线性规划所有类型总结(很全的)
线性规划总结
线性规划总结Document number:NOCG-YUNOO-BUYTT-UU986-1986UT线性规划题型总结知识点(1)在坐标系中画不等式Ax+By+C>0(或<0)所表示的区域时,把直线Ax+By+C=0画成虚线以表示区域不包括边界直线;而画不等式Ax+By+C≥0(或≤0)所表示的平面区域时,要把直线画成实线以表示区域包括边界直线.(2)简单线性规划问题是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其解题步骤为:一是寻求线性约束条件与线性目标函数;二是由二元一次不等式表示的平面区域作出可行域;三是在可行域内求目标函数的最优解.(3).确定不等式Ax+By+C>0(<0,≥0,≤0)表示直线Ax+By+C=0的哪一侧时,常用下面的方法:先由等式定直线,然后在直线的某一侧任取一点(x0,y0),把它代入Ax+By+C>0,若不等式成立,则和(x0,y0)同侧的点都满足不等式,从而平面区域被找到,否则,直线的另一侧区域为不等式Ax+By+C>0所表示的区域,当C≠0时,常取特殊点(0,0)为代表,当C=0时,直线过(0,0),常选(1,0)或(0,1)加以判断.这种方法可称为“直线定界,特殊点定域”.(4).求在线性约束条件下的线性目标函数t=ax+by的最值问题时,应先作出线性约束条件所表示的平面区域即可行域,再作出直线ax+by=0,平移直线ax+by=0,此时,在经过可行域内的点且平行于ax +by =0的直线中,找出对应于t 最大(或最小)时的直线,最后求其最值.生产实际中的许多问题都可以归结为线性规划问题来求解.题型一:给出具体的变量,x y 满足约束条件,求线性目标函数的最值。
常用的方法:(1)画出变量所满足的可行区域,将目标函数变形,平行移动找出目标函数的最值;(2)直接找出这几条线的的交点,直接代入即可,这个方法只适用于封闭区域,若非封闭区域,只能采用第一用方法,画图。
线性规划知识点
线性规划
1.线性规划:
(1)二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域。
确定步骤:(1)直线定界,(2)特殊点定域;若C≠0,由原点定域;
(1)画:画出线性约束条件所表示的可行域;
(2)移:在线性目标函数所表示的一组平行线中,利用平移的方法找出与可行域有公共点且纵截距最大或最小的直线;
(3)求:通过解方程组求出最优解;
(4)答:作出答案。
注意点:(1)线性目标函数最大(小)值一般在可行域的顶点处取得,也可能在边界处取得。
(2)求线性目标函数的最优解,要注意分析线性目标函
数所表示的几何意义
——在y轴上的截距或其相反数。
(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的支持)
精品文档,供参考!。
线性规划知识点总结
线性规划知识点总结一、概述线性规划是运筹学中的一种数学方法,用于解决线性约束条件下的最优化问题。
它的目标是在给定的约束条件下,找到使目标函数取得最大(或者最小)值的变量取值。
二、基本概念1. 目标函数:线性规划的目标是最大化或者最小化一个线性函数,称为目标函数。
通常用z表示。
2. 约束条件:线性规划的变量需要满足一系列线性等式或者不等式,这些等式或者不等式称为约束条件。
3. 变量:线性规划中的变量是决策问题中需要确定的值,可以是实数或者非负实数。
4. 可行解:满足所有约束条件的变量取值称为可行解。
5. 最优解:在所有可行解中,使目标函数取得最大(或者最小)值的变量取值称为最优解。
三、标准形式线性规划问题可以通过将不等式约束转化为等式约束来转化为标准形式,标准形式的线性规划问题如下:最小化:z = c₁x₁ + c₂x₂ + ... + cₙxₙ约束条件:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ = b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ = bₙx₁, x₂, ..., xₙ ≥ 0其中,c₁, c₂, ..., cₙ为目标函数的系数;aᵢₙ为约束条件的系数;b₁, b₂, ...,bₙ为约束条件的常数;x₁, x₂, ..., xₙ为变量。
四、解法线性规划问题的解法主要有下列两种方法:1. 图形法:适合于二维或者三维的线性规划问题,通过绘制约束条件的直线或者平面,找到可行域和最优解。
2. 单纯形法:适合于多维的线性规划问题,通过迭代计算,找到最优解。
单纯形法是一种高效的算法,广泛应用于实际问题中。
五、常见应用线性规划在实际问题中有广泛的应用,以下是一些常见的应用场景:1. 生产计划:确定最佳的生产方案,以最大化利润或者最小化成本。
2. 运输问题:确定最佳的物流方案,以最小化运输成本。
3. 资源分配:确定最佳的资源分配方案,以最大化效益或者最小化浪费。
八种经典线性规划例题最全总结(经典)
线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。
一、求线性目标函数的取值范围例1、若x、y满足约束条件,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选A二、求可行域的面积例2、不等式组表示的平面区域的面积为()A、4B、1C、5D、无穷大解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选D四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选D五、求非线性目标函数的最值例5、已知x、y满足以下约束条件,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2C、13,D、,解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为,选C六、求约束条件中参数的取值范围例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()A、(-3,6)B、(0,6)C、(0,3)D、(-3,3)解:|2x-y+m|<3等价于由右图可知,故0<m<3,选C七、比值问题当目标函数形如时,可把z看作是动点与定点连线的斜率,这样目标函数的最值就转化为PQ连线斜率的最值。
线性规划知识点总结
线性规划知识点总结一、概述线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它在各个领域中都有广泛的应用,如生产计划、资源分配、运输问题等。
本文将对线性规划的相关知识点进行总结。
二、基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
通常用Z表示。
2. 约束条件:线性规划必须满足一系列线性约束条件,如不等式约束和等式约束。
约束条件用来限制决策变量的取值范围。
3. 决策变量:决策变量是问题中需要决策的变量,它们的取值会影响目标函数的值。
4. 可行解:满足所有约束条件的解称为可行解。
5. 最优解:在所有可行解中,使得目标函数达到最大或最小值的解称为最优解。
三、标准形式线性规划问题可以通过转换为标准形式来求解。
标准形式的线性规划问题具有以下特点:1. 目标函数为最小化问题。
2. 所有约束条件均为等式约束。
3. 决策变量为非负数。
四、线性规划的解法线性规划有多种求解方法,下面介绍两种常用的方法:1. 图形法:当问题只有两个决策变量时,可以使用图形法求解。
首先绘制出目标函数和约束条件所构成的图形,然后通过图形的分析找到最优解。
2. 单纯形法:单纯形法是一种迭代求解方法,适用于多个决策变量的线性规划问题。
它通过不断迭代改善目标函数的值,直到找到最优解为止。
五、常见应用线性规划在实际应用中有广泛的应用,以下列举几个常见的应用场景:1. 生产计划:线性规划可以用于确定生产计划中各种资源的最优分配,以达到最大化利润或最小化成本的目标。
2. 运输问题:线性规划可以用于解决货物运输的最优路径和最优运输量的问题,以降低物流成本。
3. 资源分配:线性规划可以用于确定资源的最优分配,如人力资源、物资资源等,以提高资源利用效率。
4. 投资组合:线性规划可以用于确定投资组合中各项投资的最优权重,以最大化投资回报或最小化风险。
六、总结线性规划是一种常用的数学优化方法,通过最大化或最小化线性目标函数,在一系列线性约束条件下求解最优解。
线性规划知识总结
线性规划知识总结1. 二元一次不等式(组)表示的平面区域(1)直线0:=++C By Ax l 把平面内不在直线上的点分成两部分,对于同一侧所有点的坐标代入Ax +By +C 中所得的值的符号都相同,异侧所有点的坐标代入Ax +By +C 所得的值的符号都相反。
(2)对于直线:l Ax +By +C =0,当B ≠0时,可化为:y =kx +b 的形式。
对于二元一次不等式b kx y +≥表示的平面区域在直线y =kx +b 的上方(包括直线y =kx +b )。
对于二元一次不等式b kx y +≤表示的平面区域在直线y =kx +b 的下方(包括直线y =kx +b )。
注意:二元一次不等式)0(0<>++或C By Ax 与二元一次不等式)0(0≤≥++C By Ax 所表示的平面区域不同,前者不包括直线Ax +By +C =0,后者包括直线Ax +By +C =0。
2. 线性规划我们把求线性目标函数在线性目标条件下的最值问题称为线性规划问题。
解决这类问题的基本步骤是:(1)确定好线性约束条件,准确画出可行域。
(2)对目标函数z =ax +by ,若b >0,则bz取得最大值(或最小值)时,z 也取得最大值(或最小值);若b <0,则反之。
(3)一般地,可行域的边缘点有可能是最值点,有些问题可直接代入边缘点找最值。
(4)注意实际问题中的特殊要求。
说明:1. 线性目标函数的最大值、最小值一般在可行域的顶点处取得;2. 线性目标函数的最大值、最小值也可在可行域的边界上取得,即满足条件的最优解有无数个。
知识点一:二元一次不等式(组)表示的平面区域 例1:基础题1. 不等式组201202y x x y -->⎧⎪⎨-+≤⎪⎩表示的平面区域是( )A B C D2. 如图,不等式组5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩表示的平面区域面积是________________。
线性规划经典总结
线性规划一、 线性规划的有关概念1、 线性约束条件:由关于x ,y 的二元一次不等式组成的不等式组对自变量x 、y 进行约束,叫线性约束条件。
2、 线性目标函数:关于x 、y 的二元一次解析式z=f (x ,y )叫线性目标函数。
3、 线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题。
4、 可行解:满足线性约束条件的解(x ,y )。
5、 可行域:所有可行解组成的集合。
6、 最优解:使得线性目标函数取得最大值或最小值的解(x ,y )。
二、 图解法求线性规划问题最优解的一般步骤 1:由线性约束条件画出可行域;2:令z=0,再利用平移法找到最优解所对应的点;3:求出最优解所对应的点的坐标,代入目标函数,求出最大值或最小值; 4:通过检验是否符合题意,得出问题的答案。
三、 激活思维例1.已知x ,y 满足约束条件⎪⎩⎪⎨⎧-≥≤+≤11y y x x y 则z=2x+y 的最大值为 。
沙场演练:1.若⎪⎩⎪⎨⎧≥≥≤-≥+0,0221352y x y x y x 则z=x —5y 的最大值为 。
2.已知实数x ,y 满足⎪⎩⎪⎨⎧≥+-≤-0,005302>>y x y x y x ,则z=y x ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2141的最小值为 。
四、解析几何中常见的几何意义例2.已知x ,y 满足()()14322=-+-y x ,则(1)xy 的最值为 ; (2)()()2211+++y x 的最值为 ;(3)y x +的最值为 。
沙场演练:1已知变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤-+≥≤+-07102y x x y x ,则x y 的取值范围是 。
2.在平面直角坐标系中,点p (x ,y )在不等式组⎪⎩⎪⎨⎧+-≤-≥12121x y x y ,所表示的平面区域内,则目标函数()()2212-++=y x z 的最小值为 。
3已知点P (x ,y )的坐标满足条件41x y y x x +≤⎧⎪≥⎨⎪≥⎩,则点P 到直线4x+3y+1=0的距离的最大值是________.4已知实数,x y 满足112213y x y x ⎧≥-⎪⎪⎨⎪≤-+⎪⎩,则214z x y =+的最大值为 . 5已知x,y 满足约束条件⎪⎩⎪⎨⎧≤-+≥-+≥040522y x y x y ,则521-+=y x z 的最小值是______ 6设实数,x y 满足2025020x y x y y --⎧⎪+-⎨⎪-⎩≤,≥,≤, 则y x u x y =-的取值范围是_________. 7动点(,)P a b 在不等式组2000x y x y y +-≤⎧⎪-≥⎨⎪≥⎩表示的平面区域内部及其边界上运动,则31a b a ω+-=-的取值范围是 .五、目标函数中有参数例3.设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数()0,0>>b a by ax z +=的最大值为12,则ba 32+的最小值为 。
线性规划知识点总结
线性规划知识点总结一、引言线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它在各个领域中都有广泛的应用,如生产计划、资源分配、物流管理等。
本文将对线性规划的基本概念、模型建立、求解方法和应用进行总结。
二、基本概念1. 目标函数:线性规划的目标是最大化或者最小化一个线性函数,称为目标函数。
目标函数的系数称为目标系数,代表了各个决策变量对目标的影响程度。
2. 约束条件:线性规划的决策变量需要满足一系列线性约束条件,通常表示为等式或者不等式。
3. 可行解:满足所有约束条件的解称为可行解。
4. 最优解:在所有可行解中,使目标函数取得最大(最小)值的解称为最优解。
三、模型建立1. 决策变量:线性规划中,需要确定一组决策变量,代表问题中的可调整参数。
决策变量通常用符号x1, x2, ..., xn表示。
2. 目标函数:根据问题的具体要求,建立目标函数。
例如,最大化利润、最小化成本等。
3. 约束条件:根据问题中的限制条件,建立线性约束条件。
约束条件通常表示为等式或者不等式。
4. 非负约束:决策变量通常需要满足非负约束条件,即x1, x2, ..., xn≥0。
四、求解方法1. 图解法:对于二维线性规划问题,可以使用图解法进行求解。
首先绘制约束条件的直线,然后确定可行解区域,最后在可行解区域中找到最优解。
2. 单纯形法:单纯形法是一种常用的求解线性规划问题的方法。
通过不断迭代,找到使目标函数取得最大(最小)值的最优解。
3. 整数规划:当决策变量需要取整数值时,可以使用整数规划方法进行求解。
整数规划通常比线性规划更复杂,求解时间更长。
4. 网络流算法:对于某些特殊的线性规划问题,可以使用网络流算法进行求解。
网络流算法利用图论的方法,将问题转化为网络流问题进行求解。
五、应用领域1. 生产计划:线性规划可以用于确定最佳生产计划,使得生产成本最小化或者利润最大化。
2. 资源分配:线性规划可以用于确定资源的最佳分配方案,如人力资源、物资资源等。
运筹学 线性规划
运筹学线性规划运筹学是一门研究如何进行最优决策的学科。
它包括了多个数学分支,如线性规划、整数规划、非线性规划、动态规划等。
其中,线性规划在运筹学中占有重要地位。
线性规划是一种数学优化方法,用于解决一类特定结构的最优化问题。
它的基本思想是在给定的约束条件下,通过构建目标函数和决策变量之间的线性关系,寻找使目标函数达到最优值的决策变量取值。
线性规划的数学模型可以表示为以下形式:最大化(或最小化)目标函数:Z = c₁x₁ + c₂x₂ + ... +cₙxₙ所有的约束条件:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁ ≥ 0, x₂ ≥ 0, ... , xₙ ≥ 0其中,c₁、c₂、...、cₙ表示目标函数中的系数,x₁、x₂、...、xₙ为决策变量,a₁₁、a₁₂、...、aₙₙ为约束条件中的系数,b₁、b₂、...、bₙ为约束条件右侧的常数。
线性规划的解法有多种,其中最常用的是单纯形法。
单纯形法通过逐步进行基变量的选择和替换,不断改进目标函数值,从而找到最优解。
它的基本思想是通过基变量的变换,使目标函数值不断减小,直到达到最小值或者无法继续改进为止。
线性规划的应用十分广泛。
它可以用于生产计划、资源分配、物流管理、投资组合等多个领域。
例如,在生产计划中,线性规划可以帮助企业合理分配生产资源,降低成本,提高效益。
在物流管理中,线性规划可以优化货物的调度方案,减少运输成本。
在投资组合中,线性规划可以帮助投资者选择合适的投资组合,以获得最大的收益。
总之,运筹学中的线性规划是一种重要的决策优化方法。
通过构建数学模型,并应用单纯形法等求解方法,可以在给定的约束条件下寻找最优解,从而提高决策的效果。
随着计算机技术的发展,线性规划的应用领域和规模将会进一步扩大,为各行各业提供更好的决策支持。
线性规划知识点总结
线性规划知识点总结引言概述:线性规划是一种数学优化方法,用于在给定的约束条件下最大化或者最小化线性目标函数。
它在各种领域中都有广泛的应用,包括经济学、管理学、工程学等。
本文将对线性规划的基本概念、模型构建、求解方法和应用进行详细阐述。
一、线性规划的基本概念1.1 目标函数:线性规划的目标函数是一个线性函数,用于表示需要最大化或者最小化的目标。
1.2 约束条件:线性规划的约束条件是一组线性等式或者不等式,用于限制变量的取值范围。
1.3 可行解与最优解:线性规划问题存在无穷多个可行解,但惟独一个最优解,即使满足所有约束条件且使目标函数取得最大(或者最小)值的解。
二、线性规划模型构建2.1 决策变量:线性规划模型中的决策变量是需要优化的变量,可以是实数、整数或者二进制数。
2.2 目标函数的构建:根据问题的具体要求,将目标转化为线性函数的形式,并确定是最大化还是最小化。
2.3 约束条件的建立:根据问题的限制条件,将其转化为线性等式或者不等式的形式,并确定约束条件的数学表达式。
三、线性规划的求解方法3.1 图形法:对于二维线性规划问题,可以使用图形法进行求解。
通过绘制约束条件的直线或者曲线,找到目标函数的最优解点。
3.2 单纯形法:单纯形法是一种常用的求解线性规划问题的方法。
通过迭代计算,不断改变基变量和非基变量的取值,直到找到最优解。
3.3 整数规划法:当决策变量需要取整数值时,可以使用整数规划法进行求解。
该方法将线性规划问题转化为整数规划问题,并采用分支定界等算法求解最优解。
四、线性规划的应用4.1 生产计划:线性规划可以用于确定最佳的生产计划,以最大化产量或者最小化成本。
4.2 资源分配:线性规划可以用于优化资源的分配,如确定最佳的人力资源配置、物资采购策略等。
4.3 运输问题:线性规划可以用于解决运输问题,如确定最佳的货物运输路线和运输量,以降低运输成本。
4.4 金融投资:线性规划可以用于优化金融投资组合,以最大化收益或者最小化风险。
线性规划知识点总结
线性规划知识点总结线性规划是一种数学优化方法,用于在给定的约束条件下,寻找一个线性模型的最优解。
它在各个领域都有广泛的应用,包括经济学、管理学、工程学等。
一、线性规划的基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
通常表示为Z = c1x1 + c2x2 + ... + cnxn。
2. 决策变量:表示问题中需要决策的变量,通常用x1, x2, ..., xn表示。
3. 约束条件:线性规划问题必须满足一定的约束条件,这些约束条件可以是等式或不等式。
例如,Ax ≤ b 或 Ax = b。
4. 可行解:满足所有约束条件的解称为可行解。
5. 最优解:在所有可行解中,使目标函数达到最大或最小值的解称为最优解。
二、线性规划的解法1. 图形法:对于二维线性规划问题,可以使用图形法进行求解。
首先绘制约束条件的图形,然后找到目标函数的等高线,最后确定最优解的位置。
2. 单纯形法:对于多维线性规划问题,可以使用单纯形法进行求解。
单纯形法是一种迭代算法,通过不断移动到更优的解来寻找最优解。
3. 整数规划:当问题的决策变量需要取整数值时,称为整数规划。
整数规划问题的求解相对更复杂,可以使用分支定界法等方法进行求解。
三、线性规划的应用1. 生产计划:线性规划可以用于优化生产计划,例如确定每个产品的生产数量,以最大化利润或最小化成本。
2. 运输问题:线性规划可以用于解决运输问题,例如确定货物从不同地点到达目的地的最佳路径和运输量。
3. 投资组合:线性规划可以用于优化投资组合,例如确定不同资产的投资比例,以最大化收益或最小化风险。
4. 供应链管理:线性规划可以用于优化供应链管理,例如确定不同供应商的采购量和价格,以最小化总成本。
5. 能源优化:线性规划可以用于能源优化,例如确定不同能源来源的使用量,以最大化能源效率。
四、线性规划的局限性1. 线性假设:线性规划基于线性假设,即目标函数和约束条件都是线性的。
线性规划类型
线性规划(1)截距类 by ax z +=(2)距离类 1 by y ax x z +++=22(3)距离类 2||c by ax y ++=(4)斜率类ax b y y --= (5)已知了函数最值,考查可行域范围(5)有无数个最值,求条件例1. 已知实数x 、y 满足约束条件0503x y x y x +≥⎧⎪-+≥⎨⎪≤⎩,则24z x y =+的最小值为( )A .5B .-6C .10D .-10 解析:画出可行域,目标函数变为421z x y +-=,直线在y 轴上的截距为4z ,当直线变动且经过可行域,观察它经过点时,它在轴上的截距最小,最小值是6-,正确答案选B待定系数法1 (2011全国新课标理13)若变量,x y 满足约束条件329,69,x y x y ≤+≤⎧⎨≤-≤⎩则2z x y =+的最小值为 解析:设)()2(2y x n y x m y x -++=+,则有⎩⎨⎧=-=+212n m n m ,∴⎩⎨⎧-==11n m 326≤+≤-y x ,6min -=z2(2010江苏)设实数x,y 满足3≤2xy ≤8,4≤y x 2≤9,则43y x 的最大值是 。
解析:设n m n m n m y x y x xy y x -+==222243)()(,则⎩⎨⎧-=-=+4232n m n m 解得⎩⎨⎧=-=21n m 2111[,]83xy ∈,22()[16,81]x y ∈,322421()[2,27]x x y y xy=⋅∈,43y x 的最大值是27。
变式3. 已知实数x 、y 满足不等式组2240x y x ⎧+≤⎨≥⎩,求函数31y z x +=+的值域. 解析:画出可行域是右半圆,它表示半圆内的点和点)3,1(--连线的斜率的取值范围。
利用距离公式变式4. 已知实数x 、y 满足10101x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩,则22448w x y x y =+--+的最值为___________.解析:2222)2()2(844-+-=+--+y x y x y x ,它表示点),(y x 和点)2,2(的距离的平方和。
线性规划知识点总结
线性规划知识点总结一、引言线性规划是一种优化问题求解方法,用于在给定的约束条件下,寻觅一个线性目标函数的最优解。
它在运筹学、经济学、工程学等领域有着广泛的应用。
本文将对线性规划的基本概念、模型建立、解法以及应用进行详细总结。
二、基本概念1. 变量:线性规划中的变量是决策的对象,可以是实数或者非负实数。
2. 目标函数:线性规划的目标是最大化或者最小化一个线性函数,通常表示为Z=c₁x₁+c₂x₂+...+cₙxₙ,其中c₁、c₂、...、cₙ为系数,x₁、x₂、...、xₙ为变量。
3. 约束条件:线性规划的约束条件是限制变量取值的条件,通常表示为a₁x₁+a₂x₂+...+aₙxₙ≤b,其中a₁、a₂、...、aₙ为系数,b为常数。
4. 可行解:满足所有约束条件的解称为可行解。
5. 最优解:在所有可行解中,使目标函数取得最大(或者最小)值的解称为最优解。
三、模型建立1. 确定决策变量:根据实际问题,确定需要优化的决策变量,例如生产数量、投资金额等。
2. 建立目标函数:根据问题要求,建立目标函数,明确是最大化还是最小化。
3. 建立约束条件:根据问题给出的限制条件,建立约束条件,包括线性不等式约束和非负约束。
4. 确定问题类型:根据目标函数和约束条件的形式,确定线性规划问题的类型,如标准型、非标准型、混合整数规划等。
5. 模型求解:使用线性规划的求解方法,求得最优解。
四、解法1. 图解法:对于二维线性规划问题,可以使用图解法进行求解。
首先绘制约束条件的直线,然后确定可行解区域,最后在可行解区域内寻觅目标函数的最优解。
2. 单纯形法:单纯形法是一种常用的求解线性规划问题的方法。
通过迭代计算,逐步改进解的质量,直到找到最优解。
3. 整数规划方法:当决策变量需要取整数值时,可以使用整数规划方法进行求解。
常见的方法包括分支定界法、割平面法等。
五、应用线性规划在实际问题中有着广泛的应用,以下是一些典型的应用领域:1. 生产计划:通过线性规划可以确定最佳的生产计划,以最大化利润或者最小化成本。
高中数学解题方法系列:线性规划中的11种基本类型及策略
高中数学解题方法系列:线性规划中的11种基本类型及策略一.线性目标函数问题当目标函数是线性关系式如()时,可把目标函数变形为 ,则可看作在上的截距,然后平移直线法是解决此类问题的常用方法,通过比较目标函数与线性约束条件直线的斜率来寻找最优解.一般步骤如下:1.做出可行域;2.平移目标函数的直线系,根据斜率和截距,求出最优解.二.非线性目标函数问题的解法当目标函数时非线性函数时,一般要借助目标函数的几何意义,然后根据其几何意义,数形结合,来求其最优解。
近年来,出现了求目标函数是非线性函数的范围问题.这些问题主要考察的是等价转化思想和数形结合思想,出题形式越来越灵活,对考生的能力要求越来越高.常见的有以下几种:1. 比值问题当目标函数形如时,可把z 看作是动点与定点连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。
例2已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≤0,x ≥1,x +y -7≤0,则y x 的取值范围是(). (A )[95,6] (B )(-∞,95]∪[6,+∞) (C )(-∞,3]∪[6,+∞)(D )[3,6]解析 y x是可行域内的点M (x ,y )与原点O(0,0)连线的斜率,当直线OM 过点(52,92)时,y x取得 最小值95;当直线OM 过点(1,6)时,y x取得最大值6.答案A 2..距离问题当目标函数形如时,可把z 看作是动点与定点距离的平方,这样目标函数的最值就转化为PQ 距离平方的最值。
例3已知⎩⎪⎨⎪⎧2x +y -2≥0,x -2y +4≥0,3x -y -3≤0,求x 2+y 2的最大值与最小值. 解析作出不等式组表示的平面区域(如图).设x 2+y 2=z ,则z 是以原点为圆心的圆的半径的平方.当圆x 2+y 2=z 过点B (2,3)时,z 取得最大值,从而z 取得最大值z max =22+32=13; 当圆x 2+y 2=z 与直线AC :2x +y -2=0相切时,z 取得最小值,从而z 取得最小值. 设切点坐标为(x 0,y 0),则⎩⎪⎨⎪⎧2x 0+y 0-2=0,y 0x 0·(-2)=-1. z ax by c =++0b ≠a z c y x b b -=-+z c b-y 在轴y a z x b-=-(,)P x y (,)Q b a 22()()z x a y b =-+-(,)P x y (,)Q a b解得x 0=45,y 0=25.因此,z min =(45)2+(25)2=45. 故,当x =2,y =3时,x 2+y 2取得最大值13;当x =45,y =25时,x 2+y 2取得最小值45. 3. 截距问题例4 不等式组表示的平面区域面积为81,则的最小值为_____解析 令,则此式变形为,z 可看作是动抛物线在y 轴上的截距,当此抛物线与相切时,z 最小,故答案为 4..向量问题 例5已知点P 的坐标(x ,y )满足:及A (2,0),则的最大值 解析=||·cos ∠AOP 即为在上的投影长 由∴·cos ∠AOP 的最大值为5.5线性变换问题例6 在平面直角坐标系x O y 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为.解析令x +y =u ,x -y =v ,则x =u +v 2,y =u -v 2. 由x +y ≤1,x ≥0,y ≥0得u ≤1,u +v ≥0,u -v ≥0.因此,平面区域B 的图形如图.其面积为S =12×2×1=1.6线性规划的逆向问题例8 给出平面区域如图所示.若当且仅当x =23,y =45时,目标函数z =ax -y 取最小值,则实数a 的取值范围是.解析当直线y =ax -z (a <0)过点(23,45),且不与直线AC ,BC 重合时,-z 取得最大值,从而z 取得最小值.k AC =4523-1=- 125,k BC =45-123=- 310.所以,实数a 的取值范围是(- 125,- 310). x+y 00x y x a ≥⎧⎪-≥⎨⎪≤⎩2x y +2z x y =+2y x z =-+2y x z =-+y x =-14-⎪⎩⎪⎨⎧≥-≤+≤+-.01,2553,034x y x y x OP OA OA ⋅u u u r u u u r u u u u r OP OA OA⋅u u u r u u u r u u u u r OP OP uuu r OA u u u r ,,M y x y x )25(2553,034⇒⎩⎨⎧=+=+-OP u u u r7、约束条件设计参数形式,考查目标函数最值范围问题。
运筹学03-线性规划
500 / 10 = 50 元
说明在一定范围内每增加(减少)1个台时的设备能力就 可增加(减少)50元利润,称为该约束条件的对偶价格。
21
假设原料 A 增加10 千克时,即 b2变化为410,这时可行域扩大 ,但最优解仍为 x2 = 250 和 x1 + x2 = 300 的交点 x1 = 50 ,x2 = 250 。此变化对总利润无影响,该约束条件的对偶价格为 0。 解释:原最优解没有把原料 A 用尽,有50千克的剩余,因此增 加10千克值增加了库存,而不会增加利润。 在一定范围内,当约束条件右边常数增加1个单位时 (1)若约束条件的对偶价格大于0,则其最优目标函数值得 到改善(变好); (2)若约束条件的对偶价格小于0,则其最优目标函数值受 到影响(变坏); (3)若约束条件的对偶价格等于0,则最优目标函数值不变。
C c1 c2 cn
价值向量
a1n a2n a mn
b1 b2 b b m
x1 x2 X x n
a11 a 21 A a m1
1
s.t
约束条件
(2) 线性规划模型标准形式
价值系数
Max
技术系数
Z c1 x1 c2 x2 cn xn a11 x1 a12 x2 a1n xn b1 a21 x1 a22 x2 a2 n xn b2 a x a x a x b mn n m m1 1 m 2 2 x1 , x2 ,, xn 0 b1,b2 , ,bm 0
例1.
目标函数: Max z = 50 x1 + 100 x2
线性规划知识总结
线性规划知识总结线性规划知识总结1. ⼆元⼀次不等式(组)表⽰的平⾯区域(1)直线0:=++C By Ax l 把平⾯内不在直线上的点分成两部分,对于同⼀侧所有点的坐标代⼊Ax +By +C 中所得的值的符号都相同,异侧所有点的坐标代⼊Ax +By +C 所得的值的符号都相反。
(2)对于直线:l Ax +By +C =0,当B ≠0时,可化为:y =kx +b 的形式。
对于⼆元⼀次不等式b kx y +≥表⽰的平⾯区域在直线y =kx +b 的上⽅(包括直线y =kx +b )。
对于⼆元⼀次不等式b kx y +≤表⽰的平⾯区域在直线y =kx +b 的下⽅(包括直线y =kx +b )。
注意:⼆元⼀次不等式)0(0<>++或C By Ax 与⼆元⼀次不等式)0(0≤≥++C By Ax 所表⽰的平⾯区域不同,前者不包括直线Ax +By +C =0,后者包括直线Ax +By +C =0。
2. 线性规划我们把求线性⽬标函数在线性⽬标条件下的最值问题称为线性规划问题。
解决这类问题的基本步骤是:(1)确定好线性约束条件,准确画出可⾏域。
(2)对⽬标函数z =ax +by ,若b >0,则bz取得最⼤值(或最⼩值)时,z 也取得最⼤值(或最⼩值);若b <0,则反之。
(3)⼀般地,可⾏域的边缘点有可能是最值点,有些问题可直接代⼊边缘点找最值。
(4)注意实际问题中的特殊要求。
说明:1. 线性⽬标函数的最⼤值、最⼩值⼀般在可⾏域的顶点处取得;2. 线性⽬标函数的最⼤值、最⼩值也可在可⾏域的边界上取得,即满⾜条件的最优解有⽆数个。
知识点⼀:⼆元⼀次不等式(组)表⽰的平⾯区域例1:基础题1. 不等式组201202y x x y -->??-+≤表⽰的平⾯区域是()A B C D2. 如图,不等式组5003x y x y x -+≥??+≥??≤?表⽰的平⾯区域⾯积是________________。
八种经典线性规划例题最全总结(经典)
线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。
一、求线性目标函数的取值范围例1、若x 、y 满足约束条件,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5]解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故选A二、求可行域的面积例2、不等式组表示的平面区域的面积为 ( )A 、4B 、1C 、5D 、无穷大解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC的面积减去梯形OMAC 的面积即可,选B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个解:|x|+|y|≤2等价于作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选D222x y x y ≤⎧⎪≤⎨⎪+≥⎩260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩2(0,0)2(0,0)2(0,0)2(0,0)x y x y x y x y x y x y x y x y +≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩四、求线性目标函数中参数的取值范围例4、已知x 、y 满足以下约束条件,使z=x+ay(a>0)取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选D五、求非线性目标函数的最值例5、已知x 、y 满足以下约束条件 ,则z=x 2+y 2的最大值和最小值分别是( )A 、13,1B 、13,2C 、13,D 、,解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为,选C 六、求约束条件中参数的取值范围例6、已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是 ( )A 、(-3,6)B 、(0,6)C 、(0,3)D 、(-3,3)解:|2x -y +m|<3等价于由右图可知 ,故0<m <3,选C5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩4545230230x y m x y m -++>⎧⎨-+-<⎩3330m m +>⎧⎨-<⎩七、比值问题当目标函数形如时,可把z 看作是动点与定点连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。
线性规划知识点总结范文
线性规划知识点总结范文①线性约束条件:在上述问题中,不等式组是一组变量,y的约束条件,这组约束条件都是关于,y的一次不等式,故又称线性约束条件.②线性目标函数:关于,y的一次式z=2+y是欲达到最大值或最小值所涉及的变量,y的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.④可行解、可行域和最优解:满足线性约束条件的解(,y)叫可行解.由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解.2、用图解法解决简单的线性规划问题的基本步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解3、解线性规划实际问题的步骤:(1)将数据列成表格;(2)列出约束条件与目标函数;(3)根据求最值方法:①画:画可行域;②移:移与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值;(4)验证。
4、两类主要的目标函数的几何意义:(1)-直线的截距;(2)-两点的距离或圆的半径;(3)-直线的斜率风格很统一!茶叶按发酵程度分为:绿茶(不发酵)、白茶(不发酵或轻微发酵)、黄茶(轻微发酵)、青茶(半发酵)、红茶(全发酵)、黑茶(后发酵)【普洱茶生茶(不发酵)普洱熟茶(后发酵)】按照干燥方式的不同,绿茶分为:炒青绿茶、烘青绿茶、晒青绿茶、蒸青绿茶四类。
乌龙茶按照地理位置不同分为四大类:闽北乌龙(福建武夷山一带)、闽南乌龙(福建安溪一带)、广东乌龙、台湾乌龙。
闽北乌龙又分为:闽北水仙和武夷岩茶两类。
其中武夷岩茶在历史上的四大名丛是:大红袍、水金龟、铁罗汉、白鸡冠;目前的三大当家品种是:大红袍、水仙(福建建瓯一带)、肉桂。
闽南乌龙代表有:铁观音、黄金桂、本山、毛蟹、闽南水仙、平和白芽奇兰、邵安八仙等。
广东五龙代表有:凤凰单枞、凤凰水仙、岭头单丛、岭头水仙等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性规划,想说懂你很容易
线性规划是近两年高考的必考内容。
学习简单线性规划的有关知识其最终目的就是运用它们去解决在线性约束条件下目标函数的最值(最大值或最小值)问题。
而有关的题型种类较多,变化多样,应用线性规划的思想解题不能完全拘泥于课本中的z=ax+by 的形式,下面就从规划思想出发探讨常见的简单线性规划求最值问题。
1、目标函数形如z=ax+by 型:
例1(2008.全国Ⅱ)设变量x y ,满足约束条件:222y x x y x ⎧⎪
+⎨⎪-⎩
,,.≥≤≥,则
y x z 3-=的最小值是( )
A .2-
B .4-
C .6-
D .8-
解:画出可行域(如图1),由y x z 3-=可得331z
x y -=,所以3
z -表示直线
331z
x y -=的纵截距,由图可知当直线过点A (-2,2)时,z 的最小值是-8,选
D.
2、目标函数形如a
x b
y z --=型:
例2(2007.辽宁)已知变量x y ,满足约束条件20170x y x x y -+⎧⎪
⎨⎪+-⎩
≤,≥,≤,
则
y
x
的取值范围是( ) A .]6,59[ B .[)965⎛⎤-∞+∞ ⎥⎝⎦ ,, C .(][)36-∞+∞ ,, D .[36],
解:画出可行域(如图2),
y
x
表示可行域内的点(x,y )与原点连线的斜率,求得A (1,6),C (29
,25), 且求得K OA =6,K OC =5
9,
所以659≤≤x
y
,选A.
3、目标函数形如z=a bx+cy 型:
例3.(2008.北京)若实数x y ,满足1000x y x y x ⎧-+⎪
+⎨⎪⎩,
,,≥≥≤则23x y z +=的
最小值是( )A .0
B .1
C D .9
图1
图2
图3
解:画出可行域(如图3),令u=x+2y,当x=y=0时u 最小为0,则
23x y z +=的最小值是1.故选B.
4. 目标函数形如z=
e
dx c
by ax +++型:
例4.已知x 、y 满足⎪⎩
⎪
⎨⎧≥≤+≥x
y y x x 12340
,则132+++x y x 的取值范围是(
)
A .[1,5]
B .
[2,6] C .[2,10] D .[3,11]
解:做出可行域
(如图4),因为1)1(211)1(21132+++=++++=+++x y x y x x y x ,其中
1
1
++x y 可视作可行域内的点与点C (-1,-1)连线的斜率,且求得K CA =5,
K CB =1,所以由图可知5111≤++≤
x y ,所以1111
3≤++≤x y 选D. 5. 目标函数形如22)()(b y a x z -+-=型:
例5.已知x 、y 满足⎩⎨⎧≥≥≤-+0
,00
22y x y x ,求22)1()1(-+-=y x z 的最大
值和最小值.
解:目标函数的几何意义是可行域的点(x ,y )与点C (1,1)的距离(如图5),由图形易知点C 与可行域内的点O (0,0)和A (2,0)的距离最大为2,而z 的最小值是点C 到直线022=-+y x 的距离
55,所以max z =2,min z =5
5
变式 已知x 、y 满足约束条件⎪⎩
⎪
⎨⎧≥-+≤--≥+-0320930
72y x y x y x ,求z =x 2+y 2的最大值和最小值,
解:画出可行域(如图6),z =x 2+y 2表示可行域内的点与原点O 距离的平方,由图可知,|OA|最大,max z =(2265+)2=61,最小值为点O 到直线x+2y-3=0的距离的平方,min z =(4
1|3|+)2=59
.
6. 目标函数形如z=|ax+by+c|型:
例6. 已知x 、y 满足⎪⎩
⎪
⎨⎧≤--≥-+≥+-052040
2y x y x y x ,求z =|x+2y-4|的最大值.
图4
图5
图6
解:因为55
|
42||42|⋅-+=
-+=y x y x z ,所以z 可看作是可行域内任意一点(x,y )到直线x+2y-4=0的距离的5倍.由图7知,点C 到直
线x+2y-4=0的距离最大,由⎩⎨⎧=--=+-0520
2y x y x 可得C (7,9)所以z max =|7+2
×9-4|=21.
7. 目标函数形如z=ax 2+by 2型:
例7.已知变量x 、y 满足⎪⎩
⎪
⎨⎧≥+-≤+≤261y x y x y ,求z=4x 2+y 2的最值
解:做出可行域,即以原点为中心的共离心率的椭圆系(如图8),
由z=4x 2+y 2
得14
22=+z y z x ,目标函数z
的几何意义是椭圆长轴的平方,
当椭圆分别经过C (4,2),B (1,2,)时z 取最大值和最小值,max z =68,
min z =8.此题还可以进一步引申,求z=4x 2-y 2
的最值。
图7
图8。