高中数学求轨迹方程的六种常用技法汇总

合集下载

高中数学求轨迹方程的六种常用技法汇总

高中数学求轨迹方程的六种常用技法汇总

------------------------------------------------------------精品文档--------------------------------------------------------求轨迹方程的六种常用技法轨迹方程的探求是解析几何中的基本问题之一,也是近几年来高考中的常见题型之一。

学生解这类问题时,不善于揭示问题的内部规律及知识之间的相互联系,动辄就是罗列一大堆的坐标关系,进行无目的大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结和归纳探求轨迹方程的常用技法,对提高学生的解题能力、优化学生的解题思路很有帮助。

本文通过典型例子阐述探求轨迹方程的常用技法。

1.直接法根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。

4MM6AB?BMAM,相交于,直线.已知线段,求点,且它们的斜率之积是例19的轨迹方程。

x ABAB(3,0)B(A?3,0),y,所在直线为垂直平分线为解:以轴,轴建立坐标系,则y(k?x??3)BMMAM)y(x,的斜,直线,则直线设点的坐标为的斜率AM x?3y(x?3)k?率AM3?x4yy3)???(x?由已知有9?x3x?322yx??1(x??3)M的轨迹方程为化简,整理得点94练习:Px?4P(10,0)F的轨迹方.1平面内动点,到点则点的距离之比为的距离与到直线2程是。

22x ABPll4??2yx上满足交于.设动直线两点,垂直于、轴,且与椭圆是2PA?PB?1P的轨迹方程。

的点,求点3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是()A.直线B.椭圆C.抛物线D.双曲线2.定义法通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。

求点的轨迹方程的六种常见方法

求点的轨迹方程的六种常见方法

求点的轨迹方程的六种常见方法点的轨迹方程是描述点在运动过程中所经过的路径的数学方程。

在数学和物理等领域,有许多方法可以推导和描述点的轨迹方程。

下面介绍六种常见的方法。

一、直角坐标系方法直角坐标系方法是最常见的一种方法,通常用于平面分析。

在直角坐标系下,点的位置可以用横坐标x和纵坐标y来表示。

如果已知点的坐标与时间的关系,可以通过方程联立或者曲线拟合的方法得到点的轨迹方程。

二、参数方程方法参数方程方法是一种将点的位置用参数表示的方法。

通过引入参数t,点的坐标可以用关于t的函数表示,如x=f(t)和y=g(t),这样就可以得到点的轨迹方程。

参数方程方法适用于描述直线、圆和其他曲线的方程。

三、极坐标系方法极坐标系方法是一种将点的位置用极径r和极角θ来表示的方法。

通过引入极径和极角的关系表达式,可以得到点的轨迹方程。

例如,对于圆的方程可以表示为r=f(θ),其中f(θ)是关于极角θ的函数。

四、矢量方程方法矢量方程方法是一种用矢量表示点的位置的方法。

通过引入位置矢量r(t),可以得到点的轨迹方程。

位置矢量r(t)通常用分量表示,如r=(x,y,z)。

矢量方程方法适用于描述曲线在三维空间中的轨迹。

五、微分方程方法微分方程方法是一种通过点的运动规律和动力学方程来推导轨迹方程的方法。

通过对点的位置向量或者其分量进行微分,并代入运动规律方程,可以得到点的轨迹方程。

微分方程方法适用于描述受力作用下点的运动。

六、变分原理方法变分原理方法是一种通过极小化或者极大化一些物理量来推导轨迹方程的方法。

通过对点的位置或路径的泛函进行变分,可以得到使泛函取得极值的轨迹方程。

变分原理方法适用于描述光的传播、质点在介质中的传播等问题。

综上所述,点的轨迹方程可以通过直角坐标系方法、参数方程方法、极坐标系方法、矢量方程方法、微分方程方法和变分原理方法等六种常见方法推导和描述。

不同的方法适用于不同的情况和问题,选择合适的方法可以更方便地求解轨迹方程。

高三高考数学中求轨迹方程的常见方法

高三高考数学中求轨迹方程的常见方法

52
,方程为
(x
1) 2
( y 1) 2
13 . 故 M 的
2
轨迹方程为 ( x 1) 2 ( y 1) 2 13 .
五、参数法 参数法是指先引入一个中间变量 (参数) ,使所求动点的横、纵坐标
所求式子中消去参数,得到 x, y 间的直接关系式,即得到所求轨迹方程
x, y 间建立起联系,然后再从
.
例 5 过抛物线 y 2 2 px ( p 0 )的顶点 O 作两条互相垂直的弦 OA 、 OB ,求弦 AB 的中点
3

3
故 k 的取值范围是 1 k 1且 k
3

3
5.已知平面上两定点 M (0, 2) 、 N (0,2) , P 为一动点,满足 MP MN PN MN .
(Ⅰ)求动点 P 的轨迹 C 的方程; (直接法) (Ⅱ)若 A 、 B 是轨迹 C 上的两动点,且 AN
NB .过 A 、 B 两点分别作轨迹 C 的切线,设其交点
9.过抛物线 y2 4 x 的焦点 F 作直线与抛物线交于 P、 Q 两点,当此直线绕焦点 F 旋转时,
弦 PQ 中点的轨迹方程为

解法分析: 解法 1 当直线 PQ 的斜率存在时,
设 PQ 所在直线方程为 y k( x 1) 与抛物线方程联立,
y k( x 1),
y2 4x
消去 y 得
k 2 x 2 (2 k 2
1, 即 x
y y1
x1
0 .②
联解①②得
x1
3x y 2
2
.又点 Q 在双曲线 C 上,
3x y 2 2 3y x 2 2
(
)(
)
1 ,化简整理

高中解析几何求轨迹方程的常用方法(精华-例题和练习)

高中解析几何求轨迹方程的常用方法(精华-例题和练习)

sin B sin A
5 sin C , 求点 C 的轨迹。 4
【变式】 :已知圆
的圆心为 M1,圆
的圆心为 M2,一动圆与
这两个圆外切,求动圆圆心 P 的轨迹方程。
二:用直译法求轨迹方程 此类问题重在寻找数量关系。 例 2: 一条线段两个端点 A 和 B 分别在 x 轴和 y 轴上滑动, 且 BM=a, AM=b, 求 AB 中点 M 的轨迹方程?
5 sin C , 求点 C 的轨迹。 4 5 5 【解析】由 sin B sin A sin C , 可知 b a c 10 ,即 | AC | | BC | 10 ,满足椭 4 4 sin B sin A
圆的定义。令椭圆方程为
x2 a
'2

y2 b
'2
1 ,则 a ' 5, c ' 4 b ' 3 ,则轨迹方程为
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
y
B
Q R A
o
P
x
五、用交轨法求轨迹方程 例 5.已知椭圆
x2 y 2 1(a>b>o)的两个顶点为 A1 ( a, 0) , A2 (a, 0) ,与 y 轴平行的直 a 2 b2
x 2 y 2 a, x 2 y 2 a 2
M 点的轨迹是以 O 为圆心,a 为半径的圆周. 【点评】此题中找到了 OM=
1 AB 这一等量关系是此题成功的关键所在。一般直译法有下 2
列几种情况: 1)代入题设中的已知等量关系:若动点的规律由题设中的已知等量关系明显给出,则采用 直接将数量关系代数化的方法求其轨迹。 2)列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设 条件列出等式,得出其轨迹方程。 3)运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应 的恒等变换即得其轨迹方程。 4)借助平几中的有关定理和性质:有时动点规律的数量关系不明显,这时可借助平面几何 中的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其 数量的关系,这种借助几何定理的方法是求动点轨迹的重要方法. 【变式 2】 : 动点 P (x,y) 到两定点 A (-3, 0) 和B (3, 0) 的距离的比等于 2 (即 求动点 P 的轨迹方程? 【解答】∵|PA|= ( x 3) y , | PB |

高中数学-学生-轨迹方程的求法

高中数学-学生-轨迹方程的求法
自我测试
例1.已知中心在原点,焦点在 轴上的椭圆的焦距等于 ,它的一条弦所在的直线方程是 ,若此弦的中点坐标为 ,求椭圆的方程。
例2已知点 动点 满足条件 ,记动点 的轨迹为 。(1)求 的方程。(2)若 是 上的不同两点, 是坐标原点,求 的最小值。
例3如图,矩形ABCD中, ,以AB边所在的直线为x轴,AB的中点为原点建立直角坐标系,P是x轴上方一点,使PC、PD与线段AB分别交于 、 两点,且 成等比数列,求动点P的轨迹方程
(1)求 两点的横坐标之积和坐标之积;(2)求证:直线 过定点;
(3)求弦 中点 的轨迹方程;(4)求 面积的最小值。
4.设过点 的直线分别与 轴和 轴的正半轴交于 两点,点 与点 关于 轴对称。若 ,且 ,求点 的轨迹方程。
巩固练习
1.已知抛物线 的内接三角形 的垂心在此抛物线的焦点 上, 的面积等于 ,求此抛物线的方程。
(3)直接法:直接通过建立x、y之间的关系,构成F(x,y)=0,是求轨迹的最基本的方法;
(4)待定系数法:所求曲线是所学过的曲线:如直线,圆锥曲线等,可先根据条件列出所求曲线的方程,再由条件确定其待定系数,代回所列的方程即可
(5)参数法:当动点P(x,y)坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x、y均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程。
2.已知双曲线C的两条渐近线经过原点,并且与圆 相切,双曲线 的一个顶点 的坐标是
(1)求双曲线 的方程;
(2)已知直线 ,在双曲线 的上支求点 ,使点 与直线 的距离等于 。
3.已知抛物线 的顶点在原点,它的准线 经过双曲线 的焦点,且准线 与双曲线 交于 和 两点,求抛物线 和双曲线 的方程。

高中数学求轨迹方程的六种常用技法

高中数学求轨迹方程的六种常用技法
化简,整理得点的轨迹方程为
练习:1.平面内动点到点的距离与到直线的距离之比为2,则点的轨迹方程是。
2.设动直线垂直于轴,且与椭圆交于、两点,是上满足的点,求点的轨迹方程。
3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是
A.直线B.椭圆C.抛物线D.双曲线
, 又因为所以
化简得点的轨迹方程
6.先用点差法求出,但此时直线与双曲线并无交点,所以这样的直线不存在。中点弦问题,注意双曲线与椭圆的不同之处,椭圆不须对判别式进行检验,而双曲线必须进行检验。
7.解:设,则

即 所以点的轨迹是以为圆心,以3为半径的圆。
∵点是点关于直线的对称点。
∴动点的轨迹是一个以为圆心,半径为3的圆,其中是点关于直线的对称点,即直线过的中点,且与垂直,于是有
得, 即交点的轨迹方程为
解2: (利用角作参数)设,则
所以 ,两式相乘消去
即可得所求的点的轨迹方程为 。
练习:10.两条直线和的交点的轨迹方程是_________。
总结归纳
1.要注意有的轨迹问题包含一定隐含条件,也就是曲线上点的坐标的取值范围.由曲线和方程的概念可知,在求曲线方程时一定要注意它的“完备性”和“纯粹性”,即轨迹若是曲线的一部分,应对方程注明的取值范围,或同时注明的取值范围。
2.定义法
通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。
例2.xx的两顶点,和两边上的中线长之和是,则的重心轨迹方程是_______________。

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。

)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。

高中求轨迹方程的方法

高中求轨迹方程的方法

高中求轨迹方程的方法
答案:
1.直译法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直译法。

用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。

2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。

3.待定系数法:若动点轨迹题意已直接告知,即为椭圆、双曲线、抛物线、圆或直线,则据题意直接用待定系数法求解。

4.代入法:动点所满足的条件不易表述或求出,但形成轨迹的动点P (x,y)却随另一动点Q(x',y')的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x',y'表示为x,y的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。

5.参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。

6.交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。

可以说是参数法的一种变种。

求轨迹方程的常用方法

求轨迹方程的常用方法

轨迹(曲线)方程的求法求轨迹方程问题是高中数学的一个难点,求轨迹方程的常用方法有:1)直接法;2)待定系数法;3)定义法;4)代入法;5)参数法;6)交轨法. 下面分别介绍以上六种方法:(1)直接法 —— 直接利用条件通过建立x 、y 之间的关系式f (x ,y )=0,是求轨迹的最基本的方法. 课标教材(人教版)²高中数学 选修2﹣1(以下所称教材都是指该教材)的《§2.1.2 求曲线的方程》中介绍了此法.直接法求轨迹(曲线)方程一般有五个步骤:① 建立适当的坐标系,设曲线上任意一点M 的坐标为(x ,y ); ② 写出点M 运动适合的条件P 的集合:P={M |P(M)}; ③ 用坐标表示条件P(M),列出方程 f (x ,y )=0; ④ 化方程 f (x ,y )=0 为最简形式;⑤ 证明以化简后的方程的解为坐标的点都是曲线上的点. 一般地,步骤(5)可省略,如有特殊情形,可以适当说明.教材推导圆锥曲线(椭圆、双曲线、抛物线)的标准方程,都是使用直接法. 教材中还配有大量练习题(如:教材P.37练习/3,习题2.1/A 组/2、3,B 组/1、2;P.41例3,P.42练习/4,P.47例6,P.49习题2.2 / B 组/3;P.59例5,P.62习题2.3 / B 组/3;P.74习题2.4 / B 组/3;P.80复习参考题/ A 组/10,B 组/5).例1. 如图所示,线段AB 与CD 互相垂直平分于点O ,|AB|=2a (a >0),|CD|=2b (b>0),动点P 满足|PA|²|PB|=|PC|²|PD|. 求动点P 的轨迹方程.解:以O 为坐标原点,直线AB 、CD 分别为x 轴、y 轴建立直角坐标系,则A (-a ,0),B (a ,0),C (0,-b ),D (0,b ), 设P (x ,y ),由题意知 |PA|²|PB|=|PC|²|PD|,∴22)(y a x ++²22)(y a x +-=22)(b y x ++²22)(b y x -+,化简得 x 2-y 2=222b a -.故动点P 的轨迹方程为 x 2-y 2=222b a -.【练习1】 1、已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN |²|MP |+MN ²NP =0,求动点P (x ,y )的轨迹方程.2、如图所示,过点P (2,4)作互相垂直的直线l 1、l 2.若l 1交x 轴于A ,l 2交y 轴于B ,求线段AB 中点M 的轨迹方程.(2)待定系数法 —— 当已知所求曲线的类型(如:直线,圆锥曲线等)求曲线方程,可先根据条件设出所求曲线的方程,再由条件确定方程中的系数(待定系数),代回所设方程即可.要注意设出所求曲线的方程的技巧.(如:教材P.40例1,P.42练习/2,P.46例5,P.48练习/3、4,P.49习题2.2/A 组/2、5、9;P.54例1,P.55练习/1,P.58例4,P.61练习/2、3,P.61习题2.3 / A 组/2、4、6,B 组/1;P.67练习/1,P.68例3,P.72练习/1,P.73习题2.4 / A 组/4、7;P.80复习参考题/ A 组/1).例2 根据下列条件,求双曲线的标准方程.(1)与双曲线41622y x -=1有公共焦点,且过点(32,2). (2)与双曲线16922y x -=1有共同的渐近线,且过点(-3,23); 解: (1)设双曲线方程为2222by a x -=1. 由题意易求c=25.∵双曲线过点(32,2), ∴()2223a -24b=1. 又 ∵a 2+b 2=(25)2, ∴解得 a 2=12,b 2=8.故 所求双曲线的方程为 81222y x -=1. (2)设所求双曲线方程为16922y x -=λ(λ≠0), 将点(-3,23)代入得λ=41,∴ 所求双曲线方程为16922y x -=41, 即49422y x -=1. 【练习2】 已知抛物线C 的顶点在原点,焦点F 在x 轴正半轴上,设A 、B 是抛物线C 上的两个动点(AB 不垂直于x 轴),但|AF|+|BF|=8,线段AB 的垂直平分线恒经过定点Q (6,0),求此抛物线的方程.(3)定义法 —— 如果根据已知能够确定动点运动的条件符合某已知曲线的定义,则可由该曲线的定义直接写出动点轨迹方程.(如:教材P.49习题2.2/A 组/1、7,B 组/2;P.54例2,P.62习题2.3/A 组/5,B 组/2)例3. 已知动圆过()1,0,且与直线1x =-相切. (1) 求动圆圆心的轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=?若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设动圆圆心为M ,定点()1,0为F ,过点M 作直线1x =-的垂线,垂足为N ,由题意知: MF MN =即动点M 到定点F 与到定直线1x =-的距离相等, 由抛物线的定义知,点M 的轨迹为抛物线, 其中()1,0F 为焦点,1x =-为准线,∴动圆圆心的轨迹方程为 x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+= △216160k k =->,01k k ∴<>或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=,即 ()11,OP x y =,()22,OQ x y =,于是12120x x y y +=, 即()()21212110ky y y y --+=,整理得 2221212(1)()0k y y k y y k +-++=,∴ 2224(1)40k k k k k +-⋅+=, 解得4k =-或0k =(舍去), 又 40k =-<,∴ 直线l 存在,其方程为440x y +-=【练习3】 1、已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,求动圆圆心M 的轨迹方程.2、在△ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a,0)且满足条件x =sinC -sinB=21sinA ,则动点A 的轨迹方程是 ( ) A. 2216a x -221516a y =1(y ≠0)B. 2216a y -22316a x =1(x ≠0)C. 2216a x -221516a y =1(y ≠0)的左支 D. 2216a x -22316ay =1(y ≠0)的右支(4)代入法(也叫相关点法或转移法) ——若动点P(x ,y )随另一动点Q(x 1,y 1)的运动而运动,并且Q(x 1,y 1)又在某已知曲线上运动,则求点P 的轨迹方程问题常用此法.代入法求轨迹(曲线)方程一般有以下几个步骤:① 设所求点P 的坐标为 (x ,y ) (称之为从动点),动点Q 的坐标为(x 1,y 1) (称之为主动点) ② 找出点P 与点Q 的坐标关系;③ 用从动点的坐标x 、y 的代数式表示主动点的坐标x 1、y 1; ④ 再将x 1、y 1代入已知曲线方程,即得要求的动点轨迹方程.(如:教材P.41例2,P.50习题2.2 / B 组/1;P.74习题2.4 / B 组/1)例4. 设F (1,0),M 点在x 轴上,P 点在y 轴上,且MN =2MP ,PM ⊥PF ,当点P 在y 轴上运动时,求点N 的轨迹方程. 解设N (x ,y ),M (x 1,0),P (0,y 0),由MN =2MP 得(x -x 1,y )=2(-x 1,y 0),∴11022x x x y y -=-⎧⎨=⎩,即1012x x y y =-⎧⎪⎨=⎪⎩.∵PM ⊥PF ,PM =(x 1,-y 0),PF =(1,-y 0), ∴(x 1,-y 0)·(1,-y 0)=0,∴x 1+y 2=0. ∴-x +42y =0,即y 2 = 4x .故所求的点N 的轨迹方程是 y 2 = 4x .【练习4】 如图所示,已知P (4,0)是圆 x 2+y 2=36 内的一点,A 、B 是圆上两动点,且满足∠APB=90°,求矩形APBQ 的顶点Q 的轨迹方程.(5)参数法 ——当动点P (x ,y )的横坐标x 、纵坐标y 之间的关系不易直接找到时,可以考虑将x 、y 都用一个中间变量(参数)来表示,即得参数方程,再消去参数就可得到普通方程.例5. 如图所示,已知点C 的坐标是(2,2),过点C 的直线CA 与x 轴交于点A ,过点C 且与直线CA 垂直的直线CB 与y 轴交于点B. 设点M 是线段AB 的中点,求点M 的轨迹方程.解 方法一(参数法):设M 的坐标为(x ,y ).若直线CA 与x 轴垂直,则可得到M 的坐标为(1,1). 若直线CA 不与x 轴垂直,设直线CA 的斜率为k ,则直线CB 的斜率为-k1, 故直线CA 方程为:y =k(x -2)+2,令y =0得x =2-k2,则A 点坐标为(2-k2,0).CB 的方程为:y =-k1(x -2)+2,令x =0,得y =2+k2, 则B 点坐标为(0,2+k 2),由中点坐标公式得M 点的坐标为⎪⎪⎪⎩⎪⎪⎪⎨⎧+=++=-=+-=k k k k 112022112022y x ①, 消去参数k 得到x +y -2=0 (x ≠1), 又∵ 点M (1,1)在直线x +y -2=0上, 综上所述,所求轨迹方程为x +y -2=0.方法二(直接法)设M (x ,y ),依题意A 点坐标为(2x ,0),B 点坐标为(0,2y ).∵|MA|=|MC|, ∴22)2(y x x +-=22)2()2(-+-y x , 化简得x +y -2=0.方法三(定义法)依题意 |MA|=|MC|=|MO|,即:|MC|=|MO|,所以动点M 是线段OC 的中垂线,故由点斜式方程得到:x +y -2=0.(6)交轨法 —— 当所求轨迹上的动点是两动曲线的交点时,只要把两动曲线(族)的方程分别求出:0),,(=t y x f 与0),,(=t y x g(t 为参数),然后消去参数t ,即得所求轨迹方程.例6. 如图,过圆224x y +=与x 轴的两个交点A 、B 作圆的切线AC 、BD ,再过圆上任意一点H 作圆的切线,交AC 、BD 于C 、D 两点,设AD 、BC 的交点为R ,求动点R 的轨迹E 的方程.解:设点H 的坐标为(0x ,0y ),则20x +20y =4 由题意可知0y ≠0,且以H 为切点的圆的切线的斜率为0x y -, ∴切线CD 方程为 y -0y =0x y -(x -0x ),展开得 0x x +0y y =20x +20y =4, 即 以H 为切点的圆的切线方程为 0x x +0y y =4,∵A (-2,0),B (2,0),将x =±2代人0x x +0y y =4 可得 点C 、D 的坐标分别为C (-2,0042x y +),D (2,042x y -), 则直线AD 、BC 的方程分别为AD l :002424y x x y +=- …… ①, BC l :002424y x x y -=+- …… ②将两式相乘并化简可得动点R 的轨迹E 的方程为 2244x y +=,即2214x y += 解法二:设点R 的坐标为(0x ,0y );直线AR 的方程分别为y =002y x +(x +0x ),与直线BD 的方程x =2联立,解得D (2,0042y x +),同法可得C (-2,0042y x --),则直线CD 斜率为002024x y x -, ∴直线CD 的方程为y -0042y x --=002024x yx -(x +2)∵直线CD 与⊙O 相切, ∴圆心O 到直线CD 的距离等于圆半径2,000244x y y -=2,化简得 (20x -4)2+420x 20y =(420y )2整理得 (20x -4)2+420y (20x -4)=0, ∴20x -4=0 (舍去)或20x -4+420y =0即 动点R 的轨迹E 的方程为2244x y +=,即2214x y +=总结:求轨迹方程的方法:(1)求单个动点的轨迹问题,用直接法 或待定系数法 或定义法; (2)求两个动点的轨迹问题,用代入法;(3)求多个动点的轨迹问题,用参数法 或交轨法。

求轨迹方程问题—6大常用方法

求轨迹方程问题—6大常用方法

求轨迹方程问题—6大常用方法知识梳理:(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2. 直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t的函数关系x=f(t),y=g(t),进而通过消参化为轨迹的普通方程F(x,y)=0。

4. 代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律,即P点满足的等量关系,因此要学会动中求静,变中求不变。

来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。

3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。

高中数学解析几何|求轨迹方程方法最全总结

高中数学解析几何|求轨迹方程方法最全总结

高中数学解析几何|求轨迹方程方法最全总结一、直接法若动点运动的条件是一些较为明确的几何量的等量关系,而这些条件易于表达成关于x,y的等量关系式,可以较为容易地得到轨迹方程(即遵循求轨迹方程的一般程序),这种方法我们一般称之为直接法.用直接发求轨迹方程一般都要经过建系、设点、列式、化简、验证这五个环节.二、定义法若动点轨迹的条件符合某一基本而常见轨迹的定义(如圆、椭圆、双曲线、抛物线等)已从定义来确定表示其几何特征的基本量而直接写出其轨迹方程,或从曲线定义来建立等量关系式从而求出轨迹方程.三、代入法若动点运动情况较为复杂,不易直接表述或求出,但是能够发现形成轨迹的动点P(x,y)随着另一动点Q (X,Y)的运动而有规律的运动,而且动点Q的运动轨迹方程已经给定或极为容易求出,故只要找出两动点P,Q之间的等量关系式,用x,y表示X,Y再代入Q的轨迹方程整理即得动点P的轨迹方程,称之为代入法,也叫相关点法.四、参数法若动点运动变化情况较为复杂,动点的纵坐标之间的等量关系式难以极快找到,可以适当引入参数,通过所设参数沟通动点横坐标之间的联系,从而得到轨迹的参数方程进而再消去所设参数得出轨迹的(普通)方程,称之为参数法.点悟:注意落实好图形特征信息提供的解题方向,前提是自信,实力是运算过关.本题还可有一些较为简捷的解法,不妨试试五、交轨法若所求轨迹可以看成是某两条曲线(包括直线)的交点轨迹时,可由方程直接消去参数,也可引入参数来建这两条动曲线之间的联系,再消参而得到轨迹方程,称之为交轨法.可以认为交轨法是参数法的一种特殊情况.点悟:交轨是一种动态解题策略,注意特殊或极限情况处理. 六、几何法认真分析动点运动变化规律,可以发现图形明显的几何特征,利用有关平面几何的知识将动点运动变化规律与动点满足的条件有机联系起来,再利用直接法得到动点的轨迹方程,称之为几何法.七、点差法涉及与圆锥曲线中点弦有关的轨迹问题时,常可以把两端点设为(x1,y1),(x2,y2),代入圆锥曲线方程,然后作差法求出曲线的轨迹方程,此法称之为点差法,也叫平方差法.运用此法要注意限制轨迹方程中变量可能的取值范围.点悟:上述方法是通过设直线AB的方程引入参数b得到动点M 轨迹的参数方程再消去参数得到普通方程,注意参数的取值范围,因而轨迹是一条线段.本题较为简捷的求法还可考虑点差法:。

求点的轨迹方程的六种常见方法

求点的轨迹方程的六种常见方法
BC CD DA
解:以AB所在直线为x轴,过o垂直AB 直线为y轴,建立如图直角坐标系.
DF
y
C
依题意有A(-2,0),B(2,0),C(2,4a),D(-2,4a)
P
E
设 BE CF DG =k(0≤k≤1),由此有
G
BC CD DA
A
o
Bx
E(2,4ak), F(2-4k,4a), G(-2,4a-4ak) 直线OF的方程为 2ax+(2k-1)y=0……………①
且 BE CF DG .P为GE与OF的交点(如图). BC CD DA
问:是否存在两个定点,使P到这两点的距离的和为定值?若存在, 求出这两点的坐标及此定值;若不存在,请说明理由.
y
DF
C
E P
G设条件,首先求出点P坐标满足的方程,据此再判断是否存在两点,
使得P到两定点距离的和为定值.按题意有A(2, 0),B(2, 0),C(2, 4a),D(, 2, 4a).
整理得
x2 1
(y a)2 a2
1.
2
当a2 1 时,点P的轨迹为圆弧,所以不存在符合题意的两点 2
当a2 1 时,点P的轨迹为椭圆的一部分,点P到该椭圆焦点的距离的和为定长. 2
当a2 1 时,点P到椭圆两个焦点( 1 a2 , a)和( 1 a2 , a)的距离之和为定值 2.
2
2
• 以下举一个例子说明:
1.定义法
【例1】在ΔABC中,已知BC=a,当动点A满足条件sinC-sinB= 1 sinA时, 2
求动点A的轨迹方程.
解:以BC边所在直线为x轴,以线段BC的垂直平分线为y轴建立直角坐标系.
因为sinC-sinB= 1 sinA,由正弦定理得:AB - AC = 1 BC ,

高三高考数学中求轨迹方程的常见方法

高三高考数学中求轨迹方程的常见方法

高考数学中求轨迹方程的常见方法一、直接法当所求动点的要满足的条件简单明确时,直接按“建系设点、列出条件、代入坐标、整理化简、限制说明”五个基本步骤求轨迹方程, 称之直接法.例1 已知点)0,2(-A 、).0,3(B 动点),(y x P 满足2x PB PA =⋅,则点P 的轨迹为( ) A .圆 B .椭圆 C .双曲线 D .抛物线解:),3(),,2(y x y x --=---= ,2)3)(2(y x x +---=⋅∴226y x x +--=. 由条件,2226x y x x =+--,整理得62+=x y ,此即点P 的轨迹方程,所以P 的轨迹为抛物线,选D.二、定义法定义法是指先分析、说明动点的轨迹满足某种特殊曲线(如圆、椭圆、双曲线、抛物线等)的定义或特征,再求出该曲线的相关参量,从而得到轨迹方程.例2 已知ABC ∆中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程.解:如右图,以直线AB 为x 轴,线段AB 的中点为原 点建立直角坐标系. 由题意,b c a ,,构成等差数列,∴b a c +=2, 即4||2||||==+AB CB CA ,又CA CB >,∴C 的轨迹为椭圆的左半部分.在此椭圆中,1,2='='c a ,3='b ,故C 的轨迹方程为)2,0(13422-≠<=+x x y x . 三、代入法当题目中有多个动点时,将其他动点的坐标用所求动点P 的坐标y x ,来表示,再代入到其他动点要满足的条件或轨迹方程中,整理即得到动点P 的轨迹方程,称之代入法,也称相关点法、转移法.例3 如图,从双曲线1:22=-y x C 上一点Q 引直线2:=+y x l 的垂线,垂足为N ,求线段QN 的中点P 的轨迹方程.解:设),(),(11y x ,Q y x P ,则)2,2(11y y x x N --.ΘN 在直线上,.22211=-+-∴y y x x ① 又l PN ⊥得,111=--x x y y 即011=-+-x y y x .②联解①②得⎪⎪⎩⎪⎪⎨⎧-+=-+=22322311x y y y x x .又点Q 在双曲线C 上,1)223()223(22=-+--+∴x y y x ,化简整理得:01222222=-+--y x y x ,此即动点P 的轨迹方程.四、几何法几何法是指利用平面几何或解析几何知识分析图形性质,发现动点的运动规律和要满足的条件,从而得到动点的轨迹方程.例4 已知点)2,3(-A 、)4,1(-B ,过A 、B 作两条互相垂直的直线1l 和2l ,求1l 和2l 的交点M 的轨迹方程.解:由平面几何知识可知,当ABM ∆为直角三角形时,点M 的轨迹是以AB 为直径的圆.此圆的圆心即为AB 的中点)1,1(--,半径为25221=AB ,方程为13)1()1(22=+++y x . 故M 的轨迹方程为13)1()1(22=+++y x .五、参数法参数法是指先引入一个中间变量(参数),使所求动点的横、纵坐标y x ,间建立起联系,然后再从所求式子中消去参数,得到y x ,间的直接关系式,即得到所求轨迹方程.例5 过抛物线px y 22=(0>p )的顶点O 作两条互相垂直的弦OA 、OB ,求弦AB 的中点M 的轨迹方程.解:设),(y x M ,直线OA 的斜率为)0(≠kk ,则直线OB 的斜率为k1-.直线OA 的方程为kx y =,由⎩⎨⎧==px y kx y 22解得⎪⎪⎩⎪⎪⎨⎧==kp y k px 222,即)2,2(2k p k p A ,同理可得)2,2(2pk pk B -. 由中点坐标公式,得⎪⎪⎩⎪⎪⎨⎧-=+=pk kpy pk k px 22,消去k ,得)2(2p x p y -=,此即点M 的轨迹方程. 六、交轨法求两曲线的交点轨迹时,可由方程直接消去参数,或者先引入参数来建立这些动曲线的联系,然后消去参数来得到轨迹方程,称之交轨法.例6 如右图,垂直于x 轴的直线交双曲线12222=-by a x 于M 、N 两点,21,A A 为双曲线的左、右顶点,求直线M A 1与N A 2的交点P 的轨迹方程,并指出轨迹的形状.解:设),(y x P 及),(),,(1111y x N y x M -,又)0,(),0,(21a A a A -,可得直线M A 1的方程为)(11a x a x y y ++=①;直线N A 2的方程为)(11a x ax y y -+-=②. ①×②得)(22221212a x ax y y ---=③. 又,1221221=-b y a x Θ)(2122221x a a b y -=-∴,代入③得)(22222a x ab y --=,化简得12222=+by a x ,此即点P 的轨迹方程. 当b a =时,点P 的轨迹是以原点为圆心、a 为半径的圆;当b a ≠时,点P 的轨迹是椭圆.高考动点轨迹问题专题讲解(一)选择、填空题1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段2.( )设(0,5)M ,(0,5)N -,MNP ∆的周长为36,则MNP ∆的顶点P 的轨迹方程是(A )22125169x y +=(0x ≠) (B )221144169x y +=(0x ≠) (C )22116925x y +=(0y ≠) (D )221169144x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;4.P 在以1F 、2F 为焦点的双曲线221169x y -=上运动,则12F F P ∆的重心G 的轨迹方程是 ; 5.已知圆C:22(16x y ++=内一点()A ,圆C 上一动点Q , AQ 的垂直平分线交CQ 于P 点,则P 点的轨迹方程为 .2214x y += 6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是 ;221916x y -=(3x >) 变式:若点P 为双曲线221916x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的内切圆圆心的轨迹方程是 ;推广:若点P 为椭圆221259x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是 .212y x =8.抛物线22y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .4kx =(28k y >) 9.过抛物线24y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时, 弦PQ 中点的轨迹方程为 . 解法分析:解法1 当直线PQ 的斜率存在时, 设PQ 所在直线方程为(1)y k x =-与抛物线方程联立,2(1),4y k x y x=-⎧⎨=⎩ 消去y 得 2222(24)0k x k x k -++=. 设11(,)P x y ,22(,)Q x y ,PQ 中点为(,)M x y ,则有21222,22(1).x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩消k 得22(1)y x =-. 当直线PQ 的斜率不存在时,易得弦PQ 的中点为(1,0)F ,也满足所求方程.故所求轨迹方程为22(1)y x =-. 解法2 设11(,)P x y ,22(,)Q x y ,由2112224,4.y x y x ⎧=⎪⎨=⎪⎩ 得121212()()4()y y y y x x -+=-,设PQ 中点为(,)M x y ,当12x x ≠时,有121224y y y x x -⋅=-,又1PQ MF yk k x ==-,所以,21yy x ⋅=-,即22(1)y x =-. 当12x x =时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-.10.过定点(1, 4)P 作直线交抛物线:C 22y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.44yx =-(二)解答题1.一动圆过点(0, 3)P ,且与圆22(3)100x y ++=相内切,求该动圆圆心C 的轨迹方程. (定义法)2.过椭圆221369x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF A E =,2A 为椭圆另一顶点,连结OF 交2A E 于点P , 求动点P 的轨迹方程.3.已知1A 、2A 是椭圆22221x y a b+=的长轴端点,P 、Q 是椭圆上关于长轴12A A 对称的两点,求直线1PA 和2QA 的交点M 的轨迹.(交轨法)4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足||||MA MC =u u u r u u u u r , GM AB R λλ=(∈)u u u u r u u u r.(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足||||AP AQ =u u u r u u u r,试求k 的取值范围.解:(1)设(,)C x y ,则由重心坐标公式可得(,)33x y G . ∵ GM AB λ=u u u u r u u u r ,点M 在x 轴上,∴ (,0)3xM .∵ ||||MA MC =u u u r u u u u r,(0,1)A -,∴= 2213x y +=. 故点C 的轨迹方程为2213x y +=(1y ≠±).(直接法) (2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N .由22,3 3.y kx b x y =+⎧⎨+=⎩消y ,得222(13)63(1)0k x kbx b +++-=.∴ 22223612(13)(1)0k b k b ∆=-+->,即22130k b +->. ①又122613kbx x k+=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++, ∴223(,)1313kb bN k k-++. ∵ ||||AP AQ =u u u r u u u r,∴ AN PQ ⊥,∴ 1ANk k =-,即 221113313bk kb k k ++=--+, ∴2132k b +=,又由①式可得 220b b ->,∴ 02b <<且1b ≠.∴ 20134k <+<且2132k +≠,解得11k -<<且k ≠. 故k 的取值范围是11k -<<且3k ≠±. 5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ⋅=⋅u u u r u u u u r u u u r u u u u r.(Ⅰ)求动点P 的轨迹C 的方程;(直接法)(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=u u u r u u u r.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ⋅u u u r u u u r为定值.解:(Ⅰ)设(,)P x y .由已知(,2)MP x y =+u u u r ,(0,4)MN =u u u u r ,(,2)PN x y =--u u u r, 48MP MN y ⋅=+u u u r u u u u r.PN MN ⋅=u u u r u u u u r……………………………………………3分∵MP MN PN MN ⋅=⋅u u u r u u u u r u u u r u u u u r ,∴48y+= 整理,得 28x y =.即动点P 的轨迹C 为抛物线,其方程为28x y =.6.已知O 为坐标原点,点(1,0)E -、(1,0)F ,动点A 、M 、N 满足||||AE m EF =u u u r u u u r(1m >),0MN AF =⋅u u u u r u u u r ,1()2ON OA OF =+u u u r u u u r u u u r,//AM ME u u u u r u u u r .求点M 的轨迹W 的方程.解:∵0MN AF ⋅=u u u u r u u u r ,1()2ON OA OF =+u u u r u u u r u u u r,∴ MN 垂直平分AF .又//AM ME u u u u r u u u r,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===u u u u r u u u r u u u r u u u r ,||||MA MF =u u u r u u u r ,∴ ||||2||ME MF m EF +=>u u u r u u u r u u u r ,∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >). 7.设,x y R ∈,,i j 为直角坐标系内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++r,(2)b xi y j =+-r , 且||||8a b +=r r.(1)求点(,)M x y 的轨迹C 的方程;(定义法)(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB =+u u u r u u u r u u u r,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程,若不存在,试说明理由.解:(1)2211216x y +=; (2)因为l 过y 轴上的点(0,3).若直线l 是y 轴,则,A B 两点是椭圆的顶点.Q 0OP OA OB =+=u u u r u u u r u u u r,所以P 与O 重合,与四边形OAPB 是矩形矛盾.故直线l 的斜率存在,设l 方程为3y kx =+,1122(,),(,)A x y B x y .由223,1,1216y kx x y =+⎧⎪⎨+=⎪⎩ 消y 得22(43)18210,k x kx ++-=此时22(18)4(43)(21)k k ∆=-+->0恒成立,且1221843k x x k +=-+,1222143x x k=-+, Q OP OA OB =+u u u r u u u r u u u r,所以四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA OB ⊥,即0OA OB ⋅=u u u r u u u r.1122(,),(,)OA x y OB x y ==u u u r u u u rQ , ∴ 12120OA OB x x y y ⋅=+=u u u r u u u r.即21212(1)3()90k x x k x x ++++=.2222118(1)()3()4343k k k k k +⋅-+⋅-++ 90+=.2516k =,得5k =. 故存在直线l :53y x =+,使得四边形OAPB 是矩形. 8.如图,平面内的定点F 到定直线l 的距离为2,定点E 满足:||EF uuu r =2,且EF l ⊥于G ,点Q 是直线l 上一动点,点M 满足:FM MQ =u u u u r u u u u r ,点P 满足://PQ EF u u u r u u u r ,0PM FQ ⋅=u u u u r u u u r.(I )建立适当的直角坐标系,求动点P 的轨迹方程;(II )若经过点E 的直线1l 与点P 的轨迹交于相异两点A 、B ,令AFB θ∠=, 当34πθπ≤<时,求直线1l 的斜率k 的取值范围. 解:(1)以FG 的中点O 为原点,以EF 所在直线为y 轴,建立平面直角坐标系xoy ,设点(,)P x y ,则(0, 1)F ,(0, 3)E ,:1l y=-.∵ FM MQ =u u u u r u u u u r ,//PQ EF u u u r u u u r ,∴(,1)Q x -,(, 0)2xM .∵0PM FQ ⋅=u u u u r u u u r ,∴ ()()(2)02xx y -⨯+-⨯-=,即所求点P 的轨迹方程为24x y =. (2)设点))(,(),,(212211x x y x B y x A ≠设AF 的斜率为1k ,BF 的斜率为2k ,直线1l 的方程为3+=kx y由⎩⎨⎧=+=yx kx y 432…………6分 01242=--kx x 得1242121-==+∴x x k x x …………7分 9)4(44221222121==⋅=∴xx x x y y646)(22121+=++=+k x x k y y …………8分4216484||||cos 2222++-=+--=⋅=∴k k k k FB FA θ…………10分由于πθπ<≤43 2242122cos 122-≤++-<--≤<-∴k k 即θ…………11分 222242222≥∴≥++∴k k k解得4488-≤≥k k 或…………13分∴直线1l 斜率k 的取值范围是}8,8|{44-≥≥k k k 或9.如图所示,已知定点(1, 0)F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=u u u u r u u u r ,||||PM PN =u u u u r u u u r.(1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A 、B 两点,若4OAOB ⋅=-u u u r u u u r,且||AB ≤l的斜率k 的取值范围.解:(1)设(,)N x y ,由||||PM PN =u u u u r u u u r得(,0)M x -,(0, )2y P ,(,)2y PM x =--u u u u r ,(1,)2yPF =-u u u r ,又0PM PF ⋅=u u u u r u u u r ,∴204yx -+=,即动点N 的轨迹方程为24y x =. 10.已知点(0, 1)F ,点M 在x 轴上,点N 在y 轴上,P 为动点,满足0MN MF ⋅=u u u,0MN MP +=u u u u r u u u r r .(1)求P 点轨迹E 的方程; (2)将(1)中轨迹E 按向量(0, 1)a=r平移后得曲线E ',设Q 是E '上任一点,过Q 作圆22(1)1x y ++=的两条切线,分别交x 轴与A 、B 两点,求||AB 的取值范围. 解:(1)设(, 0)M a 、(0, )N b 、(,)P x y ,则(,)MN a b =-u u u u r 、(, 1)MF a =-u u u r、(, )MP x a y =-u u u r.由题意得(, )(, 1)0,(, )(,)(0, 0).a b a a b x a y -⋅-=⎧⎨-+-=⎩ ∴ 20,, ,2a b xa b y ⎧+=⎪⎨==-⎪⎩ ∴ 214y x =, 故动点P 的轨迹方程为214y x =. 11.如图()A m 和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-u u u r u u u r ,O 为坐标原点,动点P 满足OP OA OB =+u u u r u u u r u u u r.(1)求m n ⋅的值; (2)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(3)若直线l 过点(2, 0)E 交(2)中曲线C 于M 、N 两点,且3ME EN =u u u r u u u r,求l 的方程. 解:(1)由已知得1()(,)22OA OB m n mn ⋅=⋅=-=-u u u r u u u r, ∴14mn =.(2)设P 点坐标为(,)x y (0x >),由OP OA OB =+u u u r u u u r u u u r得(,)()(,)x y m n =+())m n m n =+-,∴,)x m n y m n =+⎧⎪⎨=-⎪⎩ 消去m ,n 可得2243y x mn -=,又因14mn =,∴ P 点的轨迹方程为221(0)3y x x -=>.它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支.(3)设直线l 的方程为2x ty =+,将其代入C 的方程得 223(2)3ty y +-= 即 22(31)1290t y ty -++=,易知2(31)0t -≠(否则,直线l的斜率为 又22214436(31)36(1)0t t t ∆=--=+>, 设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==-- ∵ l 与C 的两个交点,M N 在y 轴的右侧212121212(2)(2)2()4x x ty ty t y y t y y =++=+++2222291234240313131t t t t t t t -+=⋅+⋅+=->---,∴ 2310t -<,即2103t <<,又由120x x +>同理可得 2103t <<,由3ME EN =u u u r u u u r 得 1122(2,)3(2,)x y x y --=-, ∴ 121223(2)3x x y y -=-⎧⎨-=⎩由122222123231t y y y y y t +=-+=-=--得22631t y t =-, 由21222229(3)331y y y y y t =-=-=-得222331y t =--, 消去2y 得2222363(31)31t t t =--- 解之得:2115t = ,满足2103t <<. 故所求直线l0y --=0y +-=.12.设A ,B分别是直线y x =和y x =上的两个动点,并且||AB =u u u r P 满足OP OA OB =+u u u r u u u r u u u r.记动点P 的轨迹为C .(I ) 求轨迹C 的方程;(II )若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=u u u u r u u u r,求实数λ的取值范围.解:(I )设(,)P x y ,因为A 、B分别为直线y x =和y x =上的点,故可设11(,)5A x x,22(,)5B x x -. ∵OP OA OB =+u u u r u u u r u u u r ,∴1212,)x x x y x x =+⎧⎪⎨=-⎪⎩.∴1212,x x x x x y +=⎧⎪⎨-=⎪⎩.又AB =u u u r ∴2212124()()205x x x x -++=.∴22542045y x +=. 即曲线C 的方程为2212516x y +=. (II ) 设N (s ,t ),M (x ,y ),则由λ=,可得(x ,y-16)=λ (s ,t-16).故x s λ=,16(16)y t λ=+-.∵ M 、N 在曲线C 上, ∴⎪⎪⎩⎪⎪⎨⎧=+-+=+ 1.16)1616t (25s 1,16t 25s 22222λλλ消去s 得116)1616t (16)t 16(222=+-+-λλλ.由题意知0≠λ,且1≠λ,解得 17152t λλ-=. 又4t ≤, ∴421517≤-λλ. 解得 3553≤≤λ(1≠λ).故实数λ的取值范围是3553≤≤λ(1≠λ). 13.设双曲线22213y x a -=的两个焦点分别为1F 、2F ,离心率为2. (1)求此双曲线的渐近线1l 、2l的方程;(y x =)(2)若A 、B 分别为1l 、2l 上的动点,且122||5||AB F F =,求线段AB 的中点M 的轨迹方程,并说明是什么曲线.(22317525xy +=) 提示:||1010AB =⇒=,又11y x =,22y x =, 则1221)yy x x +=-,2112)y y x x -=+. 又 122x x x =+,122y y y =+代入距离公式即可.(3)过点(1, 0)N 是否存在直线l ,使l 与双曲线交于P 、Q 两点,且0OP OQ ⋅=u u u r u u u r,若存在,求出直线l 的方程;若不存在,说明理由.(不存在)14.已知点(1, 0)F ,直线:2l x =,设动点P 到直线l 的距离为d ,已知||PF =,且2332d ≤≤. (1)求动点P 的轨迹方程;15.如图,直线:1l ykx =+与椭圆22:2C ax y +=(1a >)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点). (1)若1k=,且四边形OAPB 为矩形,求a 的值;(3a =)(2)若2a =,当k 变化时(k R ∈),求点P 的轨迹方程.(22220x y y +-=(0y ≠))16.双曲线C :22221x y a b-=(0a >,0b >)的离心率为2,其中(0,)A b -,(, 0)B a ,且22224||||||||3OA OB OA OB +=⋅u u u r u u u r u u u r u u u r .(1)求双曲线C 的方程;(2)若双曲线C 上存在关于直线l :4y kx =+对称的点,求实数k 的取值范围.解:(I )依题意有:2222222c 2,a 4a b a b ,3a b c .⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得:.2,3,1===c b a所求双曲线的方程为.1322=-y x ………………………………………6分 (Ⅱ)当k=0时,显然不存在.………………………………………7分当k≠0时,设双曲线上两点M 、N 关于直线l 对称.由l ⊥MN ,直线MN 的方程为1y x b k=-+.则M 、N 两点的坐标满足方程组由221y x b,k3x y 3.⎧=-+⎪⎨⎪-=⎩消去y 得2222(3k 1)x 2kbx (b 3)k 0-+-+=.…………………9分 显然23k10-≠,∴2222(2kb)4(3k 1)(b 3)k 0∆⎡⎤=---+>⎣⎦.即222k b 3k 10+->. ①设线段MN 中点D (00x ,y )则02202kb x ,3k 13k b y .3k 1-⎧=⎪⎪-⎨⎪=⎪-⎩∵D (00x ,y )在直线l 上,∴22223k b k b 43k 13k 1-=+--.即22k b=3k 1- ② 把②带入①中得 222k b +bk 0>,解得b 0>或b 1<-.∴223k 10k ->或223k 1<-1k -.即k >或1k 2<,且k≠0. ∴k的取值范围是11(,(,0)(0,))22-∞-+∞U U U .…………………14分 17.已知向量OA u u u r=(2,0),OC u u u r =AB =(0,1),动点M 到定直线y =1的距离等于d ,并且满足OM u u u u r ·AM u u u u r =K(CM u u u u r ·BM u u u u r -d 2),其中O 为坐标原点,K 为参数.(Ⅰ)求动点M 的轨迹方程,并判断曲线类型;(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e 满足33≤e ≤22,求实数K 的取值范围. 18.过抛物线24y x =的焦点作两条弦AB 、CD ,若0AB CD ⋅=u u u r u u u r ,1()2OM OA OB =+u u u u r u u u r u u u r ,1()2ON OC OD =+u u u r u u u r u u u r .(1)求证:直线MN 过定点;(2)记(1)中的定点为Q ,求证AQB ∠为钝角;(3)分别以AB 、CD 为直径作圆,两圆公共弦的中点为H ,求H 的轨迹方程,并指出轨迹是什么曲线.19.(05年江西)如图,M 是抛物线上2y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA MB =.(1)若M 为定点,证明:直线EF 的斜率为定值;xyOA BEF M(2)若M 为动点,且90EMF∠=o ,求△EMF 的重心G 的轨迹.思路分析:(1)由直线MF (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去0y 即得到G 的轨迹方程(参数法).解:(1)法一:设200(,)M y y ,直线ME 的斜率为k (0k >),则直线MF 的斜率为k -,方程为200()y y k x y -=-.∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消x 得200(1)0ky y y ky -+-=,解得01F ky y k-=,∴ 202(1)F ky x k -=, ∴0022000022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值).所以直线EF 的斜率为定值. 法二:设定点00(,)M x y ,11(,)E x y 、22(,)F x y ,由200211,y x y x ⎧=⎪⎨=⎪⎩ 得 010101()()y y y y x x -+=-,即011ME k y y =+;同理 021MF k y y =+.∵MA MB =,∴ ME MF k k =-,即010211y y y y =-++,∴ 1202y y y +=-.所以,1212221212120112EF y y y y k x x y y y y y --====---+(定值). 第一问的变式:过点M 作倾斜角互补的直线ME 、MF ,则直线EF 的斜率为定值;根据不同的倾斜角,可得出一组平行弦.(2)90,45,1,EMF MAB k ∠=∠==o o当时所以直线ME 的方程为200()y y k x y -=-由2002y y x y y x⎧-=-⎪⎨=⎪⎩得200((1),1)E y y --同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x y ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122()9273y x x =->. 20.如图,ABCD 是边长为2的正方形纸片,沿某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B 都落在边AD 上,记为B ',折痕l 与AB 交于点E ,点M 满足关系式EM EB EB '=+u u u u r u u u r u u u r.(1)建立适当的直角坐标系,求点M 的轨迹方程; (2)若曲线C 是由点M 的轨迹及其关于边AB 对称的曲线组成的,F 是AB 边上的一点,4BA BF =u u u r u u u r,过点F 的直线交曲线C 于P 、Q 两点,且PF FQ λ=u u u r u u u r ,求实数λ的取值范围.。

几种常见求轨迹方程的方法

几种常见求轨迹方程的方法

几种常见求轨迹方程的方法1.直接法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法.例1:(1)求和定圆x2+y2=k2的圆周的距离等于k的动点P的轨迹方程;(2)过点A(a,o)作圆O∶x2+y2=R2(a>R>o)的割线,求割线被圆O截得弦的中点的轨迹.对(1)分析:动点P的轨迹是不知道的,不能考查其几何特征,但是给出了动点P的运动规律:|OP|=2R或|OP|=0.解:设动点P(x,y),则有|OP|=2R或|OP|=0.即x2+y2=4R2或x2+y2=0.故所求动点P的轨迹方程为x2+y2=4R2或x2+y2=0.对(2)分析:题设中没有具体给出动点所满足的几何条件,但可以通过分析图形的几何性质而得出,即圆心与弦的中点连线垂直于弦,它们的斜率互为负倒数.由学生演板完成,解答为:设弦的中点为M(x,y),连结OM,则OM⊥AM.∵kOM·kAM=-1,其轨迹是以OA为直径的圆在圆O内的一段弧(不含端点).2.定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.直平分线l交半径OQ于点P,当Q点在圆周上运动时,求点P的轨迹方程.分析:∵点P在AQ的垂直平分线上,∴|PQ|=|PA|.又P在半径OQ上.∴|PO|+|PQ|=R,即|PO|+|PA|=R.故P点到两定点距离之和是定值,可用椭圆定义写出P点的轨迹方程.解:连接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半径OQ上.∴|PO|+|PQ|=2.由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆.3.相关点法若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程.这种方法称为相关点法(或代换法).例3 已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BP∶PA=1∶2,当B点在抛物线上变动时,求点P的轨迹方程.分析:P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系.解:设点P(x,y),且设点B(x0,y0) ∵BP∶PA=1∶2,且P为线段AB 的内分点.4.待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求.例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y 轴上,所以可设双曲线方ax2-4b2x+a2b2=0 ∵抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b2x+a2b2=0应有等根.∴△=1664-4Q4b2=0,即a2=2b.(以下由学生完成) 由弦长公式得:即a2b2=4b2-a2.。

高中数学求轨迹方程的六种常用技法汇总

高中数学求轨迹方程的六种常用技法汇总

高中数学求轨迹方程的六种常用技法汇总.直接法例1.已知线段6AB,直线BMAM,相交于M,且它们的斜率之积是4,求点MAB所在直线为x轴,AB垂直平分线为y轴建立坐标系,则(3,0),(3,0)AB,M的坐标为(,)xy,则直线AM的斜率(3)AMykxx,直线BM的斜(3)AMykxx4(3)39yyxxxM的轨迹方程为221(3)4xyx.平面内动点P到点(10,0)F的距离与到直线4x的距离之比为2,则点P的轨迹方。

.设动直线l垂直于x轴,且与椭圆2224xy交于A、B两点,P 是l上满足PAPBP的轨迹方程。

到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线().直线 B.椭圆 C.抛物线 D.双曲线.定义法2.若(8,0),(8,0)BC为ABC的两顶点,AC和AB两边上的中线长之和是30,ABC的重心轨迹方程是_______________。

ABC的重心为(,)Gxy,则由AC和AB两边上的中线长之和是30可得20BGCG,而点(8,0),(8,0)BC为定点,所以点G的轨迹为以,BC220,8ac可得2210,6abacABC的重心轨迹方程是221(0)36xyy.方程222(1)(1)|2|xyxy表示的曲线是().椭圆 B.双曲线 C.线段 D.抛物线.点差法锥曲线中与弦的中点有关的问题可用点差法,其基本方法是把弦的两端点122(,),(,)AxyBxy的坐标代入圆锥曲线方程,然而相减,利用平方差公式可得12xx,2yy,12xx,12yy等关系式,由于弦AB的中点(,)Pxy的坐标满足122xxx,22yyy且直线AB的斜率为211yyxx,由此可求得弦AB中点的轨迹方程。

3.椭圆2212xy中,过(1,1)P的弦恰被P点平分,则该弦所在直线方程为。

(1,1)P的直线交椭圆于1(,)Axy、22(,)Bxy,则有212xy ① 2222142xy ②②可得12121212()()()()02xxxxyyyy(1,1)P为线段AB的中点,故有2122,2xxyy1212122()2()210422xxyyyyxx,即12ABk11(1)yx化简可得230xy.已知以(2,2)P为圆心的圆与椭圆222xym交于A、B两点,求弦AB的中点M.已知双曲线221yx,过点(1,1)P能否作一条直线l与双曲线交于,AB两点,使P AB的中点?.转移法P在已知方程的曲线上移动;M随P的变化而变化;P和M满足一定的规律。

高中高考轨迹方程的求法总结

高中高考轨迹方程的求法总结

轨迹方程的求法【方法介绍】方法一:直接法课本中主要介绍的方法。

若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标),(y x 后,就可根据命题中的已知条件研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x 、y 的关系式。

从而得到轨迹方程,这种求轨迹方程的方法称为直接法。

例题1等腰三角形的顶点为)2,4(A ,底边一个端点是)5,3(B ,求另一个端点C 的轨迹方程。

练习一1.已知点)0,2(-A 、)0,3(B ,动点),(y x P 满足2x PB PA =⋅→→。

求点P 的轨迹方程。

2. 线段AB 的长等于2a,两个端点A 和B 分别在x 轴和y 轴上滑动,求AB 中点P 的轨迹方程?3.动点P (x,y )到两定点)0,3(-A 和)0,3(B 的距离的比等于2(即:2=PB PA )。

求动点P 的轨迹方程?4.动点P 到一高为h 的等边△ABC 两顶点A 、B 的距离的平方和等于它到顶点C 的距离平方,求点P 的轨迹?5.点P 与一定点)0,2(F 的距离和它到一定直线8=x 的距离的比是2:1。

求点P 的轨迹方程,并说明轨迹是什么图形。

6.已知)0,4(P 是圆3622=+y x 内的一点,A 、B 是圆上两动点,且满足△APB=90°,求矩形APBQ 的顶点Q 的轨迹方程。

7.过原点作直线l 和抛物线642+-=x x y 交于A 、B 两点,求线段AB 的中点M 的轨迹方程。

方法二:相关点法 利用动点是定曲线上的动点,另一动点依赖于它,那么可寻它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。

例题2已知一条长为6的线段两端点A 、B 分别在X 、Y 轴上滑动,点M 在线段AB 上,且AM : MB=1 : 2,求动点M 的轨迹方程。

练习二1.已知点)(00,y x P 在圆122=+y x 上运动,求点M ),2(0y x 的轨迹方程。

高中数学-教师-轨迹方程的求法

高中数学-教师-轨迹方程的求法
解:(1)设双曲线 的渐近线方程为 。因为 与圆 相切,所以圆心 到直线 的距离等于1,即 ,所以双曲线的渐近线方程为 。
设双曲线 的方程为 因为双曲线 经过 ,所以
(2)因为点 在双曲线的上支,所以可设 。根据点 到直线 的距离等于 ,得 ,因此所求点 的坐标是 。
3.已知抛物线 的顶点在原点,它的准线 经过双曲线 的焦点,且准线 与双曲线 交于 和 两点,求抛物线 和双曲线 的方程。
由 =30,得: ,
又 ,
代入上式得; ,化简得:
例5以抛物线y= x2的弦AB为直径的圆经过原点O,过点O作OM⊥AB,M为垂足,求点M的轨迹方程
解:设直线OA方程为 ,代入y= x2,得A点坐标为 ,
,
同理可得B( ),
直线AB方程为 ,
即: ①
直线OM方程为 ②
① ②,得: ,

解析:本题关键利用圆的几何条件来求轨迹方程。
解:取过 点且与 平行的直线为 轴,过 且垂直于 的直线为 轴,建立直角坐标系,设动圆圆心为 与 的公共弦为 与 切于点 ,则 为 的直径, 垂直平分 于 由勾股定理得 而 。
4.动圆P与定圆 相内切且过点 求动圆圆心 的轨迹方程。
解:设动圆 的半径为 ,圆 的方程可化为 。动圆 与圆 相内切,则 ,又动圆 过点 因此 点 的轨迹是以 为焦点的椭圆。可知:
热身练习
1.已知 两点分别在 轴, 轴上移动,求 中点 的轨迹方程。
解:设点 ,则点
2.若 的两个顶点为 点 在曲线 上运动。求 的重心轨迹方程。
解析:本题重在熟悉求轨迹方程中很重要的方法—转移代换
解:设重心坐标为 ,则点 。 点 在已知曲线上, 点 坐标满足曲线方程,
3.已知 的半径为3,直线 与 相切,一动圆与 相切,并与 相交的公共弦恰为 的直径,求动圆圆心的轨迹方程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3)xy
||4x,故动点R的轨迹方程为24(3)(||4)xyx。
(点差法)设(,)Rxy,∵(0,1)F,∴平行四边形AFBR的中心为1(,)
2xyP,
122(,),(,)AxyBxy,则有
14xy ① 2224xy ②
②得
2121212()()4()4lxxxxyyxxk ③
AD与
1DC是异面垂直的两
AD与
1DC平行的平面是面ABCD,设
ABCD内动点(,)Mxy满足到直线AD与
1DC
MMMP于1M,MNCD于N,
1NPDC于P,连结MP,易知MN平面
11,CDDCMPDC,则有1MMMP,
22
|yxa
其中a是异面直线AD与
1DC间的距离),即有222yxa,因此动点
D.
4xyx
.平面内动点P到点(10,0)F的距离与到直线4x的距离之比为2,则点P的轨迹方

.设动直线l垂直于x轴,且与椭圆2224xy交于A、B两点,P是l上满足
PAPB
P的轨迹方程。
到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线
.先用点差法求出210xy,但此时直线与双曲线并无交点,所以这样的直线不存在。
.解:设(,)Qxy,则(1,),(1,4)QAxyQBxy
4(1,)(1,4)4(1)(1)()(4)4QAQBxyxyxxyy
222(2)3xy
Q的轨迹是以(0,2)C为圆心,以3为半径的圆。
P是点Q关于直线2(4)yx的对称点。
2
1
2xy ① 2222142xy ②
②可得12121212()()()()0
2xxxxyyyy
(1,1)P为线段AB的中点,故有
2122,2xxyy
121212
2()2()210422xxyyyyxx,即12ABk
11(1)
yx化简可得230xy
.已知以(2,2)P为圆心的圆与椭圆222xym交于A、B两点,求弦AB的中点M
2xyP,
1ykx,代入抛物线方程,得2440xkx,
122(,),(,)AxyBxy,则
212
21216160||14444kkxxkxxkxxxx ①
2222121212
2()242
4xxxxxxyyk,
P为AB的中点.∴
2
2122222121kyyykxxx3442kykx,消去k得
2222
baxx, 即交点P的轨迹方程为 12222byax
2: (利用角作参数)
(cos,sin)Mab,则(cos,sin)Nab
abaxycossin , aabaxycossin 两式相乘消去
P点的轨迹方程为 1
222
yax。
.两条直线01yax和)1(01aayx的交点的轨迹方程是___ ______。
.已知双曲线221
yx,过点(1,1)P能否作一条直线l与双曲线交于,AB两点,使P
AB的中点?
.转移法
P在已知方程的曲线上移动;
M随P的变化而变化;
P和M满足一定的规律。
4. 已知P是以
2,FF为焦点的双曲线221
9xy上的动点,求12FFP的重心G 的
:设 重心(,)Gxy,点
4)yx
P的轨迹方程。
.参数法
6.过点(2,0)M作直线l交双曲线221xy于A、B两点,已知OPOAOB。
1)求点P的轨迹方程,并说明轨迹是什么曲线;
2)是否存在这样的直线l,使OAPB矩形?若存在,求出l的方程;若不存在,
l的斜率存在时,设l的方程为(2)(0)ykxk,代入方程221xy,得
( )
.直线 B.椭圆 C.抛物线 D.双曲线
.定义法
2.若(8,0),(8,0)BC为ABC的两顶点,AC和AB两边上的中线长之和是30,
ABC的重心轨迹方程是_______________。
ABC的重心为(,)Gxy,则由AC和AB两边上的中线长之和是30可得
20
BGCG,而点(8,0),(8,0)BC为定点,所以点G的轨迹为以,BC
),(
1yxA、),,(22yxB由题设可得点A、B的坐标),(11yx、),(22yx是方程组
122yxkxy 的解
,032)4(22kxxk,所以
8,42221221kyykkxx于是
4,4()2,2()(21222121kkkyyxxOBOAOP ① ②
2120xxyy ③
k不存在时,A、B坐标分别为(2,3)、(2,3),不满足③式
k存在时,222
21212121212(2)(2)(1)2()4xxyyxxkxkxkxxkxxk
222
2(1)(14)2440
1kkkkkkk化简得22101kk,
l使OPAB为矩形。
.设椭圆方程为1
22yx,过点(0,1)M的直线l交椭圆于点A、B,O是坐标原点,
MA和NB的交点P的轨迹方程。
1:(利用点的坐标作参数)令
1(,)Mxy,则11(,)Nxy
(,0),(,0)AaBa.设AM与NB的交点为(,)Pxy
,,AMP共线,所以
xyaxy
1 因为,,NBP共线,所以axyaxy11
21222axyaxy①, 而1221221byax即2)212(221axaby代入①
P的轨迹是一个以
00点
2)C
2(4)yx的对称点,即直线2(4)yx过
CC的中点,且与0CC
00
0221020
4
2yxyx即000000240821802yxxyxy
P的轨迹方程为22(8)(2)9xy。
.解:(1)解法一:直线l过点(0,1)M,设其斜率为k,则l的方程为1ykx
0(,)Pxy,因为12(4,0),(4,0)FF
0003044yyxx, 故yyxx3030代入19201620yx
2291(0)
xyy
5.抛物线24xy的焦点为F,过点(0,1)作直线l交抛物线A、B两点,再以AF、
AFBR,试求动点R的轨迹方程。
(转移法)设(,)Rxy,∵(0,1)F,∴平行四边形AFBR的中心为1(,)
P的轨迹方程为221()21
1
4yx
解:由点P的轨迹方程知21
x,即1144x所以
7)61(3441)21()21()21(||222222xxxyxNP
1x,||NP取得最小值,最小值为61;41x当时,||NP取得最大值, 最大值为216
.解法1 :(常规设参)设(,)Mxy,
0(,)Mxy,由OMAB可得直线AB的
程为0
0
()xyyxxy, 与抛物线24ypx联立消去y得
22
0)(
122212221yyxx,所以
0))((
1))((21212121yyyyxxxx
1xx时,有.0)(
1
1212121xxyyyyxx ⑥
1,2,2
1212121xxyyxyyyyxxx ⑦ 将⑦代入⑥并整理得 .0422yyx ⑧
1xx时,点A、B的坐标为(0,2),(0,2),这时点P的坐标为(0,0)
2yy,12xx,12yy等关系式,由于弦AB的中点(,)Pxy的坐标满足122xxx,
22yyy且直线AB的斜率为21
1yyxx,由此可求得弦AB中点的轨迹方程。
3.椭圆221
2xy中,过(1,1)P的弦恰被P点平分,则该弦所在直线方程为

(1,1)P的直线交椭圆于
1(,)Axy、22(,)Bxy,则有
.要注意有的轨迹问题包含一定隐含条件,也就是曲线上点的坐标的取值范围.由曲
,即轨迹若
x的取值范围,或同时注明,xy的取值范围。
.“轨迹”与“轨迹方程”既有区别又有联系,求“轨迹”时首先要求出“轨迹方程”,
.22(2)1
48xy
.解:设P点的坐标为(,)xy,则由方程2224xy,得24
xy
P的坐标为),,(yx则
4,422kykkx消去参数k得0422yyx ③
k不存在时, A、B中点为坐标原点(0,0),也满足方程③,所以点P的轨迹方程为
2
0xyy
:设点P的坐标为),(yx,因),(
1yxA、),(22yxB在椭圆上,所以
1
2121yx ④ .142222yx ⑤
220,8ac可得2210,6abac
ABC的重心轨迹方程是221(0)
36xyy
.方程222(1)(1)|2|xyxy表示的曲线是 ( )
.椭圆 B.双曲线 C.线段 D.抛物线
.点差法
锥曲线中与弦的中点有关的问题可用点差法,其基本方法是把弦的两端点
122(,),(,)AxyBxy的坐标代入圆锥曲线方程,然而相减,利用平方差公式可得12xx,
1kkxyxxyykk
22
414
kxkkyk 所以xky,代入241kyk可得241()xyyxy,化简得
2
0xyx
22(2)4xy ②
直线l的斜率不存在时,易求得(4,0)P满足方程②,故所求轨迹方程为
2
2)4(0)xyy
(也可考虑用点差法求解曲线方程)
2)平行四边OPAB为矩形的充要条件是0OAOB即
.直接法
例1.已知线段6AB,直线BMAM,相交于M,且它们的斜率之积是4
,求点M
AB所在直线为x轴,AB垂直平分线为y轴建立坐标系,则(3,0),(3,0)AB,
相关文档
最新文档