图解冲突域、广播域解答

合集下载

详解冲突域和广播域

详解冲突域和广播域

详解冲突域和广播域冲突域(物理分段)连接在同一导线上的所有工作站的集合,或者说是同一物理网段上所有节点的集合或以太网上竞争同一带宽的节点集合。

这个域代表了冲突在其中发生并传播的区域,这个区域可以被认为是共享段。

在OSI模型中,冲突域被看作是第一层的概念,连接同一冲突域的设备有Hub,Reperter或者其他进行简单复制信号的设备。

也就是说,用Hub或者Repeater连接的所有节点可以被认为是在同一个冲突域内,它不会划分冲突域。

而第二层设备(网桥,交换机)第三层设备(路由器)都可以划分冲突域的,当然也可以连接不同的冲突域。

简单的说,可以将Repeater等看成是一根电缆,而将网桥等看成是一束电缆。

广播域接收同样广播消息的节点的集合。

如:在该集合中的任何一个节点传输一个广播帧,则所有其他能收到这个帧的节点都被认为是该广播帧的一部分。

由于许多设备都极易产生广播,所以如果不维护,就会消耗大量的带宽,降低网络的效率。

由于广播域被认为是OSI中的第二层概念,所以象Hub,交换机等第一,第二层设备连接的节点被认为都是在同一个广播域。

而路由器,第三层交换机则可以划分广播域,即可以连接不同的广播域。

注:一个VLAN是一个广播域,VLAN可以隔离广播,划分VLAN的其中的一个目的就是隔离广播。

广播域(Broadcast domain)网络中的一组设备的集合。

即同一广播包能到达的所有设备成为一个广播域。

当这些设备中的一个发出一个广播时,所有其他的设备都能接收到这个广播帧。

HUB和SWITCH的所有端口都是在一个广播域里,路由器上的每个端口自成一个广播域。

网络互连设备可以将网络划分为不同的冲突域、广播域。

但是,由于不同的网络互连设备可能工作在OSI模型的不同层次上。

因此,它们划分冲突域、广播域的效果也就各不相同。

如中继器工作在物理层,网桥和交换机工作在数据链路层,路由器工作在网络层,而网关工作在OSI模型的上三层。

而每一层的网络互连设备要根据不同层次的特点完成各自不同的任务。

广播域和冲突域的区别

广播域和冲突域的区别

冲突域与广播域(区别、知识要点)1、冲突域指的是会产生冲突的最小范围,在计算机和计算机通过设备互联时,会建立一条通道,如果这条通道只允许瞬间一个数据报文通过,那么在同时如果有两个或更多的数据报文想从这里通过时就会出现冲突了。

冲突域的大小可以衡量设备的性能,多口hub的冲突域也只有一个,即所有的端口上的数据报文都要排队等待通过。

而交换机就明显的缩小了冲突域的大小,使到每一个端口都是一个冲突域,即一个或多个端口的高速传输不会影响其它端口的传输,因为所有的数据报文不同都按次序排队通过,而只是到同一端口的数据才要排队。

2、如果一个数据报文的目标地址是这个网段的广播地址或者目标计算机的MAC地址是FF-FF-FF-FF-FF-FF,那么这个数据报文就会被这个网段的所有计算机接收并响应,这就叫做广播。

通常广播用来进行ARP 寻址等用途,但是广播域无法控制也会对网络健康带来严重影响,主要是带宽和网络延迟。

这种广播所能覆盖的范围就叫做广播域了,二层的交换机是转发广播的,所以不能分割广播域,而路由器一般不转发广播,所以可以分割或定义广播域。

网络互连设备可以将网络划分为不同的冲突域、广播域。

但是,由于不同的网络互连设备可能工作在OSI模型的不同层次上。

因此,它们划分冲突域、广播域的效果也就各不相同。

如中继器工作在物理层,网桥和交换机工作在数据链路层,路由器工作在网络层,而网关工作在OSI模型的上三层。

而每一层的网络互连设备要根据不同层次的特点完成各自不同的任务。

下面我们讨论常见的网络互连设备的工作原理以及它们在划分冲突域、广播域时各自的特点。

1、传统以太网操作传统共享式以太网的典型代表是总线型以太网。

在这种类型的以太网中,通信信道只有一个,采用介质共享(介质争用)的访问方法(第1章中介绍的CSMA/CD介质访问方法)。

每个站点在发送数据之前首先要侦听网络是否空闲,如果空闲就发送数据。

否则,继续侦听直到网络空闲。

如果两个站点同时检测到介质空闲并同时发送出一帧数据,则会导致数据帧的冲突,双方的数据帧均被破坏。

冲突域与广播域的区别

冲突域与广播域的区别

冲突域指的是会产生冲突的最小范围, 冲突域指的是会产生冲突的最小范围,在 计算机和计算机通过设备互联时, 计算机和计算机通过设备互联时,会建立一 条通道, 条通道,如果这条通道只允许瞬间一个数据 报文通过,那么在同时如果有两个或更多的 报文通过, 数据报文想从这里通过时就会出现冲突了。 数据报文想从这里通过时就会出现冲突了。 冲突域的大小可以衡量设备的性能, 冲突域的大小可以衡量设备的性能,多口 hub的冲突域也只有一个 的冲突域也只有一个, hub的冲突域也只有一个,即所有的端口上 的数据报文都要排队等待通过。 的数据报文都要排队等待通过。而交换机就 明显的缩小了冲突域的大小, 明显的缩小了冲突域的大小,使到每一个端 口都是一个冲突域, 口都是一个冲突域,即一个或多个端口的高 速传输不会影响其它端口的传输, 速传输不会影响其它端口的传输,因为所有 的数据报文不同都按次序排队通过, 的数据报文不同都按次序排队通过,而只是 到同一端口的数据才要排队。 到同一端口的数据才要排队。
谢谢大家! 谢谢大家!
如果一个数据报文的目标地址是这个网段的 广播地址或者目标计算机的MAC地址是FF FFMAC地址是FF广播地址或者目标计算机的MAC地址是FF-FFFF-FF-FF-FF, FF-FF-FF-FF,那么这个数据报文就会被这个 网段的所有计算机接收并响应,这就叫做广播。 网段的所有计算机接收并响应,这就叫做广播。 通常广播用来进行ARP寻址等用途, ARP寻址等用途 通常广播用来进行ARP寻址等用途,但是广播 域无法控制也会对网络健康带来严重影响, 域无法控制也会对网络健康带来严重影响,主 要是带宽和网络延迟。 要是带宽和网络延迟。这种广播所能覆盖的范 围就叫做广播域了, 围就叫做广播域了,二层的交换机是转发广播 所以不能分割广播域, 的,所以不能分割广播域,而路由器一般不转 发广播,所以可以分割或定义广播域。 发广播,所以可以分割或定义广播域。

图解冲突域

图解冲突域

冲突域,冲突,广播域,广播冲突域(物理分段):连接在同一导线上的所有工作站的集合,或者说是同一物理网段上所有节点的集合或以太网上竞争同一带宽的节点集合。

这个域代表了冲突在其中发生并传播的区域,这个区域可以被认为是共享段。

在OSI模型中,冲突域被看作是第一层的概念,连接同一冲突域的设备有Hub,Reperter或者其他进行简单复制信号的设备。

也就是说,用H ub或者Repeater连接的所有节点可以被认为是在同一个冲突域内,它不会划分冲突域。

而第二层设备(网桥,交换机)第三层设备(路由器)都可以划分冲突域的,当然也可以连接不同的冲突域。

简单的说,可以将Repeater等看成是一根电缆,而将网桥等看成是一束电缆。

广播域:接收同样广播消息的节点的集合。

如:在该集合中的任何一个节点传输一个广播帧,则所有其他能收到这个帧的节点都被认为是该广播帧的一部分。

由于许多设备都极易产生广播,所以如果不维护,就会消耗大量的带宽,降低网络的效率。

由于广播域被认为是OSI中的第二层概念,所以象Hub,交换机等第一,第二层设备连接的节点被认为都是在同一个广播域。

而路由器,第三层交换机则可以划分广播域,即可以连接不同的广播域。

注:一个VLAN是一个广播域,VLAN可以隔离广播,划分VLAN的其中的一个目的就是隔离广播。

下面我将这三种网络设备打个通俗的比喻来帮助理解:局域网好比一栋大楼,每个人(好比主机)有自己的房间(房间就好比网卡,房号就是物理地址,即MAC地址),里面的人(主机)人手一个对讲机,由于工作在同一频道,所以一个人说话,其他人都能听到,这就是广播(向所有主机发送信息包),只有目标才会回应,其他人虽然听见但是不理(丢弃包),而这些能听到广播的所有对讲机设备就够成了一个广播域。

而这些对讲机就是集线器(HUB),每个对讲机都像是集线器上的端口,大家都知道对讲机在说话时是不能收听的,必须松开对讲键才能收听,这种同一时刻只能收或者发的工作模式就是半双工。

冲突域和广播域的区别

冲突域和广播域的区别

以太网中的冲突域和广播域在以太网中,当两个节点同时经过同一个介质传输数据时,从两个设备发出的帧将会碰撞,在物理介质上相遇,彼此数据都会被破坏。

这就是我们所说的冲突,当以太网中接入的终端越多发生的碰撞的机会也就越大。

所以在以太网中我们引入了CSMA/CD(载波侦听多路访问/冲突检测)种机制来避免冲突。

我们看看CSMA/CD是如何工作的。

当一个节点想在网络中发送数据时,它首先检查线路上是否有其他主机的信号在传送:如果有,说明其他主机在发送数据,自己则利用退避算法等一会再试图发送;如果线路上没有其他主机的信号,自己就将数据发送出去,同时,不停的监听线路,以确信其他主机没有发送数据,如果检测到有其他信号,这个时候就知道发生了冲突了,自己就发送一个JAM阻塞信号,通知网段上的其他节点停止发送数据,这时,其他节点也必须采用退避算法等一会再试图发送。

那什么是冲突域和广播域了。

冲突域:一个支持共享介质的网段所在的区域都是冲突域。

广播域:一个广播帧能够到达的范围我们都叫做广播域。

我们的集线器是一个工作在物理层的设备,当他收到数据以后就把这个数据复制复制以后就把这个数据象所有的接口发送一次。

所以我们说集线器所有的接口是一个冲突域和广播域。

交换机就和集线器不一样了交换机是工作数据链路层的设备,他能够识别数据帧和MAC地址,他工作的方式就和集线器有很大的区别。

交换机是依靠MAC 地址表来转发数据。

对于MAC地址表里没有的数据就广播。

所以我们说交换机的每个接口都是一个冲突域,交换机的所有的接口都属于一个广播域。

路由器是工作在网络层的设备,路由器转发数据是依靠路由表来转发数据。

对于广播流量路由器会处理但是不会转发数据。

所以我们说路由器的每个接口都属于同一个冲突域和广播域。

路由器可以用来隔离广播。

我们可以看下面的图来分析下转发数据,这就是他们的区别。

现在网桥已经看不到了。

计算机网络 04_01_图解冲突域和广播域

计算机网络 04_01_图解冲突域和广播域

图解冲突域、广播域作者张保通网络互连设备可以将网络划分为不同的冲突域、广播域。

但是,由于不同的网络互连设备可能工作在OSI模型的不同层次上。

因此,它们划分冲突域、广播域的效果也就各不相同。

如中继器工作在物理层,网桥和交换机工作在数据链路层,路由器工作在网络层,而网关工作在OSI模型的上三层。

而每一层的网络互连设备要根据不同层次的特点完成各自不同的任务。

下面我们讨论常见的网络互连设备的工作原理以及它们在划分冲突域、广播域时各自的特点。

1、传统以太网操作传统共享式以太网的典型代表是总线型以太网。

在这种类型的以太网中,通信信道只有一个,采用介质共享(介质争用)的访问方法(第1章中介绍的CSMA/CD介质访问方法)。

每个站点在发送数据之前首先要侦听网络是否空闲,如果空闲就发送数据。

否则,继续侦听直到网络空闲。

如果两个站点同时检测到介质空闲并同时发送出一帧数据,则会导致数据帧的冲突,双方的数据帧均被破坏。

这时,两个站点将采用"二进制指数退避"的方法各自等待一段随机的时间再侦听、发送。

在图1中,主机A只是想要发送一个单播数据包给主机B。

但由于传统共享式以太网的广播性质,接入到总线上的所有主机都将收到此单播数据包。

同时,此时如果任何第二方,包括主机B也要发送数据到总线上都将冲突,导致双方数据发送失败。

我们称连接在总线上的所有主机共同构成了一个冲突域。

当主机A发送一个目标是所有主机的广播类型数据包时,总线上的所有主机都要接收该广播数据包,并检查广播数据包的内容,如果需要的话加以进一步的处理。

我们称连接在总线上的所有主机共同构成了一个广播域。

图1传统以太网2、中继器(Repeater)中继器(Repeater)作为一个实际产品出现主要有两个原因:第一,扩展网络距离,将衰减信号经过再生。

第二,实现粗同轴电缆以太网和细同轴电缆以太网的互连。

通过中继器虽然可以延长信号传输的距离、实现两个网段的互连。

软考网工_图解冲突域、广播域

软考网工_图解冲突域、广播域

软考网工图解冲突域、广播域软考, 网工, 2009冲突域(物理分段)连接在同一导线上的所有工作站的集合,或者说是同一物理网段上所有节点的集合或以太网上竞争同一带宽的节点集合。

这个域代表了冲突在其中发生并传播的区域,这个区域可以被认为是共享段。

在OSI模型中,冲突域被看作是第一层的概念,连接同一冲突域的设备有Hub,Reperter或者其他进行简单复制信号的设备。

也就是说,用Hub或者Repeater连接的所有节点可以被认为是在同一个冲突域内,它不会划分冲突域。

而第二层设备(网桥,交换机)第三层设备(路由器)都可以划分冲突域的,当然也可以连接不同的冲突域。

简单的说,可以将Repeater等看成是一根电缆,而将网桥等看成是一束电缆。

广播域接收同样广播消息的节点的集合。

如:在该集合中的任何一个节点传输一个广播帧,则所有其他能收到这个帧的节点都被认为是该广播帧的一部分。

由于许多设备都极易产生广播,所以如果不维护,就会消耗大量的带宽,降低网络的效率。

由于广播域被认为是OSI中的第二层概念,所以象Hub,交换机等第一,第二层设备连接的节点被认为都是在同一个广播域。

而路由器,第三层交换机则可以划分广播域,即可以连接不同的广播域。

注:一个VLAN是一个广播域,VLAN可以隔离广播,划分VLAN的其中的一个目的就是隔离广播。

打个通俗的比喻来帮助理解:局域网好比一栋大楼,每个人(好比主机)有自己的房间(房间就好比网卡,房号就是物理地址,即MAC地址),里面的人(主机)人手一个对讲机,由于工作在同一频道,所以一个人说话,其他人都能听到,这就是广播(向所有主机发送信息包),只有目标才会回应,其他人虽然听见但是不理(丢弃包),而这些能听到广播的所有对讲机设备就够成了一个广播域。

而这些对讲机就是集线器(HUB),每个对讲机都像是集线器上的端口,大家都知道对讲机在说话时是不能收听的,必须松开对讲键才能收听,这种同一时刻只能收或者发的工作模式就是半双工。

子网划分、广播域、冲突域、变长子网掩码(VLSM)

子网划分、广播域、冲突域、变长子网掩码(VLSM)

子网划分、广播域、冲突域、变长子网掩码(VLSM)子网划分子网划分的原因有许多,有同学发私信和评论问我什么时候用到子网划分,子网划分到底有什么好处,我就给简单总结一下。

减少网络流量不管什么样的流量,都希望少一些,网络流量也一样,如果路由器的性能不好,网络流量可能导致网络停顿,有了路由器之后大部分流量都在本地的网内,只有去往其他网络的分组江川夜路由器,路由器增加广播域,广播域越多。

每个广播域就越小,每个网络的流量就越少优化网络性能网络性能提升就是减少网络流量的结果简化管理与一个庞大的网络相比,在小网络里更容易排查问题有助于覆盖大型区域公网的网速比局域网的慢的多,价钱还贵单个跨度大的大型网络各方面都可能出问题,将多个小的网络连接在一起可以提高系统的效率在这里提到了一个广播域(broadcast domain),广播域是指同一网段中所有(ALL)设备组成的网络集合、这些设备侦听该网段中发送的所有广播,路由器组建互联网并划分广播域。

通俗的解释为要分割广播域?分割广播域到底为什么提升网络的性能?举个例子:广播域就像它的名字一样,我们小时候都做过广播体操,一个喇叭(路由器)。

全校学生(设备)一起做。

那么大家都在一个广播域中。

混乱程度可想而知,有的同学根本不叫做操,只能叫动。

分割之后就是每个班级的体育课,体育老师(路由器)一个一个的教学生(设备),一个一个检查,效果可想而知。

一个老师教100个学生,和教10个学生效果一定是不一样的。

路由器分割广播域。

和广播域一同出现的一个术语是冲突域(collision domain),冲突域是指一种网络情况:某台设备(主机)在网络上发送分组时候,当前网段中所有的设备都需要注意这一点。

如果某两台设备同时试图传输数据,将导致冲突,这两台设备必须重传数据,效率很糟糕。

所以以太网使用CSMA/CD(载波侦听多路访问/冲突检测)来避免冲突。

这个冲突许很好理解,两个人聊天,一起讲话。

这个就冲突了,不得不重说。

(广告传媒)冲突域和广播域区别

(广告传媒)冲突域和广播域区别

冲突域和广播域区别1、冲突域指的是会产生冲突的最小范围,在计算机和计算机通过设备互联时,会建立一条通道,如果这条通道只允许瞬间一个数据报文通过,那么在同时如果有两个或更多的数据报文想从这里通过时就会出现冲突了。

冲突域的大小可以衡量设备的性能,多口hub的冲突域也只有一个,即所有的端口上的数据报文都要排队等待通过。

而交换机就明显的缩小了冲突域的大小,使到每一个端口都是一个冲突域,即一个或多个端口的高速传输不会影响其它端口的传输,因为所有的数据报文不同都按次序排队通过,而只是到同一端口的数据才要排队。

我们称连接在总线上的所有主机共同构成了一个冲突域。

2、如果一个数据报文的目标地址是这个网段的广播地址IP或者目标计算机的MAC地址是FF-FF-FF-FF-FF-FF,那么这个数据报文就会被这个网段的所有计算机接收并响应,这就叫做广播。

通常广播用来进行ARP寻址等用途,但是广播域无法控制也会对网络健康带来严重影响,主要是带宽和网络延迟。

这种广播所能覆盖的范围就叫做广播域了,二层的交换机是转发广播的,所以不能分割广播域,网桥也不能分割广播域。

而路由器一般不转发广播,所以可以分割或定义广播域。

冲突域就是共享总线,而集线器HUB就是总线型的,所以不能隔绝冲突域,而网桥,交换机,路由器都可以隔绝冲突域。

个人见解广播通常是对IP地址来讲的,而其中只有三层交换机和路由是有网络层的,所以它们可以隔绝广播域。

3、中继器(Repeater)作为一个实际产品出现主要有两个原因:第一,扩展网络距离,将衰减信号经过再生。

第二,实现粗同轴电缆以太网和细同轴电缆以太网的互连。

通过中继器虽然可以延长信号传输的距离、实现两个网段的互连。

但并没有增加网络的可用带宽。

如图1所示,网段1和网段2经过中继器连接后构成了一个单个的冲突域和广播域。

图1 中继器网络集线器实际上相当于多端口(在本章,我们常用"端口"一词代替"接口"这个术语)的中继器。

冲突域和广播域[1]

冲突域和广播域[1]

冲突域和广播域冲突域(collision domain),所有直接连接在一起的,而且必须竞争以太网总线的节点都可以认为是处在同一个冲突域中,广播域(broadcast domain),广播域是一个逻辑上的计算机组,该组内的所有计算机都会收到同样的广播信息。

冲突域:在同一个冲突域中的每一个节点都能收到所有被发送的帧广播域:网络中能接收任一设备发出的广播帧的所有设备的集合一个局域网就是一个广播域(往往是指一个IP段内),广播域中的机器可以收到域中其他任何一台机器的广播,而不能收到域外机器的广播,域外机器也不能收到域内机器发的广播;冲突域:一个站点向另一个站点发出信号。

能收到信号的站点就构成一个冲突域。

HUB 所有端口都在同一个广播域,冲突域内。

Swith所有端口都在同一个广播域内,而每一个端口就是一个冲突域。

1、冲突域指的是会产生冲突的最小范围,在计算机和计算机通过设备互联时,会建立一条通道,如果这条通道只允许瞬间一个数据报文通过,那么在同时如果有两个或更多的数据报文想从这里通过时就会出现冲突了。

冲突域的大小可以衡量设备的性能,多口hub的冲突域也只有一个,即所有的端口上的数据报文都要排队等待通过。

而交换机就明显的缩小了冲突域的大小,使到每一个端口都是一个冲突域,即一个或多个端口的高速传输不会影响其它端口的传输,因为所有的数据报文不同都按次序排队通过,而只是到同一端口的数据才要排队。

2、如果一个数据报文的目标地址是这个网段的广播地址或者目标计算机的MAC地址是FF-FF-FF-FF-FF-FF,那么这个数据报文就会被这个网段的所有计算机接收并响应,这就叫做广播。

通常广播用来进行ARP寻址等用途,但是广播域无法控制也会对网络健康带来严重影响,主要是带宽和网络延迟。

这种广播所能覆盖的范围就叫做广播域了,二层的交换机是转发广播的,所以不能分割广播域,而路由器一般不转发广播,所以可以分割或定义广播域。

在局域网里面,大量主机之间的通信都是通过arp广播来决定目的主机的地址的,为了减小在共享环境中的介质争用(也就是冲突),网桥产生了,它的作用是将广播域划分为一个一个小的冲突域,这样便增大了可用的带宽,但是广播域还是没有变。

图解冲突域、广播域详解

图解冲突域、广播域详解

冲突域(物理分段)连接在同一导线上的所有工作站的集合,或者说是同一物理网段上所有节点的集合或以太网上竞争同一带宽的节点集合。

这个域代表了冲突在其中发生并传播的区域,这个区域可以被认为是共享段。

在OSI模型中,冲突域被看作是第一层的概念,连接同一冲突域的设备有Hub,Reperter或者其他进行简单复制信号的设备。

也就是说,用Hub或者Repeater 连接的所有节点可以被认为是在同一个冲突域内,它不会划分冲突域。

而第二层设备(网桥,交换机)第三层设备(路由器)都可以划分冲突域的,当然也可以连接不同的冲突域。

简单的说,可以将Repeater等看成是一根电缆,而将网桥等看成是一束电缆。

广播域接收同样广播消息的节点的集合。

如:在该集合中的任何一个节点传输一个广播帧,则所有其他能收到这个帧的节点都被认为是该广播帧的一部分。

由于许多设备都极易产生广播,所以如果不维护,就会消耗大量的带宽,降低网络的效率。

由于广播域被认为是OSI 中的第二层概念,所以象Hub,交换机等第一,第二层设备连接的节点被认为都是在同一个广播域。

而路由器,第三层交换机则可以划分广播域,即可以连接不同的广播域。

注:一个VLAN是一个广播域,VLAN可以隔离广播,划分VLAN的其中的一个目的就是隔离广播。

打个通俗的比喻来帮助理解:局域网好比一栋大楼,每个人(好比主机)有自己的房间(房间就好比网卡,房号就是物理地址,即MAC地址),里面的人(主机)人手一个对讲机,由于工作在同一频道,所以一个人说话,其他人都能听到,这就是广播(向所有主机发送信息包),只有目标才会回应,其他人虽然听见但是不理(丢弃包),而这些能听到广播的所有对讲机设备就够成了一个广播域。

而这些对讲机就是集线器(HUB),每个对讲机都像是集线器上的端口,大家都知道对讲机在说话时是不能收听的,必须松开对讲键才能收听,这种同一时刻只能收或者发的工作模式就是半双工。

而且对讲机同一时刻只能有一个人说话才能听清楚,如果两个或者更多的人一起说就会产生冲突,都没法听清楚,所以这就构成了一个冲突域。

网络的冲突域,广播域,网络风暴

网络的冲突域,广播域,网络风暴

网络的冲突域,广播域,网络风暴
OSI的7层模型和TCP/IP 四层模型:
1.OSI的7层从上到下分别是:
•7 应用层
•6 表示层
•5 会话层
•4 传输层
•3 网络层
•2 数据链路层
•1 物理层
2.TCP/IP 四层模型:
•应用层:为用户提供所需要的各种服务
•传输层:为应用层实体提供端到端的通信功能,保证了数据包的顺序传送及数据的完整性
•网际互联层:主要解决主机到主机的通信问题
•网络接入层:它负责监视数据在主机和网络之间的交换
接下来解释一下网络的冲突域,广播域,网络风暴:广播域:是指在网段上的所有设备的集合,这些设备可以接听送往某个网段的所有广播
冲突域:在同一个冲突域中的每一个节点都能收到所有被发送的帧
冲突域是基于第一层(物理层)
广播域是基于第二层(链路层)
这里也不得不提一下相关的硬件设备:
中继器和集线器是第一层的设备,所以分割不了冲突域,物理层设备中继器和集线器既不隔离冲突域也不隔离广播域
交换机和网桥属于第二层设备,所以能分割冲突域,网桥可隔离冲突域,但不能隔离广播域
路由器属于第三层设备,所以既能分割冲突域,也能分割广播域VLAN(虚拟局域网)也可隔离广播域
对于不隔离广播域的设备,它们互连的不同网络都属于同一广播域,因此扩大了广播域的范围,更容易引起网络风暴。

广播域冲突域简介

广播域冲突域简介

广播域
• 对广播的控制
– 第1层和第2层设备是不能控制广播的 – 只有第3层设备才能控制广播,因为路由 器不转发广播 • 广播域的判断
– 能收到相同广播的所有设备则均在同一 个广播域
7/版权所有石文龙
• 网络中的一组设备的集合。即同一广播包能到达的 所有设备成为一个广播域。当这些设备中的一个发 出一个广播时,所有其他的设备都能接收到这个广 播帧。HUB和SWITCH的所有端口都是在一个广播域 里,路由器上的每个端口自成一个广播域。通常广 播用来进行ARP寻址等用途,但是广播域无法控制 也会对网络健康带来严重影响,主要是带宽和网络 延迟: 由于许多设备都极易产生广播,所以如果不 维护,就会消耗大量的带宽,降低网络的效率,甚 至网络瘫痪,产生广播风暴。二层的交换机是转发 广播的,所以不能分割广播域,而路由器一般不转 发广播,所以可以分割或定义广播域。
分段
• 通过网桥、交换机或路由器限制冲突域大小,增加 冲突域数量都可以避免冲突的产生,提高带宽利用 率,提高数据传输的效率。
5/版权所有石文龙
广播域
• 是基于第二层 • 广播域(Broadcast Domain) 指网络中能接收 任一设备发出的广播帧的所有设备的集合 • 广播域就是说如果站点发出一个广播信号 后能接收到这个信号的范围。通常来说一 个局域网就是一个广播域。
• 广播域分段
10/版权所有石文龙
对比
•Байду номын сангаас
Hub Bridge CollisionDomains: 1 Broadcast Domains: 1 Switch 4 1 1 Router 4 4 4
• (假设HUB,Bridge,Switch,router均 为四个 接口)

冲突域

冲突域

冲突域、广播域的通俗讲解冲突域(物理分段)连接在同一导线上的所有工作站的集合,或者说是同一物理网段上所有节点的集合或以太网上竞争同一带宽的节点集合。

这个域代表了冲突在其中发生并传播的区域,这个区域可以被认为是共享段。

在OSI 模型中,冲突域被看作是第一层的概念,连接同一冲突域的设备有Hub,Reperter或者其他进行简单复制信号的设备。

也就是说,用Hub或者Repeater连接的所有节点可以被认为是在同一个冲突域内,它不会划分冲突域。

而第二层设备(网桥,交换机)第三层设备(路由器)都可以划分冲突域的,当然也可以连接不同的冲突域。

简单的说,可以将Repeater等看成是一根电缆,而将网桥等看成是一束电缆。

广播域接收同样广播消息的节点的集合。

如:在该集合中的任何一个节点传输一个广播帧,则所有其他能收到这个帧的节点都被认为是该广播帧的一部分。

由于许多设备都极易产生广播,所以如果不维护,就会消耗大量的带宽,降低网络的效率。

由于广播域被认为是OSI中的第二层概念,所以象Hub,交换机等第一,第二层设备连接的节点被认为都是在同一个广播域。

而路由器,第三层交换机则可以划分广播域,即可以连接不同的广播域。

注:一个VLAN是一个广播域,VLAN可以隔离广播,划分VLAN的其中的一个目的就是隔离广播。

打个通俗的比喻来帮助理解:局域网好比一栋大楼,每个人(好比主机)有自己的房间(房间就好比网卡,房号就是物理地址,即MAC地址),里面的人(主机)人手一个对讲机,由于工作在同一频道,所以一个人说话,其他人都能听到,这就是广播(向所有主机发送信息包),只有目标才会回应,其他人虽然听见但是不理(丢弃包),而这些能听到广播的所有对讲机设备就够成了一个广播域。

而这些对讲机就是集线器(HUB),每个对讲机都像是集线器上的端口,大家都知道对讲机在说话时是不能收听的,必须松开对讲键才能收听,这种同一时刻只能收或者发的工作模式就是半双工。

如何计算冲突域和广播域-图解分析

如何计算冲突域和广播域-图解分析

如何理解冲突域和广播域?冲突域:【定义】在同一个冲突域中的每一个节点都能收到所有被发送的帧。

简单的说就是同一时间内只能有一台设备发送信息的范围。

【分层】基于OSI的第一层(数据链路层)【设备】第二层设备能隔离冲突域,比如Switch。

交换机能缩小冲突域的范围,交换接的每一个端口就是一个冲突域。

广播域:【定义】网络中能接收任一设备发出的广播帧的所有设备的集合。

简单的说如果站点发出一个广播信号,所有能接收收到这个信号的设备范围称为一个广播域。

【分层】基于OSI的第二层(物理层)【设备】第三层设备才能隔离广播域,比如Router。

路由器能隔离广播域,其每一个端口就是一个广播域。

下面通过三个例子来说明:例子一,一个Switch直连三台PC和一台hub,而hub下直连有2台PC。

图中已经给出了答案,可是,这个4个冲突域1个广播域是怎么算出来呢?根据前面介绍的关于广播域的定义中我们知道,只有第三层设备才能隔离广播域。

上图中并没有router等第三层设备,所以,这里的广播域没有被隔离。

也就是说上图中的网络只有一个广播域。

冲突域的计算,前面有说Switch能缩小冲突域,一个Switch端口其实就是一个冲突域,上图中有3台pc和1台hub直连到Switch上,所以,这里的冲突域为4个。

第一个例子比较简单,下面我们在网络中有router第三层设备的例子一台router下直一台Switch和一台hub,Switch和hub下都各自连有三台pc:第三层设备router能隔离广播域,上图中router的三个端口分别直连了三个hub,因此得出有三个广播域。

但是,那3个冲突域是怎么来的呢?其实,router他不但能隔离广播域,默认也是可以缩小冲突域的。

所以上图中的router用3个端口将网络既分开成了3个广播域,又缩小成了3个冲突域。

第二个例子给了我们一个提醒,那就是路由器默认也是可以隔离冲突域的。

好了,下面我再看最后一个例子,这里都用上了常用的网络设备hub、Switch和router。

MAC地址学习、冲突域和广播域区别

MAC地址学习、冲突域和广播域区别

MAC地址学习、冲突域和广播域区别一、MAC地址学习交换机技术在网络技术中占有非常重要的地位,其主要的功能就是构建Mac地址表,在这之前它必须知道每一个端口所连接的主机的Mac地址,交换机技术是网络技术的重点,我们网络频道已经为读者进行了多次报道。

因为其重要,故我们再次进行系统的整理,以供初学者参阅。

构建Mac地址表交换机技术在转发数据前必须知道它的每一个端口所连接的主机的Mac地址,构建出一个Mac地址表。

当交换机从某个端口收到数据帧后,读取数据帧中封装的目的地Mac地址信息,然后查阅事先构建的Mac地址表,找出和目的地地址相对应的端口,从该端口把数据转发出去,其他端口则不受影响,这样避免了与其它端口上的数据发生碰撞。

因此构建Mac地址表是交换机的首要工作。

下面举例说明交换机建立地址表的过程。

假设主机A向主机C发送一个数据帧(每一个数据帧中都包含有源Mac地址和目的Mac 地址),当该数据帧从E0端口进入交换机后,交换机通过检查数据帧中的源Mac地址字段,将该字段的值(主机A 的Mac地址)放入Mac地址表中,并把它与E0端口对应起来,表示E0端口所连接的主机是A(如图11-5所示)。

此时,由于在Mac地址表中没有关于目的地Mac地址(主机C的Mac地址)的条目。

交换机技术将此帧向除了E0端口以外的所有端口转发,从而保证主机C 能收到该帧(这种操作叫flooding)。

交换机根据地址表转发数据同理,当交换机收到主机B、C、D的数据后也会把他们的地址学习到,写入地址表中,并将相应的端口和Mac地址对应起来。

最终会把所有的主机地址都学习到,构建出完整的地址表。

此时,若主机A 再向主机C发送一个数据帧,应用交换机技术则根据它的Mac地址表中的地址对应关系,将此数据帧仅从它的E2端口转发出去。

从而仅使主机C接收到主机A 发送给它的数据帧,不再影响其他端口。

那么在主机A和主机C通信的同时其他主机(比如主机B和主机D)之间也可以通信。

广播域和冲突域问题

广播域和冲突域问题

关于广播域和冲突域的问题
2011-06-23 09:43:55| 分类:网络管理|字号订阅
该图中有几个冲突域几个广播域?
解答:
1、两个广播域,七个冲突域。

这样的:集线器属于物理层,所有接口同属于一个冲突域、一个广播域;
交换机属于数据链路层,每个接口是一个单独的冲突域,非VLAN型交换机的
所有端口属于同一个广播域,若是VLAN型交换机,每个VLAN是一个广播域;路由器属于网络层,每个端口是一个单独的冲突域,也是一个单独的广播域。

这个题中,左边是一个集线器,是一个冲突域,一个广播域;路由器右边
是一个广播域,并且根据图中可知,交换机只连接了一个部门,所以是只有一
个VLAN,交换机有5个端口连接production部门,一个端口连接路由器,因
为交换机每个端口就是一个冲突域,所以路由器右边有6个冲突域。

综上,有2个广播域,7个冲突域。

2、
2广播,7冲突啊!路由分广播,交换分冲突,HUB所有都在一冲突中
3、
hub 只有一个冲突域和一个广播域
switch 一个端口一个冲突域但只有一个广播域
router 冲突域和广播域都是一个端口一个
所以是两个广播域七个冲突域
4、
一个HUB就相当于交换机的一个端口,所以HUB是一台机器一个冲突域,交换机则是一个端口一个冲突域,交换机是隔离冲突域的。

交换机是一个台机器一个广播域(划分VLAN这里不考虑),路由器则是
一个路由器的接口一个广播域,路由器是隔离广播域的。

5、
路过学习,我认为交换机有几条线就有几个冲突域,hub无论有几条都是一个
冲突域。

第九课:冲突域,广播域详解

第九课:冲突域,广播域详解
北京八维网络工程学院
CS、MA、CD的工作原理
MA表示每个交换机都是平等的.没有优先级 CS表示在发送帧以前要进行侦听动作,如果链路上有 设备在使用,那么就必须等待一个随机的时间,如果连 续检测15次仍然无法使用链路,那么交换机就认为链 路不可用. CD表示但设备检测到有冲突的时候,双方都会停止发 送并且等待一个随即的时间.检测冲突的时间为64个 字节的传送时间.如果设备老是检测到冲突,就会显示 Media not available
第五课:冲突域,物理层详解
北京八维网络工程学院
学习目标
理解物理层的作用与功能 理解HUB的工作机制 理解集线器 与 冲突域关系 掌握载波侦听多路访问原理
北京八维网络工程学院
课程内容
常用图例 什么是冲突域 什么是广播域 广播域和冲突域的关系 网络设备的域 中继器 集线器 CSMA/CD
数据链路层
LLC + IP + TCP +上层数据 物理层
0101110101001000010
北京八维网络工程学院
北京八维网络工程学院
交换式以太网
特点即优点: 通讯双方“独享”一个冲突域! 接口通讯速率自适应。 提高网络的可管理性和安全性(vlan)
兼容性强,互连不同标准的局域网。
北京八维网络工程学院
单工、半双工和全双工操作
信号通过的数据信道可以按照3 种方式操作:单工、 半双工、和全双工。3种方式: 单工传输:信号只在一个方向上传输。 半双工传输:允许在两个方向上可以传输数据, 但在某一时刻只能在一个方向传输。 全双工传输:允许在两个方向上可以传输数据, 并且支持同时收和发。
北京八维网络工程学院

广播域和冲突域精品课件

广播域和冲突域精品课件
广播域和冲突域
广播域(broadcast domain),广播域是一个逻辑上 的计算机组,该组内的所有计算机都会收到同样的广播信 息, 广播域是基于第二层(链路层)。HUB就在同一 个广播域. 。
冲突域(collision domain),所有直接连接在一起的, 而且必须竞争以太网总线的节点都可以认为是处在同一个 冲突域中,说白了就是一次只有一设备发送信息,其他的 只能等待。冲突域是基于第一层(物理层)。

17、一个人即使已登上顶峰,也仍要 自强不 息。下 午7时20分56秒 下午7时20分19:20:5621.4.14
谢谢大家
精品 PPT

9、 人的价值,在招收诱惑的一瞬间被决定 。21.4.1421.4.14Wednesday, April 14, 2021

10、低头要有勇气,抬头要有低气。19:20:5619:20:5619:204/14/2021 7:20:56 PM
可以在交换机上设置来避免冲突域.
精品 PPT
网桥
• 简介

网桥将两个相似的网络连接起来,并对网络数据的流
通进行管理。它工作于数据链路层,不但能扩展网络的距
离或范围,而且可提高网络的性能、可靠性和安全性。网
络1 和网络2 通过网桥连接后,网桥接收网络1 发送的数
据包,检查数据包中的地址,如果地址属于网络1 ,它就
将其放弃,相反,如果是网络2 的地址,它就继续发送给
网络2.这样可利用网桥隔离信息,将网络划分成多个网段,
隔离出安全网段,防止其他网段内的用户非法访问。由于
网络的分段,各网段相对独立,一个网段的故障不会影响
到另一个网段的运行。

网桥可以是专门硬件设备,也可以由计算机加装的网
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

冲突域(物理分段)连接在同一导线上的所有工作站的集合,或者说是同一物理网段上所有节点的集合或以太网上竞争同一带宽的节点集合。

这个域代表了冲突在其中发生并传播的区域,这个区域可以被认为是共享段。

在OSI模型中,冲突域被看作是第一层的概念,连接同一冲突域的设备有Hub,Reperter或者其他进行简单复制信号的设备。

也就是说,用Hub或者Repeater 连接的所有节点可以被认为是在同一个冲突域内,它不会划分冲突域。

而第二层设备(网桥,交换机)第三层设备(路由器)都可以划分冲突域的,当然也可以连接不同的冲突域。

简单的说,可以将Repeater等看成是一根电缆,而将网桥等看成是一束电缆。

广播域接收同样广播消息的节点的集合。

如:在该集合中的任何一个节点传输一个广播帧,则所有其他能收到这个帧的节点都被认为是该广播帧的一部分。

由于许多设备都极易产生广播,所以如果不维护,就会消耗大量的带宽,降低网络的效率。

由于广播域被认为是OSI 中的第二层概念,所以象Hub,交换机等第一,第二层设备连接的节点被认为都是在同一个广播域。

而路由器,第三层交换机则可以划分广播域,即可以连接不同的广播域。

注:一个VLAN是一个广播域,VLAN可以隔离广播,划分VLAN的其中的一个目的就是隔离广播。

打个通俗的比喻来帮助理解:局域网好比一栋大楼,每个人(好比主机)有自己的房间(房间就好比网卡,房号就是物理地址,即MAC地址),里面的人(主机)人手一个对讲机,由于工作在同一频道,所以一个人说话,其他人都能听到,这就是广播(向所有主机发送信息包),只有目标才会回应,其他人虽然听见但是不理(丢弃包),而这些能听到广播的所有对讲机设备就够成了一个广播域。

而这些对讲机就是集线器(HUB),每个对讲机都像是集线器上的端口,大家都知道对讲机在说话时是不能收听的,必须松开对讲键才能收听,这种同一时刻只能收或者发的工作模式就是半双工。

而且对讲机同一时刻只能有一个人说话才能听清楚,如果两个或者更多的人一起说就会产生冲突,都没法听清楚,所以这就构成了一个冲突域。

广播域(Broadcast domain)网络中的一组设备的集合。

即同一广播包能到达的所有设备成为一个广播域。

当这些设备中的一个发出一个广播时,所有其他的设备都能接收到这个广播帧。

HUB和SWITCH的所有端口都是在一个广播域里,路由器上的每个端口自成一个广播域。

有一天楼里的人受不了这种低效率的通信了,所以升级了设备,换成每人一个内线电话(交换机SWITCH,每个电话都相当于交换机上的一个端口),每人都有一个内线号码(逻辑地址即IP地址)。

(这里要额外说一下IP地址和MAC地址转译的问题,常见的二层交换机只识别MAC地址,它内置一个MAC地址表,并不断维护和更新它,来确定哪个端口对应那台主机的MAC地址,而我们所用的通信软件都是基于IP的,IP地址和MAC地址的转换工作,就由ARP地址解析协议来完成。

)在最开始时,没人知道哪个号码对应哪个人,所以要想打电话给某个人得先广播一下:“xxx,你的号码是多少?”“我的号码是xxxx”。

这样你就有了目标的号码,所有的内线号码就是通过这种方式不断加入电话簿中(交换机的MAC地址表),下次可以直接拨到他的分机号码上去而不用广播了。

大家都知道电话是点对点的通信设备,不会影响到其他人,起冲突的只会限制在本地,一个电话号码的线路相当于一个冲突域,只有再串连分机时,分机和主机之间才会有冲突的发生,这个冲突不会影响到外面其他的电话。

而电话号码就像是交换机上的端口号,也就是说交换机上每个端口自成一个冲突域,所以整个大的冲突域被分割成若干的小冲突域了。

而且,电话在接听的同时可以说话,这样的工作模式就是全双工。

这就是交换机比集线器性能更好的原因之一。

这样的工作模式就是全双工。

这就是交换机比集线器性能更好的原因之一。

网络互连设备可以将网络划分为不同的冲突域、广播域。

但是,由于不同的网络互连设备可能工作在OSI模型的不同层次上。

因此,它们划分冲突域、广播域的效果也就各不相同。

如中继器工作在物理层,网桥和交换机工作在数据链路层,路由器工作在网络层,而网关工作在OSI模型的上三层。

而每一层的网络互连设备要根据不同层次的特点完成各自不同的任务。

下面我们讨论常见的网络互连设备的工作原理以及它们在划分冲突域、广播域时各自的特点。

1、传统以太网操作传统共享式以太网的典型代表是总线型以太网。

在这种类型的以太网中,通信信道只有一个,采用介质共享(介质争用)的访问方法(第1章中介绍的CSMA/CD介质访问方法)。

每个站点在发送数据之前首先要侦听网络是否空闲,如果空闲就发送数据。

否则,继续侦听直到网络空闲。

如果两个站点同时检测到介质空闲并同时发送出一帧数据,则会导致数据帧的冲突,双方的数据帧均被破坏。

这时,两个站点将采用"二进制指数退避"的方法各自等待一段随机的时间再侦听、发送。

在图1中,主机A只是想要发送一个单播数据包给主机B。

但由于传统共享式以太网的广播性质,接入到总线上的所有主机都将收到此单播数据包。

同时,此时如果任何第二方,包括主机B也要发送数据到总线上都将冲突,导致双方数据发送失败。

我们称连接在总线上的所有主机共同构成了一个冲突域。

当主机A发送一个目标是所有主机的广播类型数据包时,总线上的所有主机都要接收该广播数据包,并检查广播数据包的内容,如果需要的话加以进一步的处理。

我们称连接在总线上的所有主机共同构成了一个广播域。

图1传统以太网2、中继器(Repeater)中继器(Repeater)作为一个实际产品出现主要有两个原因:第一,扩展网络距离,将衰减信号经过再生。

第二,实现粗同轴电缆以太网和细同轴电缆以太网的互连。

通过中继器虽然可以延长信号传输的距离、实现两个网段的互连。

但并没有增加网络的可用带宽。

如图2所示,网段1和网段2经过中继器连接后构成了一个单个的冲突域和广播域。

图2中继器连接的网络3、集线器(HUB)集线器实际上相当于多端口(在本章,我们常用"端口"一词代替"接口"这个术语)的中继器。

集线器通常有8个、16个或24个等数量不等的接口。

集线器同样可以延长网络的通信距离,或连接物理结构不同的网络,但主要还是作为一个主机站点的汇聚点,将连接在集线器上各个接口上的主机联系起来使之可以互相通信。

如图3所示,所有主机都连接到中心节点的集线器上构成一个物理上的星型连接。

但实际上,在集线器内部,各接口都是通过背板总线连接在一起的,在逻辑上仍构成一个共享的总线。

因此,集线器和其所有接口所接的主机共同构成了一个冲突域和一个广播域。

图3集线器连接的网络4、网桥(Bridge)网桥(Bridge)又称为桥接器。

和中继器类似,传统的网桥只有两个端口,用于连接不同的网段。

和中继器不同的是,网桥具有一定的"智能"性,可以"学习"网络上主机的地址,同时具有信号过滤的功能。

如图4所示,网段1的主机A发给主机B的数据包不会被网桥转发到网段2。

因为,网桥可以识别这是网段1内部的通信数据流。

同样,网段2的主机X发给主机Y的数据包也不会被网桥转发到网段1。

可见,网桥可以将一个冲突域分割为两个。

其中,每个冲突域共享自己的总线信道带宽。

图4网桥连接的网络但是,如果主机C发送了一个目标是所有主机的广播类型数据包时,网桥要转发这样的数据包。

网桥两侧的两个网段总线上的所有主机都要接收该广播数据包。

因此,网段1和网段2仍属于同一个广播域。

5、交换机(Switch)交换机(Switch)也被称为交换式集线器。

它的出现是为了解决连接在集线器上的所有主机共享可用带宽的缺陷。

交换机是通过为需要通信的两台主机直接建立专用的通信信道来增加可用带宽的。

从这个角度上来讲,交换机相当于多端口网桥。

如图5所示,交换机为主机A和主机B建立一条专用的信道,也为主机C和主机D建立一条专用的信道。

只有当某个接口直接连接了一个集线器,而集线器又连接了多台主机时,交换机上的该接口和集线器上所连的所有主机才可能产生冲突,形成冲突域。

换句话说,交换机上的每个接口都是自己的一个冲突域。

图5交换机连接的网络但是,交换机同样没有过滤广播通信的功能。

如果交换机收到一个广播数据包后,它会向其所有的端口转发此广播数据包。

因此,交换机和其所有接口所连接的主机共同构成了一个广播域。

我们将使用交换机作为互连设备的局域网称为交换式局域网。

6、路由器(Router)路由器工作在网络层,可以识别网络层的地址-IP地址,有能力过滤第3层的广播消息。

实际上,除非做特殊配置,否则路由器从不转发广播类型的数据包。

因此,路由器的每个端口所连接的网络都独自构成一个广播域。

如图6所示,如果各网段都是共享式局域网,则每网段自己构成一个独立的冲突域。

图6路由器连接的网络7、网关(Gateway)网关工作在OSI参考模型的高三层,因此,并不使用冲突域、广播域的概念。

网关主要用来进行高层协议之间的转换。

例如,充当LOTUS 1-2-3邮件服务和Microsoft Exchange邮件服务之间的邮件网关。

注意,这里网关的概念完全不同于PC主机以及路由器上配置的默认网关(default gateway)。

相关文档
最新文档