logistic回归与线性回归的比较分析
七种回归分析方法个个经典
七种回归分析方法个个经典什么是回归分析?回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。
这种技术通常用于预测分析,时间序列模型以及发现变量之间的因果关系。
例如,司机的鲁莽驾驶与道路交通事故数量之间的关系,最好的研究方法就是回归。
回归分析是建模和分析数据的重要工具。
在这里,我们使用曲线/线来拟合这些数据点,在这种方式下,从曲线或线到数据点的距离差异最小。
我会在接下来的部分详细解释这一点。
我们为什么使用回归分析?如上所述,回归分析估计了两个或多个变量之间的关系。
下面,让我们举一个简单的例子来理解它:比如说,在当前的经济条件下,你要估计一家公司的销售额增长情况。
现在,你有公司最新的数据,这些数据显示出销售额增长大约是经济增长的2.5倍。
那么使用回归分析,我们就可以根据当前和过去的信息来预测未来公司的销售情况。
使用回归分析的好处良多。
具体如下:1.它表明自变量和因变量之间的显著关系;2.它表明多个自变量对一个因变量的影响强度。
回归分析也允许我们去比较那些衡量不同尺度的变量之间的相互影响,如价格变动与促销活动数量之间联系。
这些有利于帮助市场研究人员,数据分析人员以及数据科学家排除并估计出一组最佳的变量,用来构建预测模型。
我们有多少种回归技术?有各种各样的回归技术用于预测。
这些技术主要有三个度量(自变量的个数,因变量的类型以及回归线的形状)。
我们将在下面的部分详细讨论它们。
对于那些有创意的人,如果你觉得有必要使用上面这些参数的一个组合,你甚至可以创造出一个没有被使用过的回归模型。
但在你开始之前,先了解如下最常用的回归方法:1.Linear Regression线性回归它是最为人熟知的建模技术之一。
线性回归通常是人们在学习预测模型时首选的技术之一。
在这种技术中,因变量是连续的,自变量可以是连续的也可以是离散的,回归线的性质是线性的。
线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。
多元线性回归、logistic回归
.366
.351
.204
-.271
.121
.638
.243
Standardized Coef ficients
Beta
.078 .309 -.339 .398
t 2.101 .390 1.721 -2.229 2.623
Sig. .047 .701 .099 .036 .016
将总胆固醇(X1) 剔除。 注意:通常每次只剔除关系最弱的一个因素。 对于同一资料,不同自变量的t值可以相互比较,t的绝对
B
Std. Error
6.500
2.396
.402
.154
-.287
.112
.663
.230
Standardized Coef ficients
Beta
.354 -.360 .413
t 2.713 2.612 -2.570 2.880
Sig. .012 .016 .017 .008
Yˆ 6.500 0.402X2 0.287X3 0.663X4
2.0095
2
.773b
.598
.546
1.9721
a. Predictors: (Const ant), 糖 化 血 红 蛋 白 x4, 甘 油 三 脂 x2, 胰 岛 素 x3, 总 胆 固 醇 x1 b. Predictors: (Const ant), 糖 化 血 红 蛋 白 x4, 甘 油 三 脂 x2, 胰 岛 素 x3
3
第十五章 多元线性回归
(multiple linear regressoin) P.261
Y,X——直线回归 Y,X1,X2,…Xm——多元回归(多重回归)
logistic回归和线性回归
logistic回归和线性回归1.输出:线性回归输出是连续的、具体的值(如具体房价123万元)回归逻辑回归的输出是0~1之间的概率,但可以把它理解成回答“是”或者“否”(即离散的⼆分类)的问题分类2.假设函数线性回归:θ数量与x的维度相同。
x是向量,表⽰⼀条训练数据逻辑回归:增加了sigmoid函数逻辑斯蒂回归是针对线性可分问题的⼀种易于实现⽽且性能优异的分类模型,是使⽤最为⼴泛的分类模型之⼀。
sigmoid函数来由假设某件事发⽣的概率为p,那么这件事不发⽣的概率为(1-p),我们称p/(1-p)为这件事情发⽣的⼏率。
取这件事情发⽣⼏率的对数,定义为logit(p),所以logit(p)为因为logit函数的输⼊取值范围为[0,1](因为p为某件事情发⽣的概率),所以通过logit函数可以将输⼊区间为[0,1]转换到整个实数范围内的输出,log函数图像如下将对数⼏率记为输⼊特征值的线性表达式如下:其中,p(y=1|x)为,当输⼊为x时,它被分为1类的概率为hθ(x),也属于1类别的条件概率。
⽽实际上我们需要的是给定⼀个样本的特征输⼊x,⽽输出是⼀个该样本属于某类别的概率。
所以,我们取logit函数的反函数,也被称为logistic函数也就是sigmoid函数ϕ(z)中的z为样本特征与权重的线性组合(即前⾯的ΘT x)。
通过函数图像可以发现sigmoid函数的⼏个特点,当z趋于正⽆穷⼤的时候,ϕ(z)趋近于1,因为当z趋于⽆穷⼤的时候,e^(-z)趋于零,所以分母会趋于1,当z趋于负⽆穷⼤的时候,e^(-z)会趋于正⽆穷⼤,所以ϕ(z)会趋于0。
如在预测天⽓的时候,我们需要预测出明天属于晴天和⾬天的概率,已知根天⽓相关的特征和权重,定义y=1为晴天,y=-1为⾬天,根据天⽓的相关特征和权重可以获得z,然后再通过sigmoid函数可以获取到明天属于晴天的概率ϕ(z)=P(y=1|x),如果属于晴天的概率为80%,属于⾬天的概率为20%,那么当ϕ(z)>=0.8时,就属于⾬天,⼩于0.8时就属于晴天。
SPSS专题2 回归分析(线性回归、Logistic回归、对数线性模型)
19
Correlation s lif e_ expectanc y _ f emale(y ear) .503** .000 164 1.000 . 192 .676**
cleanwateraccess_rura... life_expectancy_femal... Die before 5 per 1000
Model 1 2
R .930
a
R Square .866 .879
Model 1
df 1 54 55 2 53 55
Regres sion Residual Total Regres sion Residual Total
Mean Square 54229.658 155.861 27534.985 142.946
2
回归分析 • 一旦建立了回归模型 • 可以对各种变量的关系有了进一步的定量理解 • 还可以利用该模型(函数)通过自变量对因变量做 预测。 • 这里所说的预测,是用已知的自变量的值通过模型 对未知的因变量值进行估计;它并不一定涉及时间 先后的概念。
3
例1 有50个从初中升到高中的学生.为了比较初三的成绩是否和高中的成绩 相关,得到了他们在初三和高一的各科平均成绩(数据:highschool.sav)
50名同学初三和高一成绩的散点图
100
90
80
70
60
高 一成 绩
50
40 40
从这张图可以看出什么呢?
50 60 70 80 90 100 110
4
初三成绩
还有定性变量 • 该数据中,除了初三和高一的成绩之外,还有 一个定性变量 • 它是学生在高一时的家庭收入状况;它有三个 水平:低、中、高,分别在数据中用1、2、3 表示。
回归分析线性回归Logistic回归对数线性模型
逻辑回归的模型为 (P(Y=1) = frac{1}{1+e^{-z}}),其中 (z = beta_0 + beta_1X_1 + beta_2X_2 + ... + beta_nX_n)。
逻辑斯蒂函数
பைடு நூலகம்
定义
逻辑斯蒂函数是逻辑回归模型中用来描述自变量与因变量之 间关系的函数,其形式为 (f(x) = frac{1}{1+e^{-x}})。
。
在样本量较小的情况下, logistic回归的预测精度可能高 于线性回归。
线性回归的系数解释较为直观 ,而logistic回归的系数解释相 对较为复杂。
对数线性模型与其他模型的比较
对数线性模型假设因变量和自变量之间存在对 数关系,而其他模型的假设条件各不相同。
对数线性模型的解释性较强,可以用于探索自变量之 间的交互作用和效应大小。
THANKS
感谢您的观看
预测市场细分中的消费者行为等。
对数线性模型还可以用于探索性数据分析,以发现数 据中的模式和关联。
Part
04
比较与选择
线性回归与logistic回归的比较
线性回归适用于因变量和自变 量之间存在线性关系的场景, 而logistic回归适用于因变量为
二分类或多分类的场景。
线性回归的假设条件较为严格 ,要求因变量和自变量之间存 在严格的线性关系,而logistic 回归的假设条件相对较为宽松
最小二乘法
最小二乘法是一种数学优化技术,用于最小化预测值与实际观测值之间的平方误差总和。
通过最小二乘法,可以估计回归系数,使得预测值与实际观测值之间的差距最小化。
最小二乘法的数学公式为:最小化 Σ(Yi - (β0 + β1X1i + β2X2i + ...))^2,其中Yi是实际观 测值,X1i, X2i, ...是自变量的观测值。
统计学教案习题11多元线性回归与logistic回归
第十一章 多元线性回归与logistic 回归一、教学大纲要求(一)掌握内容1.多元线性回归分析的概念:多元线性回归、偏回归系数、残差。
2.多元线性回归的分析步骤:多元线性回归中偏回归系数及常数项的求法、多元线性回归的应用。
3.多元线性回归分析中的假设检验:建立假设、计算检验统计量、确定P 值下结论。
4.logistic 回归模型结构:模型结构、发病概率比数、比数比。
5.logistic 回归参数估计方法。
6.logistic 回归筛选自变量:似然比检验统计量的计算公式;筛选自变量的方法。
(二)熟悉内容 常用统计软件(SPSS 及SAS )多元线性回归分析方法:数据准备、操作步骤与结果输出。
(三)了解内容 标准化偏回归系数的解释意义。
二、教学内容精要(一) 多元线性回归分析的概念将直线回归分析方法加以推广,用回归方程定量地刻画一个应变量Y 与多个自变量X 间的线形依存关系,称为多元线形回归(multiple linear regression ),简称多元回归(multiple regression )基本形式:01122ˆk kY b b X b X b X =+++⋅⋅⋅+ 式中Y ˆ为各自变量取某定值条件下应变量均数的估计值,1X ,2X ,…,k X 为自变量,k 为自变量个数,0b 为回归方程常数项,也称为截距,其意义同直线回归,1b ,2b ,…, k b 称为偏回归系数(partial regression coefficient ),j b 表示在除j X 以外的自变量固定条件下,j X 每改变一个单位后Y 的平均改变量。
(二) 多元线性回归的分析步骤Y ˆ是与一组自变量1X ,2X ,…,kX 相对应的变量Y 的平均估计值。
多元回归方程中的回归系数1b ,2b ,…, k b 可用最小二乘法求得,也就是求出能使估计值Yˆ和实际观察值Y 的残差平方和22)ˆ(∑∑-=Y Y e i 为最小值的一组回归系数1b ,2b ,…, k b 值。
Logistic回归分析
Logistic 回归分析Logistic 回归分析是与线性回归分析方法非常相似的一种多元统计方法。
适用于因变量的取值仅有两个(即二分类变量,一般用1和0表示)的情况,如发病与未发病、阳性与阴性、死亡与生存、治愈与未治愈、暴露与未暴露等,对于这类数据如果采用线性回归方法则效果很不理想,此时用Logistic 回归分析则可以很好的解决问题。
一、Logistic 回归模型设Y 是一个二分类变量,取值只可能为1和0,另外有影响Y 取值的n 个自变量12,,...,n X X X ,记12(1|,,...,)n P P Y X X X ==表示在n 个自变量的作用下Y 取值为1的概率,则Logistic 回归模型为:[]0112211exp (...)n n P X X X ββββ=+-++++它可以化成如下的线性形式:01122ln ...1n n P X X X P ββββ⎛⎫=++++ ⎪-⎝⎭通常用最大似然估计法估计模型中的参数。
二、Logistic 回归模型的检验与变量筛选根据R Square 的值评价模型的拟合效果。
变量筛选的原理与普通的回归分析方法是一样的,不再重复。
三、Logistic 回归的应用(1)可以进行危险因素分析计算结果各关于各变量系数的Wald 统计量和Sig 水平就直接反映了因素i X 对因变量Y 的危险性或重要性的大小。
(2)预测与判别Logistic回归是一个概率模型,可以利用它预测某事件发生的概率。
当然也可以进行判别分析,而且可以给出概率,并且对数据的要求不是很高。
四、SPSS操作方法1.选择菜单2.概率预测值和分类预测结果作为变量保存其它使用默认选项即可。
例:试对临床422名病人的资料进行分析,研究急性肾衰竭患者死亡的危险因素和统计规律。
Logistic回归分析.sav解:在SPSS中采用Logistic回归全变量方式分析得到:(1)模型的拟合优度为0.755。
logistic回归、probit回归与poission回归
单纯从数学上讲,与多元线性 回归分析中回归系数的解释并 无不同。
ห้องสมุดไป่ตู้第九页,共44页。
模型评估
(1)Hosmer-Lemeshowz指标
HL统计量的原假设Ho是预测值和观测值之间无显著差异 ,因此HL指标的P-Value的值越大,越不能拒绝原假设,即说明模
ln[exp(0 1X1 2 X 2 m X m )]
0 1X1 2 X 2 m X m
Logit与概率不同,它没有上下限。比数去除了概率的上限,比数的对 数去除了概率的下限;且是以0,5为中点对称的,概率大于0.5产生正的 logit,logit距离0的距离反映了概率距离0.5的距离;概率上相同的改变与
在logits上产生的改变是不同的,logit转化拉直了X与最初的概率之间的
非线性关系。
第八页,共44页。
问题2:
回归系数的意义:
• Logistic回归中的回归系数 i 表示,某一因素 改变一个单位时,效应指标发生与不发生事件 的概率之比的对数变化值,即OR的对数值。
• Logistic回归中的常数项 表 0 示,在不接触任何潜
上述三种方法中,似然比检验(与之前的类似) 最可靠,比分检验(logistic回归模型特有)一般 与它相一致,但两者均要求较大的计算量;而Wald 检验(相当于广义的t检验)未考虑各因素间的综 合作用,在因素间有共线性时结果不如其它两者可 靠。
第二十一页,共44页。
对所拟合模型的假设检验:
第二十二页,共44页。
型可表示为:
P
1
exp( 0 exp(
0
1 X1 1 X
2 X 2 1 2X
Logistic 回归与广义线性模型
Logistic 回归与广义线性模型1. 二分类Logistic 回归Logistic 回归经常被应用于线性分类方法中,以下仅以二分类方法中应用到的Logistic 回归为例。
()h x β=g(T x β)=11T x e β-+ 称为logistic 函数,其中g(z)= 11z e-+; 考虑y 的取值在0,1两类中分布,且在给定x ,参数β的情况下,若y=1的概率为()h x β,则p(y ︱x ,β)= 1()(1())y y h x h x ββ--,对应似然函数:L(β)= ∏p(y ︱x ,β)= ()()()()11(()(1())i i n i y i y i h x h x ββ-=-∏,对其取对数,得到: l (β)= ()()()()1ln ()(1)ln(1())n i i i i i yh x y h x ββ=+--∑,合理回归即为恰当的选择β使l (β)达到最大。
令()12i i y y +=,()()i i p h x β=,则有 J (β)= 111ln ln(1)22n i i i i i y y p p =+--+-∑,此处定义损失函数ρ= -J (β);l (β)对β求偏导得到梯度函数:▽ l (β)= ()()1(())n i i i i yh x x β=-∑ (证明略。
) 2. 广义线性模型广义线性模型可以通过如下指数族概率模型来表达:(,)()exp(()())T p x b x T x a ηηη=-;其中x , η, T 根据应用情况可以是标量或者矢量。
线性回归模型(最小二乘法)和Logistic 模型可以归为广义线性模型的两个特例:对于线性回归模型,2())exp(/2)b x x =-,η= μ,()T x = x ,2()/2a ημ=,代入广义线性模型即可得到2()(,)2x u p x μ-=-;对于二分类Logistic 回归模型,令()b x = 1,ln()1φηφ=-,()T x = x ,()ln(1)ln(1)a e ηηφ=--=+,其中()T g x φβ=,可得到: 1(,)exp((ln())ln(1))exp(ln (1)ln(1))(1)1x x p x x x x φφφφφφφφ-=+-=+--=--小结:Logistic 模型是另一类典型的广义线性模型。
logistic 回归模型和logit模型
Logistic回归模型和Logit模型都是常用的统计模型,它们在应用和特点上有一些不同。
Logit模型是线性概率模型在定量分析中的一种,但在分析分类变量时会遇到困难。
例如,当因变量是分类变量时,线性回归模型可能无法准确预测结果,因为对自变量的限定性不强,且因变量必须是连续变量。
另一方面,Logit模型的响应变量可以是多元的,也可以是多分类的。
Logistic回归模型属于回归分析,其分析结果为估计出自变量参数。
当因变量是多类的,Logistic回归模型同样适用,计算结果与Logit 模型并无多少差别。
总结来说,Logistic回归模型和Logit模型虽然都是常见的统计模型,但它们在应用和特点上有所区别。
选择使用哪种模型取决于研究目标、数据类型和分析需求等因素。
Logistic回归分析报告结果解读分析
Logistic回归分析报告结果解读分析Logistic回归常用于分析二分类因变量(如存活和死亡、患病和未患病等)与多个自变量的关系。
比较常用的情形是分析危险因素与是否发生某疾病相关联。
例如,若探讨胃癌的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群有不同的临床表现和生活方式等,因变量就为有或无胃癌,即“是”或“否”,为二分类变量,自变量包括年龄、性别、饮食习惯、是否幽门螺杆菌感染等。
自变量既可以是连续变量,也可以为分类变量。
通过Logistic回归分析,就可以大致了解胃癌的危险因素。
Logistic回归与多元线性回归有很多相同之处,但最大的区别就在于他们的因变量不同。
多元线性回归的因变量为连续变量;Logistic回归的因变量为二分类变量或多分类变量,但二分类变量更常用,也更加容易解释。
1.Logistic回归的用法一般而言,Logistic回归有两大用途,首先是寻找危险因素,如上文的例子,找出与胃癌相关的危险因素;其次是用于预测,我们可以根据建立的Logistic回归模型,预测在不同的自变量情况下,发生某病或某种情况的概率(包括风险评分的建立)。
2.用Logistic回归估计危险度所谓相对危险度(risk ratio,RR)是用来描述某一因素不同状态发生疾病(或其它结局)危险程度的比值。
Logistic回归给出的OR(odds ratio)值与相对危险度类似,常用来表示相对于某一人群,另一人群发生终点事件的风险超出或减少的程度。
如不同性别的胃癌发生危险不同,通过Logistic回归可以求出危险度的具体数值,例如1.7,这样就表示,男性发生胃癌的风险是女性的1.7倍。
这里要注意估计的方向问题,以女性作为参照,男性患胃癌的OR是1.7。
如果以男性作为参照,算出的OR将会是0.588(1/1.7),表示女性发生胃癌的风险是男性的0.588倍,或者说,是男性的58.8%。
撇开了参照组,相对危险度就没有意义了。
机器学习:线性回归和逻辑回归的比较
机器学习:线性回归和逻辑回归的比较在机器学习算法中,线性回归和逻辑回归是最常用的两种算法。
它们在解决不同类型问题时具有显着不同的表现。
本文将比较这两种算法的细节,讨论它们优缺点并在末尾给出结论。
一、线性回归(Linear Regression)线性回归是一种基础模型,用于分析两个变量之间的线性关系。
它假设目标变量y与输入特征x之间具有线性关系。
即y=f(x)+ε,其中f(x)是一个关于x的线性方程,ε是残差项。
线性回归通过最小化残差平方和(RSS)来最小化预测值与实际值之间的差异,以使得预测与实际值之间的差异尽可能小。
线性回归算法的优点:1.算法简单易懂,容易产生可解释的结果。
2.在大数据集情况下具有显著的高效性。
3.相对于其他算法,线性回归具有更少的统计偏差。
线性回归算法的缺点:1.它假设目标变量与输入特征之间呈线性关系,如果实际情况不符合此假设,将导致模型表现不佳。
2.线性回归非常容易受到极端值以及特征之间的共线性的影响,这可能会影响预测的准确性。
3.对于非线性关系无法建模,需要使用其他算法。
二、逻辑回归(Logistic Regression)逻辑回归是一种二元分类算法,它有助于了解两个变量之间的关系。
它输出一个在0到1之间的概率,然后将其按照一个阈值进行分类。
逻辑回归将线性回归的思想应用于分类问题,输出值为一个逻辑函数(Sigmoid函数)的输出,而不是一个连续值。
逻辑回归通常用于二元分类问题,但也可用于多元分类问题(多类别分类问题),但需要引入一些技巧。
逻辑回归算法的优点:1.逻辑回归是一种简单而有效的算法,而且易于解释。
2.与线性回归相比,逻辑回归对极端值和共线性的鲁棒性更强。
3.逻辑回归可以处理多元分类问题,当目标变量具有两个或多个值时非常有用。
逻辑回归算法的缺点:1.它假设特征之间的关系是对数线性的,这不一定总是对的。
2.在出现不能线性分离的情况下,逻辑回归可能会出现欠拟合的情况。
SPSS专题2_回归分析(线性回归、Logistic回归、对数线性模型)
还有定性变量
下面是对三种收入对高一成绩和高一与初三成绩差的盒 形图
高一成绩与初三成绩之差 高一成绩
110
100
90
80
70
60
50
39 25
40
30
N=
11
27
12
1
2
3
家庭收入
30
20
10
0
-10
-20
-30
N=
11
27
12
1
2
3
家庭收入
6
s1
例1:相关系数
100.00
90.00
80.00
70.00
回归分析
线性回归 Logistic回归 对数线性模型
吴喜之
回归分析
• 顾客对商品和服务的反映对于商家是至关重要的,但是仅仅 有满意顾客的比例是不够的,商家希望了解什么是影响顾客 观点的因素以及这些因素是如何起作用的。 • 一般来说,统计可以根据目前所拥有的信息(数据)建立 人们所关心的变量和其他有关变量的关系(称为模型)。 • 假如用Y表示感兴趣的变量,用X表示其他可能有关的变 量(可能是若干变量组成的向量)。则所需要的是建立一个 函数关系Y=f(X)。这里Y称为因变量或响应变量,而X称为 自变量或解释变量或协变量。 • 建立这种关系的过程就叫做回归。
50名同学初三和高一成绩的散点图
100
90
80
70
60
50
从这张图可以看出什么呢? 40
40
50
60
70
80
90
100
110
4ห้องสมุดไป่ตู้
初三成绩
高一成绩
sas各过程笔记描述性统计线性回归logistic回归生存分析判别分析聚类分析主成分分析因子分析
第一部分:基本统计方法注:主要讲述过程:means(描述性统计);freq(算频数表);univariate(检验);anova(方差分析);ttest(检验);glm(广义线性回归);npar1way(非参,wilcox)一:计量资料的统计分析方法1.01均值+频数表+百分位数+正态检验、茎叶图、箱形图、正态概率图data ex2_1;input x@@;low=2.3;dis=0.3;z=x-mod(x-low,dis);cards;3.964.23 4.42 3.595.12 4.02 4.32 3.72 4.76 4.164.61 4.263.774.20 4.36 3.07 4.89 3.97 4.28 3.64 4.66 4.044.55 4.254.63 3.91 4.41 3.525.03 4.01 4.30 4.19 4.75 4.144.57 4.264.56 3.79 3.89 4.21 4.95 3.98 4.29 3.67 4.69 4.124.56 4.264.66 4.28 3.83 4.205.24 4.02 4.33 3.76 4.81 4.173.96 3.274.61 4.26 3.96 4.23 3.76 4.01 4.29 3.67 3.39 4.124.27 3.614.98 4.24 3.83 4.20 3.71 4.03 4.34 4.69 3.62 4.184.26 4.365.28 4.21 4.42 4.36 3.66 4.02 4.31 4.83 3.59 3.973.964.495.11 4.20 4.36 4.54 3.72 3.97 4.28 4.76 3.21 4.044.56 4.254.92 4.23 4.47 3.605.23 4.02 4.32 4.68 4.76 3.694.61 4.263.894.21 4.36 3.425.01 4.01 4.29 3.68 4.71 4.134.57 4.264.035.46 4.16 3.64 4.16 3.76;/*freq语句,算频数表*/proc freq;tables z;run;proc means data=ex2_1n mean std stderr clm;var x;run;data ex2_1;input x f@@;cards;3.07 23.27 33.47 93.67 143.87 224.07 304.27 214.47 154.67 104.87 65.07 45.27 2;run;proc means;freq f;var x;run;/*把freq f改成weight f就是把f当权重或频数来算,f则在0,1之间*//*计算x的95%的置信区间*/proc univariate data=ex2_1;var x;output out=pctpctlpre=ppctlpts=2.5 97.5;run;proc print data=pct;run;/*正态检验、茎叶图、箱形图、正态概率图*/proc univariate data=ex2_1normalplot;var x;run;/*Extreme Observation显示的值是最小的5个极值和最大的5个极值*/1.02几何均值data ex2_5;input x f@@;y=log10(x);cards;10 420 340 1080 10160 11320 15640 141280 2;proc means noprint;/*调用means过程,不显示结果*/var y;freq f;output out=b/*结果输出到数据集b中*/mean=logmean;/*把数据集b中均数的变量名mean改为logmean*/run;data c;/*新建数据集c*/set b;/*调用数据集b*/g=10**logmean;/*计算变量logmean的反对数,该值就是x的几何均数,将该值赋值给变量g*/ proc print data=c;var g;run;/*这个是计算平通平均数的值*/proc means data=ex2_5;var x;freq f;run;1.03已知均值和方差求置信区间-单样本+单样本与总体/*单样本*/data ex3_2;n=10;mean=166.95;std=3.64;t=tinv(0.975,n-1);pts=t*std/sqrt(n);lclm=mean-pts;uclm=mean+pts;proc print;var lclm uclm;run;/*单样本与总体均值*/data ex3_5;n=36;/*样本量*/s_m=130.83;/*样本均值*/std=25.74;/*样本标准差*/p_m=140;/*总体均值*/df=n-1;/*自由度*/t=(s_m-p_m)/(std/sqrt(n));p=(1-probt(abs(t),df))*2;/*根据t值计算p值*/run;proc print;var t p;run;1.06双样本均值相等检验+两组分开+两组一起算+两组样本量不同/*双样本分开算*/data ex3_4;n1=29;n2=32;m1=20.10;m2=16.89;s1=7.02;s2=8.46;ss1=s1**2*(n1-1);ss2=s2**2*(n2-1);sc2=(ss1+ss2)/(n1+n2-2);se=sqrt(sc2*(1/n1+1/n2));t=tinv(0.975,n1+n2-2);lclm=(m1-m2)-t*se;uclm=(m1-m2)+t*se;proc print;var t se lclm uclm;run;/*双样本相减后再算*//*用MEANS作配对资料两个样本均数比较的t检验*/data ex3_6;input x1 x2 @@;d=x1-x2;cards;0.840 0.5800.591 0.5090.674 0.5000.632 0.3160.687 0.3370.978 0.5170.750 0.4540.730 0.5121.200 0.9970.870 0.506;proc means t prt;var d;run;/*用UNIVARIATE过程作配对资料两样本均数比较的t检验*/ proc univariate data=ex3_6;var d;run;/*双样本两组样本量不同*/data ex3_7;input x@@;if _n_<21 then c=1;/*当观测数小于21时,变量c的值为1,表示试验组*/else c=2;/*其余变量c的值为2,表示对照组*/cards;-0.70 -5.60 2.00 2.80 0.70 3.50 4.00 5.80 7.10 -0.502.50 -1.60 1.703.00 0.404.50 4.60 2.50 6.00 -1.403.70 6.50 5.00 5.20 0.80 0.20 0.60 3.40 6.60 -1.106.00 3.80 2.00 1.60 2.00 2.20 1.20 3.10 1.70 -2.00;proc ttest;/*调用ttest过程*/var x;/*定义分析变量为x*/class c;/*定义分组变量为c*/run;1.08-1.13anova方差分析过程+一维分组+二维分组+三维分组/*只有一组分组因素*/data ex4_2;input x c @@;cards;3.53 1 2.42 2 2.86 3 0.89 44.59 1 3.36 2 2.28 3 1.06 44.34 1 4.32 2 2.39 3 1.08 42.66 1 2.34 2 2.28 3 1.27 43.59 1 2.68 2 2.48 3 1.63 43.13 1 2.95 2 2.28 3 1.89 43.30 1 2.36 2 3.48 3 1.31 44.04 1 2.56 2 2.42 3 2.51 43.53 1 2.52 2 2.41 3 1.88 43.56 1 2.27 2 2.66 3 1.41 43.85 1 2.98 2 3.29 3 3.19 44.07 1 3.72 2 2.70 3 1.92 41.37 12.65 2 2.66 3 0.94 43.93 1 2.22 2 3.68 3 2.11 42.33 1 2.90 2 2.65 3 2.81 42.98 1 1.98 2 2.66 3 1.98 44.00 1 2.63 2 2.32 3 1.74 43.55 1 2.86 2 2.61 3 2.16 42.64 1 2.93 23.64 3 3.37 42.56 1 2.17 2 2.58 3 2.97 43.50 1 2.72 2 3.65 3 1.69 43.25 1 1.56 2 3.21 3 1.19 42.96 13.11 2 2.23 3 2.17 44.30 1 1.81 2 2.32 3 2.28 43.52 1 1.77 2 2.68 3 1.72 43.93 1 2.80 2 3.04 3 2.47 44.19 1 3.57 2 2.81 3 1.02 42.96 1 2.97 23.02 3 2.52 44.16 1 4.02 2 1.97 3 2.10 42.59 1 2.31 2 1.68 33.71 4;proc anova;/*调用anova过程*/class c;/*定义分组变量为c*/model x=c;/*定义模型,分析g对x的影响*/means c/dunnett;/*用LSD法对多组均数过行两两比较*/means c/hovtest;/*作方差齐性检验,默认levene法,p值大于0.05,则认为是g组方差相等*/run;quit;/*有两组分组因素*/data ex4_4;input x a b@@;cards;0.82 1 10.65 2 10.51 3 10.73 1 20.54 2 20.23 3 20.43 1 30.34 2 30.28 3 30.41 1 40.21 2 40.31 3 40.68 1 50.43 2 50.24 3 5;proc anova;class a b;/*定义分组变量a和b*/model x=a b;/*定义模型,分析a和b对x影响*/means a/snk;/*用SNK法对变量a的多组均数进行两两比较*/run;quit;1.15嵌套设计资料的方差分析glm过程一级因素+二组因素/*嵌套设计资料的方差分析*/data ex11_6;input x a b @@;cards;82 1 184 1 191 1 288 1 285 1 383 1 365 2 461 2 462 2 559 2 556 2 660 2 671 3 767 3 775 3 878 3 885 3 989 3 9;proc glm;/*调用glm过程*/class a b;/*定义分组变量为a和b*/model x=a a(b);/*定义模型,以a为一组因素,b为二级因素*/run;quit;1.17重复测量资料的方差分析data ex12_2;input t1 t2 g@@;/*确定变量名称,t1和t2分别为两个时间点的分析变量,g为处理因素变量,b为区组变量*/cards;130 114 1124 110 1136 126 1128 116 1122 102 1118 100 1116 98 1138 122 1126 108 1124 106 1118 124 2132 122 2134 132 2114 96 2118 124 2128 118 2118 116 2132 122 2120 124 2134 128 2;proc glm;/*调用glm过程*/class g;/*定义分组变量g*/model t1 t2=g;/*定义模型,分析g对变量t1和t2的影响*/repeated time 2/*命名重复因子为time,有2个水平*/contrast(1)/*表示以第一时间点为对照点*//summary;/*考察不同时间点与对照时间点比较的结果*/run;quit;data ex12_3;input t0-t4 g@@;cards;120 108 112 120 117 1118 109 115 126 123 1119 112 119 124 118 1121 112 119 126 120 1127 121 127 133 126 1121 120 118 131 137 2122 121 119 129 133 2128 129 126 135 142 2117 115 111 123 131 2118 114 116 123 133 2131 119 118 135 129 3129 128 121 148 132 3123 123 120 143 136 3123 121 116 145 126 3125 124 118 142 130 3;proc glm;class g;model t0-t4=g;repeated time 5/*命名重复因子为time,有2个水平*/contrast(1);run;quit;二:计数资料的统计分析方法2.1四格表资料的卡方检验data ex7_1;input r c f@@;/*确定变量名称,r为行变量,c为列变量,f为频数变量*/ cards;1 1 991 2 52 1 752 2 21;proc freq;/*调用freq过程*/weight f;/*定义f为频数变量*/tables r*c/*作r*c的列联表*//chisq/*对列联表作卡方检验*/expected;/*输出每个格的理论频数*/run;2.5阳性事件发生的概率(二项分布)data ex6_1;do x=6 to 8;/*建立循环,变量x从6到8*/p1=probbnml(0.7,10,x);/*计算二项分布随机变量不大于x的概率*/p2=probbnml(0.7,10,x-1);/*计算二项分布随机变量不大于x-1的概率*/p=p1-p2;*/计算出现x的概率*/output;/*结果输出*/end;proc print;var x p;run;2.6正态分布法计算总体率的可信区间data ex6_3;n=100;x=55;p=x/n;sp=sqrt(p*(1-p)/n);u=probit(0.975);usp=u*sp;lclm=p-usp;uclm=p+usp;proc print;var n p sp lclm uclm;run;2.7样本率与总体率的比较(直接法——单侧检验)data ex6_4;d=probbnml(0.55,10,8);p=1-d;proc print;var p;run;2.8样本率与总体率的比较(直接法——双侧检验)data ex6_5;p01=probbnml(0.6,10,9);p02=probbnml(0.6,10,8);p0=p01-p02;/*计算出现9的概率*/do i=0to10;/*建立循环,变量i从0到10*/p11=probbnml(0.6,10,i);p12=probbnml(0.6,10,i-1);p1=p11-p12;/*计算出现i的概率*/if i=0then p1=p11; /*定义出现0的概率*/if p1<=p0 then output; /*如果出现i的概率小于出现9的概率,则保留在数据集中*/ end;proc means sum;var p1;run;2.9两个样本率比较的z检验data ex6_7;n1=120;n2=110;x1=36;x2=22;p1=x1/n1;p2=x2/n2;pc=(x1+x2)/(n1+n2);/*计算合并发生率*/sp=sqrt(pc*(1-pc)*(1/n1+1/n2));/*计算两个率相差的标准误差*/u=(p1-p2)/sp;/*计算u值*/p=(1-probnorm(abs(u)))*2;/*计算p值*/format u p 5.4;/*输出格式为小数点后保留4位*/proc print;var pc sp u p;run;2.10.Poisson分布的样本均数与总体均数比较(直接法)data ex6_12;n=120;/*确定样本例数*/pai=0.008; /*确定总体率*/lam=n*pai; /*计算总体均数lamda*/x=4; /*确定实际发生数*/p=1-poisson(lam,x-1);/*计算实际发生数所对应的概率*/proc print;var lam p;run;2.11 Poisson分布的样本均数与总体均数比较(正态近似法)data ex6_12;n=25000;/*样本量*/x=123; /*样本均数*/pi=0.003; /*确定总体率*/lam=n*pi; /*计算总体均数*/u=(x-lam)/sqrt(lam*(1-pi)); /*计算u值*/p=1-probnorm(abs(u)); /*计算u值所对应的p值*/proc print;var lam u p;run;2.14负二项分布的参数估计data ex6_16;input x f@@;cards;0 301 142 83 44 25 06 2;proc univariate;var x;freq f;output out=mv2var=v;run;data k;set mv2;k=mu**2/(v-mu);proc print;var mu k;run;三、非参数统计方法3.2单个样本中位数和总体中位数比较data ex8_2;input x1@@;median=45.30;/*假设中位数为45.30*/d=x1-median; /*计算x1和假设中位数的差值*/cards;44.21 45.30 46.39 49.47 51.05 53.1653.26 54.37 57.16 67.37 71.05 87.37;proc univariate; /*调用univariate过程度*/var d;run;proc means median; /*调用means过程计算x1实际的中位数*/var x1;run;3.3两个独立样本比较的Wilcoxon秩和检验(R对应函数wilcox.test())data ex8_3;input x c @@;/*确定变量名称,x、c分别为分析变量和分组变量(类别多于两类一样的写法)*/2.78 13.23 14.20 14.87 15.12 16.21 17.18 18.05 18.56 19.60 13.23 23.50 24.04 24.15 24.28 24.34 24.47 24.64 24.75 24.82 24.95 25.10 2;proc npar1way wilcoxon;/*调用npar1way过程,进行wilcoxon分析*/var x;/*定义分析变量为x*/class c;/*定义分组变量为c*/run;3.4等级资料的两样本比较data ex8_4;input c g f@@;/*确定变量名称,f为频数,c为分类,g为要分析的变量(分类多种类似)*/ cards;1 1 11 2 81 3 161 4 101 5 42 1 22 2 232 3 112 5 0;proc npar1way wilcoxon;/*调用npar1way过程,进行wilcoxon分析*/freq f;/*确定频数变量为f*/var g;/*定义分析变量g*/class c;/*定义分组变量c*/run;第二部分:多元统计分析方法注:主要讲述过程:reg(回归),corr(相关分析),nlin(对数曲线回归),logistic(逻辑回归),phreg(条件logistic回归分析+cox回归),life test(生存分析),discrim(判别分析),stepdisc(逐步回归),cluster(聚类),varclus(指标聚类),princomp(主成分分析),factor(因子分析),cancorr(典型相关分析)一:回归和相关分析1.1两个变量的直线回归分析data ex9_1;input x y;/*确定变量名称*/cards;13 3.5411 3.019 3.096 2.488 2.5610 3.3612 3.187 2.65;proc reg;/*调用reg过程*/model y=x;/*定义模型,以y为应变量,以x为自变量*//*在model语句后面加上选项,得到一些有用的统计量,常用的有:stb(输出标准化偏回归系数)、p(输出每个观测的实际值、预测值和残差)、cli(输出每个观测预测值均数的双侧95%置信区间)、clm(输出每个观测预测值的双侧95%置信范围)*//*例如:model y=x /stb p cli */plot y*x;/*画出散点图*/run;1.2两个变量的直线相关分析data ex9_5;input x y;cards;43 217.2274 316.1851 231.1158 220.9650 254.7065 293.8454 263.2857 271.7367 263.4669 276.5380 341.1548 261.0038 213.2085 315.1254 252.08;proc corr;/*若要求作spearman相关分析,则可以写成proc corr spearman */ var x y;run;/*得到一个相关系数矩阵*/1.4加权直线加回data ex9_9;input x y;w=1/(x*x); /*设置权重变量w*/cards;0.11 4.000.12 5.100.21 9.500.30 9.000.34 17.200.44 14.000.56 18.900.60 29.400.69 22.100.80 41.50;proc reg;weight w;/*定义权重变量w*/model y=x;/*定义模型,以y为因变量,以x为自变量*/run;1.5两个直线回归系数的比较data ex9_12;input x y c@@;cards;13 3.54 111 3.01 19 3.09 16 2.48 18 2.56 110 3.36 112 3.18 17 2.65 110 3.01 29 2.83 211 2.92 212 3.09 215 3.98 216 3.89 28 2.21 27 2.39 210 2.74 215 3.36 2;proc glm;class c;model y=x c x*c;/*定义模型,分析x、c以及x和c的交互作用对y的影响,即判断两总体直线回归系数是否相同*/run;proc glm;class c;model y=x c;/*上一步已排除协变量的影响,然后再分析两分析变量是否来自同一总体*/run;1.6两个变量的对数曲线回归data ex9_13;input x y;cards;0.005 34.110.050 57.990.500 94.495.000 128.5025.000 169.98;proc nlin;/*调用nlin过程*/parms a=0 b=0; /*定义初始值*/model y=a+b*log10(x); /*定义对数模型,以y为因变以量,x为自变量*/ run;1.7两个变量的指数曲线回归分析data ex9_14;input x y;cards;2 545 507 4510 3714 3519 2526 2031 1634 1838 1345 852 1153 860 465 6;proc nlin;parms a=4 b=0.03;/*定义初始值*/model y=exp(a+b*x);/*定义指数模型,以y为因变量,x为自变量*/run;1.8多元回归data ex15_1;input x1-x4 y@@;/*确定变量名称,x1,x2,x3,x4分别为自变量,y为应变量*/ cards;5.68 1.90 4.53 8.20 11.203.79 1.64 7.32 6.90 8.806.02 3.56 6.95 10.80 12.304.85 1.075.88 8.30 11.604.60 2.32 4.05 7.50 13.406.05 0.64 1.42 13.60 18.304.90 8.50 12.60 8.50 11.107.08 3.00 6.75 11.50 12.103.85 2.11 16.28 7.90 9.604.65 0.63 6.59 7.10 8.404.59 1.97 3.61 8.70 9.304.29 1.97 6.61 7.80 10.607.97 1.93 7.57 9.90 8.406.19 1.18 1.42 6.90 9.606.13 2.06 10.35 10.50 10.905.71 1.78 8.53 8.00 10.106.40 2.40 4.53 10.30 14.806.06 3.67 12.797.10 9.105.09 1.03 2.53 8.90 10.806.13 1.71 5.28 9.90 10.205.78 3.36 2.96 8.00 13.605.43 1.13 4.31 11.30 14.906.50 6.21 3.47 12.30 16.007.98 7.92 3.37 9.80 13.2011.54 10.89 1.20 10.50 20.005.84 0.92 8.616.40 13.303.84 1.20 6.45 9.60 10.40;proc reg;model y=x1-x4;/*也可以写成model y=x1 x2 x3 x4;*/run;1.9逐步回归data ex12_2;input x1-x4 y@@;cards;5.68 1.90 4.53 8.20 11.203.79 1.64 7.32 6.90 8.806.02 3.56 6.95 10.80 12.304.85 1.075.88 8.30 11.604.60 2.32 4.05 7.50 13.406.05 0.64 1.42 13.60 18.304.90 8.50 12.60 8.50 11.107.08 3.00 6.75 11.50 12.103.85 2.11 16.28 7.90 9.604.65 0.63 6.59 7.10 8.404.59 1.97 3.61 8.70 9.304.29 1.97 6.61 7.80 10.607.97 1.93 7.57 9.90 8.406.19 1.18 1.42 6.90 9.606.13 2.06 10.35 10.50 10.905.71 1.78 8.53 8.00 10.106.40 2.40 4.53 10.30 14.806.06 3.67 12.797.10 9.105.09 1.03 2.53 8.90 10.806.13 1.71 5.28 9.90 10.205.78 3.36 2.96 8.00 13.605.43 1.13 4.31 11.30 14.906.50 6.21 3.47 12.30 16.007.98 7.92 3.37 9.80 13.2011.54 10.89 1.20 10.50 20.005.84 0.92 8.616.40 13.303.84 1.20 6.45 9.60 10.40;proc reg;model y=x1-x4/selection=stepwise/*定义模型,以y因变量,x1-x4为变量进行多元回归分析*/ sle=0.10/*定义入先变量的界值*/sls=0.10;/*定义剔除变量的界值*/run;三:logistic回归3.1 两个变量logistic回归分析data ex16_1;input y x1 x2 f@@;/*确定变量名称,y为发病情况,x1为吸烟情况,x2为饮酒情况,f为发生频数*/cards;1 0 0 631 0 1 631 1 0 441 1 1 2650 0 0 1360 0 1 1070 1 0 570 1 1 151;proc logistic;/*调用logistic过程*/freq f;/*定义频数变量f*/model y=x1 x2;/*定义模型,以y为因变量,x1和x2为自变量*/run;3.2 1:M配对资料的条件logistic回归分析data ex16_3;input i y x1-x6 @@;/*确定变量名称,i为区组变量,y为病人情况,1为病例,0为对照,x1-x6为危险因素*/t=2-y;/*定义时间变量*/cards;1 1 3 5 1 1 1 01 0 1 1 1 3 3 01 0 1 1 1 3 3 02 1 13 1 1 3 02 0 1 1 13 2 02 0 1 2 13 2 03 1 14 1 3 2 03 0 1 5 1 3 2 03 0 14 1 3 2 04 1 1 4 1 2 1 14 0 2 1 1 3 2 05 1 2 4 2 3 2 0 5 0 1 2 1 3 3 05 0 2 3 1 3 2 06 1 1 3 1 3 2 1 6 0 1 2 1 3 2 06 0 1 3 2 3 3 07 1 2 1 1 3 2 1 7 0 1 1 1 3 3 07 0 1 1 1 3 3 08 1 1 2 3 2 2 0 8 0 1 5 1 3 2 08 0 1 2 1 3 1 09 1 3 4 3 3 2 0 9 0 1 1 1 3 3 09 0 1 4 1 3 1 010 1 1 4 1 3 3 1 10 0 1 4 1 3 3 010 0 1 2 1 3 1 011 1 3 4 1 3 2 0 11 0 3 4 1 3 1 011 0 1 5 1 3 1 012 1 1 4 3 3 3 0 12 0 1 5 1 3 2 012 0 1 5 1 3 3 013 1 1 4 1 3 2 0 13 0 1 1 1 3 1 013 0 1 1 1 3 2 014 1 1 3 1 3 2 1 14 0 1 1 1 3 1 014 0 1 2 1 3 3 015 1 1 4 1 3 2 0 15 0 1 5 1 3 3 015 0 1 5 1 3 3 016 1 1 4 2 3 1 0 16 0 2 1 1 3 3 016 0 1 1 3 3 2 017 1 2 3 1 3 2 0 17 0 1 1 2 3 2 017 0 1 2 1 3 2 018 1 1 4 1 3 2 0 18 0 1 1 1 2 1 0 18 0 1 2 1 3 2 019 0 1 1 1 2 1 019 0 2 2 2 3 1 020 1 1 4 2 3 2 120 0 1 5 1 3 3 020 0 1 4 1 3 2 021 1 1 5 1 2 1 021 0 1 4 1 3 2 021 0 1 2 1 3 2 122 1 1 2 2 3 1 022 0 1 2 1 3 2 022 0 1 1 1 3 3 023 1 1 3 1 2 2 023 0 1 1 1 3 1 123 0 1 1 2 3 2 124 1 1 2 2 3 2 124 0 1 1 1 3 2 024 0 1 1 2 3 2 025 1 1 4 1 1 1 125 0 1 1 1 3 2 025 0 1 1 1 3 3 0;proc phreg;/*调用phreg过程*/model t*y(0)=x1-x6/*定义模型,以t为时间变量,y为截尾变量,x1-x6为自变量*//selection=stepwise/*选择逐步回归方法筛选变量*/sle=0.1sls=0.1/*入选和剔除的界值均为0.1*/ties=discrete;/*用离散logistic模型替代比例危险模型*/strata i;/*定义区组变量*/run;2.3 应变量为多分类资料的logistic回归data ex16_5;input x1 x2 y f;/*x1是两个社区,x2是性别,Y是获取健康知识途径(传统大众媒介=1,网络=2,社区宣传=3,f为频数)*/cards;0 0 1 200 0 2 350 0 3 260 1 1 100 1 2 270 1 3 571 0 1 421 02 171 1 1 161 12 121 1 3 26;proc logistic;freq f;/*定义频数变量为f*/model y(ref='3')/*定义模型,以y为因变量,ref语句指时参照的类别为“社区宣传”,最后得到结果均为与“社区宣传”相对应*/=x1 x2/*定义x1和x2为自变量*//link=glogit;/*指定多分类应变量回归模型*/run;四:生存分析4.1乘积极限法估计生存率,例17-2甲、乙两种手术方法的生存率估计data ex17_2;input t d@@;/*确定变量名称,t为时间变量,d为截尾变量*/cards;1 13 15 15 15 16 16 16 17 18 110 110 114 017 119 020 022 026 034 134 044 159 1;proc lifetest;/*调用lifetest过程*/time t*d(0);/*定义模型,以t为时间变量,d为截尾变量,变量值为0表示截尾数据*/ run;4.2寿命表法估计生存率data ex17_3;input t d f@@;cards;0 0 00 1 4561 0 391 1 2262 0 222 1 1523 0 233 1 1714 0 244 1 1355 0 1075 1 1256 0 1336 1 837 0 1027 1 748 0 688 1 519 0 649 1 4210 0 4510 1 4311 0 5311 1 3412 0 3312 1 1813 0 2714 0 3314 1 615 0 2015 1 0;proc lifetest method=life/*调用lifetest过程,指定用寿命表法估计生存率*/ width=1;/*表示每间隔1估计生存率*/freq f;/*表示以f为频数变量*/time t*d(0);/*定义模型,以t为时间变量,d为截尾变量,变量值为0表示截尾数据*/ run;4.3生存曲线比较的log-rank检验及制作生存曲线data ex17_4;input t d g @@;cards;1 1 13 1 15 1 15 1 15 1 16 1 16 1 16 1 17 1 18 1 110 1 110 1 114 0 117 1 119 0 120 0 122 0 126 0 131 0 134 1 134 0 144 1 159 1 11 1 21 1 22 1 23 1 23 1 24 1 24 1 24 1 26 1 26 1 28 1 29 1 29 1 210 1 211 1 212 1 213 1 215 1 217 1 218 1 2;proc lifetest plot=(s);/*调用lifetest过程并做生存曲线图*/ time t*d(0);strata g;/*定义变量g为分组变量*/run;4.4.cox回归分析data ex17_5;input x1-x6 t y @@;cards;54 0 0 1 1 0 52 057 0 1 0 0 0 51 058 0 0 0 1 1 35 143 1 1 1 1 0 103 048 0 1 0 0 0 7 140 0 1 0 0 0 60 044 0 1 0 0 0 58 036 0 0 0 1 1 29 139 1 1 1 0 1 70 042 0 1 0 0 1 67 042 0 1 0 0 0 66 042 1 0 1 1 0 87 051 1 1 1 0 0 85 049 1 1 1 0 1 76 0 52 1 1 1 0 1 74 0 48 1 1 1 0 0 63 0 54 1 0 1 1 1 101 0 38 0 1 0 0 0 100 0 40 1 1 1 0 1 66 1 38 0 0 0 1 0 93 0 19 0 0 0 1 0 24 1 67 1 0 1 1 0 93 0 37 0 0 1 1 0 90 0 43 1 0 0 1 0 15 149 0 0 0 1 0 3 150 1 1 1 1 1 87 0 53 1 1 1 0 0 120 0 32 1 1 1 0 0 120 0 46 0 1 0 0 1 120 043 1 0 1 1 0 120 044 1 0 1 1 0 120 0 62 0 0 0 1 0 120 0 40 1 1 1 0 1 40 1 50 1 0 0 1 0 26 1 33 1 1 0 0 0 120 0 57 1 1 1 0 0 120 0 48 1 0 0 1 0 120 0 28 0 0 0 1 0 3 1 54 1 0 1 1 0 120 1 35 0 1 0 1 1 7 1 47 0 0 0 1 0 18 1 49 1 0 1 1 0 120 0 43 0 1 0 0 0 120 0 48 1 1 0 0 0 15 1 44 0 0 0 1 0 4 1 60 1 1 1 0 0 120 0 40 0 0 0 1 0 16 1 32 0 1 0 0 1 24 1 44 0 0 0 1 1 19 1 48 1 0 0 1 0 120 0 72 0 1 0 1 0 24 1 42 0 0 0 1 0 2 1 63 1 0 1 1 0 120 0 55 0 1 1 0 0 12 1 39 0 0 0 1 0 5 1 44 0 0 0 1 0 120 074 0 0 0 1 1 7 161 0 1 0 1 0 40 145 1 0 1 1 0 108 038 0 1 0 0 0 24 162 0 0 0 1 0 16 1;proc phreg;model t*y(1)=x1-x6/*定义模型,以t为时间变量,y为截尾变量,变量值1表示截尾数据,x1-x6为危险因素*//selection=stepwisesle=0.05sls=0.05;run;五:判别和聚类分析5.1判别分析data ex18_4;input x1-x4 g; /*确定变量名称,x1-x4为用于进行判别分析的指标,g为分组变量*/ cards;6.0 -11.5 19 90 1-11.0 -18.5 25 -36 390.2 -17.0 17 3 2-4.0 -15.0 13 54 10.0 -14.0 20 35 20.5 -11.5 19 37 3-10.0 -19.0 21 -42 30.0 -23.0 5 -35 120.0 -22.0 8 -20 3-100.0 -21.4 7 -15 1-100.0 -21.5 15 -40 213.0 -17.2 18 2 2-5.0 -18.5 15 18 110.0 -18.0 14 50 1-8.0 -14.0 16 56 10.6 -13.0 26 21 3-40.0 -20.0 22 -50 3;proc discrim;class g;/*定义分组变量为g*/var x1-x4;/*定义用于分析的指标变量为x1-x4*/run;(结果横向是真实值,竖向的预测值)5.2逐步判别分析data ex18_5;input x1-x4 g;cards;6.0 -11.5 19 90 1-11.0 -18.5 25 -36 390.2 -17.0 17 3 2-4.0 -15.0 13 54 10.0 -14.0 20 35 20.5 -11.5 19 37 3-10.0 -19.0 21 -42 30.0 -23.0 5 -35 120.0 -22.0 8 -20 3-100.0 -21.4 7 -15 1-100.0 -21.5 15 -40 213.0 -17.2 18 2 2-5.0 -18.5 15 18 110.0 -18.0 14 50 1-8.0 -14.0 16 56 10.6 -13.0 26 21 3-40.0 -20.0 22 -50 3;proc stepdisc /*调用stepdisc过程*/slentry=0.2/*确定入选标准为0.2*/slstay=0.3;/*确定剔除标准为0.3*/class g;/*定义分组变量为g*/var x1-x4;/*定义用于分析的指标变量为x1-x4*/run;(筛选出变量后,调用discrim过程对筛选出的变量作判别分析,即先做5.2再做5.1)5.3作样品聚类和指标聚类data ex19_3;input x1-x9;cards;46 25 5 2138 1.68 0.35 8.11 4 4 35 12 20 3510 2.76 1.43 6.84 3 3 52 25 20 2784 2.19 0.54 4.11 3 3 32 7 20 2451 1.93 0.47 11.45 9 6 38 22 0 3247 2.56 0.80 11.68 5 5 51 31 30 3710 2.92 0.37 11.60 2 2 40 9 10 3194 2.51 0.40 11.40 5 5 34 17 20 4658 3.67 0.46 11.35 3 3 50 29 0 5019 3.95 0.47 13.45 10 8 42 20 20 7482 5.89 0.12 13.11 0 0 57 30 15 3800 2.99 0.19 10.76 2 236 15 20 2478 1.95 0.25 10.00 0 037 12 0 3827 3.01 0.82 10.50 4 4 52 32 0 2984 2.35 0.16 11.15 3 3 52 32 10 3749 2.95 0.72 11.45 11 10 42 27 30 4941 3.89 0.73 13.80 7 6 44 27 20 3948 3.11 0.33 13.65 16 14 40 21 5 3360 2.64 0.37 11.40 0 0 38 21 5 2936 2.31 0.69 11.40 1 1 44 27 20 6851 5.39 0.99 12.28 7 6 43 27 0 3926 3.09 0.47 11.95 0 0 26 10 3 4381 3.45 0.52 11.80 7 5 37 18 20 7142 5.62 0.85 11.81 5 5 28 9 20 2612 2.06 0.37 11.65 1 1 25 9 30 2638 2.08 0.78 12.25 1 1 34 14 20 4322 3.40 0.41 15.00 5 5 50 32 20 2862 2.25 0.69 8.80 2 2;proc cluster/*调用cluster过程*/method=average;/*采用类平均法进行聚类*/var x1-x9;/*定义用于分析的指标变量x1-x9*/run;proc treegraphics haxis=axis1 horizontal;/*调用tree过程输出聚类图,并将图横向输出*/ run;/*对各个指标聚类,即对9个变量聚类*/proc varclus;/*调用varclus过程*/var x1-x9;/*定义用于分析的指标变量x1-x9*/run;六、主成分分析和因子分析6.1主成分分析data ex20_1;input x1-x6;cards;92 77 80 95 99 12697 75 77 80 95 12595 80 70 78 89 12075 75 73 88 98 11092 68 72 79 88 11390 85 80 70 78 10372 93 75 77 80 10088 70 76 72 81 10264 70 69 85 93 10570 73 70 87 84 10078 69 75 73 89 9778 72 71 68 75 9675 64 63 76 73 9284 66 77 55 65 7670 64 51 60 67 8858 72 75 62 52 7582 73 40 50 48 6145 65 42 47 43 60;proc princomp;/*调用princomp过程,对6个变量做主成分分析,结果包括主成分累积贡献率,特征向量矩阵*/run;6.2因子分析data ex20_2;input x1-x9;cards;4.34 389 99.06 1.23 25.46 93.15 3.56 97.51 61.663.45 271 88.28 0.85 23.55 94.31 2.44 97.94 73.334.38 385 103.97 1.21 26.54 92.53 4.02 98.484.18 377 99.48 1.19 26.89 93.86 2.92 99.41 63.164.32 378 102.01 1.19 27.63 93.18 1.99 99.71 80.004.13 349 97.55 1.10 27.34 90.63 4.38 99.03 63.164.57 361 91.66 1.14 24.89 90.60 2.73 99.69 73.534.31 209 62.18 0.52 31.74 91.67 3.65 99.48 61.114.06 425 83.27 0.93 26.56 93.81 3.09 99.48 70.734.43 458 92.39 0.95 24.26 91.12 4.21 99.76 79.074.13 496 95.43 1.03 28.75 93.43 3.50 99.10 80.494.10 514 92.99 1.07 26.31 93.24 4.22 100.00 78.954.11 490 80.90 0.97 26.90 93.68 4.97 99.77 80.533.53 344 79.66 0.68 31.87 94.77 3.59 100.00 81.974.16 508 90.98 1.01 29.43 95.75 2.77 98.72 62.864.17 545 92.98 1.08 26.92 94.89 3.14 99.41 82.354.16 507 95.10 1.01 25.82 94.41 2.80 99.35 60.614.86 540 93.17 1.07 27.59 93.47 2.77 99.80 70.215.06 552 84.38 1.10 27.56 95.15 3.10 98.63 69.234.03 453 72.69 0.90 26.03 91.94 4.50 99.05 60.424.15 529 86.53 1.05 22.40 91.52 3.84 98.58 68.423.94 515 91.01 1.02 25.44 94.88 2.56 99.36 73.914.12 552 89.14 1.10 25.70 92.65 3.87 95.52 66.674.42 597 90.18 1.18 26.94 93.03 3.76 99.28 73.813.05 437 78.81 0.87 23.05 94.46 4.03 96.223.94 477 87.34 0.95 26.78 91.784.57 94.28 87.344.14 638 88.57 1.27 26.53 95.16 1.67 94.50 91.673.87 583 89.82 1.16 22.66 93.43 3.55 94.49 89.074.08 552 90.19 1.10 22.53 90.36 3.47 97.88 87.144.14 551 90.81 1.09 23.06 91.65 2.47 97.72 87.134.04 574 81.36 1.14 26.65 93.74 1.61 98.20 93.023.93 515 76.87 1.02 23.88 93.82 3.09 95.46 88.373.90 555 80.58 1.10 23.08 94.38 2.06 96.82 91.793.62 554 87.21 1.10 22.50 92.43 3.22 97.16 87.773.75 586 90.31 1.12 23.73 92.47 2.07 97.74 93.893.77 627 86.47 1.24 23.22 91.17 3.40 98.98 89.80;proc factor/*调用factor过程*/n=4;/*确定因子数为4,如果不写就默认为3*/run;proc factorn=4rotate=quartimax;/*因子旋转的方法为四次方最大正交旋转*/run;七、典型相关分析data ex21_1;input x1-x4 y1-y4;cards;1210 120.1 23.8 61.0 10.2 66.3 2.01 2.731210 120.7 23.4 59.8 11.3 67.6 1.92 2.711040 121.2 22.9 59.0 10.1 66.5 1.92 2.601620 121.5 24.6 59.5 9.5 67.8 1.95 2.641690 122.5 24.4 60.7 11.0 69.2 2.08 2.641150 122.7 27.2 64.5 10.5 69.1 2.19 2.841460 123.3 24.9 58.4 10.5 69.0 2.01 2.72 1190 123.4 21.8 59.0 10.6 67.4 1.90 2.71 1840 123.9 23.5 60.2 9.6 67.1 2.00 2.84 1250 124.5 25.2 63.0 11.2 67.8 2.05 2.78 1480 124.8 22.3 58.1 10.7 67.9 2.05 2.73 1310 124.9 22.0 58.0 10.5 67.8 1.98 2.68 1660 125.3 24.7 60.0 10.8 69.3 1.95 2.80 1580 125.6 22.8 59.0 9.4 69.1 2.00 2.65 1460 125.8 25.7 61.0 10.2 69.6 1.95 2.70 1240 126.0 30.2 68.0 9.2 67.1 2.14 2.88 1100 126.2 25.2 60.5 9.8 68.4 1.98 2.72 1250 126.8 23.6 58.5 10.2 67.5 1.94 2.74 1270 127.1 23.0 57.7 10.8 69.8 1.90 2.78 1300 127.6 24.3 59.0 10.3 67.9 1.93 2.84 1350 127.7 24.1 60.0 11.0 69.7 2.03 2.77 1250 128.3 21.6 55.5 10.4 68.5 1.83 2.70 1720 128.5 27.1 62.0 11.4 71.2 2.03 2.75 1480 128.5 22.6 57.4 10.0 67.3 2.04 2.83 1380 129.4 24.9 60.5 11.5 69.8 2.04 2.76 1170 129.0 26.7 63.7 9.6 67.4 2.13 2.98 1640 129.8 26.1 62.0 9.8 71.0 2.00 2.84 1640 131.6 28.7 62.8 9.7 70.7 1.89 2.89 1150 130.2 25.0 58.6 10.5 71.8 1.96 2.78 1430 130.5 26.1 60.7 10.8 68.6 2.05 2.77 1150 130.6 23.4 54.4 11.8 69.2 1.96 2.78 1150 131.4 25.5 63.2 10.2 70.4 2.05 2.84 1320 131.6 25.6 58.9 10.9 70.2 2.06 2.86 1360 131.7 27.4 62.0 10.9 73.5 1.99 2.70 1460 132.0 26.3 61.5 11.1 71.2 2.17 2.13 1380 132.2 25.7 61.4 10.1 70.1 1.96 2.83 1300 132.5 24.5 57.0 10.8 71.8 2.02 2.84 1220 132.7 27.0 61.3 10.1 72.2 2.08 2.80 1320 132.9 25.2 60.5 11.2 73.1 2.01 2.73 1910 133.1 30.1 67.0 9.0 87.1 2.15 2.97 1800 133.5 26.5 62.5 9.8 71.7 2.07 2.82 1560 133.6 24.8 58.5 10.3 72.2 1.93 2.79 1840 134.0 26.0 60.5 10.4 73.0 1.98 2.74 1470 134.3 28.2 62.0 11.3 87.2 2.66 4.03 1590 134.4 25.5 60.7 9.6 69.9 1.99 2.81 1430 134.1 26.6 63.0 11.2 72.2 2.06 2.90 1760 134.6 32.5 66.0 9.9 87.4 2.61 2.98 1470 135.3 27.9 61.8 10.1 73.3 2.20 2.78 1580 135.6 28.1 65.8 9.8 73.1 2.05 2.891840 137.1 27.6 62.8 9.5 72.4 2.11 2.91 1810 137.4 28.3 62.5 9.4 74.2 2.06 3.00 1850 138.1 29.5 62.4 9.7 72.3 2.12 4.02 2120 140.0 34.9 68.8 9.5 87.9 2.74 4.15 1760 140.7 32.0 64.4 10.2 74.0 2.17 4.05 1800 141.0 32.5 63.8 9.5 88.2 2.65 4.08 1260 141.7 29.1 65.0 9.7 88.2 2.68 2.90 1860 142.4 19.3 70.0 10.1 89.6 2.71 4.06 1800 144.7 27.0 58.3 10.8 74.8 2.10 2.82 1470 136.8 26.3 61.4 10.0 72.2 2.07 2.93 1260 121.1 22.9 59.0 10.6 66.3 2.05 2.76 1570 132.7 25.3 58.6 11.5 73.6 2.16 2.78 1290 125.0 25.7 60.5 10.1 68.8 2.00 2.69 1580 133.2 27.3 60.7 9.6 71.7 2.11 2.85 1690 132.8 28.6 64.7 9.6 72.9 2.19 4.08 1670 131.6 25.4 59.7 10.6 69.8 2.14 2.76 1300 133.1 25.9 58.0 10.1 69.7 2.12 2.83 1610 134.0 25.8 59.6 9.4 70.8 2.10 2.88 1580 134.3 26.3 61.2 10.2 72.2 2.14 2.84 1570 129.1 27.7 62.2 11.1 72.9 2.09 2.93 1660 140.1 32.1 67.0 9.3 87.1 2.15 4.03 1040 132.6 27.9 62.0 10.3 72.5 2.08 2.81 1290 128.3 23.6 58.5 9.3 69.0 1.97 2.76 1980 145.8 34.5 68.0 9.8 89.7 2.68 4.25 1210 133.3 25.6 61.5 9.9 71.0 2.11 2.82 1300 134.3 25.6 61.0 10.5 73.2 2.02 2.83 1310 138.1 27.8 61.2 9.9 73.5 2.09 2.78 1590 135.6 25.9 59.6 9.6 72.8 2.10 2.91 1270 128.3 24.1 58.5 10.3 69.2 1.92 2.77 1310 129.7 24.7 61.7 10.1 69.4 2.03 2.80 2280 143.6 37.6 70.0 9.7 88.8 2.17 4.18 1580 136.6 32.3 67.2 10.3 87.1 2.66 4.04 2370 147.4 38.8 73.0 10.8 90.7 2.82 4.38 ;proc cancorr;/*调用cancorr过程*/var x1-x4;/*定义一组变组变量*/with y1-y3;/*定义另一组变量*/run;。
logistic回归与线性回归的比较
logistic回归与线性回归的⽐较可以参考如下⽂章第⼀节中说了,logistic 回归和线性回归的区别是:线性回归是根据样本X各个维度的Xi的线性叠加(线性叠加的权重系数wi就是模型的参数)来得到预测值的Y,然后最⼩化所有的样本预测值Y与真实值y'的误差来求得模型参数。
我们看到这⾥的模型的值Y是样本X各个维度的Xi的线性叠加,是线性的。
Y=WX (假设W>0),Y的⼤⼩是随着X各个维度的叠加和的⼤⼩线性增加的,如图(x为了⽅便取1维):然后再来看看我们这⾥的logistic 回归模型,模型公式是:,这⾥假设W>0,Y与X各维度叠加和(这⾥都是线性叠加W)的图形关系,如图(x为了⽅便取1维):我们看到Y的值⼤⼩不是随X叠加和的⼤⼩线性的变化了,⽽是⼀种平滑的变化,这种变化在x的叠加和为0附近的时候变化的很快,⽽在很⼤很⼤或很⼩很⼩的时候,X叠加和再⼤或再⼩,Y值的变化⼏乎就已经很⼩了。
当X各维度叠加和取⽆穷⼤的时候,Y趋近于1,当X各维度叠加和取⽆穷⼩的时候,Y趋近于0.这种变量与因变量的变化形式就叫做logistic变化。
(注意不是说X各个维度和为⽆穷⼤的时候,Y值就趋近1,这是在基于W>0的基础上,(如果W<0,n那么Y趋近于0)⽽W是根据样本训练出来,可能是⼤于0,也可能是⼩0,还可能W1>0,W2<0…所以这个w值是样本⾃动训练出来的,也因此不是说你只要x1,x2,x3…各个维度都很⼤,那么Y值就趋近于1,这是错误的。
凭直觉想⼀下也不对,因为你连样本都还没训练,你的模型就有⼀个特点:X很⼤的时候Y就很⼤。
这种强假设肯定是不对的。
因为可能样本的特点是X很⼤的时候Y就很⼩。
)所以我们看到,在logistic回归中,X各维度叠加和(或X各维度)与Y不是线性关系,⽽是logistic关系。
⽽在线性回归中,X各维度叠加和就是Y,也就是Y与X就是线性的了。
logistic 回归与线性回归的比较
1logistic回归logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。
例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。
以胃癌病情分析为例,选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群必定具有不同的体征与生活方式等。
因此因变量就为是否胃癌,值为“是”或“否”,自变量就可以包括很多了,如年龄、性别、饮食习惯、幽门螺杆菌感染等。
自变量既可以是连续的,也可以是分类的。
然后通过logistic回归分析,可以得到自变量的权重,从而可以大致了解到底哪些因素是胃癌的危险因素。
同时根据该权值可以根据危险因素预测一个人患癌症的可能性。
1.1logistic回归概述logistic回归是一种广义线性回归(generalized linear model),因此与多重线性回归分析有很多相同之处。
它们的模型形式基本上相同,都具有w‘x+b,其中w和b是待求参数,其区别在于他们的因变量不同,多重线性回归直接将w‘x+b作为因变量,即y =w‘x+b,而logistic回归则通过函数L将w‘x+b对应一个隐状态p,p =L(w‘x+b),然后根据p 与1-p的大小决定因变量的值。
如果L 是logistic函数,就是logistic回归,如果L是多项式函数就是多项式回归。
logistic回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释,多类可以使用softmax方法进行处理。
实际中最为常用的就是二分类的logistic回归。
Logistic回归模型的适用条件1 因变量为二分类的分类变量或某事件的发生率,并且是数值型变量。
但是需要注意,重复计数现象指标不适用于Logistic回归。
2 残差和因变量都要服从二项分布。
二项分布对应的是分类变量,所以不是正态分布,进而不是用最小二乘法,而是最大似然法来解决方程估计和检验问题。
Logistic回归分析报告结果解读分析
Logistic回归分析报告结果解读分析Logistic回归常常利用于分析二分类因变量(如存活和死亡、患病和未患病等)与多个自变量的关系。
比较常常利用的情形是分析危险因素与是不是发生某疾病相关联。
例如,假设探讨胃癌的危险因素,能够选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群有不同的临床表现和生活方式等,因变量就为有或无胃癌,即“是”或“否”,为二分类变量,自变量包括年龄、性别、饮食适应、是不是幽门螺杆菌感染等。
自变量既能够是持续变量,也能够为分类变量。
通过Logistic 回归分析,就能够够够大致了解胃癌的危险因素。
Logistic回归与多元线性回归有很多相同的地址,但最大的区别就在于他们的因变量不同。
多元线性回归的因变量为持续变量;Logistic回归的因变量为二分类变量或多分类变量,但二分类变量更常常利用,也加倍容易说明。
回归的用法一样而言,Logistic回归有两大用途,第一是寻觅危险因素,如上文的例子,找出与胃癌相关的危险因素;第二是用于预测,咱们能够依照成立的Logistic回归模型,预测在不同的自变量情形下,发生某病或某种情形的概率(包括风险评分的成立)。
2.用Logistic回归估量危险度所谓相对危险度(risk ratio,RR)是用来描述某一因素不同状态发生疾病(或其它结局)危险程度的比值。
Logistic回归给出的OR(odds ratio)值与相对危险度类似,常常利用来表示相关于某一人群,另一人群发生终点事件的风险超出或减少的程度。
如不同性别的胃癌发生危险不同,通过Logistic回归能够求出危险度的具体数值,例如,如此就表示,男性发生胃癌的风险是女性的倍。
那个地址要注意估量的方向问题,以女性作为参照,男性患胃癌的OR是。
假设是以男性作为参照,算出的OR将会是(1/,表示女性发生胃癌的风险是男性的倍,或说,是男性的%。
撇开了参照组,相对危险度就没故意义了。
Logistic回归在医学研究中普遍利用的缘故之一,确实是模型直接给出具有临床实际意义的OR值,专门大程度上方便了结果的解读与推行。
Logistic回归分析报告结果解读分析
Logistic回归分析报告结果解读分析Logistic回归分析报告结果解读分析Logistic回归常用于分析二分类因变量(如存活和死亡、患病和未患病等)与多个自变量的关系。
比较常用的情形是分析危险因素与是否发生某疾病相关联。
例如,若探讨胃癌的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群有不同的临床表现和生活方式等,因变量就为有或无胃癌,即“是”或“否”,为二分类变量,自变量包括年龄、性别、饮食习惯、是否幽门螺杆菌感染等。
自变量既可以是连续变量,也可以为分类变量。
通过Logistic回归分析,就可以大致了解胃癌的危险因素。
Logistic回归与多元线性回归有很多相同之处,但最大的区别就在于他们的因变量不同。
多元线性回归的因变量为连续变量;Logistic回归的因变量为二分类变量或多分类变量,但二分类变量更常用,也更加容易解释。
1.Logistic回归的用法一般而言,Logistic回归有两大用途,首先是寻找危险因素,如上文的例子,找出与胃癌相关的危险因素;其次是用于预测,我们可以根据建立的Logistic 回归模型,预测在不同的自变量情况下,发生某病或某种情况的概率(包括风险评分的建立)。
2.用Logistic回归估计危险度所谓相对危险度(risk ratio,RR)是用来描述某一因素不同状态发生疾病(或其它结局)危险程度的比值。
Logistic回归给出的OR(odds ratio)值与相对危险度类似,常用来表示相对于某一人群,另一人群发生终点事件的风险超出或减少的程度。
如不同性别的胃癌发生危险不同,通过Logistic回归可以求出危险度的具体数值,例如建立Logistic回归方程logit(P)=β0+β1*X1+β2*X2+……+βm*Xm图2 Logistic回归结果报告样例。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 logistic回归logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。
例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。
以胃癌病情分析为例,选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群必定具有不同的体征与生活方式等。
因此因变量就为是否胃癌,值为“是”或“否”,自变量就可以包括很多了,如年龄、性别、饮食习惯、幽门螺杆菌感染等。
自变量既可以是连续的,也可以是分类的。
然后通过logistic回归分析,可以得到自变量的权重,从而可以大致了解到底哪些因素是胃癌的危险因素。
同时根据该权值可以根据危险因素预测一个人患癌症的可能性。
1.1 logistic回归概述logistic回归是一种广义线性回归(generalized linear model),因此与多重线性回归分析有很多相同之处。
它们的模型形式基本上相同,都具有w‘x+b,其中w和b是待求参数,其区别在于他们的因变量不同,多重线性回归直接将w‘x+b 作为因变量,即y =w‘x+b,而logistic回归则通过函数L将w‘x+b对应一个隐状态p,p =L(w‘x+b),然后根据p 与1-p的大小决定因变量的值。
如果L是logistic 函数,就是logistic回归,如果L是多项式函数就是多项式回归。
logistic回归的因变量可以是二分类的,也可以是多分类的,但是二分类的更为常用,也更加容易解释,多类可以使用softmax方法进行处理。
实际中最为常用的就是二分类的logistic回归。
Logistic回归模型的适用条件1 因变量为二分类的分类变量或某事件的发生率,并且是数值型变量。
但是需要注意,重复计数现象指标不适用于Logistic回归。
2 残差和因变量都要服从二项分布。
二项分布对应的是分类变量,所以不是正态分布,进而不是用最小二乘法,而是最大似然法来解决方程估计和检验问题。
3 自变量和Logistic概率是线性关系4 各观测对象间相互独立。
原理:如果直接将线性回归的模型扣到Logistic回归中,会造成方程二边取值区间不同和普遍的非直线关系。
因为Logistic中因变量为二分类变量,某个概率作为方程的因变量估计值取值范围为0-1,但是,方程右边取值范围是无穷大或者无穷小。
所以,才引入Logistic回归。
Logistic回归实质:发生概率除以没有发生概率再取对数。
就是这个不太繁琐的变换改变了取值区间的矛盾和因变量自变量间的曲线关系。
究其原因,是发生和未发生的概率成为了比值,这个比值就是一个缓冲,将取值范围扩大,再进行对数变换,整个因变量改变。
不仅如此,这种变换往往使得因变量和自变量之间呈线性关系,这是根据大量实践而总结。
所以,Logistic回归从根本上解决因变量要不是连续变量怎么办的问题。
还有,Logistic应用广泛的原因是许多现实问题跟它的模型吻合。
例如一件事情是否发生跟其他数值型自变量的关系。
注意:如果自变量为字符型,就需要进行重新编码。
一般如果自变量有三个水平就非常难对付,所以,如果自变量有更多水平就太复杂。
这里只讨论自变量只有三个水平。
非常麻烦,需要再设二个新变量。
共有三个变量,第一个变量编码1为高水平,其他水平为0。
第二个变量编码1为中间水平,0为其他水平。
第三个变量,所有水平都为0。
实在是麻烦,而且不容易理解。
最好不要这样做,也就是,最好自变量都为连续变量。
spss操作:进入Logistic回归主对话框,通用操作不赘述。
发现没有自变量这个说法,只有协变量,其实协变量就是自变量。
旁边的块就是可以设置很多模型。
“方法”栏:这个根据词语理解不容易明白,需要说明。
共有7种方法。
但是都是有规律可寻的。
“向前”和“向后”:向前是事先用一步一步的方法筛选自变量,也就是先设立门槛。
称作“前”。
而向后,是先把所有的自变量都进来,然后再筛选自变量。
也就是先不设置门槛,等进来了再一个一个淘汰。
“LR”和“Wald”,LR指的是极大偏似然估计的似然比统计量概率值,有一点长。
但是其中重要的词语就是似然。
Wald指Wald统计量概率值。
“条件”指条件参数似然比统计量概率值。
“进入”就是所有自变量都进来,不进行任何筛选将所有的关键词组合在一起就是7种方法,分别是“进入”“向前LR”“向前Wald”"向后LR"“向后Wald”“向后条件”“向前条件”下一步:一旦选定协变量,也就是自变量,“分类”按钮就会被激活。
其中,当选择完分类协变量以后,“更改对比”选项组就会被激活。
一共有7种更改对比的方法。
“指示符”和“偏差”,都是选择最后一个和第一个个案作为对比标准,也就是这二种方法能够激活“参考类别”栏。
“指示符”是默认选项。
“偏差”表示分类变量每个水平和总平均值进行对比,总平均值的上下界就是"最后一个"和"第一个"在“参考类别”的设置。
“简单”也能激活“参考类别”设置。
表示对分类变量各个水平和第一个水平或者最后一个水平的均值进行比较。
“差值”对分类变量各个水平都和前面的水平进行作差比较。
第一个水平除外,因为不能作差。
“Helmert”跟“差值”正好相反。
是每一个水平和后面水平进行作差比较。
最后一个水平除外。
仍然是因为不能做差。
“重复”表示对分类变量各个水平进行重复对比。
“多项式”对每一个水平按分类变量顺序进行趋势分析,常用的趋势分析方法有线性,二次式。
1.2 logistic回归主要用途logistic回归一是寻找危险因素正如上面所说的寻找某一疾病的危险因素等。
logistic回归二是预测如果已经建立了logistic回归模型,则可以根据模型,预测在不同的自变量情况下,发生某病或某种情况的概率有多大。
logistic回归三是判别实际上跟预测有些类似,也是根据logistic模型,判断某人属于某病或属于某种情况的概率有多大,也就是看一下这个人有多大的可能性是属于某病。
这是logistic回归最常用的三个用途,实际中的logistic回归用途是极为广泛的,logistic回归几乎已经成了流行病学和医学中最常用的分析方法,因为它与多重线性回归相比有很多的优势,以后会对该方法进行详细的阐述。
实际上有很多其他分类方法,只不过Logistic回归是最成功也是应用最广的。
1.3 logistic回归案例分析关于富士康跳楼曲线的Logistic回归分析。
正常人都能知道这绝对不是偶然,至于这背后有什么?我一开始也不甚清楚。
然后一篇突如其来的实验报告被发还给我,然后看着我亲手绘制的磁滞回线。
有了主意。
首先,我查到了有记载以来,所有富士康员工自杀的日期:列出如下表格:(以07年6月18号,第一例自杀案例为原点,至今(10年5月25日)1072天)在MATLAB中容易做出散点图:可见这是一个指数增长的曲线。
对此我认为自杀和流行病一样,自杀也是一种病,而且是一种可以传染的疾病。
因此其增长曲线与对数增长很接近。
对其做指数函数拟合:General model Exp2:f(x) = a*exp(b*x) + c*exp(d*x)Coefficients (with 95% confidence bounds):a = 7.569e-007 (-6.561e-006, 8.075e-006)b = 0.01529 (0.006473, 0.0241)c = 1.782 (0.5788, 2.984)d = 0.001075 (2.37e-005, 0.002125)Goodness of fit:SSE: 8.846R-square: 0.9684Adjusted R-square: 0.9598RMSE: 0.8968可见相关度0.96也是非常高的。
然而和所有疾病一样,一旦其事件引起了人们的关注,则各方的反馈作用,将阻碍其继续上升。
因此,和很多流行病分析一样,该曲线很有可能呈S型。
对于该曲线的分析,使用Logistic回归。
首先我们假设Logis(B,x)=F(x),之中B为参数数组,则由经验和可能的微分方程关系,回归曲线应该为S(x)=m*Logis(B,x+t)/(n+Logis(B,x+t))格式由于当Logis(B,x)较小时S(x)=Logis(B,x),则可以认为f(x)的参数可以直接引入S(x)作为一种近似,而对于m,n的确定,我以1为间隔,画出m*n=40*20的所有曲线,选出其中最吻合的的一条(m=22 n=20 t=50):1.4 logistic回归其他信息由此可以见,富士康的跳楼人数最终会稳定在在22人左右。
由此仍然不会超过全国平均跳楼率。
对此曲线的分析,我们借鉴微生物生长曲线的方法,将其分为:缓慢期,对数期,稳定期,衰亡期缓慢期,富士康员工虽然受到很大的工作压力,可是其自身的心理并没有崩溃,因此跳楼这种事件发生频率很少,而且呈线性关系,说明没有跳楼者受到别的跳楼者的影响。
对数期,富士康员工由于受到工厂巨大的工作压力,以及来自社会各方的压力,甚至加上上级的欺压,心理防线渐渐崩溃,无处发泄。
而一旦有想不开者跳楼,则为其提供了一个发泄的模板,这种情况下,很容易有相同经历的员工受到跳楼者的影响,从而一个接一个的跳楼自杀。
目前的富士康正处于此时期。
稳定期,由于社会、媒体各方面的关注以及社会、广大人民对工厂的压力,工厂不得不做出改变,员工的心理压力渐渐得到释放,从而员工跳楼轻生频率会很快下降。
衰亡期,这个……由于资料长期保存,不小心遗失;或者某机关的辟谣;或者所有人的健忘,导致跳楼人数被修正,被减少。
2 线性回归线性回归,是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。
其表达形式为y = w'x+e,e为误差服从均值为0的正态分布。
在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。
这种函数是一个或多个称为回归系数的模型参数的线性组合。
只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。
(这反过来又应当由多个相关的因变量预测的多元线性回归区别,[引文需要],而不是一个单一的标量变量。
)回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
回归分析中有多个自变量:这里有一个原则问题,这些自变量的重要性,究竟谁是最重要,谁是比较重要,谁是不重要。