=a 2+b 2-2ab cos C ,得1=(a +b )2-(2+3)ab =(a +b )2-23×(2+3),解得a +b =2+3,所以△ABC 的周长为3+ 3.5.(2023·福建福州模拟)已知向量m 23sin x 4,n cos x 4,cos(1)若m ·n =2,求cos (2)记f (x )=m ·n ,在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求f (A )的取值范围.解(1)m ·n =23sin x 4cos x 4+2cos 2x 4=3sin x 2+cos x 2+1= 1.因为m ·n =2,所以=12.所以1-2sin =12.(2)因为f (x )=m ·n =1,所以f (A )= 1.因为(2a -c )cos B =b cos C ,由正弦定理,得(2sin A -sin C )cos B =sin B cos C .所以2sin A cos B -sin C cos B =sin B cos C ,所以2sin A cos B =sin(B +C ).因为A +B +C =π,所以sin(B +C )=sin A ,且sin A ≠0.所以cos B =12.因为B ∈(0,π),所以B =π3.所以0<A <2π3.所以π6<A 2+π6<π2,12<sin ,故f (A )的取值范围是(2,3).6.(2024·湖北黄冈调研)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知向量m =(b ,a ),n =(sin A ,3cos(A +C )),且m ·n =0.(1)求角B 的大小;(2)若b =3,求3a +c 的最大值.解(1)在△ABC 中,因为m =(b ,a ),n =(sin A ,3cos(A +C )),m ·n =0,所以b sin A -3a cos B =0.由正弦定理,得sin A sin B =3sin A cos B ,又sin A >0,所以sin B =3cos B ,即tan B = 3.又0<B <π,所以B =π3.(2)由(1),知B =π3,b =3,由正弦定理,得a sin A =c sin C =b sin B=2,即a =2sin A ,c =2sin C .又C =2π3-A ,所以3a +c =6sin A +2sin C =6sin A +7sin A +3cos A =213sin(A +θ),其中锐角θ由tan θ=37确定,又0<A <2π3,所以θ<A +θ<2π3+θ.则当且仅当A +θ=π2,即tan A ==733时,sin(A +θ)取最大值1,所以3a +c 的最大值为213.7.已知函数f (x )=cos 4x -2sin x cos x -sin 4x .(1)求f (x )的最小正周期和单调递增区间;(2)求函数f (x )在区间0,π2上的值域;(3)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若0,a =2,求△ABC 面积的最大值.解(1)依题意,f (x )=(cos 2x +sin 2x )(cos 2x -sin 2x )-sin2x =cos2x -sin2x =2sinx 所以f (x )的最小正周期T =2π2=π;由2k π-π2≤2x +3π4≤2k π+π2,k ∈Z ,得k π-5π8≤x ≤k π-π8,k ∈Z ,所以f (x )的单调递增区间为k π-5π8,k π-π8(k ∈Z ).(2)由x ∈0,π2,得2x +3π4∈3π4,7π4,则-1≤x ≤22,即-2≤f (x )≤1,所以函数f (x )在区间0,π2上的值域为[-2,1].(3)由(1)知,=2sin 0,而0<A <π,即有3π4<A +3π4<7π4,则A +3π4=π,解得A =π4,由余弦定理a 2=b 2+c 2-2bc cos A ,得4=b 2+c 2-2bc ≥2bc -2bc ,于是bc ≤4+22,当且仅当b =c 时等号成立,因此S △ABC =12bc sin A =24bc ≤2+1,所以△ABC 面积的最大值为2+1.8.(2024·重庆永川北山中学模拟)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,cos(A-C )+cos B =32,设m =(b ,c ),n =(a ,b )且m ∥n .(1)求角B 的大小;(2)延长BC 至D ,使BD =5,若△ACD 的面积S =3,求AD 的长.解(1)由cos(A -C )+cos B =32,可知cos(A -C )-cos(A +C )=32,即cos A cos C +sin A sin C -cos A cos C +sin A sin C =32,可得sin A sin C =34.由m ∥n 可得b 2-ac =0,由正弦定理可知sin 2B =sin A sin C =34,因为B ∈(0,π),所以sin B =32,因此B =π3或2π3.分别代入cos(A -C )+cos B =32,可知当B =2π3时,cos(A -C )=2,不成立.因此B =π3.(2)由B =π3可知cos(A -C )=1,即A =C ,因此△ABC 为等边三角形,即a =b =c ,S △ACD =12AC ·CD sin ∠ACD =12b (5-a )sin 2π3=34a (5-a )=3,整理可得a (5-a )=4,即a 2-5a =-4,在△ABD 中,由余弦定理可知,AD 2=AB 2+BD 2-2AB ·BD cos π3=c 2+25-5c =a 2+25-5a =21,因此AD 的长为21.。

高中数学-三角恒等变换综合练习(苏教版必修第二册)(解析版)

高中数学-三角恒等变换综合练习(苏教版必修第二册)(解析版)

10.4 三角恒等变换综合练习(基础)一.选择题(共8小题)1.已知α是第二象限角,sin α=45,则sin2α=( ) A .−2425B .2425C .−1225D .1225【分析】由已知利用同角三角函数基本关系式可求cos α的值,进而根据二倍角的正弦公式即可求解. 【解答】解:因为α是第二象限角,sin α=45, 所以cos α=−√1−sin 2α=−35,则sin2α=2sin αcos α=2×45×(−35)=−2425. 故选:A .【点评】本题主要考查了同角三角函数基本关系式,二倍角的正弦公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.2.已知cos (θ−π2)=45,−π2<θ<π2,则sin2θ的值等于( ) A .−2425B .2425C .−1225D .1225【分析】由已知利用同角三角函数基本关系式可求cos θ的值,进而根据二倍角的正弦公式即可求解sin2θ的值.【解答】解:因为cos (θ−π2)=sin θ=45,−π2<θ<π2, 所以cos θ=√1−sin 2θ=35,则sin2θ=2sin θcos θ=2×45×35=2425. 故选:B .【点评】本题主要考查了同角三角函数基本关系式,二倍角的正弦公式在三角函数化简求值中的应用,考查了转化思想,属于基础题. 3.已知tan α=2,则sinα+2cosα3sinα−cosα的值为( )A .−25B .45C .23D .25【分析】由已知利用同角三角函数基本关系式化简所求即可得解. 【解答】解:因为tan α=2,则sinα+2cosα3sinα−cosα=tanα+23tanα−1=2+23×2−1=45.故选:B .【点评】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.4.cos350°sin70°﹣sin170°sin20°=( ) A .√32B .−√32C .12D .−12【分析】结合诱导公式及两角和的余弦公式进行化简即可求值.【解答】解:cos350°sin70°﹣sin170°sin20°=cos10°cos20°﹣sin10°sin20°=cos30°=√32.故选:A .【点评】本题主要考查了两角和的余弦公式及诱导公式在三角函数化简求值中的应用,属于基础试题. 5.已知sin(π6+α)=−45,则cos(π3−α)=( ) A .45B .35C .−45D .−35【分析】由已知直接利用三角函数的诱导公式化简求值. 【解答】解:∵sin(π6+α)=−45,∴cos(π3−α)=cos[π2−(π6+α)]=sin(π6+α)=−45,故选:C .【点评】本题考查三角函数的化简求值,考查诱导公式的应用,是基础题. 6.计算1−cos 270°1+cos40°=( )A .45B .34C .23D .12【分析】利用二倍角公式,诱导公式即可化简求解.【解答】解:1−cos 270°1+cos40°=1−1+cos140°21+cos40°=1−cos140°2(1+cos40°)=1+cos40°2(1+cos40°)=12.故选:D .【点评】本题主要考查了二倍角公式,诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.7.若12sin2α﹣sin 2α=0,则cos (2α+π4)=( )A .1B .√22C .−√22D .±√22【分析】由已知结合二倍角公式可求sin α=0或tan α=1,然后分类讨论,结合同角基本关系即可求解. 【解答】解:因为12sin2α﹣sin 2α=0,所以sin αcos α﹣sin 2α=0, 所以sin α=0或sin α=cos α, 当sin α=0时, cos (2α+π4)=√22(cos2α﹣sin2α)=√22(1−2sin 2α−2sinαcosα)=√22,当sin α=cos α即tan α=1时,cos (2α+π4)=√22(cos2α﹣sin2α),=√22×(cos 2α﹣sin 2α﹣2sin αcos α), =√22(1−tan 2α1+tan 2α−2tanα1+tan 2α)=−√22.故选:D .【点评】本题以三角函数为背景,主要考查了三角恒等变换,考查了运算求解能力,考查了数学运算的核心素养.8.已知α∈(0,π2),sin2α1+cos2α=12,则cos α=( )A .√55B .2√55C .√1010D .3√1010【分析】利用二倍角公式化简已知等式可得cos α=2sin α,进而根据同角三角函数基本关系式即可求解. 【解答】解:由于sin2α1+cos2α=12,可得4sin αcos α=2cos 2α,因为α∈(0,π2),cos α≠0,所以cos α=2sin α,联立{cosα=2sinαsin 2α+cos 2α=1,解得cos α=2√55. 故选:B .【点评】本题主要考查了二倍角公式,同角三角函数基本关系式,考查推理论证能力,运算求解能力,考查了数学运算核心素养,属于基础题. 二.多选题(共4小题) 9.下列各式中值为12的是( )A .2sin75°cos75°B .1﹣2sin 2π12C .sin45°cos15°﹣cos45°sin15°D .tan20°+tan25°+tan20°tan25° 【分析】根据对应的公式求出判断即可.【解答】解:对于A :2sin75°cos75°=sin150°=12, 对于B :1﹣2sin 2π12=cosπ6=√32, 对于C :sin45°cos15°﹣cos45°sin15°=sin30°=12,对于D :tan20°+tan25°+tan20°tan25°=tan (20°+25°)(1﹣tan20°tan25°)+tan20°tan25°=1, 故选:AC .【点评】本题考查了三角的恒等变换,属于基础题. 10.下列化简正确的是( ) A .tan (π+1)=tan 1 B .sin(−α)tan(360°−α)=cos αC .sin(π−α)cos(π+α)=tan αD .cos(π−α)tan(−π−α)sin(2π−α)=1【分析】由题意利用诱导公式化简所给的式子,可的结果. 【解答】解:∵由诱导公式可得 tan (π+1)=tan1,故A 正确;sin(−α)tan(360°−α)=−sinα−tanα=cos α,故B 正确;sin(π−α)cos(π+α)=sinα−cosα=−tan α,故C 不正确; cos(π−α)tan(−π−α)sin(2π−α)=−cosα⋅(−tanα)−sinα=−1,故D 不正确,故选:AB .【点评】本题主要考查诱导公式的应用,属于基础题. 11.若α∈[0,2π],sin α3sin4α3+cos α3cos4α3=0,则α的值是( )A .π6B .π4C .π2D .3π2【分析】由已知结合两角差的余弦公式进行化简求解即可.【解答】解:因为α∈[0,2π],sin α3sin4α3+cos α3cos4α3=cos α=0,则α=12π或α=3π2, 故选:CD .【点评】本题主要考查了两角差的余弦公式的简单应用,属于基础试题. 12.若tan2x ﹣tan (x +π4)=5,则tan x 的值可能为( ) A .−√63B .−√62C .√63D .√62【分析】利用三角函数恒等变换的应用即可化简求值得解.【解答】解:设tan x =t ,因为tan2x −tan(x +π4)=2t 1−t 2−t+11−t =2t−(t+1)21−t 2=t 2+1t 2−1=5,所以t 2=32,故tanx =t =±√62. 故选:BD .【点评】本题考查三角恒等变换,考查运算求解能力,属于基础题. 三.填空题(共4小题)13.已知α、β均为锐角,且cos α=17,cos (α+β)=−1114,则β=π3.【分析】先利用同角三角函数的基本关系求得sin α和sin (α+β)的值,然后利用cos β=cos p [(α+β)﹣α],根据两角和公式求得答案. 【解答】解:α,β均为锐角,∴sin α=√1−149=4√37,sin (α+β)=√1−(−1114)2=5√314,∴cos β=cos p [(α+β)﹣α]=cos (α+β)cos α+sin (α+β)sin α=−1114×17+4√37×5√314=12. ∴β=π3. 故答案为π3.【点评】本题主要考查了两角和公式的化简求值和同角三角函数的基本关系的应用.熟练记忆三角函数的基本公式是解题的基础.14.若cos (α﹣β)=12,cos (α+β)=−35,则tan αtan β= ﹣11 .【分析】由已知利用两角和与差的余弦公式可求cos αcos β,sin αsin β的值,进而根据同角三角函数基本关系式即可求解.【解答】解:因为cos (α﹣β)=12, 所以cos αcos β+sin αsin β=12, 因为cos (α+β)=−35,所以cos αcos β﹣sin αsin β=−35,所以cos αcos β=12(12−35)=−120,sin αsin β=12(12+35)=1120,则tan αtan β=1120−120=−11.故答案为:﹣11.【点评】本题主要考查了两角和与差的余弦公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.15.若0<α<π2,﹣π<β<−π2,cos (π4+α)=13,cos (π4−β2)=−√33,则cos (α+β2)= √33.【分析】由已知先求出,的范围,再根据正弦和余弦的平方关系和为1求出对应的正弦值,然后再利用凑角的方法即可求解.【解答】解:因为0<α<π2,−π<β<−π2, 所以π4<α+π4<3π4,π2<π4−β2<3π4,所以sin (π4+α)=√1−(13)2=2√23, sin (π4−β2)=1−(−√33)2=√63,所以cos (α+β2)=cos[(π4+α)﹣(π4−β2)]=cos (π4+α)cos (π4−β2)+sin (π4+α)sin (π4−β2)=13×(−√33)+2√23×√63 =√33, 故答案为:√33. 【点评】本题考查了两角和与差的的三角函数求值问题,考查了学生的运算能力,属于基础题. 16.已知α∈R ,3sin α+cos α=3,则sin2α﹣cos 2α=35或0. .【分析】由已知可得,(3sin α+cos α)2=9sin 2α+6sinαcosα+cos 2αsin 2α+cos 2α,然后利用同角基本关系弦化切可求tan α,进而可求.【解答】解:因为3sin α+cos α=3, 当cos α≠0时,所以(3sin α+cos α)2=9sin 2α+6sinαcosα+cos 2αsin 2α+cos 2α=9tan 2α+6tanα+11+tan 2α=9,解得,tan α=43,所以sin2α﹣cos 2α=2sinαcosα−cos 2αsin 2α+cos 2α=2tanα−1tan 2α+1=2×43−1(43)2+1=35.当cos α=0时,sin2α﹣cos 2α=0 故答案为:35或0.【点评】本题主要考查了三角恒等变换,考查了运算求解能力,数据处理的能力. 四.解答题(共8小题)17.已知0<α<π2,0<β<π2,sin α=45,cos (α+β)=513. (1)求cos β的值; (2)求sin 2α+sin2αcos2α−1的值.【分析】(1)由已知利用同角三角函数基本关系式可求cos α,sin (α+β)的值,进而根据β=(α+β)﹣α,利用两角差的余弦函数公式即可求解.(2)利用二倍角公式可求sin2α,cos2α的值,进而即可代入求解. 【解答】解:(1)因为0<α<π2,sin α=45, 所以cos α=35,又因为0<β<π2,cos (α+β)=513, 所以sin (α+β)=1213, 所以cos β=cos[(α+β)﹣α]=cos (α+β)cos α+sin (α+β)sin α=513×35+1213×45=6365. (2)因为cos α=35,sin α=45,所以sin2α=2sin αcos α=2×45×35=2425,cos2α=2cos 2α﹣1=2×(35)2﹣1=−725,所以sin 2α+sin2αcos2α−1=(45)2+2425−725−1=−54.【点评】本题主要考查了同角三角函数基本关系式,两角差的余弦函数公式,二倍角公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题. 18.已知cosα=−45,α为第三象限角. (1)求sin α,tan α的值; (2)求cos(π4−2α)的值.【分析】(1)先根据α所在的象限,判断出sin α的正负,进而根据同角三角函数的基本关系,利用cos α的值求得sin α,进而求得tan α的值.(2)由(1)利用二倍角公式可求sin2α,cos2α的值,进而根据两角差的余弦函数公式即可求解. 【解答】解:(1)∵cosα=−45,α为第三象限角, ∴sin α<0,∴sin α=−√1−cos 2α=−√1−1625=−35,tan α=sinαcosα=34. (2)∵由(1)可得sin2α=2sin αcos α=2425,cos2α=2cos 2α﹣1=725, ∴cos(π4−2α)=cos π4cos2α+sin π4sin2α=√22×725+√22×2425=31√250.【点评】本题主要考查了同角三角函数基本关系,二倍角公式,两角差的余弦函数公式在三角函数化简求值中的应用.注意根据角的范围确定三角函数的正负号,属于基础题. 19.已知cosα=35,,. (Ⅰ)求tan α,sin2α的值; (Ⅱ)求sin(π3−α)的值.【分析】(Ⅰ)由已知利用同角三角函数基本关系式可求sin α,tan α的值,利用二倍角的正弦函数公式可求sin2α的值.(Ⅱ)利用两角差的正弦函数公式即可计算得解. 【解答】解:(Ⅰ)∵cosα=35,,, ∴sinα=−√1−cos 2α=−45, ∴tanα=sinαcosα=−43,sin2α=2sinαcosα=−2425. (Ⅱ)∴sin(π3−α)=sin π3cosα−cos π3sinα=√32×35−12×(−45)=3√3+410. 【点评】本题主要考查了同角三角函数基本关系式,二倍角的正弦函数公式,两角差的正弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题. 20.(1)已知sinα=−13,且α为第四象限角,求sin(α−π2)与tan α值; (2)已知tan α=2,求cos αsin α的值.【分析】(1)由已知利用同角三角函数基本关系式,诱导公式,即可求解. (2)利用同角三角函数基本关系式即可计算得解. 【解答】解:(1)因为sinα=−13,且α为第四象限角, 所以cosα=√1−sin 2α=2√23, 可得sin(α−π2)=−cos α=−2√23,tanα=−√24. (2)因为tan α=2, 可得sinαcosα=sinαcosαsin 2α+cos 2α=tanαtan 2α+1=25. 【点评】本题主要考查了同角三角函数基本关系式,诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题. 21.已知α,β∈(0,π2),cos α=√55,sin β=45.(1)求sin2β; (2)求tan (α+2β).【分析】(1)利用同角三角函数关系以及倍角公式进行转化求解即可. (2)先求出对应的正切值,利用两角和差的正切公式进行转化求解即可. 【解答】解:(1)∵α,β∈(0,π2),cos α=√55,sin β=45.∴sin α=2√55,cos β=35.则sin2β=2sin βcos β=2×45×35=2425. (2)∵cos2β=1﹣2sin 2β=−725, ∴tan2β=sin2βcos2β=−247,tan α=sinαcosα=2,∴tan (α+2β)=tanα+tan2β1−tanαtan2β=2−2471+2×247=−211.【点评】本题主要考查三角函数值的计算,同角三角函数关系以及两角和差的三角公式是解决本题的关键,比较基础.22.已知sin (π3−x )=13,且0<x <π2,求sin (π6+x )﹣cos (2π3+x )的值.【分析】由题意利用同角三角函数的基本关系,求得cos (π3−x )的值,再利用诱导公式、两角和差的三角公式,求得要求式子的值.【解答】解:∵0<x <π2,∴−π6<π3−x <π3,∵已知sin (π3−x )=13,∴cos (π3−x )=√1−sin 2(π3−x)=2√23. 且 0<x <π2,求sin (π6+x )﹣cos (2π3+x )的∴sin (π6+x )﹣cos (2π3+x )=cos (π3−x )+cos (π3−x )=2cos (π3−x )=4√23. 【点评】本题主要考查同角三角函数的基本关系,诱导公式、两角和差的三角公式的应用,属于基础题. 23.已知tan α,,β是第三象,角. (1)求,的值;(2)求cos (α﹣β)的值.【分析】(1)利用同角三角函数的基本关系求得 sin α和cos α的值,进而即可代入求解.(2)利用同角三角函数的基本关系求得sin β的值,再利用两角差的余弦公式求得cos (α﹣β)的值. 【解答】解:(1)∵tan α=sinαcosα=−43,α∈(π2,π),sin 2α+cos 2α=1, ∴sin α=45,cos α=−35,可得3sinα+cosαsinα−cosα=3×45+(−35)45−(−35)=97.(2)∵cos β=−513,β是第三象限角, ∴sin β=−√1−cos 2β=−1213,∴cos (α﹣β)=cos αcos β+sin αsin β=−35•(−513)+45•(−1213)=−3365.【点评】本题主要考查同角三角函数的基本关系,两角差的余弦公式的应用,属于基础题.24.已知tanα,tanβ为方程式x2+6x+2=0的两根,求下列各式之值:(1)1cos2(α+β);(2)sin2(α+β)+4sin(α+β)cos(α+β)+2cos2(α+β).【分析】(1)由题意得,tanα+tanβ=﹣6,tanαtanβ=2,然后结合两角和的正切公式及同角基本关系可求.(2)由sin2(α+β)+4sin(α+β)cos(α+β)+2cos2(α+β)=cos2(α+β)[tan2(α+β)+4tan(α+β)+2],代入可求.【解答】解:(1)由题意得,tanα+tanβ=﹣6,tanαtanβ=2,∴tan(α+β)=tanα+tanβ1−tanαtanβ=−61−2=6,∴1cos2(α+β)=cos2(α+β)+sin2(α+β)cos2(α+β)=1+sin2(α+β)cos2(α+β),=1+tan2(α+β)=1+36=37,(2)sin2(α+β)+4sin(α+β)cos(α+β)+2cos2(α+β),=cos2(α+β)[tan2(α+β)+4tan(α+β)+2],=137(36+4×6+2)=6237.【点评】本题主要考查了同角基本关系的应用,解题的关键是公式的灵活应用.。

高中数学简单的三角恒等变换

高中数学简单的三角恒等变换

5.5.2 简单的三角恒等变换学习目标1.能用二倍角公式导出半角公式2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法.3.能利用三角恒等变换对三角函数式化简、求值以及证明三角恒等式,并能进行一些简单的应用.知识点一 半角公式 sin α2=±1-cos α2, cos α2=±1+cos α2, tan α2=±1-cos α1+cos α=sin α1+cos α=1-cos αsin α.知识点二 辅助角公式 辅助角公式:a sin x +b cos x =a 2+b 2sin(x +θ).⎝⎛⎭⎫其中tan θ=b a1.cos α2=1+cos α2.( × ) 2.对任意α∈R ,sin α2=12cos α都不成立.( × )3.若cos α=13,且α∈(0,π),则cos α2=63.( √ )4.对任意α都有sin α+3cos α=2sin ⎝⎛⎭⎫α+π3.( √ )一、三角恒等式的证明例1 求证:1+sin θ-cos θ1+sin θ+cos θ+1+sin θ+cos θ1+sin θ-cos θ=2sin θ.证明 方法一 左边=2sin 2θ2+2sin θ2cos θ22cos 2θ2+2sin θ2cos θ2+2cos 2θ2+2sin θ2cosθ22sin 2θ2+2sin θ2cosθ2=sinθ2cos θ2+cos θ2sin θ2=1cos θ2sinθ2=2sin θ=右边.所以原式成立.方法二 左边=(1+sin θ-cos θ)2+(1+sin θ+cos θ)2(1+sin θ+cos θ)(1+sin θ-cos θ)=2(1+sin θ)2+2cos 2θ(1+sin θ)2-cos 2θ=4+4sin θ2sin θ+2sin 2θ=2sin θ=右边. 所以原式成立.反思感悟 三角恒等式证明的常用方法 (1)执因索果法:证明的形式一般是化繁为简; (2)左右归一法:证明左右两边都等于同一个式子;(3)拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它们之间的差异,简言之,即化异求同;(4)比较法:设法证明“左边-右边=0”或“左边/右边=1”;(5)分析法:从被证明的等式出发,逐步地探求使等式成立的条件,直到已知条件或明显的事实为止,就可以断定原等式成立. 跟踪训练1 求证:2sin x cos x(sin x +cos x -1)(sin x -cos x +1)=1+cos x sin x .证明 左边=2sin x cos x⎝⎛⎭⎫2sin x 2cos x 2-2sin 2x 2⎝⎛⎭⎫2sin x 2cos x 2+2sin 2x 2=2sin x cos x 4sin 2x 2⎝⎛⎭⎫cos 2x 2-sin 2x 2=sin x 2sin 2x 2=cos x 2sin x 2=2cos 2x 22sin x 2cos x 2=1+cos x sin x =右边.所以原等式成立.二、三角恒等变换的综合问题例2 已知函数f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π. (1)求ω的值;(2)讨论f (x )在区间⎣⎡⎦⎤0,π2上的单调性. 解 (1)f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4 =22sin ωx ·cos ωx +22cos 2ωx =2(sin 2ωx +cos 2ωx )+ 2 =2sin ⎝⎛⎭⎫2ωx +π4+ 2. 因为f (x )的最小正周期为π,且ω>0, 从而有2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+ 2. 若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8,f (x )单调递增; 当π2<2x +π4≤5π4,即π8<x ≤π2时,f (x )单调递减. 综上可知,f (x )在区间⎣⎡⎦⎤0,π8上单调递增,在区间⎝⎛⎦⎤π8,π2上单调递减. 反思感悟 研究三角函数的性质,如单调性和最值问题,通常是把复杂的三角函数通过恰当的三角变换,转化为一种简单的三角函数,再研究转化后函数的性质.在这个过程中通常利用辅助角公式,将y =a sin x +b cos x 转化为y =A sin(x +φ)或y =A cos(x +φ)的形式,以便研究函数的性质.跟踪训练2 已知函数f (x )=sin 2x -sin 2⎝⎛⎭⎫x -π6,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值和最小值. 解 (1)由已知,有f (x )=1-cos 2x2-1-cos ⎝⎛⎭⎫2x -π32=12⎝⎛⎭⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝⎛⎭⎫2x -π6. 所以f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间⎣⎡⎦⎤-π3,-π6上是减函数,在区间⎣⎡⎦⎤-π6,π4上是增函数,且f ⎝⎛⎭⎫-π3=-14,f ⎝⎛⎭⎫-π6=-12,f ⎝⎛⎭⎫π4=34, 所以f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值为34,最小值为-12. 三、三角函数的实际应用例3 如图,有一块以点O 为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD 开辟为绿地,使其一边AD 落在半圆的直径上,另两点B ,C 落在半圆的圆周上.已知半圆的半径长为20 m ,如何选择关于点O 对称的点A ,D 的位置,可以使矩形ABCD 的面积最大,最大值是多少?解 连接OB (图略),设∠AOB =θ,则AB =OB sin θ=20sin θ,OA =OB cos θ=20cos θ,且θ∈⎝⎛⎭⎫0,π2. 因为A ,D 关于原点对称, 所以AD =2OA =40cos θ. 设矩形ABCD 的面积为S ,则 S =AD ·AB =40cos θ·20sin θ=400sin 2θ. 因为θ∈⎝⎛⎭⎫0,π2,所以当sin 2θ=1, 即θ=π4时,S max =400(m 2).此时AO =DO =102(m).故当A ,D 距离圆心O 为10 2 m 时,矩形ABCD 的面积最大,其最大面积是400 m 2. 反思感悟 (1)三角函数与平面几何有着密切联系,几何中的角度、长度、面积等问题,常借助三角变换来解决;实际问题的意义常反映在三角形的边、角关系上,故常用三角恒等变换的方法解决实际的优化问题.(2)解决此类问题的关键是引进角为参数,列出三角函数式.跟踪训练3 如图所示,要把半径为R 的半圆形木料截成长方形,应怎样截取,才能使△OAB 的周长最大?解 设∠AOB =α,则0<α<π2,△OAB 的周长为l ,则AB =R sin α,OB =R cos α, ∴l =OA +AB +OB =R +R sin α+R cos α =R (sin α+cos α)+R =2R sin ⎝⎛⎭⎫α+π4+R . ∵0<α<π2,∴π4<α+π4<3π4.∴l 的最大值为2R +R =(2+1)R , 此时,α+π4=π2,即α=π4,即当α=π4时,△OAB 的周长最大.1.已知cos α=15,α∈⎝⎛⎭⎫3π2,2π,则sin α2等于( ) A.105 B .-105 C.265 D.255答案 A解析 ∵α∈⎝⎛⎭⎫3π2,2π, ∴α2∈⎝⎛⎭⎫3π4,π,sin α2=1-cos α2=105. 2.若函数f (x )=-sin 2x +12(x ∈R ),则f (x )是( )A .最小正周期为π2的奇函数B .最小正周期为π的奇函数C .最小正周期为2π的偶函数D .最小正周期为π的偶函数 答案 D解析 f (x )=-1-cos 2x 2+12=12cos 2x .故选D.3.下列各式与tan α相等的是( ) A.1-cos 2α1+cos 2αB.sin α1+cos αC.sin α1-cos 2αD.1-cos 2αsin 2α答案 D解析 1-cos 2αsin 2α=2sin 2α2sin αcos α=sin αcos α=tan α.4.函数y =-3sin x +cos x 在⎣⎡⎦⎤-π6,π6上的值域是________. 答案 [0,3]解析 y =-3sin x +cos x =2sin ⎝⎛⎭⎫π6-x . 又∵-π6≤x ≤π6,∴0≤π6-x ≤π3.∴0≤y ≤ 3.5.已知sin α2-cos α2=-15,π2<α<π,则tan α2=________.答案 2解析 ∵⎝⎛⎭⎫sin α2-cos α22=15, ∴1-sin α=15,∴sin α=45.又∵π2<α<π,∴cos α=-35.∴tan α2=1-cos αsin α=1-⎝⎛⎭⎫-3545=2.1.知识清单: (1)半角公式; (2)辅助角公式;(3)三角恒等变换的综合问题; (4)三角函数在实际问题中的应用. 2.方法归纳:换元思想,化归思想.3.常见误区:半角公式符号的判断,实际问题中的定义域.1.设5π<θ<6π,cos θ2=a ,则sin θ4等于( )A.1+a 2 B.1-a2C .-1+a2D .-1-a2答案 D解析 ∵5π<θ<6π,∴5π4<θ4<3π2,∴sin θ4=-1-cosθ22=-1-a2. 2.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c =1-cos 50°2,则有( ) A .c <b <a B .a <b <c C .a <c <b D .b <c <a 答案 C解析 由题意可知,a =sin 24°,b =sin 26°,c =sin 25°,而当0°<x <90°,y =sin x 为增函数,∴a <c <b ,故选C.3.已知函数f (x )=2cos 2x -sin 2x +2,则( ) A .f (x )的最小正周期为π,最大值为3 B .f (x )的最小正周期为π,最大值为4 C .f (x )的最小正周期为2π,最大值为3 D .f (x )的最小正周期为2π,最大值为4 答案 B解析 易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=32(2cos 2x -1)+32+1=32cos 2x +52,则f (x )的最小正周期为π,当x =k π(k ∈Z )时,f (x )取得最大值,最大值为4. 4.化简⎝⎛⎭⎫sin α2+cos α22+2sin 2⎝⎛⎭⎫π4-α2得( ) A .2+sin α B .2+2sin ⎝⎛⎭⎫α-π4 C .2 D .2+2sin ⎝⎛⎭⎫α+π4 答案 C解析 原式=1+2sin α2cos α2+1-cos ⎣⎡⎦⎤2⎝⎛⎭⎫π4-α2 =2+sin α-cos ⎝⎛⎭⎫π2-α=2+sin α-sin α=2.5.设函数f (x )=2cos 2x +3sin 2x +a (a 为实常数)在区间⎣⎡⎦⎤0,π2上的最小值为-4,那么a 的值等于( )A .4B .-6C .-4D .-3 答案 C解析 f (x )=2cos 2x +3sin 2x +a =1+cos 2x +3sin 2x +a =2sin ⎝⎛⎭⎫2x +π6+a +1. 当x ∈⎣⎡⎦⎤0,π2时,2x +π6∈⎣⎡⎦⎤π6,7π6, ∴f (x )min =2·⎝⎛⎭⎫-12+a +1=-4. ∴a =-4.6.若3sin x -3cos x =23sin(x +φ),φ∈(-π,π),则φ=________. 答案 -π6解析 因为3sin x -3cos x =23⎝⎛⎭⎫32sin x -12cos x =23sin ⎝⎛⎭⎫x -π6, 因为φ∈(-π,π),所以φ=-π6.7.若θ是第二象限角,且25sin 2θ+sin θ-24=0,则cos θ2=________.答案 ±35解析 由25sin 2θ+sin θ-24=0, 又θ是第二象限角,得sin θ=2425或sin θ=-1(舍去).故cos θ=-1-sin 2θ=-725,由cos 2 θ2=1+cos θ2得cos 2 θ2=925.又θ2是第一、三象限角, 所以cos θ2=±35.8.化简:sin 4x 1+cos 4x ·cos 2x 1+cos 2x ·cos x1+cos x =________.考点 利用简单的三角恒等变换化简求值 题点 综合运用三角恒等变换公式化简求值 答案 tan x2解析 原式=2sin 2x cos 2x 2cos 22x ·cos 2x 1+cos 2x ·cos x1+cos x=sin 2x 1+cos 2x ·cos x 1+cos x =2sin x cos x 2cos 2x ·cos x1+cos x=sin x 1+cos x=tan x2.9.已知cos θ=-725,θ∈(π,2π),求sin θ2+cos θ2的值.解 因为θ∈(π,2π), 所以θ2∈⎝⎛⎭⎫π2,π, 所以sin θ2=1-cos θ2=45, cos θ2=-1+cos θ2=-35, 所以sin θ2+cos θ2=15.10.已知函数f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 (x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合. 解 (1)∵f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 =3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+1-cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12 =2⎩⎨⎧⎭⎬⎫32sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-12cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+1 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-π6+1 =2sin ⎝⎛⎭⎫2x -π3+1, ∴f (x )的最小正周期为T =2π2=π.(2)当f (x )取得最大值时,sin ⎝⎛⎭⎫2x -π3=1, 有2x -π3=2k π+π2(k ∈Z ),即x =k π+5π12(k ∈Z ),∴所求x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+5π12,k ∈Z .11.函数f (x )=sin 2x +3sin x cos x 在区间⎣⎡⎦⎤π4,π2上的最大值是( ) A .1 B .2 C.32 D .3答案 C解析 f (x )=1-cos 2x 2+32sin 2x=sin ⎝⎛⎭⎫2x -π6+12, ∵x ∈⎣⎡⎦⎤π4,π2,∴2x -π6∈⎣⎡⎦⎤π3,5π6, ∴sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤12,1, ∴f (x )max =1+12=32,故选C.12.化简:tan 70°cos 10°(3tan 20°-1)=________. 答案 -1解析 原式=sin 70°cos 70°·cos 10°·⎝⎛⎭⎫3sin 20°cos 20°-1 =sin 70°cos 70°·cos 10°·3sin 20°-cos 20°cos 20° =sin 70°cos 70°·cos 10°·2sin (-10°)cos 20°=-sin 70°cos 70°·sin 20°cos 20°=-1.13.设0≤α≤π,不等式8x 2-8x sin α+cos 2α≥0对任意x ∈R 恒成立,则α的取值范围是________.答案 ⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π 解析 Δ=(8sin α)2-4×8×cos 2α≤0, 即2sin 2α-cos 2α≤0,所以4sin 2α≤1, 所以-12≤sin α≤12.因为0≤α≤π,所以0≤α≤π6或5π6≤α≤π.14.函数y =sin 2x +sin x cos x +1的最小正周期是______,单调递增区间是________. 答案 π ⎝⎛⎭⎫k π-π8,k π+3π8,k ∈Z 解析 y =sin 2x +sin x cos x +1=1-cos 2x 2+sin 2x 2+1=22sin ⎝⎛⎭⎫2x -π4+32.最小正周期T =2π2=π. 令-π2+2k π<2x -π4<π2+2k π,k ∈Z , 解得-π8+k π<x <3π8+k π,k ∈Z . 所以f (x )的单调递增区间是⎝⎛⎭⎫k π-π8,k π+3π8(k ∈Z ).15.已知sin 2θ=35,0<2θ<π2,则2cos 2θ2-sin θ-12sin ⎝⎛⎭⎫θ+π4=________. 答案 12解析 2cos 2θ2-sin θ-12sin ⎝⎛⎭⎫θ+π4 =⎝⎛⎭⎫2cos 2θ2-1-sin θ2⎝⎛⎭⎫sin θcos π4+cos θsin π4 =cos θ-sin θsin θ+cos θ=1-sin θcos θsin θcos θ+1=1-tan θtan θ+1. 因为sin 2θ=35,0<2θ<π2, 所以cos 2θ=45,所以tan θ=sin 2θ1+cos 2θ=351+45=13, 所以1-tan θtan θ+1=1-1313+1=12, 即2cos 2θ2-sin θ-12sin ⎝⎛⎭⎫θ+π4=12. 16.如图所示,已知OPQ 是半径为1,圆心角为π3的扇形,四边形ABCD 是扇形的内接矩形,B ,C 两点在圆弧上,OE 是∠POQ 的平分线,E 在PQ 上,连接OC ,记∠COE =α,则角α为何值时矩形ABCD 的面积最大?并求最大面积.解 如图所示,设OE 交AD 于M ,交BC 于N ,显然矩形ABCD 关于OE 对称,而M ,N 分别为AD ,BC的中点,在Rt △ONC 中,CN =sin α,ON =cos α,OM =DM tan π6=3DM =3CN =3sin α, 所以MN =ON -OM =cos α-3sin α,即AB =cos α-3sin α,而BC =2CN =2sin α,故S 矩形ABCD =AB ·BC =()cos α-3sin α·2sin α=2sin αcos α-23sin 2α=sin 2α-3(1-cos 2α)=sin 2α+3cos 2α- 3=2⎝⎛⎭⎫12sin 2α+32cos 2α- 3 =2sin ⎝⎛⎭⎫2α+π3- 3. 因为0<α<π6,所以0<2α<π3,π3<2α+π3<2π3. 故当2α+π3=π2,即α=π12时,S 矩形ABCD 取得最大值, 此时S 矩形ABCD =2- 3.。

高考三轮复习专题训练2---三角恒等变换与解三角形综合问题

高考三轮复习专题训练2---三角恒等变换与解三角形综合问题

三角恒等变换与解三角形综合问题1.三角恒等变换与解三角形的综合问题是高考的热门考点,涉及的公式多、性质繁,知识点较为综合,主要涉及三角恒等变换、解三角形及三角函数与解三角形的开放、探究问题。

2.三角恒等变换与解三角形综合问题的答题模板第一步 利用正弦定理、余弦定理对条件式进行边角互化第二步 由三角方程或条件式求角第三步 利用条件式或正、余弦定理构建方程求边长第四步 检验易错易混、规范解题步骤得出结论3.常用的几个二级结论(1)降幂扩角公式()()221cos =1+cos2,21sin =1cos2.2ααα−α⎧⎪⎪⎨⎪⎪⎩(2)升幂缩角公式221+cos2=2cos ,1cos2=2sin .αα−αα⎧⎨⎩(3)正切恒等式tan tan tan tan tan tan ++=A B C A B C若△为斜三角形,则有tan tan tan tan tan tan ++=A B C A B C (正切恒等式).(4)射影定理在ABC 中,cos cos ,cos cos ,cos cos a b C c B b a C c A c a B b A =+=+=+.【典例】(2022·新高考全国Ⅰ)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A 1+sin A =sin 2B 1+cos 2B. (1)若C =2π3,求B ;[切入点:二倍角公式化简] (2)求a 2+b 2c2的最小值.[关键点:找到角B 与角C ,A 的关系] 思路引导母题呈现三角恒等变换与解三角形综合问题的一般步骤方法总结1.(2023·河北石家庄·统考模拟预测)已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,3sin cos c a C c A =−.(1)求A ;(2)若2a =,ABC 的面积为3,求b ,c .2.(2023·安徽宿州·统考一模)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且()(sin sin )sin sin b c B C a A b C −−=−.(1)求角A 的大小;(2)求sin sin B C +的取值范围.3.(2023·全国·模拟预测)在①33cos sin c a B b A =+,②()()()sin sin sin sin b a B A c B C +−=−,③221cos 2a b ac B bc −=−这三个条件中任选一个,补充在下面的问题中,并解答问题. 在锐角ABC 中,内角,,A B C 的对边分别为,,a b c ,且______.(1)求A ;(2)若6a =,2BD DC =,求线段AD 长的最大值.注:如果选择多个条件分别解答,按第一个解答计分.4.(2023·贵州毕节·统考一模)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若cossin 2A B b c B +=. (1)求角C ;(2)若3c =,求BC 边上的高的取值范围.模拟训练5.(2023·全国·模拟预测)已知在三角形ABC 中,a ,b ,c 分别为角A ,B ,C 的三边,若222sin 6sin 3sin 63sin sin sin A B C A B C ++=(1)求∠C 的大小;(2)求233ab 的值.6.(2023·山东潍坊·统考一模)在①tan tan 3tan 13tan A C A C −=+;②()23cos 3cos c a B b A −=;③()3sin sin sin a c A c C b B −+=这三个条件中任选一个,补充在下面问题中并作答.问题:在ABC 中,角,,A B C 所对的边分别为,,a b c ,且__________. (1)求角B 的大小;(2)已知1c b =+,且角A 有两解,求b 的范围.7.(2023·全国·模拟预测)在①()cos 2cos 0c B b a C +−=,②cos 3sin +=+a b c B c B ,③()3cos cos cos sin C a B b A c C +=这三个条件中任选一个,补充在下面的横线上,并解答问题.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知______.(1)求角C 的值;(2)若ABC 的面积()2238912S b c =−,试判断ABC 的形状.注:如果选择多个条件分别解答,按第一个解答计分.8.(2023·安徽蚌埠·统考二模)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,3b =,a c <,且ππ1sin cos 364A A ⎛⎫⎛⎫−+= ⎪ ⎪⎝⎭⎝⎭. (1)求A 的大小;(2)若sin sin 43sin a A c C B +=,求ABC 的面积.9.(2023·广东惠州·统考模拟预测)条件①1cos 2a B cb =+, 条件②sin sin sin sin A C B C b a c−+=+, 条件③3sinsin 2B C b a B +=. 请从上述三个条件中任选一个,补充在下列问题中,并解答.已知ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且满足________,(1)求A ;(2)若AD 是BAC ∠的角平分线,且1AD =,求2b c +的最小值.10.(2023·山东临沂·统考一模)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知cos cos 2cos a B b A c C +=.(1)求C ;(2)若1c =,求ABC 面积的取值范围.1.(2023·河北石家庄·统考模拟预测)已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,3sin cos c a C c A =−.(1)求A ;(2)若2a =,ABC 的面积为3,求b ,c .【分析】(1)利用正弦定理把已知等式中的边转化为角的正弦,化简整理可求得πsin 6A ⎛⎫− ⎪⎝⎭的值,进而求得A ;(2)利用三角形面积公式求得bc 的值进而根据余弦定理求得22b c +的值,最后联立方程求得b 和c .【详解】(1)解:因为3sin cos c a C c A =−,由正弦定理sin sin sin a b c A B C ==得:sin 3sin sin sin cos C A C C A =−,∴3sin cos 1A A −=,π2sin 16A ⎛⎫∴−= ⎪⎝⎭,π1sin 62A ⎛⎫−= ⎪⎝⎭, ()0,πA ∈,ππ5π,666A ⎛⎫∴−∈− ⎪⎝⎭,ππ66A ∴−=, π3A ∴=. (2)解:113sin 3222ABC S bc A bc ==⋅=,4bc ∴=, 由余弦定理得:2221cos 22b c a A bc +−==,2244b c ∴+−=, 联立2284b c bc ⎧+=⎨=⎩,解得2,2b c ==. 2.(2023·安徽宿州·统考一模)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且()(sin sin )sin sin b c B C a A b C −−=−.(1)求角A 的大小;(2)求sin sin B C +的取值范围.【分析】(1)由正弦定理,将角化边,再根据余弦定理,求解即可.(2)由(1)可知,π3A =,则πsin sin 3sin 6B C B ⎛⎫+=+ ⎪⎝⎭π3sin 6A ⎛⎫=+ ⎪⎝⎭,根据正弦型三角函数的图象和性质,求解即可.模拟训练【详解】(1)由正弦定理可得()()b c b c a a bc −−=⋅−,即222b c a bc +−=,由余弦定理的变形得2221cos 22b c a A bc +−==, 又()0,πA ∈,所以π3A =.(2)由πA B C ++=得2π3C B =−,且2π0,3B ⎛⎫∈ ⎪⎝⎭, 所以2πππsin sin sin πsin 333C B B B ⎡⎤⎛⎫⎛⎫⎛⎫=−=−+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 所以π33πsin sin sin sin sin cos 3sin 3226B C B B B B B ⎛⎫⎛⎫+=++=+=+ ⎪ ⎪⎝⎭⎝⎭, 因为20,π3B ⎛⎫∈ ⎪⎝⎭,从而ππ5,π666B ⎛⎫+∈ ⎪⎝⎭, 所以π1sin ,162B ⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦,从而3sin sin ,32B C ⎛⎤+∈ ⎥ ⎝⎦. 即sin sin B C +的取值范围为3,32⎛⎤ ⎥ ⎝⎦. 3.(2023·全国·模拟预测)在①33cos sin c a B b A =+,②()()()sin sin sin sin b a B A c B C +−=−,③221cos 2a b ac B bc −=−这三个条件中任选一个,补充在下面的问题中,并解答问题. 在锐角ABC 中,内角,,A B C 的对边分别为,,a b c ,且______.(1)求A ;(2)若6a =,2BD DC =,求线段AD 长的最大值.注:如果选择多个条件分别解答,按第一个解答计分.【分析】(1)先选条件,并利用正弦定理或余弦定理将已知条件转化,得到角A 的三角函数值,再结合角A 的取值范围即可求得角A 的大小;(2)先利用余弦定理建立关于,b c 的方程,再利用向量的线性运算将2BD DC =转化为AD 与AB ,AC 的关系,两边同时平方即可将2AD 用,b c 表示,最后利用ABC 是锐角三角形及换元法,利用基本不等式求AD 长的最大值即可.【详解】(1)方案一:选条件①.由正弦定理得()sin si 33sin 3sin s s i n n co C A A B B B A =+=+,∴3cos sin sin sin A B B A =,∵sin 0B >,∴sin 3cos A A =,即tan 3A =,∵02A π<<,∴3A π=.方案二:选条件②.由正弦定理得()()()b a b a c b c +−=−,即222b c a bc +−=,∴2221cos 22b c a A bc +−==,∵02A π<<,∴3A π=.方案三:选条件③.由余弦定理得22222122a c b a b ac bc ac +−−=⋅−,∴222b c a bc +−=,∴2221cos 22b c a A bc +−==,∵02A π<<,∴3A π=.(2)由2222cos a b c bc A =+−,得2236b c bc =+−,∵2BD DC =,∴22AD AB AC AD −=−,即32AD AB AC =+,两边同时平方得2222294442AD AB AC AB AC c b bc =++⋅=++,2236b c bc =+−∴()22222221424249b c bcAD b c bc b c bc ++=++=⨯+−.令b t c =,则0t >,()()2222424121411t t t AD t t t t +++==+−+−+,令1t u +=,则1u >,221212443333AD u u u u =+=+−++−,在锐角ABC 中2222222222222222222222222a b c b c bc b c b bca cb bc bc c b c bc b c a b c b c bc ⎧⎧+>+−+>⎧>⎪⎪+>⇒+−+>⇒⎨⎨⎨>⎩⎪⎪+>+>+−⎩⎩,∴122bc <<,∴31,32u b c ⎛⎫=+∈ ⎪⎝⎭,∴21241683233AD ≤+=+−,∴223AD ≤+,当且仅当3u =时取等号,∴线段AD 长的最大值为223+.4.(2023·贵州毕节·统考一模)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若cossin 2A B b c B +=. (1)求角C ;(2)若3c =,求BC 边上的高的取值范围.【分析】(1)根据给定条件,利用正弦定理边化角,再利用二倍角的正弦求解作答. (2)由(1)可得π(0,)3B ∈,再利用三角形面积公式计算作答.【详解】(1)在ABC 中,由正弦定理及A B C π+=−,得πsin cossin sin 2C B C B −=, 即有sin sin2sin cos sin 222C C C B B =,而(),0,A B π∈,0,22C π⎛⎫∈ ⎪⎝⎭,即sin 0B ≠,sin 02C ≠, 因此1cos 22C =,π23C =,所以2π3C =. (2)令ABC 边BC 上的高为h ,由11sin 22ABC S ah ac B ==,得3sin h B =, 由(1)知,π(0,)3B ∈,即3sin (0,)2B ∈,则33sin (0,)2h B =∈, 所以BC 边上的高的取值范围是3(0,)2. 5.(2023·全国·模拟预测)已知在三角形ABC 中,a ,b ,c 分别为角A ,B ,C 的三边,若222sin 6sin 3sin 63sin sin sin A B C A B C ++=(1)求∠C 的大小;(2)求233a b的值. 【分析】(1)根据正弦定理化角为边,将2c 表示出来,再利用余弦定理化简,再结合三角函数的性质及基本不等式即可得出答案;(2)直接利用(1)中的结论即可得解.【详解】(1)因为222sin 6sin 3sin 63sin sin sin A B C A B C ++=,所以2226363sin a b c ab C ++=,则22223sin 23a c ab C b =−−, 又222224323sin 233cos 3sin 2232a b ab C a b c a b C C ab ab b a +−+−===+−, 所以233sin cos 32a b C C b a+=+,因为2323223232a b a b b a b a+≥⋅=,当且仅当2332a b b a =,即23a b =时,取等号, π3sin cos 2sin 26C C C ⎛⎫+=+≤ ⎪⎝⎭,当且仅当ππ62C +=,即π3C =时,取等号, 所以233sin cos 232a b C C b a +=+=,所以π3C =; (2)由(1)可得23a b =,所以2333a b=. 6.(2023·山东潍坊·统考一模)在①tan tan 3tan 13tan A C A C −=+;②()23cos 3cos c a B b A −=;③()3sin sin sin a c A c C b B −+=这三个条件中任选一个,补充在下面问题中并作答. 问题:在ABC 中,角,,A B C 所对的边分别为,,a b c ,且__________.(1)求角B 的大小;(2)已知1c b =+,且角A 有两解,求b 的范围.【分析】(1)若选①,由两角和的正切公式化简即可求出求角B 的大小;若选②,利用正弦定理统一为角的三角函数,再由两角和的正弦公式即可求解;若选③,由余弦定理代入化简即可得出答案. (2)将1c b =+代入正弦定理可得1sin 2b C b +=,要使角A 有两解,即1sin 12C <<,解不等式即可得出答案. 【详解】(1)若选①:整理得()1tan tan 3tan tan A C A C −=−+,因为A B C π++=, 所以()tan tan 3tan tan 1tan tan 3A CB AC A C +=−+=−=−,因为()0,B π∈,所以6B π=; 若选②:因为()23cos 3cos c a B b A −=,由正弦定理得()2sin 3sin cos 3sin cos C A B B A −=,所以()2sin cos 3sin 3sin ,sin 0C B A B C C =+=>,所以3cos 2B =,因为()0,B π∈,所以6B π=; 若选③:由正弦定理整理得2223a c b ac +−=,所以222322a cb ac +−=, 即3cos 2B =,因为()0,B π∈,所以6B π=; (2)将1c b =+代入正弦定理sin sin b c B C =,得1sin sin b b B C +=,所以1sin 2b C b +=, 因为6B π=,角A 的解有两个,所以角C 的解也有两个,所以1sin 12C <<, 即11122b b+<<,又0b >,所以12b b b <+<,解得1b >. 7.(2023·全国·模拟预测)在①()cos 2cos 0c B b a C +−=,②cos 3sin +=+a b c B c B ,③()3cos cos cos sin C a B b A c C +=这三个条件中任选一个,补充在下面的横线上,并解答问题.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知______.(1)求角C 的值;(2)若ABC 的面积()2238912S b c =−,试判断ABC 的形状. 注:如果选择多个条件分别解答,按第一个解答计分.【分析】(1) 方案一:选条选①,根据正弦定理和两角和的正弦公式得到()sin 2sin cos 0B C A C +−=,再利用诱导公式和三角形内角和定理即可求解;方案二:选条选②,先利用正弦定理、诱导公式和三角形内角和定理得到sin cos sin 3sin sin B C B C B +=,再利用两角和的正弦公式即可求解;方案三:选条件③,利用正弦定理、诱导公式和两角和的正弦公式得出3cos sin C C =,然后利用同角三角函数的基本关系即可求解;(2)结合(1)的结论利用余弦定理和三角形面积可得3b a =,然后代入即可求解.【详解】(1)方案一:选条选①.由()cos 2cos 0c B b a C +−=,得sin cos sin cos 2sin cos 0C B B C A C +−=,得()sin 2sin cos 0B C A C +−=,即sin 2sin cos 0A A C −=.∵0A π<<,∴sin 0A >,∴1cos 2C =,又0πC <<,∴π3C =. 方案二:选条件②.由cos 3sin +=+a b c B c B ,得sin sin sin cos 3sin sin +=+A B C B C B ,即()sin sin sin cos 3sin sin B C B C B C B ++=+,于是sin cos cos sin sin sin cos 3sin sin B C B C B C B C B ++=+,因此sin cos sin 3sin sin B C B C B +=,∵()0,B π∈,∴sin 0B ≠,∴3sin cos 1C C −=,即π1sin 62C ⎛⎫−= ⎪⎝⎭, ∵()0,πC ∈,∴ππ5π,666C ⎛⎫−∈− ⎪⎝⎭,∴ππ66C −=,故π3C =. 方案三:选条件③.由正弦定理,得()23cos sin cos sin cos sin C A B B A C +=,即()23cos sin sin C A B C +=,∴23sin cos sin C C C =,又0πC <<,∴sin 0C ≠,∴3cos sin C C =,即tan 3C =,∴π3C =. (2)在ABC 中,π3C =,由余弦定理得222222cos c a b ab C a b ab =+−=+−, 又()223189sin 122S b c ab C =−=,∴()2223389124b a b ab ab ⎡⎤−+−=⎣⎦, 整理得22960a ab b −+=,得3b a =,此时227c a b ab a =+−=,∴2227cos 214a cb B ac +−==−,∴B 为钝角,故ABC 是钝角三角形. 【点睛】方法点睛:判断三角形形状的方法:(1)角化边,通过正、余弦定理化角为边,通过因式分解、配方等方法得出边与边之间的关系,进行判断;(2)边化角,通过正、余弦定理化边为角,利用三角恒等变换、三角形内角和定理及诱导公式等推出角与角之间的关系,进行判断.无论使用哪种方法,都不要随意约掉公因式,要移项、提取公因式,否则会有遗漏一种情况的可能.注意挖掘隐含条件,重视角的范围对三角函数值的限制.8.(2023·安徽蚌埠·统考二模)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,3b =,a c <,且ππ1sin cos 364A A ⎛⎫⎛⎫−+= ⎪ ⎪⎝⎭⎝⎭. (1)求A 的大小;(2)若sin sin 43sin a A c C B +=,求ABC 的面积.【分析】(1)已知等式利用诱导公式和倍角公式化简,可求A 的大小;(2)条件中的等式,利用正弦定理角化边,再用余弦定理求得c 边,用面积公式计算面积.【详解】(1)πππππ2sin cos cos cos 3636A A A A ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫−+=−−+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 2πcos 21π13cos 624A A ⎛⎫++ ⎪⎛⎫⎝⎭=+== ⎪⎝⎭,∴π31cos 22A ⎛⎫+=− ⎪⎝⎭, 因为0πA <<,得ππ7π2333A <+<,所以π2π233A +=或4323ππA +=, 解得π6A =或π2A =,因为a c <,得π2A <,∴π6A =. (2)由(1)知,6A π=,sin sin 43sin a A c C B +=,由正弦定理,得224312a c b +==,由余弦定理,得2222cos a b c bc A =+−⋅,即223123232c c c −=+−⋅, 整理,得22390c c −−=,由0c >得3c =,所以11133sin 332224ABC S bc A ==⨯⨯⨯=△. 9.(2023·广东惠州·统考模拟预测)条件①1cos 2a B cb =+, 条件②sin sin sin sin A C B C b a c−+=+, 条件③3sinsin 2B C b a B +=. 请从上述三个条件中任选一个,补充在下列问题中,并解答.已知ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且满足________,(1)求A ;(2)若AD 是BAC ∠的角平分线,且1AD =,求2b c +的最小值.【分析】(1)选①,利用正弦定理结合两角和的正弦公式可得出cos A 的值,结合角A 的取值范围可得出角A 的值;选②,利用正弦定理结合余弦定理可得出cos A 的值,结合角A 的取值范围可得出角A 的值;选③,利用正弦定理结合三角恒等变换化简可得出sin2A 的值,结合角A 的取值范围可得出角A 的值; (2)由已知ABC ABD ACD S S S =+结合三角形的面积公式可得出111b c+=,将2b c +与11b c +相乘,展开后利用基本不等式可求得2b c +的最小值.【详解】(1)解:选①:因为1cos 2a B c b =+,由正弦定理可得1sin cos sin sin 2A B C B =+, 即()11sin cos sin sin sin cos cos sin sin 22A B A B B A B A B B =++=++, 所以1cos sin sin 2A B B =−, 而()0,πB ∈,sin 0B ∴≠,故1cos 2A =−,因为()0,πA ∈,所以2π3A =; 选②:因为sin sin sin sin A C B C b a c −+=+,由正弦定理a c b c b a c −+=+, 即222b c a bc +−=−,由余弦定理2221cos 222b c a bc A bc bc +−−===−, 因为()0,πA ∈,所以2π3A =; 选③:因为3sin sin 2B C b a B +=, 正弦定理及三角形内角和定理可得π3sin sinsin sin 2A B A B −=, 即3sin cos 2sin cos sin 222A A A B B =,因为A 、()0,πB ∈,则π0,22A ⎛⎫∈ ⎪⎝⎭,所以,sin 0B ≠,cos 02A ≠, 所以3sin 22A =,所以π23A =,即2π3A =. (2)解:由题意可知,ABC ABD ACD S S S =+,由角平分线性质和三角形面积公式得12π1π1πsin 1sin 1sin 232323bc b c =⨯⨯+⨯⨯, 化简得bc b c =+,即111b c+=, 因此()112222332322c b c b b c b c b c b c b c ⎛⎫+=++=++≥+⋅=+ ⎪⎝⎭, 当且仅当221c b ==+时取等号,所以2b c +的最小值为322+.10.(2023·山东临沂·统考一模)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知cos cos 2cos a B b A c C +=.(1)求C ;(2)若1c =,求ABC 面积的取值范围.【分析】(1)利用正弦定理边化角,再利用和角的正弦化简作答.(2)由(1)的结论,利用余弦定理结合均值不等式求出三角形面积范围作答.【详解】(1)在ABC 中,由已知及正弦定理得:sin cos sin cos 2sin cos A B B A C C +=,即有()sin 2sin cos A B C C +=,即sin 2sin cos C C C =,而0πC <<,sin 0C >,则1cos 2C =, 所以π3C =. (2)在ABC 中,由余弦定理2222cos c a b ab C =+−得:221a b ab =+−,因此12ab ab ≥−,即01ab <≤,当且仅当a b =时取等号,又11333sin (0,]22244ABC S ab C ab ab ==⨯=∈△, 所以ABC 面积的取值范围是3(0,]4.。

知识讲解_三角恒等变换综合_基础

知识讲解_三角恒等变换综合_基础
【解析】
(1)原式
=
(2)原式=
【总结升华】
(1)三角变换所涉及的公式实际上正是研究了各种组合的角(如和差角,倍半角等)的三角函数与每一单角的三角函数关系.因而具体运用时,注意对问题所涉及的角度及角度关系进行观察.
(2)三角变换中一般采用“降次”、“化弦”、“通分”的方法;在三角变换中经常用到降幂公式: , .
∵sin(α+β)=- ,cos(α-β)= ,
∴cos(α+β)=- ,sin(α-β)=
∴sin2α=sin[(α+β)+(α-β)]= .
【总结升华】
(1)解题中应用了 式子的变换,体现了灵活解决问题的能力,应着重体会,常见的变换技巧还有 , 等.
(2)已知某一个(或两个)角的三角函数值,求另一个相关角的三角函数值,基本的解题策略是从“角的关系式”入手切入或突破.角的关系主要有互余(或互补)关系,和差(为特殊角)关系,倍半关系等.对于比较复杂的问题,则需要两种关系的混合运用.
举一反三:
【变式1】化简:
(1) ;(2)
【答案】(1)4(3)
【解析】
(1)原式= ;
(2)原式=
= .
类型四:三角函数知识的综合应用
例7.(2015广东江门一模)已知函数 的最小正周期为π,x∈R,ω>0是常数.
(1)求ω的值;
(2)若 , ,求sin2θ.
【思路点拨】(1)由两角和的正弦公式化简解析式可得 ,由已知及周期公式即可求ω的值.
举一反三:
【变式1】(2015春甘肃高台县期末)化简 .
【答案】-1
【解析】

例6.化简:
(1) ;(2)
【思路点拨】
(1)题中首先“化切为弦”,同时用好“ ”和“ ”的互余关系,注意逆用和角公式化简;

高中数学教案《三角恒等变换》

高中数学教案《三角恒等变换》

教学计划:《三角恒等变换》一、教学目标知识与技能:学生能够理解并掌握三角恒等变换的基本公式,包括和差化积、积化和差、二倍角公式等。

学生能够熟练运用三角恒等变换公式进行化简、求值及证明。

培养学生的逻辑推理能力和代数运算能力。

过程与方法:通过观察、分析、归纳等数学活动,引导学生发现三角恒等变换的规律。

采用“公式推导—例题讲解—练习巩固”的教学模式,帮助学生逐步掌握三角恒等变换的方法。

鼓励学生自主探究,通过小组合作解决复杂问题,培养团队协作能力。

情感态度与价值观:激发学生对数学学习的兴趣,感受数学的美妙与和谐。

培养学生的耐心和细心,养成严谨的科学态度。

引导学生认识到数学在解决实际问题中的重要性,增强应用数学的意识。

二、教学重点和难点重点:三角恒等变换的基本公式及其推导过程;运用公式进行化简、求值及证明。

难点:灵活运用三角恒等变换公式解决复杂问题;理解并记忆众多公式的内在联系。

三、教学过程1. 导入新课(5分钟)情境引入:通过展示一些与三角恒等变换相关的实际问题(如天文学中的角度计算、物理学中的波动分析等),引导学生思考这些问题背后可能涉及的数学知识,从而引出三角恒等变换的主题。

复习旧知:简要回顾三角函数的基本性质、图像及诱导公式,为学习三角恒等变换做好铺垫。

明确目标:介绍本节课的学习目标,即掌握三角恒等变换的基本公式及其应用。

2. 公式推导(15分钟)和差化积公式推导:通过图形展示和代数运算相结合的方式,引导学生推导出和差化积公式。

强调公式的推导过程,帮助学生理解公式的来源和含义。

积化和差公式推导:类比和差化积公式的推导过程,引导学生自主推导积化和差公式。

鼓励学生提出疑问和见解,促进课堂互动。

二倍角公式推导:利用三角函数的倍角关系,引导学生推导出二倍角公式。

强调公式的记忆方法和应用技巧。

3. 例题讲解(10分钟)基础例题:选取具有代表性的基础例题进行讲解,如利用三角恒等变换公式化简表达式、求三角函数值等。

三角函数与三角恒等变换的综合运用

三角函数与三角恒等变换的综合运用

三角函数与三角恒等变换的综合运用三角函数和三角恒等变换是数学中的重要概念,广泛应用于各种实际问题的求解中。

本文将探讨三角函数和三角恒等变换的综合运用,并通过一些实例来说明它们在实际问题中的应用。

一、三角函数的基本概念在介绍三角函数的综合运用之前,我们首先回顾一下三角函数的基本概念。

在直角三角形中,对于给定的一个角A,我们可以定义其正弦、余弦和正切等三个三角函数,分别记作sinA,cosA和tanA。

它们的定义如下:sinA = 对边/斜边cosA = 邻边/斜边tanA = 对边/邻边二、三角函数的综合运用1. 三角函数在三角形的计算中的应用三角函数在求解三角形的各种问题中起着重要的作用。

以求解三角形边长为例,假设我们已知一个直角三角形的一条边和其对应的一个角,利用三角函数可以很方便地求解出另外两条边的长度。

同样地,在已知两边和夹角的情况下,我们也可以利用三角函数来求解三角形的面积。

2. 三角函数在物理问题中的应用三角函数在物理问题中的应用广泛而重要。

例如,在力学中,一个物体在平面上做直线运动时,我们可以将其位移的x轴和y轴分解为其在x轴和y轴上的分量。

而这些分量之间恰好是两个相互垂直的直角三角形,通过使用三角函数,可以很容易地求解出物体的位移和速度等物理量。

三、三角恒等变换的应用1. 三角恒等变换在三角方程的求解中的应用三角恒等变换在解三角方程时起到了至关重要的作用。

通过利用一些特定的三角恒等变换,我们可以将复杂的三角方程化简为简单的等式,从而更方便地求解。

例如,通过应用和差化积公式和倍角公式,我们可以将一些复杂的三角方程转化为简单的线性方程或二次方程,进而求解出未知量。

2. 三角恒等变换在三角函数的化简中的应用三角恒等变换在化简三角函数表达式时也起到了重要的作用。

通过运用正弦、余弦和正切的平方恒等变换、和差化积公式等,我们可以将复杂的三角函数表达式化简为简单的形式,从而方便计算和求解。

这对于在数学推导和物理计算中的精确性和效率都很重要。

高中数学备课教案三角恒等变换的综合应用

高中数学备课教案三角恒等变换的综合应用

高中数学备课教案三角恒等变换的综合应用高中数学备课教案:三角恒等变换的综合应用导言:三角恒等变换是数学中的重要概念,它在各个数学领域都有广泛的应用。

本教案旨在帮助高中数学教师更好地教授三角恒等变换,并通过综合的应用案例,帮助学生提高解题能力和理解能力。

一、知识回顾1. 三角恒等变换的基本概念回顾(这部分可以罗列出三角恒等变换的基本公式、性质等)2. 三角函数的基本关系回顾(这部分可以涵盖正弦定理、余弦定理等)二、应用案例在实际问题中,三角恒等变换常常被用于解决各种几何、物理、工程等问题。

以下是几个常见的应用案例。

案例一:三角形面积计算题目描述:已知三角形ABC的边长分别为a、b、c,通过应用三角恒等变换,求解三角形ABC的面积。

解题思路:1. 根据海伦公式,可以利用三角恒等变换将面积计算问题转化为边长计算问题。

2. 具体求解步骤可参考以下算法:①计算半周长s=(a+b+c)/2;②计算面积S=s*(s-a)*(s-b)*(s-c)的平方根;③输出结果。

案例二:三角函数方程求解题目描述:已知三角函数方程sin(x)=cos(x),通过应用三角恒等变换,求解x的值。

解题思路:1. 利用三角恒等变换将sin(x)和cos(x)转化为同一种三角函数。

2. 具体求解步骤可参考以下算法:①利用tan(x)=sin(x)/cos(x)将sin(x)和cos(x)转化为tan(x);②将sin(x)=cos(x)代入tan(x)=sin(x)/cos(x),得到tan(x)=1;③求解tan(x)=1的解集,即x={π/4+kπ|k∈Z};④输出结果。

案例三:三角函数图像变换题目描述:已知函数y=sin(x),通过应用三角恒等变换,绘制函数y=sin(2x)的图像。

解题思路:1. 利用三角恒等变换将sin(2x)转化为sin(x)。

2. 具体绘图步骤可参考以下算法:①绘制函数y=sin(x)的基本图像;②沿x轴方向缩放两倍,即将x坐标缩小为原来的一半;③在新的坐标系下,绘制函数y=sin(x)的图像;④输出结果。

数学示范教案:第三章三角恒等变换

数学示范教案:第三章三角恒等变换

示范教案本章知识网络教学分析本章三角函数模型是主线,三角变形是关键.三角函数及其三角恒等变形不仅有着广泛的实际应用,而且是进一步学习中学后续内容和高等数学的基础,因而成为高考中对基础知识、基本技能和基本思想方法考查的重要内容之一.本章特点是公式多,但积化和差与和差化积公式不要求记忆.切实掌握三角函数的基本变形思想是复习掌握好本章的关键.三角函数的恒等变形,不仅在三角函数的化简、求值问题中应用,而且在研究第一章三角函数的图象与性质时、在后续内容解三角形中也应用广泛.解决三角函数的恒等变形问题,其关键在掌握基本变换思想,运用三角恒等变形的主要途径-—变角,变函数,变结构,注意公式的灵活应用.三角恒等变形是一种基本技能,从题型上一般表现为对三角式的化简、求值与证明.对所给三角式进行三角恒等变形时,除使用三角公式外,一般还需运用代数式的运算法则或公式.如平方差公式、立方差公式等.对三角公式不仅要掌握其“原形”,更要掌握其“变形”,解题时才能真正达到运用自如,左右逢源的境界.基本变形思想主要是:①化成“三个一”:即化为一个角的一种三角函数的一次方的形式y=Asin(ωx+φ);②化成“两个一”:即化为一个角的一种三角函数的二次型结构,再用配方法求解;③“合二为一”:对于形如asinθ+bcosθ的式子,引入辅助角φ并化成a2+b2 sin(θ+φ)的形式(但在这里不要增加难度,仅限于特殊值、特殊角即可).高考对整个三角问题的考查主要集中在三个方面,一是三角函数的图象与性质,包括:定义域、值域、单调性、奇偶性、周期性、对称性等等;二是三角式的恒等变形,包括:化简、证明、直接求值、条件求值、求最值等;三是三角综合运用.特别是结合下一章的解三角形及与向量的交汇更是高考经久不衰的热点.因此复习中要充分运用数形结合的思想,利用向量的工具性,灵活运用三角函数的图象和性质解题,掌握化简和求值问题的解题规律和途径.学完本章后,前一章平面向量更有了用武之地,它是沟通代数、几何、与三角函数的一种重要工具,三角函数又具有较强的渗透力,切实提高三角函数的综合能力是复习好本章的保证.因此,我们可以通过整合,将三角函数,平面向量结成一个知识板块来复习,并进行三角与向量相融合的综合训练,这样更有利于学生对平面向量、三角函数及三角恒等变形的深刻理解及运用.三维目标1.通过复习全章知识方法,掌握两角和与差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式.并能正确地运用上述公式化简三角函数式、求某些角的三角函数值、证明较简单的三角恒等式以及解决一些简单的实际问题.2.掌握简单的三角恒等变形的基本思想方法,并结合向量解决一些基本的综合问题.3.通过三角恒等变换体会数学的逻辑性的特征,进一步理解数学的化归思想、方程思想和代换意识,认识事物之间是相互依存、相互联系的.重点难点教学重点:和角公式、差角公式、倍角公式及其灵活应用.教学难点:和角公式、差角公式、倍角公式在三角恒等变形中的综合运用.课时安排1课时错误!导入新课思路1.(直接导入)在第一章三角函数的基础上,我们一起又探究学习了第三章简单三角恒等变形的有关知识,并掌握了一定的分析问题与解决问题的方法,提高了我们的思维能力与运算能力.现在我们一起对本章进行小结与复习,进一步巩固本章所学的知识,请同学们画出本章的知识框图,由此进入复习.思路2.(问题导入)本章学习了几个公式?推导这些公式的过程中你用到了哪些基本的数学思想方法?你是从哪几个基本方面认识三角函数式的特点的?它们之间存在着怎样的逻辑关系?三角式的变形与代数式的变形有什么相同点?有什么不同点?对三角函数式特点的分析对你提高三角恒等变形的能力有什么帮助?通过学生解决这些问题展开全章的复习.推进新课错误!错误!1列出本章所学的公式,理清它们之间的关系,回顾、思考并回答:推导这些公式的过程中你用到了哪些基本的数学思想方法?你是从哪几个基本方面认识三角函数式的特点的?它们之间存在着怎样的逻辑关系?三角式的变形与代数式的变形有什么相同点?有什么不同点?三角函数式特点的分析对你提高三角恒等变形的能力有什么帮助?2三角函数的变形灵活性大、方法多,回顾从前所学,三角变形都有哪些?3如果对三角函数变形题型进行归类,那么回顾从前所学,常见的基本题型有哪些?活动:问题(1),本章的三角恒等变换公式中,余弦的差角公式是其他公式的基础,由它出发,用-β代替β,±β代替β,α=β等换元法就可以推导出其他公式.见下表:教师引导学生用类比、联系、化归的观点来理解这些公式的逻辑关系,认识公式的特点,联想与代数运算的相同与不同之处;三角函数的恒等变形,是运用三角公式,变换三角表达式中的函数、角度和结构,把一个表达式变形成另一个与它等价的表达式.三角恒等变形是代数式恒等变形的推广和发展;进行三角恒等变形,除了要熟练运用代数恒等变形的各种方法,还要抓住三角本身的特点,领会和掌握最基本最常见的变形.教师要引导学生明确三角变换不仅有三角函数式的结构形式变形,而且还有角的变形,以及不同三角函数之间的变形,使学生领悟有关公式在变形中的作用和用法,学会用恰当的数学思想方法指导选择和设计变换思路.并让学生体会到通过三角恒等变形的探究训练,能大大提高他们的推理能力和运算能力.问题(2),教师引导学生回顾总结,在学生探索时适时点拨,常见的变形有:①公式变形,数学公式变形的方法多种多样,揭示数学公式变形的一般规律对深化公式教学会有积极的意义.由于公式中的字母可以代表数、式、函数等有数学意义的式子,因此可以根据需要对公式进行适当的数学处理,或代换,或迭代,或取特殊值等等.如:tanα+tanβ=tan(α+β)(1-tanαtanβ),tanαtanβ=1-错误!,1=tanαtanβ+错误!,1+cos2α=2cos2α,1-cos2α=2sin2α等.②角的变形,角度变形是三角函数恒等变形的首选方法,在进行三角恒等变形时,对角之间关系必须进行认真的观察联想,分析角之间的和、差、倍、分关系.在数值角的三角函数式化简中,要特别注意是否能够产生特殊角;熟悉两角互余、互补的各种形式;或者引入辅助角进行角的变形等.如:α=(α+β)-β;2α=(α+β)+(α-β);错误!-α=错误!-(错误!+α);错误!+α=错误!-(错误!-α)等.还需熟练掌握一些常见的式子:如:sinx±cosx=2sin(x±π4),sinx±错误!cosx=2sin(x±错误!)等.问题(3),教师引导学生回顾总结,适时地点拨学生,常见三角恒等变形的基本题型有求值、化简、证明.对于求值,常见的有给角求值、给值求值、给值求角.①给角求值的关键是正确地分析角之间的关系,准确地选用公式,要注意产生特殊角,同时把非特殊角的三角函数值相约或相消,从而求出三角函数式的值;②给值求值的关键是分析已知式与待求式之间角、函数、结构间差异,有目的地将已知式、待求式的一方或两方加以变形,找出它们之间的联系,最后求出待求式的值;③给值求角的关键是先求出该角的某一三角函数值,其次判断该角对应函数的单调区间,最后求出角.对于化简,有两种常见的形式,①未指明答案的恒等变形,这时应把结果化为最简形式;②根据解题需要将三角函数式化为某种特定的形式,例如一角一函数的形式,以便研究它的各种性质.无论是何种形式的化简,都要切实注意角度变形、函数变形等各种变形.对于证明,它包括无条件的恒等式和有附加条件恒等式的证明.①无条件恒等式的证明,需认真分析等式两边三角函数式的特点,角度、函数、结构的差异,一般由繁的一边往简的一边证,逐步消除差异,最后达到统一.对于较难的题目,可以用分析法帮助思考,或分析法和综合法联用.②有附加条件的恒等式的证明,关键是恰当地利用附加条件,需认真分析条件式和结论式中三角函数之间的联系,从分析过程中发现条件应怎样利用,证明这类恒等式时,还常常用到消元法和基本量方法.讨论结果:(1)~(3)略.错误!思路1例1(1)化简tan2Atan(30°-A)+tan2A·tan(60°-A)+tan(30°-A)tan(60°-A);(2)已知α为锐角,且tanα=错误!,求错误!的值.活动:本例是一个三角函数化简求值问题,属于给出某些角的三角函数式的值,求另外一些三角函数式的值.关键是正确运用三角变换公式及常用思想方法,探索已知式与欲求式之间的差异和联系的途径和方法.教师可以大胆放手,让学生自己独立探究,必要时给予适时的点拨引导.但要让学生明白,从高考角度来看,关于三角函数求值问题是个重要题型、命题热点,一直备受高考的青睐.因为三角函数求值问题能综合考查考生三角变形、代数变形的基本运算能力和灵活运用公式、合理选用公式、准确选择解题方向的思维能力,且题目的答案可以简单明了.并让学生明了解决这类问题时应在认准目标的前提下,从结构式的特点去分析,以寻找到合理、简捷的解题方法,切忌不分青红皂白地盲目运用三角公式.比如在本例的(1)中,首先应想到将倍角化为单角这一基本的转化方法.教师还应点拨学生思考,求三角函数式的值必须明确求值的目标.一般来说,题设中给出的是一个或某几个特定角,即便这些角都不是特殊角,其最终结果也应该是一个具体的实数;题设中给出的是某种或几种参变量关系,其结果既可能是一个具体的实数,也可能是含参变量的某种代数式.如本例的(2)中,目标是“弦”且是“和差角",而条件是“切"且是“单角".在学生探讨向目标转化的过程中,由于视角不同,思考方式不同,学生会有多种解法,教师应鼓励学生一题多解,对新颖解法给予表扬.解:(1)∵tan(90°-2A)=tan[(30°-A)+(60°-A)]=错误!,∴tan(30°-A)+tan(60°-A)=tan(90°-2A)[1-tan(30°-A)tan(60°-A)].∴原式=tan2A[tan(30°-A)+tan(60°-A)]+tan(30°-A)tan(60°-A)=tan2Atan(90°-2A)[1-tan(30°-A)tan(60°-A)]+tan(30°-A)tan(60°-A)=1-tan(30°-A)tan(60°-A)+tan(30°-A)tan(60°-A)=1.(2)原式=错误!=错误!=错误!=错误!。

高三数学寒假作业冲刺培训班之历年真题汇编复习实战45911

高三数学寒假作业冲刺培训班之历年真题汇编复习实战45911

三角函数与三角恒等变换综合题 【背一背重点知识】1.熟悉诱导公式、同角关系式、两角和与差、倍角公式是化简求值的关键2.熟悉三角函数的图像是解决有关性质问题的前提3.切化弦、变角处理是三角化简与求值的常用手段 【讲一讲提高技能】1.必备技能:高考对两角和与差的正弦、余弦、正切公式及二倍角公式的考查往往渗透在研究三角函数的性质之中.常需要利用这些公式,先把函数解析式化为B x A y ++=)sin(ϕω的形式,再进一步讨论其定义域、值域、最值、单调性、奇偶性、周期性和对称性等性质.2.典型例题:例1已知函数()sin cos (0)f x x a x ωωω=+>满足(0)3f =,且()f x 图象的相邻两条对称轴间的距离为π.(1)求a 与ω的值;(2)若()1f α=,(,)22ππα∈-,求5cos()12πα-的值.例2已知函数()23sin()cos()sin 244f x x x x a ππ=++++的最大值为1.(12分)(Ⅰ)求常数a 的值;(Ⅱ)求函数()f x 的单调递增区间; (Ⅲ)若将()f x 的图象向左平移6π个单位,得到函数()g x 的图象,求函数()g x 在区间[0,]2π上的最大值和最小值. 【练一练提升能力】1.(本小题满分12分)如图,在平面直角坐标系xOy 中,点11()A x y ,在单位圆O 上,xOA α∠=,且62ππα⎛⎫∈ ⎪⎝⎭,.(1)若11cos()313πα+=-,求1x 的值; (2)若22()B x y ,也是单位圆O 上的点,且3AOB π∠=.过点A B 、分别做x 轴的垂线,垂足为C D 、,记AOC ∆的面积为1S ,BOD ∆的面积为2S .设()12f S S α=+,求函数()f α的最大值.2. 已知函数()23cos sin 3cos 34f x x x x π⎛⎫=⋅+-+ ⎪⎝⎭,x R ∈. (1)求()f x 的最小正周期; (2)求()f x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最小值和最大值.三角函数与平面向量综合题 【背一背重点知识】1.向量是具有大小和方向的量,具有“数”和“形”的特点,向量是数形结合的桥梁,在处理向量问题时要注意数形结合思想的应用2.向量的坐标表示实际上是向量的代数形式,引入坐标表示,可以实现与三角函数无缝对接.3.两向量平行与垂直关系、向量数量积、向量的模等知识点是与三角函数知识的交汇点 【讲一讲提高技能】1必备技能:等价转化能力,主要是将向量形式的条件等价转化为三角函数的等量关系,再利用三角恒等变换实现解决问题目的,如,0,:://a 21212211=+⇔⊥=⇔y y x x b a y x y x b.||,21212121y x a y y x x b a +=+=⋅2典型例题:例1已知向量))4cos(3),4(sin(ππ+-+=x x m ,))4cos(),4(sin(ππ-+=x x n ,函数n m x f ⋅=)(,xyOAB C DR x ∈.(1)求函数)(x f y =的图像的对称中心坐标; (2)将函数)(x f y =图像向下平移21个单位,再向左平移3π个单位得函数)(x g y =的图像,试写出)(x g y =的解析式并作出它在5[,]66ππ-上的图像. 例2已知向量)sin ,1(x a =,b =)sin ),32(cos(x x π+,函数x b a x f 2cos 21)(-⋅=,(1)求函数()x f 的解析式及其单调递增区间;(2)当x ∈⎥⎦⎤⎢⎣⎡3,0π时,求函数()x f 的值域. 【练一练提升能力】1.已知(cos ,sin ),(cos ,sin )a b ααββ==. (1)若67πβα=-,求a b ⋅的值; (2)若4,58a b πα⋅==,且⎪⎭⎫⎝⎛-∈-0,2πβα,求tan()αβ+的值. 2. 如图,以坐标原点O 为圆心的单位圆与x 轴正半轴相交于点A ,点,B P 在单位圆上,且525(,),.55B AOB α-∠=(1)求4cos 3sin 5cos 3sin -+αααα的值;(2)设AOP ∠=2(),63πθθπ≤≤OQ OA OP =+,四边形OAQP 的面积为S , 2()(1)21f OA OQ S θ=⋅-+-,求()f θ的最值及此时θ的值.三角函数与三角形综合题【背一背重点知识】1.正余弦定理,三角形面积公式2.根据已知条件,正确合理选用正余弦定理.一般已知两角用正弦定理,已知一角求边用余弦定理3.关注三角形中隐含条件,如.sin sin ,cos )cos(,sin )sin(,B A B A C B A C B A C B A >⇔>-=+=+=++π【讲一讲提高技能】1必备技能:等价变形是应用三角函数解三角形时的注意点.大边对大角,在三角形中等价为大角对大正弦值.在解三角形时,由正弦值求角时一定要注意角的取值范围,否则易出现增根或失根.在三角形中求三角函数最值或取值范围更要挖掘三角形中隐含条件,密切注意角的范围对三角函数值的影响. 2典型例题:例1 在ABC ∆中,角C B A ,,所对的边分别是c b a ,,,已知3,2π==C c .(1)若ABC ∆的面积等于3,求b a ,;(2)若A A B C 2sin 2)sin(sin =-+,a b <且,求ABC ∆的面积.例2在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知()2cos 14cos cos B C B C -+=. (1)求A ;(2)若7a =ABC ∆的面积3b c +. 【练一练提升能力】1. 在ABC ∆中,内角,,A B C 所对的边分别为,,a b c .已知,3a b c ≠=,22cos -cos 3sin cos -3sin cos .A B A A B B =(1)求角C 的大小; (2)若4sin 5A =,求ABC ∆的面积. 2. 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且cos cos 2cos a C c A b A ⋅+⋅=⋅. (1)求角A 的大小; (2)求函数)6sin(sin 3π-+=C B y 的值域.三角形与向量综合题【背一背重点知识】1.三角形中的边长与内角和向量的模及夹角的对应关系2.向量加法、减法、投影、数量积、共线等几何意义在三角形中体现3.正余弦定理、面积公式中边长及角与涉及向量模及夹角关系 【讲一讲提高技能】1必备技能:若P 分AB 所成比为λ,则111CP CA CB λλλ=+++;若,1CP mCA nCB m n =++=,则,,A P B 三点关线.,a b 夹角为钝角的充要条件是0a b ⋅<且,a b 不反向;同样,a b 夹角为锐角的充要条件是0a b ⋅>且,a b 不同向.2典型例题:例1已知ABC ∆中,角,,A B C 的对边分别为,,a b c ,且有(2)cos cos a c B b C -=. ⑴求角B 的大小;⑵设向量()()4,5,4cos 3,12cos =-+=n A A m ,且n m ⊥,求tan()4A π+的值. 例2 设△ABC 的面积为S ,且230S AB AC +⋅=. (1)求角A 的大小;(2)若||3BC =,且角B 不是最小角,求S 的取值范围. 【练一练提升能力】1.设锐角△ABC 的三内角,,A B C 的对边分别为 ,,a b c .(1)设向量m (1,sin 3cos )A A =+ ,n 3(sin ,)2A = ,若m 与n 共线,求角A 的大小. (2)若2a =,43sin cB =,且△ABC 的面积小于3,求角B 的取值范围. 2. 已知函数()f x m n =⋅,其中(sin cos ,3cos )m x x x ωωω=+,(cos sin ,2sin )(0)n x x x ωωωω=->.若函数()f x 相邻两对称轴的距离等于2π. (1)求ω的值;并求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦的值域; (2)在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,若()1,3,3f A a b c ==+=()b c >,求边b 、c 的长.解答题(共10题)1.已知向量(sin ,sin ),(cos ,cos ),sin 2,m A B n B A m n C ==⋅=且A 、B 、C 分别为△ABC 的三边a 、b 、c 所对的角.(1)求角C 的大小;(2)若sin ,sin ,sin A C B 成等差数列,且()18CA AB AC ⋅-=,求c 边的长. 2. 已知向量()()2cos ,3sin ,cos ,2cos a x x b x x ==-,设函数()f x a b =⋅. (1)求()f x 的单调增区间; (2)若tan 2α=,求 ()f α的值.3.在平面直角坐标系中,点)cos ,21(2θP 在角α的终边上,点)1,(sin 2-θQ 在角β的终边上,且21-=⋅OQOP.(1)求θ2cos的值;(2)求)sin(βα+的值.4. 某同学用“五点法”画函数()sin()(0,0,||)2f x A x B Aπωϕωϕ=++>><在某一个周期内的图象时,列表并填入的部分数据如下表:(Ⅰ)请求出上表中的123,,x x x,并直接写出函数()f x的解析式;(Ⅱ)将()f x的图象沿x轴向右平移23个单位得到函数()g x,若函数()g x在[0,]x m∈(其中(2,4)m∈)上的值域为[3,3]-,且此时其图象的最高点和最低点分别为,P Q,求OQ与QP夹角θ的大小.5.已知ABC∆的面积为S,且AB AC S⋅=.(1)求A2tan的值;(2)若4π=B,3CB CA-=,求ABC∆的面积S.6. 已知向量a()3sin,cosx x=,b()cos,cosx x=,()2f x=a b1-.(1)求函数()f x的单调递减区间及其图象的对称轴方程;(2)当[]0,xπ∈时,若()1f x=-,求x的值.7. 如图,在△ABC中,ACB∠为钝角,π2,2,6AB BC A===.D为AC延长线上一点,且31CD=.DCB(Ⅰ)求BCD∠的大小;(Ⅱ)求BD 的长及△ABC 的面积.8. 已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像经过点π(,1)12. (1)求ϕ的值;(2)在ABC ∆中,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,若222a b c ab +-=,且π2()2122A f +=.求sinB . 9. 已知函数()2cos(2)2cos 13f x x x π=+-+.(1)试将函数()f x 化为()sin()(0)f x A x B ωϕω=++>的形式,并求该函数的对称中心; (2)若锐角ABC ∆中角A B C 、、所对的边分别为a b c 、、,且()0f A =,求bc的取值范围 10. 已知向量(2sin ,sin )a x x =,(sin ,23cos )b x x =,函数()f x a b =⋅ (Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,且2cos cos cos a B b C c B =+,若对任意满足条件的A ,不等式()f A m >恒成立,求实数m的取值范围.一、填空题(共14题,满分56分)1.(4分)若复数z=1+2i,其中i是虚数单位,则(z+)•=.2.(4分)函数y=1﹣2cos2(2x)的最小正周期是.3.(4分)若抛物线y2=2px的焦点与椭圆的右焦点重合,则该抛物线的准线方程.4.(4分)设f(x)=,若f(2)=4,则a的取值范围为.5.(4分)若实数x,y满足xy=1,则x2+2y2的最小值为.6.(4分)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为(结果用反三角函数值表示).7.(4分)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是.8.(4分)设无穷等比数列{an}的公比为q,若a1=(a3+a4+…an),则q=.9.(4分)若f(x)=﹣,则满足f(x)<0的x的取值范围是.10.(4分)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结果用最简分数表示).11.(4分)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b=.12.(4分)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.13.(4分)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E (ξ)=4.2,则小白得5分的概率至少为.14.(4分)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为.二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分15.(5分)设a,b∈R,则“a+b>4”是“a>2且b>2”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件16.(5分)如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,Pi(i=1,2,…8)是上底面上其余的八个点,则•(i=1,2,…,8)的不同值的个数为()A.1B.2C.3D.417.(5分)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()A.无论k,P1,P2如何,总是无解B.无论k,P1,P2如何,总有唯一解C.存在k,P1,P2,使之恰有两解D.存在k,P1,P2,使之有无穷多解18.(5分)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]三、解答题(共5题,满分72分)19.(12分)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.20.(14分)设常数a≥0,函数f(x)=.(1)若a=4,求函数y=f(x)的反函数y=f﹣1(x);(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由.21.(14分)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为α和β.(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米).22.(16分)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为曲线E,求证:通过原点的直线中,有且仅有一条直线是E的分隔线.23.(16分)已知数列{an}满足an≤an+1≤3an,n∈N*,a1=1.(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)设{an}是公比为q的等比数列,Sn=a1+a2+…an,若Sn≤Sn+1≤3Sn,n∈N*,求q的取值范围.(3)若a1,a2,…ak成等差数列,且a1+a2+…ak=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…ak的公差.高考模拟题复习试卷习题资料高考数学试卷(理科)(附详细答案)(9)参考答案与试题解析一、填空题(共14题,满分56分)1.(4分)若复数z=1+2i,其中i是虚数单位,则(z+)•= 6 .【分析】把复数代入表达式,利用复数代数形式的混合运算化简求解即可.【解答】解:复数z=1+2i,其中i是虚数单位,则(z+)•==(1+2i)(1﹣2i)+1=1﹣4i2+1=2+4=6.故答案为:6【点评】本题考查复数代数形式的混合运算,基本知识的考查.2.(4分)函数y=1﹣2cos2(2x)的最小正周期是.【分析】由二倍角的余弦公式化简,可得其周期.【解答】解:y=1﹣2cos2(2x)=﹣[2cos2(2x)﹣1]=﹣cos4x,∴函数的最小正周期为T==故答案为:【点评】本题考查二倍角的余弦公式,涉及三角函数的周期,属基础题.3.(4分)若抛物线y2=2px的焦点与椭圆的右焦点重合,则该抛物线的准线方程 x=﹣2 .【分析】由题设中的条件y2=2px(p>0)的焦点与椭圆的右焦点重合,故可以先求出椭圆的右焦点坐标,根据两曲线的关系求出p,再由抛物线的性质求出它的准线方程【解答】解:由题意椭圆,故它的右焦点坐标是(2,0),又y2=2px(p>0)的焦点与椭圆右焦点重合,故=2得p=4,∴抛物线的准线方程为x=﹣=﹣2.故答案为:x=﹣2【点评】本题考查圆锥曲线的共同特征,解答此类题,关键是熟练掌握圆锥曲线的性质及几何特征,熟练运用这些性质与几何特征解答问题.4.(4分)设f(x)=,若f(2)=4,则a的取值范围为(﹣∞,2]. 【分析】可对a进行讨论,当a>2时,当a=2时,当a<2时,将a代入相对应的函数解析式,从而求出a的范围.【解答】解:当a>2时,f(2)=2≠4,不合题意;当a=2时,f(2)=22=4,符合题意;当a<2时,f(2)=22=4,符合题意;∴a≤2,故答案为:(﹣∞,2].【点评】本题考察了分段函数的应用,渗透了分类讨论思想,本题是一道基础题.5.(4分)若实数x,y满足xy=1,则x2+2y2的最小值为 2.【分析】由已知可得y=,代入要求的式子,由基本不等式可得.【解答】解:∵xy=1,∴y=∴x2+2y2=x2+≥2=2,当且仅当x2=,即x=±时取等号,故答案为:2【点评】本题考查基本不等式,属基础题.6.(4分)若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为arccos(结果用反三角函数值表示).【分析】由已知中圆锥的侧面积是底面积的3倍,可得圆锥的母线是圆锥底面半径的3倍,在轴截面中,求出母线与底面所成角的余弦值,进而可得母线与轴所成角.【解答】解:设圆锥母线与轴所成角为θ,∵圆锥的侧面积是底面积的3倍,∴==3,即圆锥的母线是圆锥底面半径的3倍,故圆锥的轴截面如下图所示:则cosθ==,∴θ=arccos,故答案为:arccos【点评】本题考查的知识点是旋转体,其中根据已知得到圆锥的母线是圆锥底面半径的3倍,是解答的关键.7.(4分)已知曲线C的极坐标方程为ρ(3cosθ﹣4sinθ)=1,则C与极轴的交点到极点的距离是.【分析】由题意,θ=0,可得C与极轴的交点到极点的距离.【解答】解:由题意,θ=0,可得ρ(3cos0﹣4sin0)=1,∴C与极轴的交点到极点的距离是ρ=.故答案为:.【点评】正确理解C与极轴的交点到极点的距离是解题的关键.8.(4分)设无穷等比数列{an}的公比为q,若a1=(a3+a4+…an),则q=. 【分析】由已知条件推导出a1=,由此能求出q的值.【解答】解:∵无穷等比数列{an}的公比为q,a1=(a3+a4+…an)=(﹣a1﹣a1q)=,∴q2+q﹣1=0,解得q=或q=(舍).故答案为:.【点评】本题考查等比数列的公比的求法,是中档题,解题时要认真审题,注意极限知识的合理运用.9.(4分)若f(x)=﹣,则满足f(x)<0的x的取值范围是(0,1) .【分析】直接利用已知条件转化不等式求解即可.【解答】解:f(x)=﹣,若满足f(x)<0,即<,∴,∵y=是增函数,∴的解集为:(0,1).故答案为:(0,1).【点评】本题考查指数不等式的解法,指数函数的单调性的应用,考查计算能力.10.(4分)为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是(结果用最简分数表示).【分析】要求在未来的连续10天中随机选择3天进行紧急疏散演练,选择的3天恰好为连续3天的概率,须先求在10天中随机选择3天的情况,再求选择的3天恰好为连续3天的情况,即可得到答案.【解答】解:在未来的连续10天中随机选择3天共有种情况,其中选择的3天恰好为连续3天的情况有8种,分别是(1,2,3),(2,3,4),(3,4,5),(4,5,6),(5,6,7),(6,7,8),(7,8,9),(8,9,10),∴选择的3天恰好为连续3天的概率是,故答案为:.【点评】本题考查古典概型以及概率计算公式,属基础题.11.(4分)已知互异的复数a,b满足ab≠0,集合{a,b}={a2,b2},则a+b= ﹣1 .【分析】根据集合相等的条件,得到元素关系,即可得到结论.【解答】解:根据集合相等的条件可知,若{a,b}={a2,b2},则①或②,由①得,∵ab≠0,∴a≠0且b≠0,即a=1,b=1,此时集合{1,1}不满足条件.若b=a2,a=b2,则两式相减得a2﹣b2=b﹣a,∵互异的复数a,b,∴b﹣a≠0,即a+b=﹣1,故答案为:﹣1.【点评】本题主要考查集合相等的应用,根据集合相等得到元素相同是解决本题的关键,注意要进行分类讨论.12.(4分)设常数a使方程sinx+cosx=a在闭区间[0,2π]上恰有三个解x1,x2,x3,则x1+x2+x3=.【分析】先利用两角和公式对函数解析式化简,画出函数y=2sin(x+)的图象,方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,进而求得此时x1,x2,x3最后相加即可.【解答】解:sinx+cosx=2(sinx+cosx)=2sin(x+)=a,如图方程的解即为直线与三角函数图象的交点,在[0,2π]上,当a=时,直线与三角函数图象恰有三个交点,令sin(x+)=,x+=2kπ+,即x=2kπ,或x+=2kπ+,即x=2kπ+,∴此时x1=0,x2=,x3=2π,∴x1+x2+x3=0++2π=.故答案为:【点评】本题主要考查了三角函数图象与性质.运用了数形结合的思想,较为直观的解决问题.13.(4分)某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,若E (ξ)=4.2,则小白得5分的概率至少为 0.2 .【分析】设小白得5分的概率至少为x,则由题意知小白得4分的概率为1﹣x,由此能求出结果.【解答】解:设小白得5分的概率至少为x,则由题意知小白得1,2,3,4分的概率为1﹣x,∵某游戏的得分为1,2,3,4,5,随机变量ξ表示小白玩该游戏的得分,E(ξ)=4.2,∴4(1﹣x)+5x=4.2,解得x=0.2.故答案为:0.2.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意离散型随机变量的数学期望的合理运用.14.(4分)已知曲线C:x=﹣,直线l:x=6,若对于点A(m,0),存在C上的点P和l上的Q使得+=,则m的取值范围为[2,3].【分析】通过曲线方程判断曲线特征,通过+=,说明A是PQ的中点,结合x的范围,求出m的范围即可.【解答】解:曲线C:x=﹣,是以原点为圆心,2 为半径的圆,并且xP∈[﹣2,0],对于点A(m,0),存在C上的点P和l上的Q使得+=,说明A是PQ的中点,Q的横坐标x=6,∴m=∈[2,3].故答案为:[2,3].【点评】本题考查直线与圆的位置关系,函数思想的应用,考查计算能力以及转化思想.二、选择题(共4题,满分20分)每题有且只有一个正确答案,选对得5分,否则一律得零分15.(5分)设a,b∈R,则“a+b>4”是“a>2且b>2”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】根据不等式的性质,利用充分条件和必要条件的定义进行判定.【解答】解:当a=5,b=0时,满足a+b>4,但a>2且b>2不成立,即充分性不成立,若a>2且b>2,则必有a+b>4,即必要性成立,故“a+b>4”是“a>2且b>2”的必要不充分条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础.16.(5分)如图,四个棱长为1的正方体排成一个正四棱柱,AB是一条侧棱,Pi(i=1,2,…8)是上底面上其余的八个点,则•(i=1,2,…,8)的不同值的个数为()A.1B.2C.3D.4【分析】建立空适当的间直角坐标系,利用坐标计算可得答案.【解答】解:=,则•=()=||2+,∵,∴•=||2=1,∴•(i=1,2,…,8)的不同值的个数为1,故选:A.【点评】本题考查向量的数量积运算,建立恰当的坐标系,运用坐标进行向量数量积运算是解题的常用手段.17.(5分)已知P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,则关于x和y的方程组的解的情况是()A.无论k,P1,P2如何,总是无解B.无论k,P1,P2如何,总有唯一解C.存在k,P1,P2,使之恰有两解D.存在k,P1,P2,使之有无穷多解【分析】判断直线的斜率存在,通过点在直线上,推出a1,b1,P2,a2,b2的关系,然后求解方程组的解即可.【解答】解:P1(a1,b1)与P2(a2,b2)是直线y=kx+1(k为常数)上两个不同的点,直线y=kx+1的斜率存在,∴k=,即a1≠a2,并且b1=ka1+1,b2=ka2+1,∴a2b1﹣a1b2=ka1a2﹣ka1a2+a2﹣a1=a2﹣a1,①×b2﹣②×b1得:(a1b2﹣a2b1)x=b2﹣b1,即(a1﹣a2)x=b2﹣b1.∴方程组有唯一解.故选:B.【点评】本题考查一次函数根与系数的关系,直线的斜率的求法,方程组的解和指数的应用.18.(5分)设f(x)=,若f(0)是f(x)的最小值,则a的取值范围为()A.[﹣1,2]B.[﹣1,0]C.[1,2]D.[0,2]【分析】当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,问题解决.【解答】解;当a<0时,显然f(0)不是f(x)的最小值,当a≥0时,f(0)=a2,由题意得:a2≤x++a,解不等式:a2﹣a﹣2≤0,得﹣1≤a≤2,∴0≤a≤2,故选:D.【点评】本题考察了分段函数的问题,基本不等式的应用,渗透了分类讨论思想,是一道基础题.三、解答题(共5题,满分72分)19.(12分)底面边长为2的正三棱锥P﹣ABC,其表面展开图是三角形P1P2P3,如图,求△P1P2P3的各边长及此三棱锥的体积V.【分析】利用侧面展开图三点共线,判断△P1P2P3是等边三角形,然后求出边长,利用正四面体的体积求出几何体的体积.【解答】解:根据题意可得:P1,B,P2共线,∵∠ABP1=∠BAP1=∠CBP2,∠ABC=60°,∴∠ABP1=∠BAP1=∠CBP2=60°,∴∠P1=60°,同理∠P2=∠P3=60°,∴△P1P2P3是等边三角形,P﹣ABC是正四面体,∴△P1P2P3的边长为4,VP﹣ABC==【点评】本题考查空间想象能力以及逻辑推理能力,几何体的侧面展开图和体积的求法.20.(14分)设常数a≥0,函数f(x)=.(1)若a=4,求函数y=f(x)的反函数y=f﹣1(x);(2)根据a的不同取值,讨论函数y=f(x)的奇偶性,并说明理由.【分析】(1)根据反函数的定义,即可求出,(2)利用分类讨论的思想,若为偶函数求出a的值,若为奇函数,求出a的值,问题得以解决.【解答】解:(1)∵a=4,∴∴,∴,∴调换x,y的位置可得,x∈(﹣∞,﹣1)∪(1,+∞).(2)若f(x)为偶函数,则f(x)=f(﹣x)对任意x均成立,∴=,整理可得a(2x﹣2﹣x)=0.∵2x﹣2﹣x不恒为0,∴a=0,此时f(x)=1,x∈R,满足条件;若f(x)为奇函数,则f(x)=﹣f(﹣x)对任意x均成立,∴=﹣,整理可得a2﹣1=0,∴a=±1,∵a≥0,∴a=1,此时f(x)=,满足条件;当a>0且a≠1时,f(x)为非奇非偶函数综上所述,a=0时,f(x)是偶函数,a=1时,f(x)是奇函数.当a>0且a≠1时,f(x)为非奇非偶函数【点评】本题主要考查了反函数的定义和函数的奇偶性,利用了分类讨论的思想,属于中档题.21.(14分)如图,某公司要在A、B两地连线上的定点C处建造广告牌CD,其中D为顶端,AC长35米,CB长80米,设点A、B在同一水平面上,从A和B看D的仰角分别为α和β.(1)设计中CD是铅垂方向,若要求α≥2β,问CD的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD与铅垂方向有偏差,现在实测得α=38.12°,β=18.45°,求CD的长(结果精确到0.01米).【分析】(1)设CD的长为x,利用三角函数的关系式建立不等式关系即可得到结论. (2)利用正弦定理,建立方程关系,即可得到结论.【解答】解:(1)设CD的长为x米,则tanα=,tanβ=,∵0,∴tanα≥tan2β>0,∴tan,即=,解得0≈28.28,即CD的长至多为28.28米.(2)设DB=a,DA=b,CD=m,则∠ADB=180°﹣α﹣β=123.43°,由正弦定理得,即a=,∴m=≈26.93,答:CD的长为26.93米.【点评】本题主要考查解三角形的应用问题,利用三角函数关系式以及正弦定理是解决本题的关键.23.(16分)已知数列{an}满足an≤an+1≤3an,n∈N*,a1=1.(1)若a2=2,a3=x,a4=9,求x的取值范围;(2)设{an}是公比为q的等比数列,Sn=a1+a2+…an,若Sn≤Sn+1≤3Sn,n∈N*,求q的取值范围.(3)若a1,a2,…ak成等差数列,且a1+a2+…ak=1000,求正整数k的最大值,以及k取最大值时相应数列a1,a2,…ak的公差.【分析】(1)依题意:,又将已知代入求出x的范围;(2)先求出通项:,由求出,对q分类讨论求出Sn分别代入不等式Sn≤Sn+1≤3Sn,得到关于q的不等式组,解不等式组求出q的范围. (3)依题意得到关于k的不等式,得出k的最大值,并得出k取最大值时a1,a2,…ak的公差.【解答】解:(1)依题意:,∴;又∴3≤x≤27,综上可得:3≤x≤6(2)由已知得,,,∴,当q=1时,Sn=n,Sn≤Sn+1≤3Sn,即,成立.当1<q≤3时,,Sn≤Sn+1≤3Sn,即,∴不等式∵q>1,故3qn+1﹣qn﹣2=qn(3q﹣1)﹣2>2qn﹣2>0对于不等式qn+1﹣3qn+2≤0,令n=1,得q2﹣3q+2≤0,解得1≤q≤2,又当1≤q≤2,q﹣3<0,∴qn+1﹣3qn+2=qn(q﹣3)+2≤q(q﹣3)+2=(q﹣1)(q﹣2)≤0成立,∴1<q≤2,当时,,Sn≤Sn+1≤3Sn,即,∴此不等式即,3q﹣1>0,q﹣3<0,3qn+1﹣qn﹣2=qn(3q﹣1)﹣2<2qn﹣2<0,qn+1﹣3qn+2=qn(q﹣3)+2≥q(q﹣3)+2=(q﹣1)(q﹣2)>0∴时,不等式恒成立,上,q的取值范围为:.(3)设a1,a2,…ak的公差为d.由,且a1=1,得即当n=1时,﹣≤d≤2;当n=2,3,…,k﹣1时,由,得d≥,所以d≥,所以1000=k,即k2﹣2000k+1000≤0,得k≤1999所以k的最大值为1999,k=1999时,a1,a2,…ak的公差为﹣.【点评】本题考查等比数列的通项公式及前n项和的求法;考查不等式组的解法;找好分类讨论的起点是解决本题的关键,属于一道难题.22.(16分)在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),记η=(ax1+by1+c)(ax2+by2+c),若η<0,则称点P1,P2被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点P1、P2被直线l分隔,则称直线l为曲线C的一条分隔线.(1)求证:点A(1,2),B(﹣1,0)被直线x+y﹣1=0分隔;(2)若直线y=kx是曲线x2﹣4y2=1的分隔线,求实数k的取值范围;(3)动点M到点Q(0,2)的距离与到y轴的距离之积为1,设点M的轨迹为曲线E,求证:通过原点的直线中,有且仅有一条直线是E的分隔线.【分析】(1)把A、B两点的坐标代入η=(ax1+by1+c)(ax2+by2+c),再根据η<0,得出结论.(2)联立直线y=kx与曲线x2﹣4y2=1可得(1﹣4k2)x2=1,根据此方程无解,可得1﹣4k2≤0,从而求得k的范围.(3)设点M(x,y),与条件求得曲线E的方程为[x2+(y﹣2)2]x2=1 ①.由于y轴为x=0,显然与方程①联立无解.把P1、P2的坐标代入x=0,由η=1×(﹣1)=﹣1<0,可得x=0是一条分隔线.【解答】(1)证明:把点(1,2)、(﹣1,0)分别代入x+y﹣1 可得(1+2﹣1)(﹣1﹣1)=﹣4<0,∴点(1,2)、(﹣1,0)被直线 x+y﹣1=0分隔.(2)解:联立直线y=kx与曲线x2﹣4y2=1可得(1﹣4k2)x2=1,根据题意,此方程无解,故有 1﹣4k2≤0,∴k≤﹣,或k≥.曲线上有两个点(﹣1,0)和(1,0)被直线y=kx分隔.(3)证明:设点M(x,y),则•|x|=1,故曲线E的方程为[x2+(y﹣2)2]x2=1 ①.y轴为x=0,显然与方程①联立无解.又P1(1,2)、P2(﹣1,2)为E上的两个点,且代入x=0,有η=1×(﹣1)=﹣1<0,故x=0是一条分隔线.若过原点的直线不是y轴,设为y=kx,代入[x2+(y﹣2)2]x2=1,可得[x2+(kx﹣2)2]x2=1,令f(x)=[x2+(kx﹣2)2]x2﹣1,∵k≠2,f(0)f(1)=﹣(k﹣2)2<0,∴f(x)=0没有实数解,k=2,f(x)=[x2+(2x﹣2)2]x2﹣1=0没有实数解,即y=kx与E有公共点,∴y=kx不是E的分隔线.∴通过原点的直线中,有且仅有一条直线是E的分隔线.【点评】本题主要考查新定义,直线的一般式方程,求点的轨迹方程,属于中档题.。

人教版高中数学必修二第十章三角恒等变换第10章章末复习课精品课程及课后练习(必学!)

人教版高中数学必修二第十章三角恒等变换第10章章末复习课精品课程及课后练习(必学!)

例 3 已知向量 a=(cos α,sin α),b=(cos β,sin β),|a-b|=255. (1)求cos(α-β)的值;
解 因为向量a=(cos α,sin α),b=(cos β,sin β), |a-b|= cos α-cos β2+sin α-sin β2= 2-2cosα-β=255, 所以 2-2cos(α-β)=45,所以 cos(α-β)=35.
(2)若-π2<β<0<α<π2,且 sin β=-153,求 sin α 的值.
解 因为 0<α<π2,-π2<β<0,所以 0<α-β<π, 因为 cos(α-β)=35, 所以 sin(α-β)=45,且 sin β=-153,cos β=1123, 所以sin α=sin[(α-β)+β]=sin(α-β)cos β+cos(α-β)sin β
例 1 (1)cossi2n15151°0-°ssinin22105°5°的值为
A.-12
√B.12
3 C. 2
D.-
3 2
解析 原式=sinc7o0s°3s1in0°20°=cosc2o0s°s5i0n°20° 1
=2ssiinn4400°°=12.
1 (2)设α为钝角,且3sin 2α=cos α,则sin α=_6__.
解 f(α)=sin2α-6π=17,2α 是第一象限角,即 2kπ<2α<π2+2kπ(k∈Z),
∴2kπ-π6<2α-π6<π3+2kπ(k∈Z),
∴cos2α-6π=4 7 3,
∴sin 2α=sin2α-π6+6π=sin2α-π6·cos
π6+cos2α-π6·sin

步步高学习笔记必修第一册

步步高学习笔记必修第一册

第4课时 函数y =A sin(ωx +φ)的性质(二)学习目标 1.结合三角恒等变换中的有关公式,研究三角函数y =A sin(ωx +φ)的综合性问题.2.构建三角函数模型,解决实际问题. 导语同学们,大家有没有看过武侠玄幻之类的电影,大家是不是经常被里面武功盖世的男女主人公所吸引,显然,练就一身好武功,需要对每一个动作追求完美,在这个过程中需要付出常人所不能的泪水与汗水,同学们,到目前为止,我们已经把三角函数中的每一个“动作”都已训练完毕,现在,我们要把这些“动作”组合在一起,去发挥它更大的作用. 一、函数y =A sin(ωx +φ)的综合问题问题1 如何利用辅助角公式对函数y =a sin x +b cos x 进行合并? 提示 y =a sin x +b cos x =a 2+b 2sin(x +θ).例1 已知函数f (x )=sin ⎝⎛⎭⎫2ωx -π6-4sin 2ωx +2(ω>0),其图象与x 轴的两个相邻交点的距离为π2. (1)求函数f (x )的解析式;(2)若将f (x )的图象向左平移m ()m >0个单位长度得到的函数g (x )的图象恰好经过点⎝⎛⎭⎫-π3,0,求当m 取得最小值时,g (x )在⎣⎡⎦⎤-π6,7π12上的单调区间. 解 (1)f (x )=sin ⎝⎛⎭⎫2ωx -π6-4sin 2ωx +2 =32sin 2ωx -12cos 2ωx -4×1-cos 2ωx 2+2 =32sin 2ωx +32cos 2ωx =3sin ⎝⎛⎭⎫2ωx +π3, ∵T 2=π2,∴T =π,∴T =2π2ω=π,解得ω=1, ∴f (x )=3sin ⎝⎛⎭⎫2x +π3. (2)将f (x )的图象向左平移m (m >0)个单位长度得到g (x )的图象, ∴g (x )=3sin ⎝⎛⎭⎫2x +2m +π3,∵函数g (x )的图象经过点⎝⎛⎭⎫-π3,0, ∴3sin ⎣⎡⎦⎤2×⎝⎛⎭⎫-π3+2m +π3=0,即sin ⎝⎛⎭⎫2m -π3=0, ∴2m -π3=k π,k ∈Z ,∴m =k 2π+π6,k ∈Z ,∵m >0,∴当k =0时,m 取得最小值π6,此时,g (x )=3sin ⎝⎛⎭⎫2x +2π3. 令-π6≤x ≤7π12,则π3≤2x +2π3≤11π6,当π3≤2x +2π3≤π2或3π2≤2x +2π3≤11π6, 即当-π6≤x ≤-π12或5π12≤x ≤7π12时,函数g (x )单调递增;当π2≤2x +2π3≤3π2,即-π12≤x ≤5π12时,函数g (x )单调递减, ∴g (x )在⎣⎡⎦⎤-π6,7π12上的单调递增区间为⎣⎡⎦⎤-π6,-π12,⎣⎡⎦⎤5π12,7π12;单调递减区间为⎣⎡⎦⎤-π12,5π12. 反思感悟 对于综合性问题,需要准备之前所学知识,熟悉诱导公式、两角和差的正弦余弦公式、二倍角公式等,熟悉三角函数的性质,函数图象的特点.跟踪训练1 已知函数f (x )=3sin ωx ·cos ωx +cos 2ωx -12(ω>0)的两条相邻对称轴之间的距离为π2. (1)求ω的值;(2)将函数f (x )的图象向左平移π6个单位长度,再将所得函数的图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,得到函数y =g (x )的图象,若函数y =g (x )-k 在区间⎣⎡⎦⎤-π6,2π3上存在零点,求实数k 的取值范围. 解 (1)f (x )=3sin ωx ·cos ωx +cos 2ωx -12=32sin 2ωx +cos 2ωx +12-12=32sin 2ωx +12cos 2ωx =sin ⎝⎛⎭⎫2ωx +π6, 因为函数图象上两条相邻对称轴之间的距离为π2.所以函数y =f (x )的最小正周期T =π, 所以T =2π2ω=πω=π,解得ω=1.(2)将函数y =f (x )的图象向左平移π6个单位长度后,得到y =sin ⎝⎛⎭⎫2x +π3+π6=cos 2x 的图象, 再将所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =cos x 的图象,故g (x )=cos x , 因为x ∈⎣⎡⎦⎤-π6,2π3, 当x =2π3时,函数g (x )取得最小值,g ⎝⎛⎭⎫2π3=-12; 当x =0时,函数g (x )取得最大值,g (0)=1, 故g (x )∈⎣⎡⎦⎤-12,1. 因为函数y =g (x )-k 在区间⎣⎡⎦⎤-π6,2π3上存在零点, 所以k =g (x )有解,所以实数k 的取值范围为⎣⎡⎦⎤-12,1. 二、利用函数y =A sin(ωx +φ)解决实际问题问题2 结合三角函数周期性的变换规律,你认为生活中哪些现象可以构造三角函数模型? 提示 转动的摩天轮、潮起潮落、每天的气温变化等.例2 建设生态文明,是关系人民福祉,关乎民族未来的长远大计.某市通宵营业的大型商场,为响应节能减排的号召,在气温超过28 ℃时,才开放中央空调降温,否则关闭中央空调.如图是该市夏季一天的气温(单位:℃)随时间(0≤t ≤24,单位:h)的大致变化曲线,该曲线近似地满足函数关系y =A sin(ωt +φ)+b (A >0,ω>0,|φ|<π).(1)求函数y =f (t )的解析式;(2)请根据(1)的结论,判断该商场的中央空调应在本天内何时开启?何时关闭? 解 (1)由题图知,T =2(14-2)=24, 所以T =2πω=24,解得ω=π12.由图知,b =16+322=24,A =32-162=8,所以f (t )=8sin ⎝⎛⎭⎫π12t +φ+24. 将点(2,16)代入函数解析式得, 24+8sin ⎝⎛⎭⎫π12×2+φ=16, 得π6+φ=2k π-π2(k ∈Z ), 即φ=2k π-2π3(k ∈Z ),又因为|φ|<π,得φ=-2π3.所以f (t )=24+8sin ⎝⎛⎭⎫π12t -2π3. (2)依题意,令24+8sin ⎝⎛⎭⎫π12t -2π3>28, 可得sin ⎝⎛⎭⎫π12t -2π3>12, 所以2k π+π6<π12t -2π3<2k π+5π6(k ∈Z ),解得24k +10<t <24k +18(k ∈Z ), 令k =0,得10<t <18,故中央空调应在上午10时开启,下午18时关闭.反思感悟 解决三角函数的实际应用问题必须按照一般应用题的解题步骤执行(1)认真审题,理清问题中的已知条件与所求结论. (2)建立三角函数模型,将实际问题数学化.(3)利用三角函数的有关知识解决关于三角函数的问题,求得数学模型的解. (4)根据实际问题的意义,得出实际问题的解. (5)将所得结论返回、转译成实际问题的答案.跟踪训练2 潮汐是发生在沿海地区的一种自然现象,其形成是海水受日月的引力.潮是指海水在一定的时候发生涨落的现象.一般来说,早潮叫潮,晚潮叫汐.某观测站通过长时间的观测,其发现潮汐的涨落规律和函数图象f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2基本一致且周期为4π,其中x 为时间,f (x )为水深.当x =π4时,海水上涨至最高5米.(1)求函数的解析式,并作出函数f (x )在[0,4π]内的简图; (2)求海水水深持续加大的时间区间. 解 (1)由T =2π|ω|=4π,得ω=12,又A =5, 当x =π4时,sin ⎝⎛⎭⎫12·π4+φ=1, 解得φ=3π8,故函数f (x )=5sin ⎝⎛⎭⎫12x +3π8,应用五点作图法分别取x =0,π4,5π4,9π4,13π4,4π,求出对应的函数值,并描点和绘制函数图象,如图所示.(2)求海水水深持续加大的时间区间, 即求f (x )的单调递增区间. 令z =12x +3π8,函数y =5sin z 的单调递增区间为⎣⎡⎦⎤-π2+2k π,π2+2k π,k ∈Z ,即-π2+2k π≤12x +3π8≤π2+2k π,k ∈Z ⇒-7π8+2k π≤12x ≤π8+2k π,k ∈Z ,即-7π4+4k π≤x ≤π4+4k π(k ∈Z ).故海水水深持续加大的时间区间为⎣⎡⎦⎤-7π4+4k π,π4+4k π(k ∈Z ).1.知识清单:(1)三角函数的综合应用.(2)构造三角函数模型解决实际问题. 2.方法归纳:辅助角公式、待定系数法.3.常见误区;易忽视实际问题中自变量的取值范围.1.函数y =3sin ⎝⎛⎭⎫x +π3的图象的一个对称中心是( ) A .(0,0) B.⎝⎛⎭⎫π3,0 C.⎝⎛⎭⎫-π3,0 D .(3,0)答案 C解析 由x +π3=k π(k ∈Z ),得x =k π-π3(k ∈Z ),令k =0,则x =-π3,故⎝⎛⎭⎫-π3,0是函数y =3sin ⎝⎛⎭⎫x +π3的图象的一个对称中心. 2.已知奇函数f (x )=2sin(ωx +φ)(ω>0,0<φ<2π)满足f ⎝⎛⎭⎫π4+x =f ⎝⎛⎭⎫π4-x ,则ω的取值可能是( ) A .1 B .2 C .3 D .4 答案 B3.若将函数y =sin 2x 的图象向右平移π6个单位长度,则平移后所得图象对应函数的单调递增区间是( )A.⎣⎡⎦⎤-π12+k π,5π12+k π(k ∈Z )B.⎣⎡⎦⎤-π6+k π,π3+k π(k ∈Z ) C.⎣⎡⎦⎤5π12+k π,11π12+k π(k ∈Z ) D.⎣⎡⎦⎤π6+k π,5π6+k π(k ∈Z ) 答案 A解析 将函数y =sin 2x 的图象向右平移π6个单位长度,可得y =sin 2⎝⎛⎭⎫x -π6=sin ⎝⎛⎭⎫2x -π3, 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,解得k π-π12≤x ≤k π+5π12,k ∈Z ,所以函数的单调递增区间是⎣⎡⎦⎤-π12+k π,5π12+k π(k ∈Z ). 4.将函数f (x )=a sin x +b cos x (a ,b ∈R ,a ≠0)的图象向左平移π6个单位长度,得到一个偶函数图象,则ba =________.答案3解析 因为将函数f (x )=a sin x +b cos x (a ,b ∈R ,a ≠0)的图象向左平移π6个单位长度,得到偶函数图象,所以函数f (x )=a sin x +b cos x 的对称轴为直线x =π6,所以f ⎝⎛⎭⎫π3=a sin π3+b cos π3=f (0)=b ,因为a ≠0,所以ba= 3.课时对点练1.若函数f (x )=2sin ⎝⎛⎭⎫2x -π3+φ是偶函数,则φ的值可以是( ) A.5π6 B.π2 C.π3 D .-π2 答案 A解析 令x =0得f (0)=2sin ⎝⎛⎭⎫-π3+φ=±2,∴sin ⎝⎛⎭⎫φ-π3=±1,把φ=5π6代入,符合上式. 2.将函数f (x )=cos ⎝⎛⎭⎫4x -π3的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y =g (x )的图象,则g (x )的最小正周期是( ) A.π2 B .π C .2π D .4π 答案 B解析 由题意得g (x )=cos ⎝⎛⎭⎫12×4x -π3 =cos ⎝⎛⎭⎫2x -π3, ∴T =2π2=π.3.若将函数y =sin ⎝⎛⎭⎫2x -π4的图象向左平移φ个单位长度,所得图象关于y 轴对称,则φ的最小正值是( ) A.π8 B.π4 C.3π8 D.3π4 答案 C解析 将函数y =sin ⎝⎛⎭⎫2x -π4的图象向左平移φ个单位长度,可得到y =sin ⎝⎛⎭⎫2x +2φ-π4的图象. 由所得图象关于y 轴对称,可知2φ-π4=π2+k π(k ∈Z ),解得φ=3π8+k π2(k ∈Z ),故φ的最小正值是3π8.4.关于函数f (x )=sin(x +φ)(x ∈R ),下列命题正确的是( ) A .存在φ,使f (x )是偶函数B .对任意的φ,f (x )都是非奇非偶函数C .存在φ,使f (x )既是奇函数,又是偶函数D .对任意的φ,f (x )都不是奇函数 答案 A解析 对于A ,当φ=π2+k π,k ∈Z 时,函数f (x )=sin(x +φ)是偶函数,所以A 正确;对于B ,当φ=k π,k ∈Z 时,函数f (x )=sin(x +φ)是奇函数,所以B 错误;对于C ,由选项A, B 的分析,不存在φ∈R ,使函数f (x )=sin(x +φ)既是奇函数,又是偶函数,所以C 错误;对于D ,当φ=k π,k ∈Z 时,函数f (x )=sin(x +φ)是奇函数,所以D 错误.5.函数g (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<2π)的部分图象如图所示,已知g (0)=g ⎝⎛⎭⎫5π6=3,函数y =f (x )的图象可由y =g (x )的图象向右平移π3个单位长度而得到,则函数f (x )的解析式为( )A .f (x )=2sin 2xB .f (x )=2sin ⎝⎛⎭⎫2x +π3C .f (x )=-2sin 2xD .f (x )=2sin ⎝⎛⎭⎫2x -π3 答案 A解析 由图象可知g (x )的最小正周期T =4×⎝ ⎛⎭⎪⎫5π6+02-π6=π,∴ω=2πT=2, 又∵g (x )在x =5π12时取最小值,∴2×5π12+φ=-π2+2k π(k ∈Z ),∴φ=-4π3+2k π(k ∈Z ).又∵0<φ<2π,∴φ=2π3,∴g (x )=A sin ⎝⎛⎭⎫2x +2π3. 又∵图象过点(0,3),∴A sin 2π3=3,∴A =2. ∴g (x )=2sin ⎝⎛⎭⎫2x +2π3, 把g (x )的图象向右平移π3个单位长度后得到函数f (x )的图象,∴f (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π3+2π3=2sin 2x . 6.(多选)已知函数f (x )=sin ⎝⎛⎭⎫2x -π6,下列说法正确的是( )A .f (x )关于点⎝⎛⎭⎫π12,0对称 B .f (x )关于直线x =-π6对称C .f (x )的图象向左平移π6个单位长度后可得到f (x )=sin 2x 的图象D .f (x )=sin 2x 的图象向右平移π12个单位长度后可得到f (x )的图象答案 ABD解析 对于A ,∵f ⎝⎛⎭⎫π12=sin ⎝⎛⎭⎫2×π12-π6=0, ∴f (x )关于点⎝⎛⎭⎫π12,0对称,故A 正确; 对于B ,∵f ⎝⎛⎭⎫-π6=sin ⎝⎛⎭⎫-2×π6-π6=-1, ∴f (x )关于直线x =-π6对称,故B 正确;对于C ,f (x )的图象向左平移π6个单位长度后得y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6-π6=sin ⎝⎛⎭⎫2x +π6,故C 错误; 对于D ,f (x )=sin 2x 的图象向右平移π12个单位长度后得y =sin 2⎝⎛⎭⎫x -π12=sin ⎝⎛⎭⎫2x -π6,故D 正确.7.f (x )=sin x +a cos x 关于点⎝⎛⎭⎫π3,0对称,则a 的值为________. 答案 - 3解析 ∵⎝⎛⎭⎫π3,0为f (x )的对称中心, ∴f ⎝⎛⎭⎫π3=0,即sin π3+a cos π3=0, 即32+12a =0,∴a =- 3. 8.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=________. 答案143解析 依题意知f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,∴f (x )的图象关于直线x =π6+π32对称,即关于直线x =π4对称,∴π4·ω+π3=3π2+2k π,k ∈Z ,又π3-π6<T =2πω, 即0<ω<12,∴ω=143.9.已知函数f (x )=cos ⎝⎛⎭⎫2x -π3+2sin ⎝⎛⎭⎫x -π4sin ⎝⎛⎭⎫x +π4. (1)求函数f (x )的最小正周期;(2)若将函数f (x )图象上每点的横坐标变为原来的2倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在区间⎣⎡⎦⎤-π12,π上的值域. 解 (1)因为f (x )=cos ⎝⎛⎭⎫2x -π3+2sin ⎝⎛⎭⎫x -π4·sin ⎝⎛⎭⎫x +π4=cos ⎝⎛⎭⎫2x -π3+sin ⎝⎛⎭⎫2x -π2 =12cos 2x +32sin 2x -cos 2x =sin ⎝⎛⎭⎫2x -π6,所以最小正周期T =2π2=π. (2)由(1)可知f (x )=sin ⎝⎛⎭⎫2x -π6, 依题意变换之后g (x )=sin ⎝⎛⎭⎫x -π6, 因为x ∈⎣⎡⎦⎤-π12,π,所以x -π6∈⎣⎡⎦⎤-π4,5π6, 所以sin ⎝⎛⎭⎫x -π6∈⎣⎡⎦⎤-22,1, 所以g (x )在区间⎣⎡⎦⎤-π12,π上的值域为⎣⎡⎦⎤-22,1. 10.已知某海滨浴场的海浪高度y (米)是时间t (时)的函数,其中0≤t ≤24,记y =f (t ),下表是某日各时的浪高数据:经长期观测,y =f (t )的图象可近似地看成是函数y =A cos ωt +b 的图象. (1)根据以上数据,求其最小正周期和函数解析式;(2)根据规定,当海浪高度大于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的8∶00到20∶00之间,有多少时间可供冲浪者进行活动? 解 (1)由表中数据可知,T =12,∴ω=π6.又当t =0时,y =1.5,∴A +b =1.5; 当t =3时,y =1.0,得b =1.0,∴A =12,∴函数解析式为y =12cos π6t +1(0≤t ≤24).(2)∵当y >1时,才对冲浪爱好者开放, ∴y =12cos π6t +1>1,即cos π6t >0,则2k π-π2<π6t <2k π+π2,k ∈Z ,解得12k -3<t <12k +3(k ∈Z ).又0≤t ≤24,∴0≤t <3或9<t <15或21<t ≤24,∴在规定时间内冲浪爱好者只有6个小时可以进行活动,即9<t <15.11.设y =f (t )是某港口水的深度y (米)关于时间t (时)的函数,其中0≤t ≤24.下表是该港口某一天从0时至24时记录的时间t 与水深y 的关系:t /时 0 3 6 9 12 15 18 21 24 y /米1215.112.19.111.914.911.98.912.1经长期观察,函数y =f (t )的图象可以近似地看成函数y =k +A sin(ωt +φ)的图象.下面的函数中,最能近似表示表中数据间对应关系的函数是( ) A .y =12+3sin π6t ,t ∈[0,24]B .y =12+3sin ⎝⎛⎭⎫π6t +π,t ∈[0,24]C .y =12+3sin π12t ,t ∈[0,24]D .y =12+3sin ⎝⎛⎭⎫π12t +π2,t ∈[0,24] 答案 A解析 由图表可得函数y =k +A sin(ωt +φ)的最大值为15,最小值为9,故k =15+92=12,A=15-12=3,由于当函数取得最大值时,相邻的两个t 值分别为t =3和t =15, 故函数的周期等于15-3=12=2πω,解得ω=π6,故函数的解析式为y =12+3sin ⎝⎛⎭⎫π6t +φ, 又当t =0时,函数值等于12, ∴12+3sin φ=12,∴sin φ=0, ∴φ=k π,k ∈Z ,又当t =3时,函数值约等于15, 即12+3sin ⎝⎛⎭⎫π2+k π=15, ∴k =0,∴φ=0.故函数的解析式为y =12+3sin π6t ,t ∈[0,24].12.设f (x )=sin 3x -cos 3x ,把y =f (x )的图象向左平移φ(φ>0)个单位长度后,恰好得到函数g (x )=-sin 3x +cos 3x 的图象,则φ的值可以为( ) A.π6 B.π4 C.π2 D .π 答案 D解析 由题意,可知f (x )=2sin ⎝⎛⎭⎫3x -π4, g (x )=2⎝⎛⎭⎫-22sin 3x +22cos 3x=2sin ⎝⎛⎭⎫3x +3π4, 则3φ-π4=3π4+2k π(k ∈Z ),即φ=π3+2k π3(k ∈Z ),当k =1时,φ=π.13.同时具有性质“①最小正周期是π;②图象关于直线x =π3对称;③在⎣⎡⎦⎤-π6,π3上单调递增”的一个函数是( ) A .y =sin ⎝⎛⎭⎫x 2+π6 B .y =cos ⎝⎛⎭⎫2x +π3 C .y =sin ⎝⎛⎭⎫2x -π6 D .y =cos ⎝⎛⎭⎫2x -π6 答案 C解析 由①知T =π=2πω,ω=2,排除A.由②③知当x =π3时,f (x )取最大值,验证知只有C 符合要求.14.将函数f (x )=sin x 的图象向右平移π3个单位长度后得到函数y =g (x )的图象,则函数y =f (x )+g (x ),x ∈⎣⎡⎦⎤π2,π的最小值为________. 答案32解析 由题意得g (x )=sin ⎝⎛⎭⎫x -π3, ∴y =f (x )+g (x )=sin x +sin ⎝⎛⎭⎫x -π3=sin x +sin x cos π3-cos x sin π3 =32sin x -32cos x =3sin ⎝⎛⎭⎫x -π6. ∵x ∈⎣⎡⎦⎤π2,π,∴x -π6∈⎣⎡⎦⎤π3,5π6, ∴当x -π6=5π6时,y min =32.15.若函数f (x )=sin x +cos x -2sin x cos x +1-a 在⎣⎡⎦⎤-3π4,-π4上有零点,则实数a 的取值范围为( ) A.[]-2,2 B.⎣⎡⎦⎤-2,94 C.[]-2,2 D.⎣⎡⎦⎤2,94 答案 A解析 ∵函数f (x )=sin x +cos x -2sin x cos x +1-a 在⎣⎡⎦⎤-3π4,-π4上有零点, ∴方程a -1=sin x +cos x -2sin x cos x 在⎣⎡⎦⎤-3π4,-π4上有解, 设t =sin x +cos x =2sin ⎝⎛⎭⎫x +π4, ∵x ∈⎣⎡⎦⎤-3π4,-π4,∴x +π4∈⎣⎡⎦⎤-π2,0,∴t ∈[]-2,0,∵t 2=1+2sin x cos x , ∴y =sin x +cos x -2sin x cos x =t -t 2+1 =-⎝⎛⎭⎫t -122+54,t ∈[-2,0], 当t =0时,y 取得最大值1;当t =-2时,y 取得最小值-2-1, 故可得-2-1≤a -1≤1,∴-2≤a ≤2.16.如图所示,已知OPQ 是半径为1,圆心角为π3的扇形,O 是坐标原点,OP 落在x 轴非负半轴上,点Q 在第一象限,C 是扇形弧上的一点,四边形ABCD 是扇形的内接矩形.(1)当C 是扇形弧上的四等分点(靠近Q )时,求点C 的纵坐标; (2)当C 在扇形弧上运动时,求矩形ABCD 面积的最大值.解 (1)根据题意,得当C 是扇形弧上的四等分点(靠近Q )时,∠POC =π4,所以点C 的纵坐标y =sin π4=22.(2)设∠COP =θ⎝⎛⎭⎫0≤θ≤π3,矩形的面积为S , 则S =AB ·BC =(OB -OA )·BC =⎝⎛⎭⎫cos θ-33sin θsin θ=sin θcos θ-33sin 2θ =12sin 2θ+36cos 2θ-36=33sin ⎝⎛⎭⎫2θ+π6-36, 所以当θ=π6时,S max =33-36=36.。

2024年高考数学专项三角恒等变换4种常见考法归类(解析版)

2024年高考数学专项三角恒等变换4种常见考法归类(解析版)

三角恒等变换4种常见考法归类高频考点考点一两角和与差的正弦、余弦和正切公式(一)给角求值(二)给值(式)求值(三)给值求角(四)三角函数式的化简(五)两角和与差的正弦、余弦、正切公式的综合应用考点二二倍角公式(一)给角求值(二)给值(式)求值(三)给值求角(四)与同角三角函数的基本关系综合(五)与诱导公式的综合(六)利用二倍角公式化简求值考点三辅助角公式的应用考点四简单的三角恒等变换(一)半角公式的应用(二)三角恒等式的证明(三) 三角恒等变换的综合问题解题策略1.两角和与差的正弦、余弦和正切公式(1)两角和与差的正弦、余弦和正切公式(和角、差角公式)C(α-β)cos(α-β)=cosαcosβ+sinαsinβC(α+β)cos(α+β)=cos_αcos_β-sin_αsin_β记忆口诀:1、余余正正符号反2、同名相乘、加减相反3、谐音:“吃吃睡睡,颠倒黑白”S(α-β)sin(α-β)=sin_αcos_β-cos_αsin_β(异名相乘、加减一致)S(α+β)sin(α+β)=sin_αcos_β+cos_αsin_β(异名相乘、加减一致)记忆口诀:1、正余余正符号同2、异名相乘、加减一致3、谐音:“上错厕所,一一对应”T (α-β)tan(α-β)=tanα-tanβ1+tanαtanβ;(两式相除、上同下异).变形:①tanα-tanβ=tan(α-β)(1+tanαtanβ)②tanα·tanβ=tanα-tanβtan(α-β)-1 2024年高考数学专项三角恒等变换4种常见考法归类(解析版)T (α+β)tan (α+β)=tan α+tan β1-tan αtan β;(两式相除、上同下异).变形:①tan α+tan β=tan (α+β)(1-tan αtan β)②tan α·tan β=1-tan α+tan βtan (α+β)(2)二倍角的正弦、余弦、正切公式(倍角公式)二倍角是相对的,如:α2是α4的2倍,3α是3α2的2倍.S 2αsin 2α=2sin _αcos _α;变形:sin αcos α=12sin2α,cos α=sin2α2sin α,⇒1±sin2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2C 2αcos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;变形:cos 2α=1+cos2α2,sin 2α=1-cos2α2T 2αtan 2α=2tan α1-tan 2α(α≠k π+π2且α≠k π2+π4,k ∈Z )2.简单的三角恒等变换(1)降幂公式sin 2α=1-cos2α2.cos 2α=1+cos2α2.sin αcos α=12sin2α.(2)升幂公式1+cos α=2cos 2α2. 1-cos α=2sin 2α2. 1+sin α=sin α2+cos α2 2. 1-sin α=sin α2-cos α22.注:1+cos2α=2cos 2α;1−cos2α=2sin 2α;1+sin2α=(sin α+cos α)2;1−sin2α=(sin α−cos α)2(3)万能公式sin α=2tan α21+tan 2α2,cos α=1-tan 2α21+tan 2α2,tan α=2tan α21-tan 2α2(4)其他常用变式sin2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α;cos2α=cos 2α−sin 2αsin 2α+cos 2α=1−tan 2α1+tan 2α;cos 4x -sin 4x =(cos 2x +sin 2x )(cos 2x -sin 2x )=cos2x 3.辅助角公式(同角异名1次)a sin α+b cos α=a 2+b 2sin (α+φ),其中cos φ=a a 2+b 2,sin φ=b a 2+b 2,或tan φ=ba . 其中φ称为辅助角,它的终边所在象限由点(a ,b )决定.4.半角的正弦、余弦、正切公式(1)sin α2=±1-cos α2.(2)cosα2=±1+cosα2.(3)tanα2=±1-cosα1+cosα=sinα1+cosα=1-cosαsinα.5.常用的拆角、拼角技巧(1)15°=45°-30°=60°-45°=30°2.(2)β=α-a-β,α=(α+β)-β=β-(β-α),2α=(α+β)+(α-β),α=12[(α+β)+(α-β)]β=α+β2-α-β2=(α+2β)-(α+β). α-β=(α-γ)+(γ-β)(3)π3-α=π2-π6+α,π6-α=π2-π3+α,π3+α=π-2π3-α,π4+α=π-3π4-α. π4+α=π2-π4-α6. 应用和、差、倍角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”;(2)注意与同角三角函数基本关系、诱导公式的综合应用;(3)注意配方法、因式分解和整体代换思想的应用. 7. 和、差、倍角公式的逆用和变形用的应用技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式;(2)和差角公式变形:sinαsinβ+cos(α+β)=cosαcosβ;cosαsinβ+sin(α-β)=sinαcosβ;tanα±tanβ=tan(α±β)·(1∓tanα·tanβ);(3)倍角公式变形:降幂公式.(4)tanαtanβ,tanα+tanβ(或tanα-tanβ),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题. 8. 解决非特殊角求值问题的基本思路有:①化非特殊角为特殊角;②化为正负相消的项,消去后求值;③化分子、分母使之出现公约数,进行约分求值;④当有α,2α,3α,4α同时出现在一个式子中时,一般将α向2α,3α(或4α)向2α转化,再求关于2α式子的值.9.三角函数式的化简要遵循“三看”原则注:三角函数式化简、求值的一般思路:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化等. 10. 给值(式)求值的解题策略(1)已知某些角的三角函数值,求另外一些角的三角函数值,要注意观察已知角与所求表达式中角的关系,即拆角与凑角.(2)由于和、差角与单角是相对的,因此解题过程中根据需要灵活地进行拆角或凑角的变换.常见角的变换有:①α=(α-β)+β;②α=α+β2+α-β2;③2α=(α+β)+(α-β);④2β=(α+β)-(α-β).(3)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式.(4)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(5)给值求值型恒等变换问题,重在对所给条件进行挖掘,如由某角正弦值可得其余弦、正切值,由所给值的符号判断角所在的象限等. 必要时还要进行估算,如锐角α的余弦值为35,由12<35<22,及余弦函数在0,π2上单调递减可知45°<α<60°,从而2α∈(90°,120°),或3α∈(135°,180°)等. 另外,注意三种主要变换:①变角,通常是“配凑”,常用的角的拆拼有2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β等;②变名,通过变换函数名称达到减少函数种类的目的,其手段通常有“切化弦”“升幂与降幂”等;③变式,根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手段通常有:“常值代换”如1=tan π4,1=sin 2α+cos 2α“逆用变换公式”“通分约分”“分解与组合”“配方与平方”等. 其中角的变换居核心地位.11. 已知三角函数值求角的解题步骤(1)界定角的范围,根据条件确定所求角的范围.(在给值求角时,一般地选择一个适当的三角函数,根据题设确定所求角的范围,利用三角函数的单调性求出角. 确定角的范围是关键,一定要使所选的函数在此范围内是单调的,必要时,还需根据已知三角函数值缩小角的范围.)(2)求所求角的某种三角函数值.为防止增解最好选取在范围内单调的三角函数(已知三角函数值求角,选三角函数时可按下列规则:(i )已知正切值,常选正切函数;(ii )已知正、余弦值,常选正弦或余弦函数;(iii )若角的范围是0,π2 ,π,3π2 ,常选正、余弦函数;(iv )若角的范围是π2,3π2 或-π2,π2 ,常选正弦函数;(v )若角的范围是(0,π)或(π,2π),常选余弦函数. )(3)结合三角函数值及角的范围求角.12. 利用半角公式求值的思路(1)看角:若已知三角函数式中的角是待求三角函数式中角的两倍,则求解时常常借助半角公式求解.(2)明范围:由于半角公式求值常涉及符号问题,因此求解时务必依据角的范围,求出相应半角的范围.(3)选公式:涉及半角公式的正切值时,常用tan α2=sinα1+cosα=1-cosαsinα,其优点是计算时可避免因开方带来的求角的范围问题;涉及半角公式的正、余弦值时,常先利用sin2α2=1-cosα2,cos2α2=1+cosα2计算.13. 三角恒等式证明的常用方法(1)执因索果法:证明的形式一般是化繁为简.(2)左右归一法:证明左右两边都等于同一个式子.(3)拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它们之间的差异,简言之,即化异求同.(4)比较法:设法证明“左边-右边=0”或“左边/右边=1”.(5)分析法:从被证明的等式出发,逐步地探求使等式成立的条件,直到已知条件或明显的事实为止,就可以断定原等式成立.考点精析考点一两角和与差的正弦、余弦和正切公式(一)给角求值14(2023·全国·高三专题练习)cos-75°的值是A.6-22B.6+22C.6-24D.6+2415(2023·全国·模拟预测)sin20°cos40°+sin70°sin40°=()A.32B.12C.22D.116(2023·广东湛江·统考一模)cos70°-cos20°cos65°=.17(2023·全国·高三专题练习)sin220°-cos220°sin45°cos155°1-sin40°=.(二)给值(式)求值18(2023·江西九江·统考三模)已知0<α<π2<β<π,且sinα=23,cosβ=-75,则cos(α-β)=()A.-115B.-1315C.-41415D.2141519(江西省九江市2023届高三三模数学(理)试题)已知0<α<β<π,且cosα=13,cosα-β=223,则cosβ=()A.89B.79C.429D.020(2023·陕西榆林·统考模拟预测)若tanα+π4=15,则tanα=()A.-23B.23C.-13D.1321(山西省晋中市2023届高三三模数学试题(A卷))已知α,β为锐角,且tanα=2,sinα+β= 22,则cosβ=()A.-31010B.31010C.-1010D.101022(河南省名校青桐鸣2023届高三下学期4月联考文科数学试题)已知tanαtanβ=2,cosα+β=-15,则cosα-β=()A.35B.-35C.115D.-11523(2023·全国·高三专题练习)若α∈π2,3π4,cosα-π4=210,则sinα+π3=24【多选】(河北省承德市2023届高三下学期4月高考模拟数学试题)已知0<α<π2<β<π,sinα=13,cos(α+β)=-223,下列选项正确的有()A.sin(α+β)=±13B.cosβ=-79C.cos2β=-1781D.sin(α-β)=-232725(2023·陕西商洛·统考三模)已知tan(α+β)=3,tanα+π4=-3,则tanβ=()A.-15B.15C.-17D.1726(2023·江西上饶·校联考模拟预测)已知α、β均为锐角,且sinα=2sinβ,2cosα=cosβ,则sinα-β=.(三)给值求角27(2023·全国·高三专题练习)已知α,β都是锐角,cosα=17,cos(α+β)=-1114,则β=.28(2023·全国·高三专题练习)已知cosα=17,cos(α-β)=1314,若0<β<α<π2,则β=.29(2023·河南·校联考模拟预测)设tanα,tanβ是方程x2+33x+4=0的两根,且α,β∈-π2 ,π2,则α+β=( ).A.π3B.-2π3C.π3或-2π3D.2π330(2023·全国·高三专题练习)已知cosα=255,sinβ=1010,且α∈0,π2,β∈0,π2,则α+β的值是()A.3π4B.π4C.7π4D.5π431【多选】(2023·全国·高三专题练习)若tan α+tan β=3-3tan αtan β,则α+β的值可能为()A.π3 B.π6C.-2π3D.-5π632(2023·全国·高三专题练习)已知0<α<π2,cos α+π4 =13.(1)求sin α的值;(2)若-π2<β<0,cos β2-π4=33,求α-β的值.33(2023·全国·高三专题练习)已知角α为锐角,π2<β-α<π,且满足tan α2=13,sin β-α =7210(1)证明:0<α<π4;(2)求β.34(2023·全国·高三专题练习)已知sin π4-α=-55,sin 3π4+β =1010,且α∈π4,3π4,β∈0,π4,求α-β的值为.(四)三角函数式的化简35(2023·福建厦门·统考模拟预测)已知sin α+sin α+2π3=sin π3-α ,则sin α=()A.0B.±217C.±22D.±3236(2023春·山西·高三校联考阶段练习)已知2sin θ+π4 =3cos θ,则sin θsin θ-cos θ=.37(2023·湖北·校联考模拟预测)已知sin x +π4 =-35,3π4<x <5π4,则sin x 1-tan x =()A.21100B.-21100C.7280D.-728038(2023·全国·高三专题练习)已知θ≠k π+π4k ∈Z ,且cos2θcos 3π2-θ=cos θ-sin θ,则tan θ-π4-tan2π2-θ =()A.83B.53C.-13D.-13339(2023·湖南长沙·长郡中学校考一模)已知α,β∈0,π2,sin (2α+β)=2sin β ,则tan β的最大值为()A.12B.33C.22D.3240(河南省部分学校2023届高三高考仿真适应性测试理科数学试题)已知向量a=2cos75°,2sin75°,b =cos15°,-sin15° ,且(2a +b )⊥(a -λb ),则实数λ的值为()A.8B.-8C.4D.-441(2023·陕西·统考一模)在△ABC 中,点D 是边BC 上一点,且AB =4,BD =2.cos B =1116,cos C =64,则DC =.42【多选】(2023·江苏南通·模拟预测)重庆荣昌折扇是中国四大名扇之一,其精雅宜士人,其华灿宜艳女,深受各阶层人民喜爱.古人曾有诗赞曰:“开合清风纸半张,随机舒卷岂寻常;金环并束龙腰细,玉栅齐编凤翅长”.荣昌折扇平面图为下图的扇形COD ,其中∠COD =2π3,OC =3OA =3,动点P 在CD 上(含端点),连结OP 交扇形OAB 的弧AB 于点Q ,且OQ =xOC +yOD,则下列说法正确的是()A.若y =x ,则x +y =23B.若y =2x ,则OA ⋅OP=0C.AB ⋅PQ≥-2D.PA ⋅PB ≥11243(广东省潮州市2023届高三二模数学试题)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知3tan A tan C =tan A +tan C +3.(1)求角B 的大小;(2)求cos A +cos C 的取值范围.考点二二倍角公式(一)给角求值44【多选】(2023·全国·高三专题练习)下列等式成立的是()A.sin275°-cos275°=32B.12sin15°+32cos15°=22C.sin75°cos75°=14D.1-tan15°1+tan15°=3345(2023·河南开封·开封高中校考模拟预测)4sin40°-tan40°sin75°-cos75°sin75°+cos75°的值为()A.66B.12C.63D.146(2023·重庆·统考模拟预测)式子2sin18°3cos29°-sin29°-1cos6°+3sin6°化简的结果为()A.12B.1C.2sin9°D.247(2023·全国·高三专题练习)公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为m=2sin18°,若m2+n=4,m n2cos227°-1 =.48(2023·全国·高三专题练习)若λsin160°+tan20°=3,则实数λ的值为()A.4B.43C.23D.433(二)给值(式)求值49【多选】(2023·山西·校联考模拟预测)已知sin x=35,其中x∈π2,π,则()A.tan x=-43B.cos x2=1010C.sin2x=-2425D.cos x-π4=-21050(2023·福建泉州·校考模拟预测)已知cosα=-35,π2≤α≤π,则cos2α+π4=.51(2023秋·湖南衡阳·高三衡阳市一中校考期中)已知sinα-cosα=-23,则sin2α=.52【多选】(2023·全国·高三专题练习)已知cosα+β=-55,cos2α=-45,其中α,β为锐角,则以下命题正确的是()A.sin2α=35B.cosα-β=-2255C.cosαcosβ=510D.tanαtanβ=1353(2023春·山西太原·高三山西大附中校考阶段练习)已知α∈0,π,cosα=-35,则cos2α2+π4=.54(2023秋·辽宁葫芦岛·高三统考期末)已知α∈0,π2,sin2α=cosπ4-α,则cos2α的值为()A.0B.12C.32D.-3255(2023·全国·高三专题练习)已知sinαsinπ3-α=3cosαsinα+π6,则cos2α+π3=()A.-32B.-1 C.12D.3256(2023·全国·高三专题练习)已知cos2π4+α=45,则sin2α=()A.35B.-35C.15D.-15(三)给值求角57(2023·全国·高三专题练习)已知tan α=13,tan β=-17,且α,β∈(0,π),则2α-β=()A.π4B.-π4C.-3π4D.-3π4或π458(2023·全国·高三专题练习)若α∈0,π ,cos2α=sin 2α2-cos 2α2,则α=.(四)与同角三角函数的基本关系综合59(2023·全国·高三专题练习)已知α∈π4,π2,且sin2α=45,则3sin α-cos α4sin α+2cos α=60(2023·海南·校联考模拟预测)已知tan α=2,则1-3cos 2αsin2α=.61(2023秋·四川成都·高三四川省成都市玉林中学校考阶段练习)已知tan α=2,则sin2αsin 2α+sin αcos α-cos2α-1的值为()A.12B.1C.2D.-1(五)与诱导公式的综合62(2023春·江西南昌·高三统考开学考试)已知tan (π-α)=22,则sin2α=()A.429B.229C.-229D.-42963(2023·全国·高三专题练习)若cos π3-2x =-78,则sin x +π3的值为( ).A.14B.78C.±14D.±7864(2023·河北·统考模拟预测)已知sinα-π6=-25,则cos2α+5π3=()A.825B.1725C.255D.5565(2023·湖北武汉·统考二模)已知sinα+π3=35,则sin2α+π6=()A.2425B.-2425C.725D.-725(六)利用二倍角公式化简求值66(2023·全国·高三专题练习)已知tanα=3,则sinα-π4cosα+π4sin2α=.67(2023·全国·高三专题练习)若sinθ1-cosθ=2,则1+2sin2θ+3cos2θ1-2sin2θ+3cos2θ=()A.5B.43C.2D.468(2023·全国·高三专题练习)已知函数f x =sin2x+cos2x-2sinπ-xcosπ+xsin9π2-x-cos13π2+x.(1)求fπ12的值;(2)已知fα =23,求sin2α的值.考点三辅助角公式的应用69(2023·全国·高三专题练习)函数y =cos x +cos x -π3x ∈R 的最大值为,最小值为.70(2023·陕西铜川·统考二模)已知函数f x =cos x +π2 cos x +π4,若x ∈-π4,π4,则函数f x 的值域为.71(2023·山东泰安·统考二模)已知sin α+3cos α=233,则sin 5π6-2α =.72(2023·湖北荆门·荆门市龙泉中学校联考模拟预测)若sin 2α+π6+cos2α=-3,则tan α=.73(2023·辽宁丹东·统考二模)若cos α≠0,2(sin2α+5cos α)=1+cos2α,则tan2α=()A.-43B.-34C.34D.4374(2023秋·福建莆田·高三校考期中)已知函数f (x )=23sin x cos x -2cos 2x +1.(1)求函数f (x )的最小正周期及单调递增区间;(2)求函数f (x )在区间-5π12,π6的值域;考点四简单的三角恒等变换(一)半角公式的应用75(2023秋·河北石家庄·高三统考期末)已知1+cos θsin θ=33,则tan θ2=.76(2023·全国·高三专题练习)若α∈0,π2 ,sin α2-cos α=tan α2,则tan α=( ).A.33B.3C.34D.6277(2023·全国·高三专题练习)若cos α=-45,α是第三象限的角,则1-tan α21+tan α2=()A.2B.12C.-2D.-1278(2023·浙江·校联考二模)数学里有一种证明方法叫做Pr oofwithoutwords ,也被称为无字证明,是指仅用图象而无需文字解释就能不证自明的数学命题,由于这种证明方法的特殊性,无字证时被认为比严格的数学证明更为优雅与有条理.如下图,点C 为半圆O 上一点,CH ⊥AB ,垂足为H ,记∠COB =θ,则由tan ∠BCH =BHCH可以直接证明的三角函数公式是()A.tanθ2=sin θ1-cos θB.tanθ2=sin θ1+cos θC.tanθ2=1-cos θsin θD.tanθ2=1+cos θsin θ(二)三角恒等式的证明79(2023·全国·高三专题练习)已知α,β∈0,π2 ,且满足sin βsin α=cos α+β .(1)证明:tan β=sin αcos α1+sin 2α;(2)求tan β的最大值.80(2023·高三课时练习)小明在一次研究性学习中发现,以下五个式子的值都等于同一个常数.①sin213°+cos217°-sin13°cos17°;②sin215°+cos215°-sin15°cos15°;③sin218°+cos212°-sin18°cos12°;④sin2-18°cos48°;+cos248°-sin-18°⑤sin2-25°+cos255°-sin-25°cos55°.(1)请依据②式求出这个常数;(2)相据(1)的计算结果,将小明的发现推广为三角恒等式,并证明你的结论.81(2023春·江苏宿迁·高三校考阶段练习)已知△ABC为斜三角形.(1)证明:tan A+tan B+tan C=tan A tan B tan C;(2)若△ABC为锐角三角形,sin C=2sin A sin B,求tan A+tan B+tan C的最小值.(三)三角恒等变换的综合问题82(2023春·北京·高三清华附中校考期中)已知函数f x =sin x +cos x 2-2sin 2x .(1)求函数f x 的最小正周期和单调递增区间;(2)求函数f x 在区间0,π2上的最大值和最小值,并求相应的x 的值.83(2023·上海浦东新·统考三模)已知向量a =3sin x ,cos x ,b =sin x +π2,cos x .设f x =a ⋅b .(1)求函数y =f x 的最小正周期;(2)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若f A =1,b =4,三角形ABC 的面积为23,求边a 的长.84(2023·浙江绍兴·统考模拟预测)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且满足a +b +c a +b -c =3ab .(1)求角C 的大小;(2)若△ABC 是锐角三角形,求a +2bc的取值范围.85(2023春·四川成都·高三成都外国语学校校考期中)已知向量a =sin x +π6,cos 2x ,b =cos x ,-1 .设函数f x =2a ⋅b +12,x ∈R .(1)求函数f x 的解析式及其单调减区间;(2)若将y =f x 的图像上的所有点向左平移π4个单位,再把所得图像上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数h x 的图像.当x ∈m ,m +π2(其中m ∈0,π2 )时,记函数h x 的最大值与最小值分别为h x max 与h x min ,设φm =h x max -h x min ,且使对∀m ∈0,π2都有k ≥φm 成立,求实数k 的最小值.86(2023春·四川成都·高三成都市锦江区嘉祥外国语高级中学校联考期中)嘉祥教育秉承“为生活美好、社会吉祥而努力”的企业理念及“坚韧不拔、创造第一”的企业精神,经过30年的发展和积累,目前已建设成为具有高度文明素质和良好社会信誉的综合性教育集团.某市有一块三角形地块,因发展所需,当地政府现划拨该地块为教育用地,希望嘉祥集团能帮助打造一所新的教育品牌学校.为更好地利用好这块土地,集团公司决定在高三年级学生中征集解决方案.如图所示,AB=BC=AC=2km,D是BC中点,E、F分别在AB、AC上,△CDF拟建成办公区,四边形AEDF拟建成教学区,△BDE拟建成生活区,DE和DF拟建成专用通道,∠EDF=90°,记∠CDF=θ.(1)若θ=30°,求教学区所在四边形AEDF的面积;(2)当θ取何值时,可使快速通道E-D-F的路程最短?最短路程是多少?三角恒等变换4种常见考法归类高频考点考点一两角和与差的正弦、余弦和正切公式(一)给角求值(二)给值(式)求值(三)给值求角(四)三角函数式的化简(五)两角和与差的正弦、余弦、正切公式的综合应用考点二二倍角公式(一)给角求值(二)给值(式)求值(三)给值求角(四)与同角三角函数的基本关系综合(五)与诱导公式的综合(六)利用二倍角公式化简求值考点三辅助角公式的应用考点四简单的三角恒等变换(一)半角公式的应用(二)三角恒等式的证明(三) 三角恒等变换的综合问题解题策略1.两角和与差的正弦、余弦和正切公式(1)两角和与差的正弦、余弦和正切公式(和角、差角公式)C(α-β)cos(α-β)=cosαcosβ+sinαsinβC(α+β)cos(α+β)=cos_αcos_β-sin_αsin_β记忆口诀:1、余余正正符号反2、同名相乘、加减相反3、谐音:“吃吃睡睡,颠倒黑白”S(α-β)sin(α-β)=sin_αcos_β-cos_αsin_β(异名相乘、加减一致)S(α+β)sin(α+β)=sin_αcos_β+cos_αsin_β(异名相乘、加减一致)记忆口诀:1、正余余正符号同2、异名相乘、加减一致3、谐音:“上错厕所,一一对应”T (α-β)tan(α-β)=tanα-tanβ1+tanαtanβ;(两式相除、上同下异).变形:①tanα-tanβ=tan(α-β)(1+tanαtanβ)②tanα·tanβ=tanα-tanβtan(α-β)-1T (α+β)tan (α+β)=tan α+tan β1-tan αtan β;(两式相除、上同下异).变形:①tan α+tan β=tan (α+β)(1-tan αtan β)②tan α·tan β=1-tan α+tan βtan (α+β)(2)二倍角的正弦、余弦、正切公式(倍角公式)二倍角是相对的,如:α2是α4的2倍,3α是3α2的2倍.S 2αsin 2α=2sin _αcos _α;变形:sin αcos α=12sin2α,cos α=sin2α2sin α,⇒1±sin2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2C 2αcos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;变形:cos 2α=1+cos2α2,sin 2α=1-cos2α2T 2αtan 2α=2tan α1-tan 2α(α≠k π+π2且α≠k π2+π4,k ∈Z )2.简单的三角恒等变换(1)降幂公式sin 2α=1-cos2α2.cos 2α=1+cos2α2.sin αcos α=12sin2α.(2)升幂公式1+cos α=2cos 2α2. 1-cos α=2sin 2α2. 1+sin α=sin α2+cos α2 2. 1-sin α=sin α2-cos α22.注:1+cos2α=2cos 2α;1−cos2α=2sin 2α;1+sin2α=(sin α+cos α)2;1−sin2α=(sin α−cos α)2(3)万能公式sin α=2tan α21+tan 2α2,cos α=1-tan 2α21+tan 2α2,tan α=2tan α21-tan 2α2(4)其他常用变式sin2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α;cos2α=cos 2α−sin 2αsin 2α+cos 2α=1−tan 2α1+tan 2α;cos 4x -sin 4x =(cos 2x +sin 2x )(cos 2x -sin 2x )=cos2x 3.辅助角公式(同角异名1次)a sin α+b cos α=a 2+b 2sin (α+φ),其中cos φ=a a 2+b 2,sin φ=b a 2+b 2,或tan φ=ba . 其中φ称为辅助角,它的终边所在象限由点(a ,b )决定.4.半角的正弦、余弦、正切公式(1)sin α2=±1-cos α2.(2)cosα2=±1+cosα2.(3)tanα2=±1-cosα1+cosα=sinα1+cosα=1-cosαsinα.5.常用的拆角、拼角技巧(1)15°=45°-30°=60°-45°=30°2.(2)β=α-a-β,α=(α+β)-β=β-(β-α),2α=(α+β)+(α-β),α=12[(α+β)+(α-β)]β=α+β2-α-β2=(α+2β)-(α+β). α-β=(α-γ)+(γ-β)(3)π3-α=π2-π6+α,π6-α=π2-π3+α,π3+α=π-2π3-α,π4+α=π-3π4-α. π4+α=π2-π4-α6. 应用和、差、倍角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”;(2)注意与同角三角函数基本关系、诱导公式的综合应用;(3)注意配方法、因式分解和整体代换思想的应用. 7. 和、差、倍角公式的逆用和变形用的应用技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式;(2)和差角公式变形:sinαsinβ+cos(α+β)=cosαcosβ;cosαsinβ+sin(α-β)=sinαcosβ;tanα±tanβ=tan(α±β)·(1∓tanα·tanβ);(3)倍角公式变形:降幂公式.(4)tanαtanβ,tanα+tanβ(或tanα-tanβ),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题. 8. 解决非特殊角求值问题的基本思路有:①化非特殊角为特殊角;②化为正负相消的项,消去后求值;③化分子、分母使之出现公约数,进行约分求值;④当有α,2α,3α,4α同时出现在一个式子中时,一般将α向2α,3α(或4α)向2α转化,再求关于2α式子的值.9.三角函数式的化简要遵循“三看”原则注:三角函数式化简、求值的一般思路:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化等. 10. 给值(式)求值的解题策略(1)已知某些角的三角函数值,求另外一些角的三角函数值,要注意观察已知角与所求表达式中角的关系,即拆角与凑角.(2)由于和、差角与单角是相对的,因此解题过程中根据需要灵活地进行拆角或凑角的变换.常见角的变换有:①α=(α-β)+β;②α=α+β2+α-β2;③2α=(α+β)+(α-β);④2β=(α+β)-(α-β).(3)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式.(4)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(5)给值求值型恒等变换问题,重在对所给条件进行挖掘,如由某角正弦值可得其余弦、正切值,由所给值的符号判断角所在的象限等. 必要时还要进行估算,如锐角α的余弦值为35,由12<35<22,及余弦函数在0,π2上单调递减可知45°<α<60°,从而2α∈(90°,120°),或3α∈(135°,180°)等. 另外,注意三种主要变换:①变角,通常是“配凑”,常用的角的拆拼有2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β等;②变名,通过变换函数名称达到减少函数种类的目的,其手段通常有“切化弦”“升幂与降幂”等;③变式,根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手段通常有:“常值代换”如1=tan π4,1=sin 2α+cos 2α“逆用变换公式”“通分约分”“分解与组合”“配方与平方”等. 其中角的变换居核心地位.11. 已知三角函数值求角的解题步骤(1)界定角的范围,根据条件确定所求角的范围.(在给值求角时,一般地选择一个适当的三角函数,根据题设确定所求角的范围,利用三角函数的单调性求出角. 确定角的范围是关键,一定要使所选的函数在此范围内是单调的,必要时,还需根据已知三角函数值缩小角的范围.)(2)求所求角的某种三角函数值.为防止增解最好选取在范围内单调的三角函数(已知三角函数值求角,选三角函数时可按下列规则:(i )已知正切值,常选正切函数;(ii )已知正、余弦值,常选正弦或余弦函数;(iii )若角的范围是0,π2 ,π,3π2 ,常选正、余弦函数;(iv )若角的范围是π2,3π2 或-π2,π2 ,常选正弦函数;(v )若角的范围是(0,π)或(π,2π),常选余弦函数. )(3)结合三角函数值及角的范围求角.12. 利用半角公式求值的思路(1)看角:若已知三角函数式中的角是待求三角函数式中角的两倍,则求解时常常借助半角公式求解.(2)明范围:由于半角公式求值常涉及符号问题,因此求解时务必依据角的范围,求出相应半角的范围.(3)选公式:涉及半角公式的正切值时,常用tan α2=sin α1+cos α=1-cos αsin α,其优点是计算时可避免因开方带来的求角的范围问题;涉及半角公式的正、余弦值时,常先利用sin 2α2=1-cos α2,cos 2α2=1+cos α2计算.13. 三角恒等式证明的常用方法(1)执因索果法:证明的形式一般是化繁为简.(2)左右归一法:证明左右两边都等于同一个式子.(3)拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它们之间的差异,简言之,即化异求同.(4)比较法:设法证明“左边-右边=0”或“左边/右边=1”.(5)分析法:从被证明的等式出发,逐步地探求使等式成立的条件,直到已知条件或明显的事实为止,就可以断定原等式成立.考点精析考点一两角和与差的正弦、余弦和正切公式(一)给角求值14(2023·全国·高三专题练习)cos -75° 的值是A.6-22B.6+22C.6-24D.6+24【答案】C【解析】变形cos -75° =cos 45°-120° 后,根据两角差的余弦公式计算可得答案.【详解】cos -75° =cos 45°-120° =cos45°⋅cos120°+sin45°sin120°=22×-12+22×32=6-24,故选:C .【点睛】本题考查了两角差的余弦公式,属于基础题.15(2023·全国·模拟预测)sin20°cos40°+sin70°sin40°=()A.32B.12C.22D.1【答案】A【分析】根据诱导公式及三角恒等变换化简求值即可.【详解】已知可化为:sin20°cos40°+cos20°sin40°=sin 20°+40° =32.故选:A16(2023·广东湛江·统考一模)cos70°-cos20°cos65°=.【答案】-2【分析】根据三角函数的诱导公式和两角和的余弦公式,准确化简,即可求解.【详解】由三角函数的诱导公式和两角和的余弦公式,可得:cos70°-cos20°cos65°=cos (90°-20°)-cos20°cos65°=sin20°-cos20°cos 45°+20°=sin20°-cos20°cos45°cos20°-sin45°sin20°=- 2.故答案为:- 2.17(2023·全国·高三专题练习)sin 220°-cos 220°sin45°cos155°1-sin40°=.【答案】2【分析】根据三角恒等变换公式化简求值即可.【详解】因为sin 220°-cos 220°=sin20°-cos20° sin20°+cos20° ,cos155°=-cos25°=-cos 45°-20° ,1-sin40°=cos 220°+sin 220°-2sin20°cos20°=cos20°-sin20° =cos20°-sin20°,所以sin 220°-cos 220°sin45°cos155°1-sin40°=cos20°+sin20°22cos 45°-20° =cos20°+sin20°22×cos45°cos20°+sin45°sin20°=cos20°+sin20° 12cos20°+sin20°=2故答案为:2.(二)给值(式)求值18(2023·江西九江·统考三模)已知0<α<π2<β<π,且sin α=23,cos β=-75,则cos (α-β)=()A.-115B.-1315C.-41415D.21415【答案】A【分析】先根据0<α<π2<β<π,sin α=23,cos β=-75求出cos α,sin β,再利用两角差的余弦公式求cos (α-β)【详解】解析:∵0<α<π2<β<π,sin α=23,cos β=-75,∴cos α=1-sin 2α=1-29=73,sin β=1-cos 2β=1-725=325,∴cos (α-β)=cos αcos β+sin αsin β=73×-75 +23×325=-115,故选:A .19(江西省九江市2023届高三三模数学(理)试题)已知0<α<β<π,且cos α=13,cos α-β =223,则cos β=()A.89B.79C.429D.0【答案】D【分析】利用三角恒等变换计算即可,注意整体思想的运用.【详解】解法一:∵0<α<π,cos α=13,∴sin α=223,又-π<α-β<0,cos α-β =223⇒-π2<α-β<0,∴sin α-β =-13,∴cos β=cos α-α-β =cos αcos α-β +sin a sin α-β=13×223+223×-13 =0,故选:D .解法二:∵0<α<π,cos α=13,∴sin α=223,∴cos α-β =sin α,即cos β-α =cos π2-α ∵0<β-α<π,0<π2-α<π2∴β-α=π2-α⇒β=π2,cos β=0,故选:D .20(2023·陕西榆林·统考模拟预测)若tan α+π4 =15,则tan α=()A.-23B.23C.-13D.13【答案】A【分析】利用正切函数的和差公式即可得解.【详解】因为tan α+π4 =15,所以tan α=tan α+π4 -π4 =15-11+15×1=-23.故选:A .21(山西省晋中市2023届高三三模数学试题(A 卷))已知α,β为锐角,且tan α=2,sin α+β =22,则cos β=()A.-31010B.31010C.-1010D.1010【答案】D【分析】由条件,结合同角关系求sin α,cos α,再由特殊角三角函数值求α+β,再利用两角差的余弦公式求cos β.【详解】因为tan α=2,所以sin α=2cos α,又sin 2α+cos 2α=1,α为锐角,所以sin α=255,cos α=55,且α>π4.因为α,β为锐角,α>π4,所以π4<α+β<π,又sin (α+β)=22,所以α+β=3π4,故cos β=cos 3π4-α =cos 3π4cos α+sin 3π4sin α=1010.故选:D .22(河南省名校青桐鸣2023届高三下学期4月联考文科数学试题)已知tan αtan β=2,cos α+β =-15,则cos α-β =()A.35B.-35C.115D.-115【答案】A【分析】根据切化弦以及两角和差公式解出sin αsin β,cos αcos β,代入两角差的余弦公式即可.【详解】由题意可得tan αtan β=sin αsin βcos αcos β=2cos α+β =cos αcos β-sin αsin β=-15,即sin αsin β=2cos αcos βcos αcos β-sin αsin β=-15 ,sin αsin β=25cos αcos β=15,故cos α-β =cos αcos β+sin αsin β=35.故选:A .23(2023·全国·高三专题练习)若α∈π2,3π4,cos α-π4 =210,则sin α+π3=【答案】4-3310【分析】根据同角三角函数的基本关系求出sin α-π4,由cos α=cos π4+α-π4 求出cos α,从而求出sin α,再利用两角和的正弦公式计算可得.【详解】∵cos α-π4 =210,α∈π2,3π4 ,所以α-π4∈π4,π2,∴sin α-π4 =1-cos 2α-π4 =7210,∴cos α=cos π4+α-π4 =cos π4cos α-π4 -sin π4sin α-π4 =22×210-7210×22=-35,sin α=1-cos 2α=45,所以sin α+π3 =sin αcos π3+cos αsin π3=45×12-35×32=4-3310.故答案为:4-331024【多选】(河北省承德市2023届高三下学期4月高考模拟数学试题)已知0<α<π2<β<π,sin α=13,cos (α+β)=-223,下列选项正确的有()A.sin (α+β)=±13B.cos β=-79C.cos2β=-1781D.sin (α-β)=-2327【答案】BD【分析】根据同角关系以及诱导公式可得可得α+β=π-α,进而可判断A ,根据和差角公司以及二倍角公式即可代入求解BCD .【详解】由于0<α<π2且sin α=13,所以cos α=223,又α+β∈π2,3π2 ,cos (α+β)=-223=-cos α,故α+β=π-α或α+β=π+α,当α+β=π+α时,β=π显然不满足,故α+β=π-α,所以sin (α+β)=13,故A 错误,对于B ,cos β=cos α+β cos α+sin α+β sin α=-223×223+13×13=-79,故B 正确,对于C , cos2β=2cos 2β-1=2×-792-1=1781,故C 错误,对于D ,由B 可知sin β=1-cos 2β=429,所以sin (α-β)=sin αcos β-cos αsin β=13×-79-223×429=-2327,故D 正确,故选:BD25(2023·陕西商洛·统考三模)已知tan (α+β)=3,tan α+π4=-3,则tan β=()A.-15B.15C.-17D.17【答案】D【分析】由tan α+π4 =-3求得tan α,再使用凑配角由tan (α+β)=3求tan β.【详解】tan α+π4 =1+tan α1-tan α=-3,解得tan α=2,则tan β=tan [(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan β=17.故选:D 26(2023·江西上饶·校联考模拟预测)已知α、β均为锐角,且sin α=2sin β,2cos α=cos β,则sin α-β =.【答案】35/0.6【分析】利用题目信息以及平方关系分别计算得α、β角的正弦、余弦值,再利用两角差的正弦公式即可求得结果.【详解】因为sin α=2sin β,2cos α=cos β,即cos α=12cos β,所以sin 2α+cos 2α=4sin 2β+14cos 2β=1,又4sin 2β+14cos 2β=154sin 2β+14sin 2β+14cos 2β=1,即sin 2β=15,则cos 2β=45,又α、β均为锐角,所以sin β=55,cos β=255,所以sin α=255,cos α=55,所以sin α-β =sin αcos β-cos αsin β=255×255-55×55=35.故答案为:35(三)给值求角27(2023·全国·高三专题练习)已知α,β都是锐角,cos α=17,cos (α+β)=-1114,则β=.【答案】π3/60°【分析】要求β,先求cos β,结合已知可有cos β=cos [(α+β)-α],利用两角差的余弦公式展开可求.【详解】∵α、β为锐角,∴0<α+β<π∵cos α=17,cos (α+β)=-1114∴sin α=1-cos 2α=437,sin (α+β)=1-cos 2α+β =5314∴cos β=cos [(α+β)-α]=cos (α+β)cos α+sin (α+β)sin α=-1114 ×17+5314×437=12由于β为锐角,∴β=π3故答案为:π328(2023·全国·高三专题练习)已知cos α=17,cos (α-β)=1314,若0<β<α<π2,则β=.【答案】π3【详解】因为cos α=17,0<α<π2,所以sin α=437,又因为0<α-β<π2,所以sin (α-β)=3314,所以sin β=sin [α-(α-β)]=sin αcos (α-β)-cos αsin (α-β)=437×1314-17×3314=32,又因为0<β<π2,所以β=π3.29(2023·河南·校联考模拟预测)设tan α,tan β是方程x 2+33x +4=0的两根,且α,β∈-π2,π2,则α+β=( ).A.π3B.-2π3C.π3或-2π3D.2π3【答案】B【分析】利用两角和的正切公式求解即可.【详解】因为tan α,tan β是方程x 2+33x +4=0的两根,所以tan α+tan β=-33,tan αtan β=4,所以tan (α+β)=tan α+tan β1-tan αtan β=3,因为tan α+tan β=-33,tan αtan β=4,所以tan α<0,tan β<0,且α,β∈-π2,π2,所以α,β∈-π2,0 ,所以α+β∈-π,0 ,所以α+β=-2π3,故选:B .30(2023·全国·高三专题练习)已知cos α=255,sin β=1010,且α∈0,π2 ,β∈0,π2,则α+β的值是()A.3π4B.π4C.7π4D.5π4。

三角恒等变换

三角恒等变换

返回
t2-1 令t=sin θ+cos θ(1≤t≤ 2),则sin θcos θ= , (8分) 2 t2-1 所以S矩形PQCR=10 000-9 000t+8 100· 2 8 100 10 = (t- )2+950. (10分) 2 9 10 故当t= 时,S矩形PQCR有最小值950 m2; 9 当t= 2时,S矩形PQCR有最大值(14 050-9 000 2)m2. (12分)
返回
π [精解详析] (1)因为f(x)=4cos xsin(x+ )-1 6 3 1 =4cos x ( sin x+ cos x)-1 2 2 = 3sin 2x+2cos2x-1 π = 3sin 2x+cos 2x=2sin(2x+ ), 6 所以f(x) 的最小正周期为π.
返回
π π π π 2π (2)因为- ≤x≤ , 所以- ≤2x+ ≤ . 6 4 6 6 3 π π π 于是,当2x+ = ,即x= 时,f(x)取得最大值2; 6 2 6 π π π 当2x+ =- ,即x=- 时,f(x)取得最小值-1. 6 6 6
返回
[一点通]
解决此类问题的关键是构建函数模型,
首先应选准角作为变量,其次要确定角的范围,利用三
角恒等变换求解.
返回
三角恒等变换需要注意的思想方法: (1)常值代换. 用某些三角函数值或三角函数式来代替三角函数式中的某些 常数,使之被代换后能运用相关公式,让化简得以顺利进行.我 们把这种代换称之为常值代换.
返回
(2)切化弦. 当待化简式中既含有正弦、余弦,又含有正切时,利用同角 sin α 的基本三角函数关系式tan α= 将正切化为正弦和余弦,这就 cos α 是“切化弦”的思想方法,切化弦的好处在于减少了三角函数名 称,转化为正弦、余弦的恒等变换.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角恒等变换中的综合问题
新课标的理念就是将学生由单纯的知识接受者转变为学习的主人,注重的是学生能力的培养,高考命题突出以能立意,加强了对知识综合性和应用性的考查,故常常在知识的交汇处命题,对于三角恒等变换中涉及的题型较多,学习时应理清基本题型,特别是具有典型性的题型,掌握这些基本题型解题的通性和通法,关于三角恒等变换的综合问题归纳起来主要有以下几类:
1 三角函数式的化简
解决这类问题常有两种思路:一是角的变换(即将多种形式的角尽量统一),二是三角名称的变化,尽量减少函数的名称。

常用方法有:异名函数化为同名函数,异角化为同角,异次化为同次,切弦互化,特殊角的三角函数与特殊值的互化,或通过函数互化创造条件。

例1、化简其中,α∈(π,2π),分析:题中的角有α和,故必须实行角的统一
解原式=
=
==
∵α∈(π,2π) ∴<<π, ∴cos<0∴原式=cosα
点评:这类问题着重抓住角的统一或函数名称的统一,通过观察角、函数名,项的次数等,找到突破口,利用切化弦、升幂、降幂、逆用公式等手段将其化简。

练习:已知函数f(x)=
①求f(x)的定义域(答案:f(x)的定义域为x|x≠kπ+,k∈Z;②设α是第四象限的角,且tanα=-,求f(α)的值(答案:)
2 三角函数的求值
求值题常见的类型及解法。

2.1 给角求值:解题时,要认真观察,结合和差化积,积化和差,升降幂公式转化为特殊角并且消去非特殊角的三角函数而求解,主要有下面一些方法:①特殊值代换法:如=sin30°,=cos30°,=sin45°=cos45°;②拼角,拆角法:通过拼(拆)角来寻找特殊角和非特殊角的联系。

③常见变化换法,在求值过程中,常见的变换方法有常值代换,切割化弦,收缩变换,降幂与升幂,和差化积,积化和差,以及化异角为同角,化异名为同名,化异次为同次。

2.2 给值求值:给出某些角的三角函数的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系。

2.3 给值求角:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式子表示,由所得的函数值结合该函数的单调区间求得角。

例2:设4cosAcosB=,4sinAsinB=,求(1-cos4A)(1-cos4B)的值?
分析:以已知条件和被求式的角度差异来看,一方面应将条件中的角度变换为2A、2B,另一方面应将被求式中的角度4A、4B变为2A、2B.
解:∵4cosAcosB=,4sinAsinB=
∴16cosAcosB·sinAsinB=2
∴2sin2A·sin2B= ∴(1-cos4A)(1-cos4B)=22·sin22A·sin22B=(2sin2Asin2B)2=()2=3
点评:本例是“给值求值”型,根据问题的具体特点,从变换已知条件和被求式的角度入手,进行双向变换,实现角的统一,然后利用代入法将已知条件代入被求式,从而达到求值目的。

练习:已知α∈(,π),β∈(0,),且cos(-α)=,sin(π+β)=-,求cos(α+β).
3 三角恒等式的证明
解决此类问题,要根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右归一等方法,使等式两端化异为同;证明三角条件等式,要观察所给条件和欲证结论在形式上、结构上的异同点,找到其内在联系,将条件与结论有机结合起来。

例3:证明:+=
证明:左边=+
=+
=+
=+===右边
∴+=
点评:证明三角恒等式要注意两点:①强化“目标意识”证明过程中,应盯住目
标,逐步向它靠拢。

②强化“化异为同”意识,注重:化异角为同角,化异名为同名,化异次为同次。

练习:已知α,β均为锐角,且3sin2α+2sin2β=1,3sin2α-2sin2β=0,求证:α+2β=
4 三角恒等变换与三角函数的综合问题
解此类问题要会利用三角公式和基本的三角恒等变换的思想方法,可以化简三角函数的解析式,进而才能顺利地探求三角函数的有关性质,反过来,利用三角函数的性质,可确定解析式,进而可求出有关三角函数值,因而三角恒等变换与三角函数的综合问题是考试命题的热点。

例:已知函数f(x)=2sincos-2sin2+
①求函数f(x)的最小正周期及最值;②令g(x)=f(x+),判断函数g(x)的奇偶性,并说明理由。

解:①f(x)=sin+(1-2sin2)=sin+cos=2sin(+)∴f(x)的最小正周期T==4π,当sin(+)=-1时,f(x)取得最小值-2;当sin(+)=1时,f(x)取得最大值2
②由①知f(x)=2sin(+)又g(x)=f(x+)
∴g(x)=2sin[(x+)+]= 2sin(+)=2cos
∵g(-x)=2cos(-)=2cos=g(x)
∴函数g(x)是偶函数。

点评:解决三角恒等等变换与三角函数的综合问题关键在于熟练地运用基本的三角恒等变换思想\方法,对其解析式变形、化简,尽量使其化为只有一个角为自变量的三角函数,再解决与图象和性质有关的问题。

练习:已知函数f(x)=cos2-sin2+sinx,①求函数f(x)的最小正周期;②当x0∈(0,)且f(x0)=时,求f(x0+)
5 三角恒等变换与平面向量的交汇
平面向量与三角恒等变换的综合问题已成为考试的一个热点和亮点。

这类问题中,平面向量往往只起到“穿针引线”和“点缀”的作用,实则考查三角恒等变形的基本思想和方法。

例5:已知0<α<,β为f(x)=cos(2x+)的最小正周期=(tan(α+β),-1)
=(cosα,2)且.=m,求的值。

解:β是f(x)=cos(2x+)的最小正周期,故β=π
又∵.=m,且.=cosαtan(α+β)-2
∴cosαtan(α+β)=m+2,由于0<α<
∴===2cosα·=2cosα·tan(α+)=2(2+m)
点评:解决这类问题,应利用平面向量的坐标运算,数量积,平行与垂直的条件,夹角公式等知识,拨去平面向量的“外衣”,直抵问题核心部分(即将向量转化为三角函数问题)。

练习:已知△ABC的内角B满足2cos2B-8cosB+5=0,若= =,且,满足=-9,=3,=5,θ为与的夹角,求sin(θ+B)。

相关文档
最新文档