13.4(2)平行线的判定(2)
平行线的性质和判定
平行线的性质和判定【知识要点归纳】1.平行线(1)定义:在同一平面内,不相交的两条直线叫做平行线,直线a与直线b互相平行,记作a∥b.(2)平行公理:经过直线外一点,有且只有一条直线与已知直线平行.注:点必须在直线外,而不是在直线上.(3)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即“平行于同一条直线的两条直线平行”.2.两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:(1)相交;(2)平行.注:判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,两直线平行;3.两直线平行的判定方法(1)平行线的定义.(2)平行公理的推论.(3)同位角相等,两直线平行.(4)内错角相等,两直线平行.(5)同旁内角互补,两直线平行.4.平行线的性质(1)两直线平行,同位角相等.(2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.重点讲解:一个定义(平行线),一个位置,五个判定,三个性质.【课堂过关训练】平行线的性质1.选择题:(1)下列说法中,不正确的是()A.同位角相等,两直线平行; B.两直线平行,内错角相等; C.两直线被第三条直线所截,同旁内角互补; D.同旁内角互补,两直线平行(2)如图1所示,AC平分∠BCD,且∠BCA=∠CAD=12∠CAB,∠ABC=75°,则∠BCA等于( • ) A.36° B.35° C.37.5° D.70°(1) (2) (3)(3)如图2所示,AD⊥BC于D,DG∥AB,那么∠B和∠ADG的关系是()A.互余 B.互补 C.相等 D.以上都不对(4)如图3,直线c与直线a、b相交,且a∥b,则下列结论:①∠1=∠2;②∠1=∠3;③∠3=∠2中,正确的个数为()A.0个 B.1个 C.2个 D.3个(5)如图4,若AB∥CD,则()A.∠1=∠2+∠3 B.∠1=∠3-∠2C.∠1+∠2+∠3=180° D.∠1-∠2+∠3=180°(6)如图5,AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个 B.2个 C.3个 D.4个(4) (5) (6) (7)(7)已知两个角的两边分别平行,并且这两个角的差是90°,•则这两个角分别等于() A.60°,150° B.20°,110° C.30°,120° D.45°,135°(8)如图6所示,若AB∥EF,用含α、β、γ的式子表示x,应为()A.α+β+γ B.β+γ-αC.180°-α-γ+β D.180°+α+β-γ4.如图所示,已知AD、BC相交于O,∠A=∠D,试说明一定有∠C=∠B.5.如图所示,已知AB∥CD,AD∥BC,BF平分∠ABC,DE平分∠ADC,则一定有DE∥FB,它的根据是什么?6.如图,AB∥CD,EF分别交AB、CD于M、N,∠EMB=50°,•MG•平分∠BMF,MG交CD于G,求∠1的度数.平行线的判定1.如图1,已知∠1 = 100°,AB∥CD,则∠2 = ,∠3 = ,∠4 = .2.如图2,直线AB、CD被EF所截,若∠1 =∠2,则∠AEF +∠CFE = .3.如图3所示(1)若EF∥AC,则∠A +∠ = 180°,∠F + ∠ = 180°().(2)若∠2 =∠,则AE∥BF.(3)若∠A +∠ = 180°,则AE∥BF.4.如图4,AB∥CD,∠2 = 2∠1,则∠2 = .5.如图5,AB ∥CD ,EG ⊥AB 于G ,∠1 = 50°,则∠ E = .6.如图6,直线l 1∥l 2,AB ⊥l 1于O ,BC 与l 2交于E ,∠1 = 43°,则∠2 = . 7.如图7,AB ∥CD ,AC ⊥BC ,图中与∠CAB 互余的角有 . 8.如图8,AB ∥EF ∥CD ,EG ∥BD ,则图中与∠1相等的角(不包括∠1)共有 个. 二、解答下列各题9.如图9,已知∠ABE +∠DEB = 180°,∠1 =∠2,求证:∠F =∠G .10.如图10,DE ∥BC ,∠D ∶∠DBC = 2∶1,∠1 =∠2,求∠DEB 的度数.11.如图11,已知AB ∥CD ,试再添上一个条件,使∠1 =∠2成立.(要求给出两个以上答案,并选择其中一个加以证明)图51 A B C D E F GH 图7 1 2 D A C B l 1l 2 图81 A BFC DE G 图6C D F E B A 图912 ACB FGED图102 1BCED 图1112 ABEFDC12.如图12,∠ABD 和∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1 +∠2 = 90°.求证:(1)AB ∥CD ; (2)∠2 +∠3 = 90°.综合练习:1.若α和β是同位角,且a =30°,则β的度数是( )A .30°B .150°C .30°或150°D .不能确定2.如果一个角的两边分别平行于另一个角的两边,且其中一个角比另一个角的4倍少30°,那么这两个角分别是( )A .30°和150°B .42°和138°C .都等于10°D .42°和138°或都等于10°3.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的,如图所示.从图中可知,小敏画平行线的依据可能有( )①两直线平行,同位角相等;②两直线平行,内错角相等; ③同位角相等,两直线平行;④内错角相等,两直线平行.A .①②B .②③C .③④D .①④4.如图所示,AB ∥EF ,EF ∥CD ,EG 平分∠BEF ,∠B +∠BED +∠D=192°,∠B -∠D=24°,则C图1212 3AB DF∠GEF=__________.5.在同一平面内有2002条直线a1,a2,…,a2002,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,那么a1与a2002的位置关系是__________.6.如图所示,AB∥CD,∠1=∠2,∠3=∠4,试说明:AD∥BE.8.已知,如图所示,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB ∥DC.9.如图所示,已知∠DBF=∠CAF,CE⊥FE.垂足为E,∠BDA+∠ECA=180°,求证:DA⊥EF10.已知,如图所示,∠1+∠2=180°,∠1+∠EFD=180°,∠3=∠B,试判断∠AED与∠C的关系,并证明你的结论.11.已知,如图所示,AC∥DE,DC∥EF,CD平分∠BCA.求证:EF平分∠BED.。
平行线的判定的方法
平行线的判定的方法
嘿,你问平行线的判定方法啊?那咱就来唠唠。
一种方法呢,就是看同位角。
啥是同位角呢?就比如说两条直线被第三条直线所截,在同一位置的角就叫同位角。
如果同位角相等,那这两条直线就是平行的。
这就好比两个人站在同一条起跑线上,要是他们跑的速度一样快,方向也一样,那他们跑出来的路线肯定是平行的嘛。
还有一种方法是看内错角。
内错角就是两条直线被第三条直线所截,在两条直线之间,位置交错的角。
要是内错角相等,那这两条直线也平行。
比如说你走路的时候,左脚和右脚走的方向要是一样,那走出来的路线肯定也是平行的。
就像内错角相等的时候,两条直线也是平行的。
再一个方法是看同旁内角。
同旁内角就是两条直线被第三条直线所截,在两条直线之间,在同一侧的角。
如果同旁内角互补,也就是加起来等于 180 度,那这两条直线也平行。
这就好像两个人背靠背站着,他们往相反的方向走,走出来的路线肯定是平行的。
就像同旁内角互补的时候,两条直线也是平行的。
另外呢,还有平行于同一条直线的两条直线互相平行。
这就好比你有三个好朋友,你和第一个朋友关系好,你和第二个朋友关系也好,那第一个朋友和第二个朋友关系肯定也不错。
如果两条直线都和第三条直线平行,那这两条直线也互相平行。
总之啊,判定平行线的方法有好几种呢。
你可以根据具体的情况来选择合适的方法。
嘿嘿。
平行线的判定和性质讲义
在同一平面内,不相交的两条直线叫做平行线.角是平面几何图形中最活跃的元素,前面我们已学习过特殊角、数量关系角等角的知识.当两条直线相交或分别与第三条直线相交,就产生对顶角、同位角、内错角、同旁内角等位置关系角,进一步丰富了角的知识,它们在角的计算与证明中有广泛的应用.与平行线相关的问题一般都是平行线的判定与性质的综合运用,主要体现在如下两个方面:1. 由角定角已知角的关系→(判定)两直线平行→(性质)确定其他角的关系.2.由线定线已知两直线平行→(性质)角的关系行→(判定)确定其他两直线平行..平行线判定方法:(1) 同位角 相等,两直线平行。
.(2) 内错角相等,两直线平行。
(3) 同旁内角互补,两直线平行。
(4) 垂直于同一直线的两直线平行(5) 如果两条直线都与第三条直线平行,那么这两条直线平行。
平行线的性质:(1)两直线平行,同位角相等。
(2) 两直线平行,内错角相等。
(3) 两直线平行, 同旁内角互补。
【基础训练】1.下列命题正确的有 (填序号 )(1)两条直线被第三条直线所截,一定有同位角,所以这两条直线一定平行.(2)两直线不平行,同旁内角不互补.(3)如图,若1l ∥2l ,则∠1+∠2=180°.(4)如图,AD ∥BC ,则∠B +∠C =180°.(5)平行线的同位角的平分线互相平行.2.下列说法正确的是( )A .经过一点有一条直线与已知直线平行B .经过一点有无数条直线与已知直线平行C .经过一点有且只有一条直线与已知直线平行D .经过直线外一点有且只有一条直线与已知直线平行3.下列说法正确的有( )①不相交的两条直线是平行线;②在同一平面内,两条直线的位置关系有两种; ③若线段AB 与CD 没有交点,则AB ∥CD ;④若a ∥b ,b ∥c ,则a 与c 不相交.⑤两条射线或线段互相垂直是指它们所在的直线互相垂直.A .1个B .2个C .3个D .4个N FE D C B A N M A CD B EB DC A 4.已知:如图,∠BAE +∠AED =180°,∠1=∠2.求证:∠M =∠N .证明:∵∠BAE +∠AED =180°( ),∴ ∥ ( ).∴∠BAE = .又∵∠1=∠2(已知 ),∴∠BAE -∠1= - ( ).即∠MAE = .∴ ∥ ( ).∴∠M =∠N ( ).5如图,一张长方形纸条ABCD 沿MN 折叠后形成的图形,∠DMN =80°,求∠BNC 的度数.6.已知:如图AB //CD ,BCD DAB ∠=∠,AE 、BE 分别平分DAB ∠、ABC ∠.请求出E ∠的度数.7.如下图,已知AD ⊥BC ,NE ⊥BC ,∠E =∠EFA ,求证:AD 平分∠BAC .8.如图,已知︒=∠+∠18021, B ∠=∠3.试判断AED ∠与C ∠的关系,并予以说明.G EB D 321FCA9.如图,︒=∠25B ,︒=∠45BCD ,︒=∠30CDE ,︒=∠10E .求证: AB ∥EF .【例1】如图,AB ∥CD ,AC ⊥BC ,图中与∠CAB互余的角有个. (安徽省中考题)思路点拨 充分运用对顶角、平行线性质等与角相关的知识,借助互余的概念判断. 注:平面几何的研究除了运用计算方法外,更多的要依靠时图形的观察(直觉能力),运用演绎推理的方法去完成,往往需要通过观察、实验操作进而猜想蛄论(性质),或由预设结论去猜想条件,再运用演绎推理方法加以证明.在学习完相交线、平行线内容后,平面几何的学习就由实验几何阶段进入论证几何阶段,顺利跨越推理论证阶段,需注意以下几点:(1)过好语言关;(2)学会识图;(3)善于分析.【例2】 如图,平行直线AB 、CD 与相交直线EF 、GH 相交,图中的同旁内角共有( ) .A .4对B .8对C .12对D .16对( “希望杯”邀请赛试题)思路点拨 每一个“三线八角”基本图形都有两对同旁内角,从对原图形进行分解人手.【例3】如图,已知∠B =25°,∠BCD =45°,∠CDE=30°,∠E =10°求征:AB ∥EF .思路点拨 解本例的困难在于图形中没有“三线八角”,考虑创造条件,在图中添置“三线八角”或作出与AB 或CD 平行的直线.【例4】 如图,在ΔABC 中,CE ⊥AB 于E ,DF ⊥AB 于F ,AC ∥ED ,CE 是∠ACB 的平分线.求证:∠EDF =∠BDF .(天津市竞赛题)EC DF A MN思路点拨综合运用角平分线、垂直的定义、平行线的判定与性质等知识,因图形复杂,故需恰当分解图形.【例5】探究:(1)如图a,若AB∥CD,则∠B+∠D=∠E,你能说明为什么吗?(2)反之,若∠B+∠D=∠E,直线AB与CD有什么位置关系?请证明;(3)若将点E移至图b所示位置,此时∠B、∠D、∠E之间有什么关系?请证明;(4)若将E点移至图c所示位置,情况又如何?(5)在图d中,AB∥CD,∠E+∠G与∠B+∠F+∠D又有何关系?(6)在图e中,若AB∥CD,又得到什么结论?思路点拨已知AB∥CD,连结AB、CD的折线内折或外折,或改变E点位置、或增加折线的条数,通过适当地改变其中的一个条件,就能得出新的结论,给我们创造性的思考留下了极大的空间,解题的关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.注:分析主要从以下两个方面进行:(1)由因导果(综合法),即从已知条件出发推出相应结论.(2)执果溯因(分析法),即要得到结论需具备什么条件.解题时,我们既要抓住条件,又要盯住目标,努力促使已知与来知的转化与沟通.探索性问题一般具有以下特点:(1)给出了条件,但没有明确的结论;(2)给出了结论,但没有给出或没有全部给出应具备的条件,(3)先提出特殊情况进行研究,再要求归纳、猜测和确定一般结论;(4)先对某一给定条件和结论的问题进行研究,再探讨改变条件时其结论相应发生的变化,或改变结论时其条件相应发生的变化;(5)解题方法需要独立创新.“解题千万道,解后抛九霄”是难以达到提高解题能力,发展思维的目的的.善于作解题后小结,回顾解题过程,总结解题经验和体会,再进而作一题多解,一题多问,一题多变的思考,挖掘题目的深度和广度,扩大题目的辐射面,这对解题能力的提高是十分有益的.学力训练1.如图,已知AE∥CD,EF交AB于M,MN⊥EF于M,NN交CD于N,若∠BME=110°,则∠MND= .(湖北成宁市中者题)2.如图,若直线a,b分别与直线c,d相交,且∠1+∠3=90°,∠2一∠3=90°,∠4=115°,那么∠3= .3.如图,已知AB∥CD,∠1=100°,∠2=120°,则∠α= .(内蒙古中考题)4.已知两个角的两边分别平行,其中一个角为40°,那么另一角是度.5.如图,下列条件中,不能判断直线l1∥l2的是( ).A.∠l=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°(南通市中考题)6..已知线段AB的长为10cm,点A、B到直线L的距离分别为6cm和4cm,符合条件l 的条数为( ).A.1 B.2 C.3 D.4(安徽省中考题)7.如图,直线a、b都与直线c相交,给出下列条件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判断a∥b的是( ).A.(1)、(3) B.(2)、(4) C.(1)、(3)、(4) D.(1)、(2)、(3)、(4)(江苏盐城市中考题)8.如图,AB∥EF∥DC,EG∥DB,则图中与∠1相等的角(∠1除外)共有( ).A.6个D.5个C.4个D.3个(湖北省荆门市中考题)9.如图,已知∠l+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并对结论进行证明.10.如图,已知∠1十∠2=180°,∠A=∠C,AD平分∠BDF.求证:BC平分∠DBE.15.如图,D、G是ΔABC中AB边上的任意两点,DE∥BC,GH∥DC,则图中相等的角共有( ).A,4对B.5对 C .6对D.7对16.如图,若AB∥CD,则( ).A.∠1=∠2+∠3 B.∠1=∠3一∠2C.∠1+∠2+∠3=180°∠l一∠2十∠3=180°17.如图,AB∥CD∥EF,EH⊥CD于H,则∠BAC+∠ACE+∠CEH等于( ).A.180°B.270°C.360°D.450°18.如图,AB∥EF,∠C=90°,则α、β和γ的关系是( ).A.β=α+γB.α+β+γ=180°C.α+β-γ=180°D.β+γ-α=180°19.如图,已知AB∥CD,P为HD上任意一点,过P点的直线交HF于O点,试问:∠HOP、∠AGF、∠HPO有怎样的关系?用式子表示并证明.20.如图,已知AB∥CD,α=∠A+∠E,β=∠B+∠C+∠D,证明:β=2α.22.如图,已知射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数.(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.。
平行线的判定及性质 例题及练习
平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。
初中数学 平行线的判定定理有哪些
初中数学平行线的判定定理有哪些平行线的判定定理是初中数学中的一个重要概念,用于判断两条直线是否平行。
在本文中,我将详细介绍平行线的判定定理,包括定义、相关定理以及实际应用。
同时,我还会提供一些示例和习题,以帮助读者更好地理解和应用这一概念。
1. 同位角定理:如果两条直线被一条横截线所切,且同位角相等,则这两条直线是平行线。
即如果两条直线l和m被一条直线n所切,且∠A=∠B,则l||m。
2. 平行线的性质:如果两条直线l和m都与第三条直线n平行,那么l和m也是平行线。
即如果l||n且m||n,则l||m。
3. 垂直定理的逆定理:如果两条直线l和m在同一个平面内,且l和m的任意一条垂线相互垂直,则l||m。
即如果l∠n且m∠n,则l||m。
4. 对顶角定理:如果两条直线l和m被一条横截线所切,且对顶角相等,则这两条直线是平行线。
即如果两条直线l和m被一条直线n所切,且∠A=∠C,则l||m。
5. 平行线的传递性:如果直线l||m,且直线m||n,那么直线l||n。
即如果l||m且m||n,则l||n。
6. 锐角等于直角的定理:如果两条直线l和m在同一个平面内,且l和m的任意一条垂线与另一条直线的某一角度相等,则l||m。
即如果l∠n且∠A=90°,则l||m。
7. 平行线的平行线定理:如果两条直线l和m被同一条直线n所切,且其中一条直线与n 的某一角度为锐角,另一条直线与n的某一角度为钝角,则l||m。
8. 平行线的交角定理:如果两条直线l和m被同一条直线n所切,且其中一条直线与n的某一角度为锐角,另一条直线与n的某一角度为钝角,则l与m不平行。
9. 平行线的平行截线定理:如果两条直线l和m被同一条直线n所切,且直线l与n的交点A与直线m与n的交点B之间的线段AB与直线n的某一条垂线相交于点C,则直线l和直线m平行。
以上是一些常见的平行线的判定定理,可以根据不同的条件来判断两条直线是否平行。
数学平行线的判定
数学平行线的判定
数学平行线的判定是指如何判断两条直线是否平行。
一般来讲,有以下几种方法:
1. 垂直判定法:如果两条直线的斜率乘积为-1,则它们互相垂直,而不是平行。
2. 逆否命题法:如果两条直线不相交,则它们肯定平行。
3. 两角相等法:如果两个角分别在两条直线上,且这两个角相等,则这两条直线是平行的。
4. 长度比较法:如果两条直线上任意相等距离之间的距离比相等,则这两条直线平行。
5. 比例判定法:如果一条直线与两个平行线相交,则对这两个平行线上相同的对应线段,这条直线上的对应线段也成相同比例。
以上是几种常见的数学平行线的判定方法。
在实际应用中,根据不同的情况和条件,选择合适的方法进行判定,有助于解决问题和提高计算效率。
- 1 -。
平行线的判定条件
平行线的判定条件平行线是在同一个平面上且永不相交的两条直线。
在几何学中,判定两条直线是否平行的条件有以下三种:1. 同位角相等定理:如果一条直线与两条平行直线相交,那么这两条平行直线上的同位角(同位角是指两条直线被截取的相对位置相同的两个角)相等。
为了更好地理解同位角相等定理,我们可以通过以下例子进行解释。
假设有两条平行线l和m,直线n与l和m相交,如图所示: n|l———————————————m根据同位角相等定理,角A等于角B,角C等于角D。
这意味着同一边两个对应的角度是相等的,如角A和角B,角C和角D。
2. 三角形内角定理:如果两条直线被一条第三条直线截取,并且该直线上的两个内角相等,那么这两条直线是平行的。
以一个三角形作为示例,如图所示:///a //// b----------/----------//// c如果线段a与线段b平行,那么线段c与线段b也平行。
3. 平行线的传递性:如果直线a与直线b平行,直线b与直线c平行,则直线a与直线c 平行。
此定理在平行线的判定中起到重要作用。
它表示如果两条直线均与同一直线平行,那么这两条直线本身也是平行的。
总结:以上所述的三种判定条件可以帮助我们确定两条直线是否平行。
在几何学中,平行线的判定非常重要,并且可应用于解决各种相关问题,例如角度相等和直线的相对位置等。
需要注意的是,在判断平行线时,我们必须确保所讨论的直线都在同一个平面上。
如果两条直线不在同一个平面上,那么它们无法被判定为平行。
通过了解和应用这些判定条件,我们可以有效地判断两条直线是否平行,并在几何学问题中应用这些知识。
平行线的概念和判定条件在数学和物理学中均有广泛的应用,对于进一步理解和解决相关问题具有重要意义。
八年级数学知识点归纳:平行线的判定
八年级数学知识点归纳:平行线的判定八年级数学知识点归纳:平行线的判定1、定义:在同一平面内,不相交的两条直线叫做平行线。
说明:也可以说两条射线或两条线段平行,这实际上是指它们所在的直线平行。
2、平行线的判定:(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补两直线平行。
3、平行线的性质(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
说明:要证明两条直线平行,用判定公理(或定理)在已知条件中有两条直线平行时,则应用性质定理。
4、如果一个角的两边分别平行于另一个角的两边,那么这两个角_________________.5、如果一个角的两边分别垂直于另一个角的两边,那么这两个角_____________1、平行线的定义:在同一平面内,永不相交的两条直线叫做平行线.如:AB平行于CD,写作AB∥CD2、平行公理:过直线外一点有且只有一条直线与已知直线平行.推论〔平行线的传递性〕:平行同一直线的两直线平行.∥a∥c,c∥b∥a∥b.平行线的判定1.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行. 简单说成:同位角相等,两直线平行.2.两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行. 简单说成:内错角相等,两直线平行.3.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行. 简单说成:同旁内角互补,两直线平行.4.在同一平面内,垂直于同一直线的两条直线相互平行.5、平行线间的距离,处处相等.6、如果两个角的两边分别平行,那么这两个角相等或互补.平行线的性质1.两条平行被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.2.两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.3.两条平行线被第三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.梯形知识点总结,初中数学梯形知识点。
平行线判定的六种方法
平行线判定的六种方法
方法一:斜率法
两条直线平行的条件是它们的斜率相等。
斜率(k)可以通过直线上两个点的坐标进行计算,即k=(y2-y1)/(x2-x1)。
如果两条直线的斜率相等,则说明它们是平行线。
方法二:双角法
两条平行线之间的夹角等于它们的对应内、外顶角的补角。
即如果两条直线之间的夹角等于两条直线与第三条直线之间的对应内(外)顶角的补角,则两条直线是平行线。
方法三:向量法
两条直线平行的条件是它们的方向向量是平行的。
可以使用两个向量进行判断,如果两个向量具有相同的方向(即平行或反平行),则两条直线平行。
方法四:截距法
两条直线平行的条件是它们在纵坐标轴上的截距是相等的。
如果两条直线在纵坐标轴上的截距相等,则两条直线是平行线。
方法五:面积比法
对于两个平行线,它们与一条穿过它们的横线所夹成的两个三角形的面积比是相等的。
所以可以通过计算两个三角形的面积比来判断两条直线是否平行。
方法六:同位角法
如果两条直线与第三条直线相交,且同位角(同侧相对应的角)相等,则两条直线是平行的。
以上是常用的六种判定是否平行的方法,通过这些方法可以很方便地
判断两条直线是否平行。
需要注意的是,在使用这些方法时,需要保证提
供的条件和数据准确无误,以获得正确的结论。
平行线的判定和性质
平行线的判定和性质平行线是几何中一个非常基本的概念,它在数学的研究和应用中具有重要的地位。
通过判定两条直线是否平行,我们可以深入了解平行线的性质和特点。
本文将介绍平行线的判定方法和相关性质。
一、平行线的判定1. 直线与直线的判定给定两条直线L₁和L₂,要判定它们是否平行,有以下几种方法:a) 角度判定法:如果两条直线的锐角、直角或钝角相等,那么它们是平行线。
b) 垂直判定法:如果一条直线与第二条直线的所有垂线都相等或成比例,那么它们是平行线。
c) 斜率判定法:如果两条直线的斜率相等且不为无穷大,则它们是平行线。
2. 直线与平面的判定给定一条直线L和一个平面P,要判定直线和平面是否平行,有以下几种方法:a) 垂直判定法:如果直线L和平面P的所有垂线都相等或成比例,那么它们是平行的。
b) 法线判定法:如果一条直线与平面的法线平行,那么它们是平行的。
二、平行线的性质平行线具有以下重要性质:1. 平行线的定义平行线是在同一个平面上不相交且不同于的两条直线。
2. 平行线与平移平行线之间可以进行平移变换,即将一条平行线沿着与之平行的方向平移,得到的仍然是一条平行线。
3. 平行线的夹角平行线之间的夹角为0度,即平行线之间没有交点。
4. 平行线的性质a) 平行线具有传递性:如果直线L₁与直线L₂平行,直线L₂与直线L₃平行,则直线L₁与直线L₃也平行。
b) 平行线与截线:如果一条直线与两条平行线相交,那么这两条直线所截线段的比例相等。
c) 平行线与转角:如果两条直线与平行线相交,它们所成转角相等。
d) 平行线与干涉线:如果两组平行线相互交错,即一组平行线与另一组平行线交叉相交,所交干涉线与平行线相交产生的内、外交角相等。
5. 平行线与平行四边形平行线所围成的四边形称为平行四边形。
平行四边形具有以下性质:a) 对边平行:平行四边形的对边都是平行线。
b) 对角线平分:平行四边形的对角线互相平分。
c) 同底角对顶角相等:平行四边形的同底角对顶角相等。
平行线及其判定知识点总结
平行线及其判定知识点1:平行线的定义及平面内两直线的位置关系定义:在同一平面内,的两条直线叫做平行线,直线a,b平行,记作。
在同一平面内,不重合的两条直线只有两种位置关系: 。
说明1(1)在同一平面内,两条直线的位置关系只有平行与相交两种,若没有特别说明,“重合”视为一条直线。
(2)平常所说的“两条射线平行,两条线段平行”都是指它们所在的直线平行(3)平行线的定义有三个特征:一是在同一平面内;二是两条直线;三是不相交。
三者缺一不可。
例题:下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.若直线a∥b,b∥c,则a∥eD.若两条线段不相交,则它们互相平行【分析】根据平行线的定义、平行公理的推论来判断【解析】A选项中缺少“在同一平面内”这个条件,故A选项错误。
若没有其条件限制,一条直线的平行线有无数条,故B选项错误。
平行于同一直线的两条直线平行,故C选项正确。
根据平行线的定义可知D选项错误.故选C知识点2:平行公理平行公理:经过一点.有且只有一条直线与这条直线平行。
(注意:①平行公理特别强调“经过直线外一点”,而非直线上的点,它和垂线的性质不同②“有且只有"强调直线的存在性和唯一性)如图,经过直线a外一点P,能且只能画出一条直线与直线a平行·Pa例题:下列说法正确的是()A.在同一平面内,过直线外一点有一条直线与已知直线平行B.过一点有且只有一条直线与已知直线平行C.经过一点有且只有一条线段与已知线段平行D.过一点有且只有一条直线与己知直线垂直【解析】A选项中“在同一平面内”这个条件,不影响后半向的对错。
“过直线外一点有一条直线与已知直线平行”说的是存在性,即过直线外一点肯定有一条直线与已知直线平行,故A选项正确。
B选项错误,因为若经过直线上一点,则没有直线与已知直线平行。
C选项错误,道理同B选项。
D选项错误,因为缺少“在同一平面内”这个大前提,D选项中结论不成立,如图,AB,BC,BD是正方体的三条棱,它们两两垂直,且都经过点B,若把AB看作已知直线,则经过点B有两条直线BC,BD与已知直线AB垂直知知识点3:平行公理的推论平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也。
数学平行线的判定
数学平行线的判定
数学平行线的判定是指在平面几何中,如何判断两条直线是否平行。
通常有以下几种方法:
1.同位角法:若两条直线被一条横线所截,且同侧内角和为180度,则这两条直线平行。
2.对顶角法:若两条直线被一条横线所截,且对应角相等,则这两条直线平行。
3.平行线性质法:若两条直线与第三条直线分别相交,使得同侧内角和小于180度,则这两条直线平行。
4.斜率法:若两条直线的斜率相等,则这两条直线平行。
以上是数学平行线的判定方法,可以根据实际情况选择不同的方法来判断。
掌握这些方法可以有效地解决一些平面几何问题。
- 1 -。
平行线的判定
平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行平行线的判定(提高)知识讲解【学习目标】1.熟练掌握平行线的画法;2.掌握平行公理及其推论;3.掌握平行线的判定方法,并能运用“平行线的判定方法”,判定两条直线是否平行. 【要点梳理】要点一、平行线的画法及平行公理1.平行线的画法用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合.②靠:用直尺紧靠三角板一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.④画:沿着这条斜边画一条直线,所画直线与已知直线平行.2.平行公理及推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.要点二、平行线的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵∠3=∠2∴AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵∠4+∠2=180°∴AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.【典型例题】类型一、平行公理及推论1.在同一平面内,下列说法:(1)过两点有且只有一条直线;(2)两条直线有且只有一个公共点;(3)过一点有且只有一条直线与已知直线垂直;(4)过一点有且只有一条直线与已知直线平行. 其中正确的个数为:( ) .A.1个B.2个C.3个D.4个【答案】B【解析】正确的是:(1)(3).【总结升华】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意区分不同表述之间的联系和区别.举一反三:【变式】下列说法正确的个数是() .(1)直线a、b、c、d,如果a∥b、c∥b、c∥d,则a∥d.(2)两条直线被第三条直线所截,同旁内角的平分线互相垂直.(3)两条直线被第三条直线所截,同位角相等.(4)在同一平面内,如果两直线都垂直于同一条直线,那么这两直线平行.A.1个 B .2个C.3个D.4个【答案】B2.证明:平行于同一直线的两条直线平行.【答案与解析】已知:如图,a//c,b//c.求证:a//b.证明:假设直线a与直线b不平行,则直线a与直线b相交,设交点为A,如图.Q,a//c,b//c则过直线c外一点A有两条直线a、b与直线c平行,这与平行公理矛盾,所以假设不成立..a//b【总结升华】本题采用的是“反证法”的证明方法,反证法证题的一般步骤:第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立.类型二、平行线的判定3.(2015春•荣昌县校级期中)如图,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F.试说明:EC∥DF.【思路点拨】根据BD平分∠ABC,CE平分∠ACB,得出∠DBF=∠ABC,∠ECB=∠ACB,∠DBF=∠ECB,再根据∠DBF=∠F,得出∠ECB=∠F,即可证出EC∥DF.【答案与解析】解:∵BD平分∠ABC,CE平分∠ACB,∴∠DBF=∠ABC,∠ECB=∠ACB,∵∠ABC=∠ACB,∴∠DBF=∠ECB,∵∠DBF=∠F,∴∠ECB=∠F,∴EC∥DF.【总结升华】此题考查了平行线的判定,用到的知识点是同位角相等,两直线平行,关键是证出∠ECB=∠F.举一反三:【变式】一个学员在广场上驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130°【答案】A提示:“方向相同”有两层含义,即路线平行且方向相同,在此基础上准确画出示意图.图B显然不同向,因为路线不平行.图C中,∠1=180°-130°=50°,路线平行但不同向.图D中,∠1=180°-130°=50°,路线平行但不同向.只有图A路线平行且同向,故应选A.4.如图所示,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°.试说明AB∥EF的理由.【思路点拨】利用辅助线把AB、EF联系起来.【答案与解析】解法1:如图所示,在∠BCD的内部作∠BCM=25°,在∠CDE的内部作∠EDN=10°.∵∠B=25°,∠E=10°(已知),∴∠B=∠BCM,∠E=∠EDN(等量代换).∴AB∥CM,EF∥DN(内错角相等,两直线平行).又∵∠BCD=45°,∠CDE=30°(已知),∴∠DCM=20°,∠CDN=20°(等式性质).∴∠DCM=∠CDN(等量代换).∴CM∥DN(内错角相等,两直线平行).∵AB∥CM,EF∥DN(已证),∴AB∥EF(平行线的传递性).解法2:如图所示,分别向两方延长线段CD交EF于M点、交AB于N点.∵∠BCD=45°,∴∠NCB=135°.∵∠B=25°,∴∠CNB=180°-∠NCB-∠B=20°(三角形的内角和等于180°).又∵∠CDE=30°,∴∠EDM=150°.又∵∠E=10°,∴∠EMD=180°-∠EDM-∠E=20°(三角形的内角和等于180°).∴∠CNB=∠EMD(等量代换).所以AB∥EF(内错角相等,两直线平行).【总结升华】判定两条直线平行的方法有四种,选择哪种方法要根据问题提供的条件来灵活选取.举一反三:【高清课堂:平行线及判定403102经典例题2】【变式】(2015秋•巨野县期末)如图,已知∠BED=∠B+∠D,求证:AB∥CD.【答案】证明:延长BE交CD于F.∵∠BED+∠DEF=180°,(平角的定义)∴∠DEF+∠D+∠EFD=180°(三角形的内角和等于180°),∴∠BED=∠D+∠EFD,(等量代换)又∠BED=∠B+∠D,∴∠B=∠EFD(等量代换),∴AB∥CD(内错角相等,两直线平行).平行线的判定(提高)巩固练习【巩固练习】一、选择题1.下列说法中正确的有() .①一条直线的平行线只有一条.②过一点与已知直线平行的直线只有一条.③因为a∥b,c∥d,所以a∥d.④经过直线外一点有且只有一条直线与已知直线平行.A.1个B.2个C.3个D.4个2.如果两个角的一边在同一直线上,另一边互相平行,则这两个角() .A.相等B.互补C.互余D.相等或互补3.(2015•黔南州)如图,下列说法错误的是()A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c4.一辆汽车在广阔的草原上行驶,两次拐弯后,行驶的方向与原来的方向相同,那么这两次拐弯的角度可能是().A.第一次向右拐40°,第二次向右拐140°.B.第一次向右拐40°,第二次向左拐40°.C.第一次向左拐40°,第二次向右拐140°.D.第一次向右拐140°,第二次向左拐40°.5.如图所示,下列条件中,不能推出AB∥CE成立的条件是() .A.∠A=∠ACE B.∠B=∠ACE C.∠B=∠ECD D.∠B+∠BCE=180°6.(绍兴)学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图,(1)—(4)):从图中可知,小敏画平行线的依据有().①两直线平行,同位角相等.②两直线平行,内错角相等.③同位角相等,两直线平行.④内错角相等,两直线平行.A.①②B. ②③C. ③④D. ④①二、填空题7.(2015春•高密市月考)如图,在下列条件中:①∠DAC=∠ACB;②∠BAC=∠ACD;③∠BAD+∠ADC=180°;④∠BAD+∠ABC=180°.其中能使直线AB∥CD成立的是.(填序号)8.如图,DF平分∠CDE,∠CDF=55°,∠C=70°,则________∥________.9.规律探究:同一平面内有直线a1,a2,a3…,a100,若a1⊥a2,a2∥a3,a3⊥a4…,按此规律,a1和a100的位置是________.10.已知两个角的两边分别平行,其中一个角为40°,则另一个角的度数是11.直线l同侧有三点A、B、C,如果A、B两点确定的直线l'与B、C两点确定的直线l''都与l平行,则A、B、C三点,其依据是12.如图,AB⊥EF于点G,CD⊥EF于点H,GP平分∠EGB,HQ平分∠CHF,则图中互相平行的直线有.三、解答题13.(2015春•兴平市期末)如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.14.小敏有一块小画板(如图所示),她想知道它的上下边缘是否平行,而小敏身边只有一个量角器,你能帮助她解决这一问题吗?15.如图,把一张长方形纸条ABCD沿AF折叠,已知∠ADB=20°,那么∠BAF为多少度时,才能使AB′∥BD?16.如图所示,由∠1=∠2,BD平分∠ABC,可推出哪两条线段平行,写出推理过程,如果推出另两条线段平行,则应将以上两条件之一作如何改变?【答案与解析】一、选择题1. 【答案】A;【解析】只有④正确,其它均错.2. 【答案】D;3. 【答案】C;【解析】A、若a∥b,b∥c,则a∥c,利用了平行公理,正确;B、若∠1=∠2,则a∥c,利用了内错角相等,两直线平行,正确;C、∠3=∠2,不能判断b∥c,错误;D、若∠3+∠5=180°,则a∥c,利用同旁内角互补,两直线平行,正确;故选C.4. 【答案】B;5. 【答案】B;【解析】∠B和∠ACE不是两条直线被第三条直线所截所得到的角.6. 【答案】C;【解析】解决本题关键是理解折叠的过程,图中的虚线与已知的直线垂直,过点P的折痕与虚线垂直.二、填空题7. 【答案】②③;【解析】①∠DAC=∠ACB利用内错角相等两直线平行得到AD∥BC,错误;②∠BAC=∠ACD 利用内错角相等两直线平行得到AB∥CD,正确;③∠BAD+∠ADC=180°利用同旁内角互补得到AB∥CD,正确;④∠BAD+∠ABC=180°利用同旁内角互补得到AD∥BC,错误;故答案为:②③8. 【答案】BC,DE;【解析】∠CFD=180°-70°-55°=55°,而∠FDE=∠CDF=55°,所以∠CFD=∠FDE.9. 【答案】a1∥a100;【解析】为了方便,我们可以记为a1⊥a2∥a3⊥a4∥a5⊥a6∥a7⊥a8∥a9⊥a10…∥a97⊥a98∥a99⊥a100,因为a1⊥a2∥a3,所以a1⊥a3,而a3⊥a4,所以a1∥a4∥a5.同理得a5∥a8∥a9,a9∥a12∥a13,…,接着这样的规律可以得a1∥a97∥a100,所以a1∥a100.10.【答案】40°或140°;11.【答案】共线,平行公理;【解析】此题考查是平行公理,它是论证推理的基础,应熟练应用.12.【答案】AB∥CD,GP∥HQ;【解析】理由:∵AB⊥EF,CD⊥EF.∴∠AGE=∠CHG=90°.∴AB∥CD.∵AB⊥EF.∴∠EGB=∠2=90°.∴GP平分∠EGB.∴∠1=12EGB=45°.∴∠PGH=∠1+∠2=135°.同理∠GHQ=135°,∴∠PGH=∠GHQ.∴GP∥HQ.三、解答题13. 【解析】解:∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).14.【解析】解:如图所示,用量角器在两个边缘之间画一条线段MN,用量角器测得∠1=50°,∠2=50°,因为∠1=∠2,所以由内错角相等,两直线平行,可知画板的上下边缘是平行的.15. 【解析】解:要使AB′∥BD,只要∠B′AD=∠ADB=20°,∠B′AB=∠BAD+∠B′AD=90°+20°=110°.∴∠BAF=12∠B′AB=12×110°=55°.16.【解析】解:可推出AD∥BC.∵BD平分∠ABC(已知).∴∠1=∠DBC(角平分线定义).又∵∠1=∠2(已知),∴∠2=∠DBC(等量代换).∴AD∥BC(内错角相等,两直线平行).把∠1=∠2改成∠DBC=∠BDC.。
数学《平行线的判定》知识点初一年级
数学《平行线的判定》知识点初一年级
给大家整理平行线的判定知识点,大家可以参考阅读,希望能帮助大家取得好成绩。
1、平行线的概念
在同一个平面内,不相交的两条直线叫做平行线。
平行用符号‖表示,如AB‖CD,读作AB平行于CD。
同一平面内,两条直线的位置关系只有两种:相交或平行。
注意:
(1)平行线是无限延伸的,无论怎样延伸也不相交。
(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。
2、平行线公理及其推论
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
3、平行线的判定
平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
简称:同位角相等,两直线平行。
平行线的两条判定定理:
(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
简称:内错角相等,两直线平行。
(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
简称:同旁内角互补,两直线平行。
补充平行线的判定方法:
(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。
4、平行线的性质
(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
有了上文梳理的平行线的判定知识点,相信大家对考试充满了信心,同时预祝大家考试取得好成绩。
初一上册数学平行线的判定
初一上册数学平行线的判定
一、平行线的定义
在同一平面内,不相交的两条直线称为平行线。
二、平行线的性质
1. 两条平行线被一条直线所截,同位角相等。
2. 两条平行线被一条直线所截,内错角相等。
3. 两条平行线被一条直线所截,同旁内角互补。
三、平行线的判定方法一:同位角相等
如果两直线的同位角相等,则这两条直线平行。
四、平行线的判定方法二:内错角相等
如果两直线的内错角相等,则这两条直线平行。
五、平行线的判定方法三:同旁内角互补
如果两直线的同旁内角互补,则这两条直线平行。
六、平行线的判定方法四:直线被一条横截线所截,同位角相等或内错角相等或同旁内角互补
如果一条直线被另一条横截线所截,同位角相等或内错角相等或同旁内角互补,则这两条直线平行。
七、平行线的判定方法五:直线被两条平行线所截,对应角相等
如果一条直线被两条平行线所截,对应的同位角或内错角相等,则这两条直线平行。
八、平行线的判定方法六:过直线外一点有且只有一条直线与已知直线平行
过直线外一点,只能画出一条与给定直线平行的直线。
九、平行线的判定方法七:在同一平面内,垂直于同一条直线的两条直线互相平行
在同一平面内,如果两条直线都垂直于第三条直线,则这两条直线互相平行。
十、平行线的判定方法八:若两直线同时与第三条直线平行,则这两条直线也互相平行。
平行线的判定定理
平行线的判定定理
首先,先理顺下关于平行线的判定所可能用到的公理、定理
公理:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(即:同位角相等,两直线平行)
定理:1、两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;
2、两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;
3、两直线都与第三条直线平行,那么这两条直线也互相平行(平行线的传递性).
既然是公理,也就是劳动人民在日常生活中总结出来的常识,这是不需要证明的.其他的几个定理,均是依托公理而展开,可以算是公理的特殊化、简单化、具体化.
另外,有关其他定理的证明,比如:如何将相等的内错角转换成相等的同位角,这需要做图,分析角.
最后,提醒下,关于平面几何方面的证明题目,一定要有规范的步骤,谨遵口诀:
条件:同位角相等结论:两直线平行。
条件:内错角相等结论:两直线平行。
条件:同旁内角互补结论:两直线平行。
沪教版(上海)数学七年级第二教学设计:13.4平行线的判定
(五)总结归纳
1.教学活动设计:
在总结归纳环节,教师将引导学生回顾本节课所学内容,形成知识体系,提高学生的几何素养。
2.教学实施:
(1)教师引导学生回顾本节课的主要内容,如平行线的定义、判定方法等。
(2)学生分享学习心得,总结自己在学习过程中的收获和不足。
(3)学生展开讨论,教师巡回指导,解答学生疑问。
(4)各小组汇报讨论成果,教师点评并总结。
(四)课堂练习
1.教学活动设计:
课堂练习环节旨在检验学生对平行线判定方法的掌握程度,通过分层练习,让学生在练习中巩固所学知识。
2.教学实施:
(1)设计基础题、提高题和拓展题,分别针对不同水平的学生。
(2)学生独立完成练习,教师巡回指导,解答学生疑问。
(3)教师点评,强调重点知识,指出学生在学习过程中应注意的问题。
(4)布置课后作业,巩固所学知识,为下一节课的学习做好铺垫。
五、作业布置
为了巩固本节课的学习内容,确保学生对平行线的判定方法有深入的理解和掌握,特布置以下作业:
1.基础巩固题:完成课本第13.4节后的练习题1、2、3,这些题目主要针对平行线的基础概念和判定方法,旨在帮助学生巩固基础知识。
5.思考总结题:要求学生撰写一篇关于平行线判定方法的学习心得,内容包括对平行线判定方法的理解、学习过程中的困难与收获,以及如何将所学知识应用到实际问题中。
作业布置要求:
1.学生需独立完成作业,确保作业质量。在完成作业过程中,遇到问题应主动思考、查阅资料或与同学讨论,以提高解决问题的能力。
2.家长应关注学生的学习情况,协助学生合理安排时间,确保作业按时完成。
平行线的判定
平行线的判定在几何学中,平行线是指在同一平面上永不相交的两条直线。
判定两条直线是否平行是几何学中的一个基本问题,有多种方法可以进行判定。
本文将介绍两种常见的判定方法:角度判定法和距离判定法。
角度判定法角度判定法是一种直观且简单的方法,只需要测量两条直线的夹角并进行比较。
如果两条直线的夹角相等或互补(夹角之和为180度),则可以判定这两条直线是平行的。
具体步骤如下:1.使用直尺和量角器准确地绘制出两条直线。
2.使用量角器测量两条直线的夹角。
3.比较两条直线的夹角。
如果夹角相等或互补,则可以判定这两条直线是平行的。
需要注意的是,使用角度判定法进行判定时,需要确保直线的绘制和夹角的测量都非常准确,以避免误判。
距离判定法距离判定法是另一种常见的判定方法,基于两条平行线上的任意两点之间的距离相等的原理。
如果两条直线上的任意两点之间的距离都相等,则可以判定这两条直线是平行的。
具体步骤如下:1.使用直尺和量角器准确地绘制出两条直线。
2.在两条直线上各选择两个点,共计四个点。
3.使用尺子或测量工具测量这四个点之间的距离。
4.比较这四个距离。
如果它们都相等,则可以判定这两条直线是平行的。
需要注意的是,使用距离判定法进行判定时,选择的点要尽可能远离直线的交点,以免距离的测量误差影响判定结果。
总结平行线的判定是几何学中的一个基本问题,在实际应用中具有重要的意义。
角度判定法和距离判定法是两种常见的判定方法,各有优劣。
角度判定法直观简单,但要求直线和夹角的测量非常准确;而距离判定法基于距离相等的原理,更加严谨,但对于距离的测量也要求准确。
在实际应用中,可以根据具体情况选择合适的方法进行判定。
需要注意的是,在某些特殊情况下,如直线趋近于无限远时,以上方法可能不适用。
在这种情况下,可能需要采用其他判定方法,如斜率判定法或向量判定法等。
平行线的判定是几何学中的重要内容之一,对于理解和应用几何学具有重要意义。
希望本文介绍的角度判定法和距离判定法能够帮助读者更好地理解和运用平行线的判定方法。
平行线的判断
平行线的判断一、什么是平行线平行线是指在同一个平面内永远不会相交的直线。
通常来说,我们可以通过直线上的两个点或者直线的斜率来判断直线之间是否平行。
二、使用点判断平行线通过两个直线上的任意一对相对应的点,我们可以判断这两条直线是否平行。
具体的方法如下:1. 对于两条直线,分别取出一对相对应的点,记作A、B;2. 计算直线AB的斜率,记作k1;3. 再取出另一条直线上一个和点A相对应的点C;4. 计算直线AC的斜率,记作k2;5. 若k1=k2,则直线AB与直线AC平行;若k1≠k2,则直线AB与直线AC不平行。
三、使用斜率判断平行线当已知两条直线的斜率时,我们可以直接比较这两条直线的斜率来判断它们是否平行。
具体的方法如下:1. 对于两条直线,分别计算出它们的斜率,分别记作k1和k2;2. 如果k1=k2,则这两条直线平行;如果k1≠k2,则这两条直线不平行。
需要注意的是,斜率为无穷大的情况下,我们将其记作"∞"。
四、使用方程判断平行线当已知两条直线的方程时,我们可以通过观察方程的形式来判断这两条直线是否平行。
具体的方法如下:1. 对于两条直线的方程,分别记作y=ax+b1和y=ax+b2;2. 如果b1≠b2,则这两条直线不平行;如果b1=b2,则这两条直线平行。
五、综合例题假设已知直线AB的两个点A(-2, 5)和B(4, 9),直线CD的一个点C(1, 3)。
我们要判断直线AB与直线CD是否平行。
1. 使用点判断方法:直线AB的斜率k1 = (9-5)/(4-(-2)) = 4/6 = 2/3;直线CD的斜率k2 = (3-5)/(1-(-2)) = -2/3;因为k1≠k2,所以直线AB与直线CD不平行。
2. 使用斜率判断方法:直线AB的斜率k1 = 2/3;直线CD的斜率k2 = -2/3;因为k1≠k2,所以直线AB与直线CD不平行。
3. 使用方程判断方法:直线AB的方程为 y = (2/3)x + 17/3;直线CD的方程为 y = (-2/3)x + 11/3;因为17/3≠11/3,所以直线AB与直线CD不平行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F
A
6 0O
G
E
3 0O
CB
D
(1)如图1,∠C=57°,
当∠ABE= 57 °时,就能使BE∥CD.
(2)如图2 , ∠1=120°,∠2=60°.
问a与b的关系? a∥b
A
ab
B
E
13 2 c
C
D
图1
图2
根据图形探索:
同旁内角互补,两直线平行.
例题
已 知 1 4 0 , B = 4 0 , D E 与 B C 平 行 吗 ?
内错角相等,
A
D
E
1
两直线平行。
B
C
例题
直 线 a , b 被 直 线 c 所 截 , 已 知 1 = 6 0 , 2 = 1 2 0 , a / / b 吗 ?
a
b
同旁内角互补, 两直线平行。
A 1 l1
1
l1
2
B C
l2
(第 2 题)
2
l2
(第 3 题)
3.如图,已知直线 l 1 , l 2 被直线 l 3 所截,12 判断 l 1 与 l 2 是否平行 , 并说明理由.
补充练习:
1、如图,不能判定 l 1 / / l 2 的是 ( D )
(A)∠2=∠3
(B)∠1=∠4
(C)∠1=∠2
C
D
1
4
3E
5
A2
B
平行线的判定方法: 1. 同位角相等,两直线平行. 2. 内错角相等,两直线平行. 3. 同旁内角互补,两直线平行.
(D)∠1=∠3
1
l1
3
4
l2 2
补充练习:
2、如图,∠1=∠2,则下列结论正确的是( C )
(A)AD//BC (B)AB//CD (C)AD//EF (D)EF//BC
A
D
1
E
2
F
B
C
补充练习
如图,∠C+∠A=∠AEC.判断AB与CD 是否平行,并说明理由.
C
D
E
A
1
F
B
如图,∠C+∠A=∠AEC.判断AB与CD 是否平行,并说明理由.
我们还有其他的 直线a与直线b 平行的判定方法 吗?
1
3 24
a b
(1)若 3 2, 能 判 定 a//b吗 ?
5
(2)若 3 4=180, 能 判 定 a//b吗 ?
c
P55
两条直线被第三条直线所截 如果内错角相等,那么这两 条直线平行.
内错角相等,两直线平行.
P55
两条直线被第三条直线所截 如果同旁内角互补,那么这 两条直线平行.
1 如图,已知
a
∠1=∠2, 则直线a与
2
b
直线b平行吗?
根据什么?
c
完成P53练习2
在同一平面 ,垂直于同一条直线的两条直线互 相平行吗?
∵∠1=∠2=90°
l 1∥ l 2
l3
2
1
l2
l1
街道两侧路灯的 柱子是否互相平 行? 为什么?
完成书上P53练习3
补充练习如图,AB⊥CD于点B,AE与BF相交
1
c
32
完成书上P56练习1、2
b
2 3
a 1
c
d
如图,已知∠1=121°,∠2=120°, ∠3=120°..如C.图若,已 知1 直5线00,1 , l 22 被4直00 线,A则B所1 截与,lA2 C平行l吗2 于?
请说明理由.
l3