大自然中的数学

大自然中的数学
大自然中的数学

大自然中的数学

动物中的数学“天才”

植物中的斐波那契数列

蜜蜂蜂房是严格的六角柱状体,它的一

它们每年在自己的在寒冷的冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,这样。身体露在冷空气中的表面积最小,因而散发的热量也最少.

蜘蛛结的“八卦”网,既复杂又非常美丽,这种八角形的几何图案,即使人类用直尺和圆规也难画得如蜘蛛网那样匀称。

数学是自然科学最基础的学科

数学是自然科学最基础的学科,是中小学教育必不可少的的基础学科,对发展学生智力,培养学生能力,特别是在培养人的思维方面,具有其它任何一门学科都无法替代的特殊功能。我们研究中学生数学学习的心理障碍与消除的目的是:(1)便于对数学教学活动进行较为全面系统的回顾和反思,以总结经验,找准问题,发扬成绩,纠正错误;(2)把握中学生学习数学的心理状态,加强教学活动的针对性,提高数学课程教学的质量和效益;(3)试图探讨影响数学教学质量的因素及与素质教育相悖的有关问题,使数学学科价值能够在教育过程中得到充分展现和有效发挥,更好地为实施“科教兴国”战略和现代化建设服务。 一、中学生数学学习的有哪些心理障碍 中学生数学学习的心理障碍,是指影响、制约、阻碍中学生积极主动和持久有效地学习数学知识、训练创造性思维、发展智力、培养数学自学能力和自学习惯的一种心理状态,也即是中学生在数学学习过程中因“困惑”、“曲解”或“误会”而产生的一种消极心理现象。其主要表现有以下几个方面: 1、依赖心理数学教学中,学生普遍对教师存有依赖心理,缺乏学习的主动钻研和创造精神。一是期望教师对数学问题进行归纳概括并分门别类地一一讲述,突出重点难点和关键;二是期望教师提供详尽的解题示范,习惯于一步一步地模仿硬套。事实上,我们大多数数学教师也乐于此道,课前不布置学生预习教材,上课不要求学生阅读教材,课后也不布置学生复习教材,习惯于一块黑板、一道例题和演算几道练习题。长此以往,学生的钻研精神被压抑,创造潜能遭扼杀,学习的积极性和主动性逐渐丧失。在这种情况下,学生就不可能产生“学习的高峰体验”——高涨的激励情绪,也不可能在“学习中意识和感觉到自己的智慧力量,体验到创造的乐趣”。 2、急躁心理急功近利,急于求成,盲目下笔,导致解题出错。一是未弄清题意,未认真读题、审题,没弄清哪些是已知条件,哪些是未知条件,哪些是直接条件,哪些是间接条件,需要回答什么问题等;二是未进行条件选择,没对问题所需要的材料进行对比、筛选,就急于猜解题方案和盲目尝试解题;三是被题设假象蒙蔽,未能采用多层次的抽象、概括、判断和准确的逻辑推理;四是忽视对数学问题解题后的整体思考、回顾和反思,包括“该数学问题解题方案是否正确?是否最佳?是否可找出另外的方案?该方案有什么独到之处?能否推广和做到智能迁移等等”。 3、定势心理定势心理即人们分析问题、思考问题的思维定势。在较长时期的数学教学过程中,在教师习惯性教学程序影响下,学生形成一个比较稳固的习惯性思考和解答数学问题的思维格式和惯性。虽然这种解决数学问题的思维格式和思维惯性是数学知识的积累和解题经验、技能的汇聚,它有利于学生按照一定的程序思考数学问题,比较顺利地求得同类数学问题的最终答案,但另一方面这种定势思维的深化和习惯性增长又带来许多负面影响,使学生的思维向固定模式方面发展,解题适应能力提高缓慢,分析问题和解决问题的能力得不到应有的提高。 4、偏重结论偏重数学结论而忽视数学过程,这是数学教学过程中长期存在的问题。从学生方面来讲,同学间的相互交流也仅是对答案,比分数,很少见同学间有对数学问题程的深层次讨论和对解题方法的创造性研究。至于思维变式、问题变式更难见有涉及。从教师方面来讲,也存在自觉不自觉地忽视数学问题的解决过程,忽视结论的形成过程,忽视解题方

大自然中的数学家

大自然中的)动物数学家 (2011-01-06 15:35:34) https://www.360docs.net/doc/299396042.html,/s/blog_62b32cc40100nvpy.html 转载▼ 标签: 杂谈 数学是人类创造的一个学科。如果有人对你说,有许多动物也“精通数学”,你一定会感到很奇怪。事实上,大自然中确实有许多奇妙的动物“数学家”。 “天才设计师” 每天上午,当太阳升起与地平线成30°时,蜜蜂中的“侦察员”就会肩负重托去侦察蜜源。回来后,用其特有的“舞蹈语言”向伙伴们报告花蜜的方位、距离和数量,于是蜂王便派工蜂去采蜜。令人啧啧称奇的是,它们的计算能力非常之强,派出去的工蜂不多不少,恰好都能吃饱,保证回巢酿蜜。此外,工蜂建造的蜂巢也十分奇妙,它是严格的六角柱形体。它的一端是六角形开口,另一端则是封闭的六角棱锥体的底,由三个相同的菱形组成。18 世纪初,法国学者马拉尔奇曾经专门测量过大量蜂巢的尺寸,令他感到十分惊讶的是,这些蜂巢组成底盘的菱形的所有钝角都是109°28′,所有的锐角都是70°32′。后来经过法国数学家克尼格和苏格兰数学家马克洛林从理论上的计算,如果要消耗最少的材料,制成最大的菱形容器正是这个角度。从这个意义上说,蜜蜂称得上是“天才的数学家兼设计师”。 蚂蚁和丹顶鹤的算术 毫不起眼的蚂蚁的计算本领也十分高超。英国科学家亨斯顿做过一个有趣的实验。他把一只死蚱蜢切成三块,第二块比第一块大一倍,第三块比第二块大一倍。在蚁群发现这三块食物40分钟后,聚集在最小一块蚱蜢处的蚂蚁有28 只,第二块有44 只,第三块有89 只,后一组差不多都较前一组多一倍。看来蚂蚁的乘、除法算得相当不错。产于我国的珍稀动物丹顶鹤总是成群结队地迁徙,而且排成“人”字形。这“人”字形的角度永远是110°左右,如果计算更精确些,“人”字夹角的一半,即每边与丹顶鹤群前进方向的夹角为54°44′08″,而世界上最坚硬的金刚石晶体的角度也恰好是这个度数。这是巧合还是某种大自然的“契合”? 珊瑚虫的“日历” 珊瑚虫则在另一个方面展示出自己过人的数学天赋,它能在自己身上奇妙地记下“日历”:每年在自己的体壁上“刻画”出365 条环形纹,显然是一天“画”一条。一些古生物学家发现,3.5 亿年前的珊瑚虫每年所“画”出的环形纹是400条。天文学家告诉我们,当时地球上的一天只有21.9 小时,也就是说

自然界中的神奇数学

在人类看来,动物们头脑似乎都比较简单。其实,有许多动物的头脑并非像人们想象的那样愚钝,有许多动物很聪明,它们懂得计算、计量或算数等等,还有很多动物在数学方法的研究上做了很大的贡献。下面就让你见识一下自然界中动植物中的天才! 1.蜘蛛网 曾看过这样一则谜语:“小小诸葛亮,稳坐军中帐。摆下八卦阵,只等飞来将。”动一动脑筋,这说的是什么呢原来是蜘蛛,后两句讲的正是蜘蛛结网捕虫的生动情形。我们知道,蜘蛛网既是它栖息的地方,也是它赖以谋生的工具。而且,结网是它的本能,并不需要学习。 你观察过蜘蛛网吗它是用什么工具编织出这么精致的网来的呢你心中是不是有一连串的疑问,好,下面就让我来慢慢告诉你吧。在结网的过程中,功勋最卓著的要属它的腿了。首先,它用腿从吐丝器中抽出一些丝,把它固定在墙角的一侧或者树枝上。然后,再吐出一些丝,把整个蜘蛛网的轮廓勾勒出来,用一根特别的丝把这个轮廓固定住。为继续穿针引线搭好了脚手架。它每抽一根丝,沿着脚手架,小心翼翼地向前走,走到中心时,把丝拉紧,多余的部分就让它聚到中心。从中心往边上爬的过程中,在合适的地方加几根辐线,为了保持蜘蛛网的平衡,再到对面去加几根对称的辐线。一般来说,不同种类的蜘蛛引出的辐线数目不相同。丝蛛最多,42条;有带的蜘蛛次之,也有32条;角蛛最少,也达到21条。同一种蜘蛛一般不会改变辐线数。

到目前为止,蜘蛛已经用辐线把圆周分成了几部分,相临的辐线间的圆周角也是大体相同的。现在,整个蜘蛛网看起来是一些半径等分的圆周,画曲线的工作就要开始了。蜘蛛从中心开始,用一条极细的丝在那些半径上作出一条螺旋状的丝。这是一条辅助的丝。然后,它又从外圈盘旋着走向中心,同时在半径上安上最后成网的螺旋线。在这个过程中,它的脚就落在辅助线上,每到一处,就用脚把辅助线抓起来,聚成一个小球,放在半径上。这样半径上就有许多小球。从外面看上去,就是许多个小点。好了,一个完美的蜘蛛网就结成了。 让我们再来好好观察一下这个小精灵的杰作:从外圈走向中心的那根螺旋线,越接近中心,每周间的距离越密,直到中断。只有中心部分的辅助线一圈密似一圈,向中心绕去。小精灵所画出的曲线,在几何中称之为对数螺线。 对数螺线又叫等角螺线,因为曲线上任意一点和中心的连线与曲线上这点的切线所形成的角是一个定角。大家可别小看了对数螺

大自然中的黄金分割

初中数学综合实践课题设计—— 大自然中的黄金分割 龙翔学校 周福兰 ◆ 黄金分割的由来 一天,毕达哥拉斯从一家铁匠铺路过,被铺子中那有节奏的叮叮当当的打铁声所吸引,他走进作坊,拿出一把尺量了一下铁锤和铁砧的寸,发现它们之间存在着一种十分和谐的关系。回到家里,毕达哥拉斯拿出一根线,想将它分为两段。经过反复比较,他最后确定了 :1的比例截断最优美。后来古希腊美学家柏拉图将这比例称为黄金分割律。中世纪的数学家开普勒对黄金分割作了很高的评价。他说:几何学有两大宝藏:一个是勾股定理,另一个是黄金分割。 那么,什么是黄金分割 ◆ 黄金分割自述 点C 把线段AB 分成两条线段AC 和CB ,如果AB AC AC CB =,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割点,AC 与AB 的比叫做黄金比。 那么,黄金比又是多少呢如何计算呢 分析:设线段AB 的长度为1个单位,AC 的长度为x 个单位,则CB 为 ()x -1个单位,根据题意列出方程: 11x x x =- 由比例的基本性质得: 21x x =- 即 012=-+x x 解这个方程求得:AC= 21 5-

所以,求出黄金比为 ≈ - = 2 1 5 AB AC 618 .0 ◆你知道为什么女性爱穿高跟鞋吗 中世纪意大利的数学家菲波那契测定了大量的人体后得知,人体肚脐以下的长度与身高之比接近,其中少数人的比值等于的被称为:“标准美人”。因此,艺术家们在创作艺术人体时,都以黄金比为标准进行创作。 周老师的身高为162cm,肚脐眼以上的长度为70cm,你能帮周老师挑一双最适合她身高的鞋子吗试试吧! ◆趣味问答 (问题一):报幕员应站在舞台的什么地方报幕最佳 (问题二):人的正常体温是37℃,对大多数人来说,体感最舒适的温度是22 ℃~23 ℃。你能解释吗 ◆动动脑,画一画 你能利用黄金分割的数学知识设计一幅图案,送给老师吗动动脑,画一画

植物动物中的数学天才

动物中的数学“天才” 蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。 丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”? 蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。 冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。 真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅2 1.9小时,一年不是365天,而是400天 蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。 蚂蚁的计算本领也十分高明。英国科学家亨斯顿做过一个有趣的实验:他把一只死蚱蜢切成三块,第二块比第一块大一倍,第三块比第二块大一倍,在蚂蚁发现这三块食物40分钟后,聚集在最小一块蚱蜢处的蚂蚁有28只,第二块有44只,第三块有89只,后一组差不多较前一组多一倍;蚂蚁的计算本领如此准确,令人惊奇!

数学与自然

对称——自然美的基础 在丰富多彩的物质世界中,对于各式各样的物体的外形, 我们经常可以碰到完美匀称的例子。它们引起人们的注意,令 人赏心悦目。每一朵花,每一只蝴蝶,每一枚贝壳都使人着迷; 蜂房的建筑艺术,向日葵上种子的排列,以及植物茎上叶子的 螺旋状颁都令我们惊讶。仔细的观察表明,对称性蕴含在上述各种事例之中,它从最简单到最复杂的表现形式,是大自然形式的基础。 花朵具有旋转对称的性征。花朵绕花心旋转适当位置,每一花瓣会占据它相邻花瓣原来的位置,花朵就自相重合。旋转时达到自相重合的最小角称为元角。不同的花这个角不一样。例如梅花为72°,水仙花为60°。“对称”在生物学上指生物体在对应的部位上有相同的构造,分两 侧对称(如蝴蝶),辐射对称(放射虫,太阳虫等)。我国最早记载了雪花是 六角星形。其实,雪花形状千奇百怪,但又万变不离其宗(六角星)。既是 中心对称,又是轴对称。 很多植物是螺旋对称的,即旋转某一个角度后,沿轴平移可以和自己的 初始位置重合。例如树叶沿茎杆呈螺旋状排列,向四面八方伸展,不致彼此遮挡为生存所必需的阳光。这种有趣的现象叫叶序。向日葵的花序或者松球鳞片的螺线形排列是叶序的另一种表现形式。 “晶体闪烁对称的光辉”,这是俄国学者费多洛夫的名言。无怪乎在古典童话故事中,奇妙的宝石交织着温馨的幻境,精美绝伦,雍容华贵。在王冠上,以其熠熠光彩向世人炫耀,保持永久不衰的魅力。 对数螺线与蜘蛛网 曾看过这样一则谜语:“小小诸葛亮,稳坐军中帐。摆下八卦阵,只等飞来将。” 动一动脑筋,这说的是什么呢?原来是蜘蛛,后两句讲的正是蜘蛛结网捕虫的生动情 形。我们知道,蜘蛛网既是它栖息的地方,也是它赖以谋生的工具。而且,结网是 它的本能,并不需要学习。 你观察过蜘蛛网吗 ?它是用什么工具编织出这么精致的网来的呢?你心中是不是有一连串的疑问,好,下面就让我来慢慢告诉你吧。在结网的过程中,功勋最卓著的要属它的腿了。首先, 它用腿从吐丝器中抽出一些丝,把它固定在墙角的一侧或者树枝上。然后,再吐出 一些丝,把整个蜘蛛网的轮廓勾勒出来,用一根特别的丝把这个轮廓固定住。为继 续穿针引线搭好了脚手架。它每抽一根丝,沿着脚手架,小心翼翼地向前走,走到 中心时,把丝拉紧,多余的部分就让它聚到中心。从中心往边上爬的过程中,在合

隐藏于大自然中的数学

隐藏于大自然中的数学 本文将让最讨厌数学的人懂得如何享受数学的乐趣。事实上,数学并非只是我们在学校所学的计算方法和各项公式。数学家的工作是找出尚未发现的模式。目前在生活中已经找到许多模式,例如雪花结晶、植物种子、动物外表等,都有数学模式。本文即为读者介绍隐藏于大自然中的数学。“对称” 我们经常使用“左右对称”一词,但是究竟何谓“对称”?数学家并不以第一印象来辨认对称,而是采用“变换”的观点。所谓“变换”是指改变观测对象的位置和大小,如果改变之后依然保持同样形态,即称其具有对称性。 产生对称性有3种重要变换,即反射、旋转和平移。反射变换最简单的是以镜子来说明,镜子里的影像总是左右颠倒,但如果镜子内的影像看起来与实际影像没有差别,即称为对反射变换对称,例如热带鱼的外表是左右对称,镜子内也会看到相同的样子。 旋转变换必须借旋转物体来决定,将观测对象旋转某个角度后,若仍然保持相同的形态即是对旋转变换对称,例如将正方形每旋转90度后,均能回到原来的形态,即称其为对旋转变换对称。平移变换是在平行移动时观察,将观测对象向适当方向以固定距离移动时,若仍保持同样形态,即为对平移变换对称。“分形”“分形”一词是法国数学家曼德尔布罗于1970年前后所创造,系指具备“分割出图形中的任意部位并加以放大,将可以发现此部位类似于原来未分割前的整体”特点的图形。曼德尔布罗研究过证券市场、河川水量、海岸线等多种现象,发现任何研究对象的细部或大范围部分都具有复杂的结构。例如在图表上绘出证券市场每月成交价格的曲线,必定是不规则变化,如果改以每星期、每天、每小时,甚至每分钟为单位的变化曲线,还是有不规则状况,他还发现部分变化极类似整体变化的情形。 分形是混沌的几何学,也与混沌理论一样被广泛应用于多种领域,其中最重要的应用是在电脑软件中的图像压缩技术。“费氏数列” 仔细观察植物也可以发现一些令人惊异的模式,例如菠萝外皮的钻石形模样,斜向左下方的有8列,向右下方的则有13列。

数学在自然科学中的应用

恩格斯早在100多年前就说过:“数学不属于自然科学。”恩格斯的话差不多成了大家的共识,记得十多年前曾有位大师发表讲话,称应该把数学从自然科学中分离出来,其时举国上下学习他的讲话,“数学不是自然科学”成了大师的新发现,这段故事想必大家都记忆犹新。有一次江泽坚先生(数学家、教育家编者注)发表感慨:“人一旦上了年纪就觉得自己什么都懂,所以还是少说话为妙。” 也有人说:“数学不是科学,而只是科学的工具。”这里涉及到什么是科学的问题,“什么是科学”是个哲学问题,按照《自然辩证法百科全书》上的解释:“科学是反映客观世界(自然界、社会和思维)的本质联系及其运动规律的知识体系。”如果我们认同这一说法,那么数学是不是科学自然没有什么可以争议的。 说到数学与自然科学的关系,大概很多人马上会想到牛顿那句著名的话:“世界是上帝按照数学方式创造出来的。”言外之意,我们当然可以用数学方法来了解世界,用数学的语言来描述世界,微积分也许可以看做用数学认识世界的一个典范。在我看来,数学固然可以作为认识世界的手段,但如果真的把数学当成认识世界的万能钥匙,恐怕对数学的期望值就太高了。尤其是从今天数学发展的趋势看,数学与自然科学犹如两股道上跑的车,相距越来越远。 法国布尔巴基学派的代表人物丢东捏就曾对现代数学提出过批评:许多数学家在数学王国的一角占据了一席之地,并且不愿意离开。他们不仅差不多完全忽略了与他们的专业领域无关的东西,而且不能理解他们的同事在远离他们的另一个角落使用的语言和术语。即使是受过最广博的训练的人在浩瀚的数学王国的某些领域中也感到迷茫,像庞加莱和希尔伯特这样的人,几乎在每个领域都留下他们天才的印迹,甚至在最伟大的成功者中也是少而又少的极其伟大的例外(这段话我在《谈谈数学》的博文里就曾引用过)。由此看来,数学与自然科学似乎有点南辕北辙了。不过无需为此担忧,空中楼阁是不存在的,也许有一天,当你面对你的问题绞尽脑汁依然束手无策时,忽然发现这个问题早有克星等候在那里,只是你没发现,这就是数学,历史上这样的例子并不罕见。之所以出现这种奇特的现象,皆因数学与自然科学在方法论上有着共性。历史是个最好的筛子,它成功地担负着去粗取精的重任,把真正闪光的东西留了下来,若干年后,人们或许会发现,数学与自然科学原来殊途同归。 有人把数学看成自然科学的工具,这只能说明他对数学缺少真正的了解,数学固然是工具,但它更是一种思考问题的方法、一种思想。过去西方将数学归类为哲学范畴是有一定道理的。如果你不会用数学的思维方式去思考问题、用数学的眼光去认识世界,而只是把数学当成一种工具机械地使用,就不能说你真正懂数学。 数学与自然科学的不同是显而易见的。从方法上论,数学大多靠逻辑推演,特别是现代数学均建立在公理基础之上,根据这些公理与逻辑推演出一套理论,你可以承认或不承认这套公理体系,而自然科学通常需要做实证检验。从理论上看,数学无所谓真伪,重在自洽,在一系列假定之下推导出来的理论没有矛盾就成。例如,你可以假定鬼是存在的,在此假定之下,你推导出鬼王是存在的,而且就叫×××,只要你的推导在逻辑上没有问题,结论就

大自然中的动物数学家

大自然中的动物数学家 1、“天才设计师” 每天上午,当太阳升起与地平线成30°时,蜜蜂中的“侦察员”就会肩负重托去侦察蜜源。回来后,用其特有的“舞蹈语言”向伙伴们报告花蜜的方位、距离和数量,于是蜂王便派工蜂去采蜜。令人啧啧称奇的是,它们的计算能力非常之强,派出去的工蜂不多不少,恰好都能吃饱,保证回巢酿蜜。此外,工蜂建造的蜂巢也十分奇妙,它是严格的六角柱形体。它的一端是六角形开口,另一端则是封闭的六角棱锥体的底,由三个相同的菱形组成。18 世纪初,法国学者马拉尔奇曾经专门测量过大量蜂巢的尺寸,令他感到十分惊讶的是,这些蜂巢组成底盘的菱形的所有钝角都是109°28′,所有的锐角都是70°32′。后来经过法国数学家克尼格和苏格兰数学家马克洛林从理论上的计算,如果要消耗最少的材料,制成最大的菱形容器正是这个角度。从这个意义上说,蜜蜂称得上是“天才的数学家兼设计师”。蜜蜂的蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。令人类建筑师惊叹不已!同时,令人惊奇的是,蜜蜂还“知道”两点间的最短距离是一条直线。工蜂在花间随意来去而采集到大量花蜜后,它知道取最直接的路线回到蜂房。 华罗庚对蜂房作过十分形象的描绘:“如果把蜜峰放大为人体的大小,蜂箱就成为一个二十公顷的密集市镇。当一道微弱的光线从这个市镇的一边射来时,人们可以看到是一排排五十层高的建筑物。在每一排建筑物上,整整齐齐地排列着簿墙围成的成千上万个正六角形的蜂房。” 大约在公元300年左右,古希腊数学家帕波斯在其编写的《数学汇编》一书中对蜂房的结构,作过精彩的描写:蜂房是由许许多多的正六棱柱,一个挨着一个,紧密地排列,蹭没有一点空隙……蜜蜂凭着自己本能的智慧选择了正六边形,因为使用同样多的原材料,正六边形具有最大的面积,从而可贮藏更多的蜂蜜。” 进一步的观察发现,每个正六角形的蜂房的底部,都是由完全相同的菱形组成的。十八世纪初的法国学者马拉尔迪指出蜂房底部菱形的钝角是,锐角是。另一位法国科学家雷奥米尔作出一个猜想,他认为用这样的角度来建造蜂房,在相同的容积下最节省材料。后来他向一位瑞士数学家柯尼希请教,他证实了其猜测。但计算的结果是,与猜想的数值只有两分之差。人们觉得蜜蜂的这一小点误差是完全可以原谅的,对于人类来说,这也是一个非同寻常的数学难题啊。然而,事情并没有完结。颇具戏剧性的是,在1743年,苏格兰数学家马克劳林,用初等几何方法,得到最省材料的来得蜂房底部菱形钝角为,锐角为。与猜想值完全相同。那两分的误差,竟然不是蜜蜂不准,而是数学家柯尼希算错了。于是“蜜蜂正确而数学家错误”的说法便不胫而走。后来才发现也不是柯尼希的错,原来是他所用的对数表印错了。

数学与自然科学的相互作用

数学与自然科学的相互作用 数学对自然科学的作用,在于数学具有促进甚至引导科学发展的功能。数学概念、数学思想、数学方法、数学成果都在科学发展中具有十分重要的影响。探讨数学与自然科学的相互作用问题,它可以使人们充分认识数学的地位,数学的发展规律,科学发展动力。 一、数学在科学中的地位 数学对于自然科学的极端重要性,首先可以通过数学在科学中的地位反映出来,它表明了数学与自然科学关系的一个基本而重要的方面。 数学在科学中的地位这个问题包含两个方面:(1)数学在科学分类中的地位;(2)数学在科学发展中的作用。 在多数人的意识中,他们形成了这样一套看法:因为数学首先是作为丈量土地、观察天象、计数的方法,随后又作为力学、天文学、物理学等自然科学的工具发展起来的。哪一门自然科学如果运用数学的语言和方法建立起了自己的理论,那么这门科学就向精确化的方向前进了一步。因此长期以来,人们习惯于把数学放在自然科学之中。 但是,数学既不是从来就属于自然科学,也不是在今天仍然属于自然科学。数学在科学中的地位,经历过一个演变的历程。 古希腊的柏拉图把数学放在理念的世界中,亚里士多德则把数学、物理学、“形而上学”一起放在关于纯知识学问的理论哲学之中。中世纪,数学作为哲学的一个分支被放在神学的名目之下。可以看到,在西欧漫长的学术史上,数学并不属于自然科学。 经过文艺复兴运动,数学与自然科学一同从神学中解放出来,F·培根将数学划归在自然科学的实用部分。数学家达朗贝尔将数学划归在自然科学之类,从理论上确立了数学是自然科学的一个门类。 数学作为自然科学的一个分支,被看做是自然科学的一个分支主要体现在以下方面:数学更多的是以物理现象为主要研究内容。对弹性理论、多体问题等的研究导致了常微分理论,对弦震动的波动方程和位势理论的讨论而引出了偏微分方程。变分法和复变函数等学科的一个直接缘起是出于对实际问题的研究。恩格斯对19世纪以前的数学研究本质做过较好的概括:“纯数学的对象是现实世界的空间形式和数量关系”。数学是以研究现实自然界为主要对象,甚至是唯一对象,这是直到今天绝大多数人的观点。 最能表明数学与自然科学的密切关系的莫过于这样的事实:一方面判断数学可靠性的标准是物理上是否正确。另一方面,牛顿时代人们用数学标准去决定理论的取舍。值得指出的是,由于把数学看做是自然科学的分支,以物理标准来评价数学,这样一方面促进了数学的发展,但是另一方面却使得人们对数学的严密性不够重视。 随着19世纪20年代以后非欧几何、抽象代数的产生,人们发现数学的内容和方法越来越在本质上呈现出与自然科学的区别。数学自身内容的发展已经日益显露出它超出了自然科学的范围。非欧几何、抽象代数的产生,分析严密的运动,标志着现代数学的产生,更主要的是标志着数学观的重大转变。终于,在19世纪20年代后的一系列数学革命的冲击,使得数学从自然科学中解脱出来,继续着它自己的历程,数学成为一个独立于自然科学的分支。20世纪以后,不仅化学、生物学等自然科学广泛的应用了数学,而且许多社会科学,如管理学、经济学、社会学,社会系统工程和逻辑学等等都应用开始数学。思维科学尤其是实验心理学、人工智能等的研究开始大量运用数学。所有这些使得人们认识到,原来的数学对象(空间形式、数量关系、结构关系)并不都是自然界

数学里的 e 为什么叫做自然底数

数学里的 e 为什么叫做自然底数?是不是自然界里什么东西恰好是e?修改 我的意思是它和“自然”有什么关系?为什么这个数要叫做“自然底数”呢?修改 举报4 条评论分享?邀请回答

按票数排序按时间排序 17 个回答 赞同2205反对,不会显示你的姓名 张英锋,好答案不在对错,在于让心智获得更多自由。 陈成、乔乔、郁欣等人赞同 好问题,让我尝试不用公式,用跨越7000年人类文明的方式,来解读e的自然之美,争取有中学基础的人就能看懂。 e有时被称为自然常数(Natural constant),是一个约等于2.71828182845904523536……的无理数。 以e为底的对数称为自然对数(Natural logarithm),数学中使用自然(Natural)这个词的还有自然数(Natural number)。这里的“自然”并不是现代人所习惯的“大自然”,而是有点儿“天然存在,非人为”的意思。就像我们把食品分为天然食品和加工食品,天然食品就是未经人为处理的食品。 但这样解读“自然”这个词太浅薄了!为了还原全貌,必须穿越到2500多年前的古希腊时代。 (你也知道,穿越剧都很长(>﹏<),不喜欢长篇大论的,可直接跳到后面看结论。) “自然”的发明 我们知道,人类历史上曾出现过很多辉煌的文明,例如大家熟知的四大文明:古巴比伦、古埃及、古印度河以及古代中国。 但是要说谁对现代文明的影响最大?对不起,四大文明谁都排不上!真正对现代文明影响最大的是古希腊文明,特别是古希腊的哲学、科学思想,是整个现代文明的源头和基石。这里并不是要贬低四大文明,现代文明也从各文明继承了大量的文化遗产,只是相比古希腊要少很多。 现代人的基础教育,无论是什么国家、什么社会制度、什么民族,在教科书里除了介绍自己的古代成就外(如四大发明),还会大篇幅的介绍古希腊的科学、哲学思想,来启蒙学生的心智,这是跨越国界的共同做法。 大家都这样做的原因,就是因为古希腊哲学家发明了科学的思维方法和“自然”(Natural)这个词,在理论中用自然来取代具体的神灵,这是人类文明史上划时代的发明。如果没有这个发明,现代文明可能还会晚出现数千年,所以这是至关重要的进步。 在古希腊文明之外的古文明里,人们解释世间万物的运行时,总是要引入神灵等超自然、拟人化的因素。例如,得病了就认为鬼神附体,洪水泛滥就认为天神发怒,石人一出天下就可以造反了,总有一个超自然的神灵在操纵万物的运行。人们偏爱形象而戏剧化的解释,拟人化的神灵恰恰具有形象、戏剧化的特点,最易于接受和传播。现代喜欢希腊神话的人数,也远多于喜欢希腊哲学的。电视里最流行各种奇幻故事,例如狼人、吸血鬼什么的。古代人也一样,不同的是我们知道这是假的,古人则认为是真的,这成为他们理解世界运行的思维定势。

动物中的数学

动物中的数学“天才” 2010年1月19日星期二晴 鹰类从空中俯冲下来猎取地上的小动物时,常常采取一个最好的角度出其不意地扑向猎物。 壁虎在捕食蚊、蝇、蛾等小昆虫时,总沿着一条螺旋形曲线爬行,这条曲线,数学上称为“螺旋线”。

切叶蜂用大腭剪下的每片圆形叶片,像模子冲出来似的,大小完全一样。 蜘蛛也是一位“作图”专家.它用吐出的丝结成的“八卦”形网,的确巧夺天工,这种八角形几何图案,不但结构复杂而且造型美丽,由中心向外辐射的两条相邻半径间的两段蛛丝,都是彼此平行的.此

外,每一向横条蛛丝,与主要辐射向外的蛛丝相交所成的角度都相等。 蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。 丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每

边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”? 鼹鼠“瞎子”在地下挖掘隧道时,总是沿着90°转弯。 冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。

真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。

相关文档
最新文档