黄冈中学高考数学典型例题3运用向量法解题
高三数学利用直线方向向量与平面法向量解决计算问题试题答案及解析
高三数学利用直线方向向量与平面法向量解决计算问题试题答案及解析1.如图,在正四棱柱ABCD-A1B1C1D1中,AA1=2,AB=BC=1,动点P,Q分别在线段C1D,AC上,则线段PQ长度的最小值是().A.B.C.D.【答案】C【解析】建立如图所示的空间直角坐标系,则A(1,0,0),B(1,1,0),C(0,1,0),C1(0,1,2),设点P的坐标为(0,λ,2λ),λ∈[0,1],点Q的坐标为(1-μ,μ,0),μ∈[0,1],∴PQ==,当且仅当λ=,μ=时,线段PQ的长度取得最小值.2.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1,则异面直线A1B与AC所成角的余弦值是________.【答案】【解析】以C为坐标原点,CA,CB,CC1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,A1(1,0,2),B(0,1,0),A(1,0,0),C(0,0,0),则=(-1,1,-2),=(-1,0,0),cos〈,〉===.3.已知正四棱锥P-ABCD的侧棱与底面所成角为60°,M为PA中点,连接DM,则DM与平面PAC所成角的大小是________.【答案】45°【解析】设底面正方形的边长为a,由已知可得正四棱锥的高为a,建立如图所示空间直角坐标系,则平面PAC的法向量为n=(1,0,0),D,A0,-a,0,P,M,=,所以cos 〈,n〉==,所以DM与平面PAC所成角为45°.4.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD的中点.那么异面直线OE和FD1所成的角的余弦值等于 ().A.B.C.D.【答案】D【解析】建立如图所示的空间直角坐标系,则O(1,1,0),E(0,2,1),D1(0,0,2),F(1,0,0),=(-1,1,1),=(-1,0,2),∴·=3,||=,||=,∴cos〈,〉==.即OE与FD1所成的角的余弦值为.5.在长方体ABCD-A1B1C1D1中,AB=2,BC=AA1=1,则D1C1与平面A1BC1所成角的正弦值为________.【答案】【解析】如图,建立空间直角坐标系Dxyz,则D1(0,0,1),C1(0,2,1),A1(1,0,1),B(1,2,0),∴=(0,2,0),设平面A1BC1的一个法向量为n=(x,y,z),由得,令y=1,得n=(2,1,2),设D1C1与平面A1BC1所成角为θ,则sin θ=|cos〈,n〉|===.6.平行四边形中,且以为折线,把折起,使平面平面,连接(1)求证:;(2)求二面角的余弦值.【答案】(1)参考解析;(2)【解析】(1)直线与直线垂直的证明通过转化为证明直线与平面垂直,由于通过翻折为两个垂直的平面所以只需证明直线AB垂直与两个平面的交线BD即可,通过已知条件利用余弦定理即可得到直角.(2)求二面角的问题通常就是建立空间直角坐标系,根据BD与DC垂直来建立.通过写出相应点的坐标,以及相应的平面内的向量,确定两平面的法向量,并求出法向量的夹角,再判断法向量的夹角与二面角的大小是相等还是互补,即可得到结论.试题解析:(1)在中,所以所以,因为平面平面,所以平面,所以;…3分(2)在四面体ABCD中,以D为原点,DB为轴,DC为轴,过D垂直于平面BDC的射线为轴,建立如图的空间直角坐标系.则D(0,0,0),B(,0,0),C(0,1,0),A(,0,1)设平面ABC的法向量为,而由得:取再设平面DAC的法向量为而由得:取所以即二面角B-AC-D的余弦值是【考点】1.线线垂直的判定.2.面面垂直性质.3.二面角的求法.4.空间坐标系的应用.5.法向量的求法.7.如图,在四棱锥P-ABCD中,已知PB⊥底面ABCD,BC⊥AB,AD∥BC,AB=AD=2,CD⊥PD,异面直线PA和CD所成角等于60°.(1)求证:面PCD⊥面PBD;(2)求直线PC和平面PAD所成角的正弦值的大小;(3)在棱PA上是否存在一点E,使得二面角A-BE-D的余弦值为?若存在,指出点E在棱PA上的位置,若不存在,说明理由.【答案】(1)见解析(2)存在【解析】(1)证明:PB⊥底面ABCD,∴PD⊥CD,又∵CD⊥PD,PD∩PB=P,PD,PB⊂平面PBD.∴CD⊥平面PBD,又CD⊂平面PCD,∴平面PCD⊥平面PBD.(2)如图,以B为原点,BA,BC,BP所在直线分别为x,y,z轴,建立空间直角坐标系,设BC=a,BP=b,则B(0,0,0),A(2,0,0),C(0,a,0),D(2,2,0),P(0,0,b).∵=(2,2,-b),=(2,2-a,0),CD⊥PD,∴·=0,∴4+4-2a=0,a=4,又=(2,0,-b),=(2,-2,0),异面直线PA和CD所成角等于60°,∴=,即=,解得b=2,=(0,4,-2),=(0,2,0),=(2,0,-2).设平面PAD的一个法向量为n1=(x1,y1,z1),则由得取n1=(1,0,1),∵sin θ===,∴直线PC和平面PAD所成角的正弦值为.(3)解假设存在,设=λ,且E(x,y,z),则(x,y,z-2)=λ(2,0,-2),E(2λ,0,2-2λ),设平面DEB的一个法向量为n2=(x2,y2,z2),则由得取n2=(λ-1,1-λ,λ),又平面ABE的法向量n3=(0,1,0),由cos θ==,得=,解得λ=或λ=2(不合题意).∴存在这样的E点,E为棱PA上的靠近A的三等分点.8.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,O为AC与BD的交点,E为PB上任意一点.(1)证明:平面EAC⊥平面PBD;(2)若PD∥平面EAC,并且二面角B-AE-C的大小为45°,求PD∶AD的值.【答案】(1)见解析(2)∶2【解析】(1)证明因为PD⊥平面ABCD,∴PD⊥AC,又ABCD是菱形,∴BD⊥AC,又BD∩PD=D,故AC⊥平面PBD,又AC⊂平面EAC.所以平面EAC⊥平面PBD.(2)解连接OE,因为PD∥平面EAC,所以PD∥OE,所以OE⊥平面ABCD,又O是BD的中点,故此时E为PB的中点,以点O为坐标原点,射线OA,OB,OE所在直线分别为x,y,z轴,建立空间直角坐标系O-xyz.设OB=m,OE=h,则OA=m,A,B(0,m,0),E(0,0,h),=(-m,m,0),=(0,-m,h),向量n1=(0,1,0)为平面AEC的一个法向量,设平面ABE的一个法向量n2=(x,y,z)则n2·=0,且n2·=0,即-mx+my=0且-my+hz=0.取x=1,则y=,z=,则n2=,∴cos 45°=|cos〈n1,n2〉|===,解得=,故PD∶AD=2h∶2m=h∶m=∶2.9.如图,四边形ABCD为矩形,PD⊥平面ABCD,PD∥QA,QA=AD=PD.(1)求证:平面PQC⊥平面DCQ;(2)若二面角Q-BP-C的余弦值为-,求的值.【答案】(1)见解析(2)1【解析】(1)证明:设AD=1,则DQ=,DP=2,又∵PD∥QA,∴∠PDQ=∠AQD=45°,在△DPQ中,由余弦定理可得PQ=.∴DQ2+PQ2=DP2,∴PQ⊥DQ,又∵PD⊥平面ABCD,∴PD⊥DC,∵CD⊥DA,DA∩PD=D,∴CD⊥平面ADPQ.∵PQ⊂平面ADPQ,∴CD⊥PQ,又∵CD∩DQ=D,∴PQ⊥平面DCQ.又PQ⊂平面PQC,所以平面PQC⊥平面DCQ.(2)解如图,以D为坐标原点,DA,DP,DC所在直线为x轴,y轴,z轴,建立空间直角坐标系D-xyz.设AD=1,AB=m(m>0).依题意有D(0,0,0),C(0,0,m),P(0,2,0),Q(1,1,0),B(1,0,m),则=(1,0,0),=(-1,2,-m),=(1,-1,0),设n1=(x1,y1,z1)是平面PBC的法向量,则即因此可取n1=(0,m,2).设n2=(x2,y2,z2)是平面PBQ的法向量,则即可取n2=(m,m,1).又∵二面角Q-BP-C的余弦值为-,∴|cos 〈n1,n2〉|=|-|.∴=,整理得m4+7m2-8=0.又∵m>0,解得m=1.因此,所求的值为110.在等腰梯形ABCD中,AD∥BC,AD=BC,∠ABC=60°,N是BC的中点,将梯形ABCD绕AB旋转90°,得到梯形ABC′D′(如图).(1)求证:AC⊥平面ABC′;(2)求证:C′N∥平面ADD′;(3)求二面角A-C′N-C的余弦值.【答案】(1)见解析(2)见解析(3)-【解析】(1)证明∵AD=BC,N是BC的中点,∴AD=NC,又AD∥BC,∴四边形ANCD 是平行四边形,∴AN=DC,又∠ABC=60°,∴AB=BN=AD,∴四边形ANCD是菱形,∴∠ACB=∠DCB=30°,∴∠BAC=90°,即AC⊥AB,又平面C′BA⊥平面ABC,平面C′BA∩平面ABC=AB,∴AC⊥平面ABC′.(2)证明:∵AD∥BC,AD′∥BC′,AD∩AD′=A,BC∩BC′=B,∴平面ADD′∥平面BCC′,又C′N⊂平面BCC′,∴C′N∥平面ADD′.(3)解:∵AC⊥平面ABC′,AC′⊥平面ABC.如图建立空间直角坐标系,设AB=1,则B(1,0,0),C(0,,0),C′(0,0,),N,∴′=(-1,0,),′=(0,-,),设平面C′NC的法向量为n=(x,y,z),则即取z=1,则x=,y=1,∴n=(,1,1).∵AC′⊥平面ABC,∴平面C′AN⊥平面ABC,又BD⊥AN,平面C′AN∩平面ABC=AN,∴BD⊥平面C′AN,BD与AN交于点O,O则为AN的中点,O,∴平面C′AN的法向量=.∴cos〈n,〉==,由图形可知二面角A-C′N-C为钝角,所以二面角A-C′N-C的余弦值为-11.如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F且EF=,则下列结论中错误的是 ().A.AC⊥BEB.EF∥平面ABCDC.三棱锥A-BEF的体积为定值D.异面直线AE,BF所成的角为定值【答案】D【解析】∵AC⊥平面BB1D1D,又BE⊂平面BB1,D1D.∴AC⊥BE,故A正确.∵B1D1∥平面ABCD,又E、F在直线D1B1上运动,∴EF∥平面ABCD,故B正确.C中由于点B到直线B1D1的距离不变,故△BEF的面积为定值,又点A到平面BEF的距离为,故VA-BEF为定值.当点E在D1处,点F为D1B1的中点时,建立空间直角坐标系,如图所示,可得A(1,1,0),B(0,1,0),E(1,0,1),F,∴=(0,-1,1),=,∴·=.又||=,||=,∴cos〈,〉==. ∴此时异面直线AE与BF成30°角.②当点E为D1B1的中点,点F在B1处时,此时E,F(0,1,1),∴=,=(0,0,1),∴·=1,||=,∴cos〈,〉===≠,故选D.12.已知正方体的棱长为,,点N为的中点,则()A.B.C.D.【答案】A【解析】以为原点,分别以所在直线为x轴,y轴,z轴建立空间直角坐标系,则A(0,0,a),N(a,0,),(a,a,0),设M(x,y,z),因为,所以(x-0,y-0,z-a)=(a-x,a-y,0-z)即,解得,即M(,,),所以=,故选A.【考点】空间向量的坐标运算和向量的模.13.如图所示,四棱锥S ABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角P AC D的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,试说明理由.【答案】(1)证明详见解析;(2)30°;(3)存在 SE∶EC=2∶1【解析】(1)设AC交BD于O,以、、分别为S,D,C,x轴、y轴、z轴的正方向,建立空间直角坐标系,则S,D,C,求出,的坐标,并计算得到·=0,从而AC⊥SD.(2)为平面PAC的一个法向量,为平面DAC的一个法向量,向量与的夹角等于二面角P AC D的平面角,根据向量的夹角公式计算出与的夹角即可.(3)假设存在一点E使BE∥平面PAC,设=t(0≤t≤1),则= +=+t,因为·=0,可建立关于t的等式,解之即可.试题解析:(1)证明:连接BD,设AC交BD于O,由题意知SO⊥平面ABCD,以O为坐标原点,、、分别为x轴、y轴、z轴的正方向,建立空间直角坐标系.设底面边长为a,,则高SO= a.于是S,D,C,=,=,·=0,故OC⊥SD,从而AC⊥SD. 4分(2)解:由题设知,平面PAC的一个法向量为=,平面DAC的一个法向量为=,则cos<,>==,故所求二面角的大小为30°. 8分(3)解:在棱SC上存在一点E使BE∥平面PAC.,由(2)知是平面PAC的一个法向量,且=,=, 设=t(0≤t≤1),=+=+t=,而·=0t=,即当SE∶EC=2∶1时,BE∥平面PAC. 12分【考点】1.空间两向量垂直的充要条件;2.二面角;3.直线与平面平行判定.14.如图在四棱锥中,底面是边长为的正方形,侧面底面,且.(1)求证:面平面;(2)求二面角的余弦值.【答案】(1)证明过程详见解析;(2).【解析】本题主要以四棱锥为几何背景考查线面垂直、面面垂直的判定以及二面角的求法,可以运用传统几何法,也可以用空间向量法求解,突出考查空间想象能力和计算能力.第一问,法一,先利用面面垂直的性质判断出,从而平面,所以垂直于面内的任意的线,由,判断是等腰直角三角形,所以且,所以面,利用面面垂直的判定定理得面面垂直,法二,利用空间向量法,通过证明,其它过程与法一相同;第二问,由第一问得到平面的法向量为,而平面的法向量需要计算求出,,所以,最后用夹角公式求夹角余弦值.试题解析:(1)解法一:因为面面平面面为正方形,,平面所以平面∴ 2分又,所以是等腰直角三角形,且,即,,且、面,面又面,∴面面. 6分解法二:如图,取的中点, 连结,.∵, ∴.∵侧面底面,平面平面,∴平面,而分别为的中点,∴,又是正方形,故.∵,∴,.以为原点,向量为轴建立空间直线坐标系,则有,,,,,.∵为的中点, ∴ 2分(1)∵,,∴,∴,从而,又,,∴平面,而平面,∴平面平面. 6分(2)由(1)知平面的法向量为,设平面的法向量为,∵,∴由,,可得取,则故.∴,即二面角的余弦值为, 12分【考点】1.线面垂直;2.空间向量法;3.面面垂直;4.夹角公式.15.斜三棱柱,其中向量,三个向量之间的夹角均为,点分别在上且,=4,如图(Ⅰ)把向量用向量表示出来,并求;(Ⅱ)把向量用表示;(Ⅲ)求与所成角的余弦值.【答案】(Ⅰ),;(Ⅱ);(Ⅲ)与所成的角的余弦值.【解析】(Ⅰ)把向量用向量表示出来,像这一类题,先找以A为始点,以M为终点的封闭图形,因为向量是用向量表示出来,而,可在平面找,然后转化为与共线的向量,可求得,求,求向量的模,往往转化为模的平方来解,由,故,利用数量积展开,由,之间的夹角均为,可求得的值;(Ⅱ)把向量用表示,和(Ⅰ)解题思想一样,只是他在空间中找;(Ⅲ)求与所成角的余弦值,利用,分别求出,即可.试题解析:(Ⅰ),所以,因为,所以(Ⅱ),(Ⅲ),,,COS=即为与所成的角的余弦值.【考点】向量加法与减法的几何意义,向量的夹角.16.已知:四棱锥P—ABCD的底面为直角梯形,且AB∥CD,∠DAB=90o,DC=2AD=2AB,侧面PAD与底面垂直,PA=PD,点M为侧棱PC上一点.(1)若PA=AD,求PB与平面PAD的所成角大小;(2)问多大时,AM⊥平面PDB可能成立?【答案】(1)(2)AM⊥平面PDB不可能成立.【解析】解:(1)以AD中点O为坐标原点,建立如图所示空间直角坐标系,设AB=2则 2分平面PAD的法向量就是4分设所求夹角为,则 5分(2)设, 7分若AM⊥平面PDB,则 8分得不可能同时成立,AM⊥平面PDB不可能成立. 10分【考点】空间中垂直问题以及线面角点评:主要是考查了线面角的求解,以及线面垂直的证明,属于中档题。
高三立体几何大题专题(用空间向量解决立体几何类问题)
1【知识梳理】一、空间向量的概念及相关运算1、空间向量基本定理、空间向量基本定理如果三个向量,,a b c r r r不共面,那么对空间任一向量p xa yb zc =++u r r r r,,a b c r r r称为基向量。
称为基向量。
2、空间直角坐标系的建立、空间直角坐标系的建立分别以互相垂直的三个基向量k j i ρρρ,,的方向为正方向建立三条数轴:x 轴,y 轴和z 轴。
则轴。
则a xi y j zk =++r r r r(x,y,z )称为空间直角坐标。
)称为空间直角坐标。
注:假如没有三条互相垂直的向量,需要添加辅助线构造,在题目中找出互相垂直的两个面,通过做垂线等方法来建立即可。
建立即可。
3、空间向量运算的坐标表示、空间向量运算的坐标表示(1)若()()111222,,,,,a x y z b x y z ==r r ,则:()121212,,a b x x y y z z ±=±±±r r()111,,a x y z λλλλ=r 121212a b x x y y z z ⋅=++r r 错误!未找到引用源。
121212//,,a b a b x x y y z z λλλλ⇔=⇔===r r r r222111a a a x y z =⋅=++r r r .a b ⋅r r =a rcos ,b a b 〈〉r r r .cos ,a b a b a b ⋅〈〉=r r r r r r121212222222111222cos ,x x y y z za b a b ab x y z x y z ++⋅〈〉==++⋅++r r r r r r (2)(2)设设()()111222,,,,,A x y z B x y z ==则()212121,,AB OB OA x x y y z z =-=---u u u r r r(3)()111,,x y z A ,()222,,x y z B =,则()()()222212121d x x y y z zAB =AB =-+-+-u u u r二、应用:平面的法向量的求法:1、建立恰当的直角坐标系、建立恰当的直角坐标系2、设平面法向量n =(x ,y ,z )3、在平面内找出两个不共线的向量,记为a =(a1,a2, a3) b =(b1,b2,b3)4、根据法向量的定义建立方程组①n*a =0 ②n*b =05、解方程组,取其中一组解即可。
湖北省黄冈中学高三数学平面向量及其应用测试题 百度文库
一、多选题1.在ABC 中,a ,b ,c 分别是内角A ,B ,C 2sin c A =,且02C <<π,4b =,则以下说法正确的是( )A .3C π=B .若72c =,则1cos 7B =C .若sin 2cos sin A B C =,则ABC 是等边三角形D .若ABC 的面积是42.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S .下列ABC 有关的结论,正确的是( ) A .cos cos 0A B +>B .若a b >,则cos2cos2A B <C .24sin sin sin S R A B C =,其中R 为ABC 外接圆的半径D .若ABC 为非直角三角形,则tan tan tan tan tan tan A B C A B C ++= 3.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( ) A .::sin :sin :sin a b c A B C = B .若sin 2sin 2A B =,则a b = C .若sin sin A B >,则A B >D .sin sin sin +=+a b cA B C4.在△ABC 中,点E ,F 分别是边BC 和AC 上的中点,P 是AE 与BF 的交点,则有( )A .1122AE AB AC →→→=+B .2AB EF →→=C .1133CP CA CB →→→=+D .2233CP CA CB →→→=+5.下列结论正确的是( )A .在ABC 中,若AB >,则sin sin A B >B .在锐角三角形ABC 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则ABC 为等腰三角形D .在ABC 中,若3b =,60A =︒,三角形面积S = 6.以下关于正弦定理或其变形正确的有( ) A .在ABC 中,a :b :c =sin A :sin B :sin C B .在ABC 中,若sin 2A =sin 2B ,则a =bC .在ABC 中,若sin A >sin B ,则A >B ,若A >B ,则sin A >sin B 都成立D .在ABC 中,sin sin sin +=+a b cA B C7.在RtABC 中,BD 为斜边AC 上的高,下列结论中正确的是( )A .2AB AB AC B .2BC CB AC C .2ACAB BDD .2BDBA BDBC BD8.在ABC 中,若30B =︒,23AB =,2AC =,则C 的值可以是( ) A .30° B .60°C .120°D .150°9.如图,在平行四边形ABCD 中,,E F 分别为线段,AD CD 的中点,AFCE G =,则( )A .12AF AD AB =+ B .1()2EF AD AB =+C .2133AG AD AB =- D .3BG GD =10.在△ABC 中,若cos cos a A b B =,则△ABC 的形状可能为( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形11.在ABC 中,15a =,20b =,30A =,则cos B =( ) A .5B .23C .23-D 512.下列各组向量中,不能作为基底的是( ) A .()10,0e =,()21,1=eB .()11,2e =,()22,1e =-C .()13,4e =-,234,55⎛⎫=- ⎪⎝⎭eD .()12,6=e ,()21,3=--e13.如图,46⨯的方格纸(小正方形的边长为1)中有一个向量OA (以图中的格点O 为起点,格点A 为终点),则( )A .分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有11个B .满足10OA OB -=B 共有3个C .存在格点B ,C ,使得OA OB OC =+D .满足1OA OB ⋅=的格点B 共有4个14.已知,a b 为非零向量,则下列命题中正确的是( ) A .若a b a b +=+,则a 与b 方向相同 B .若a b a b +=-,则a 与b 方向相反 C .若a b a b +=-,则a 与b 有相等的模D .若a b a b -=-,则a 与b 方向相同15.题目文件丢失!二、平面向量及其应用选择题16.ABC 中,5AB AC ==,6BC =,则此三角形的外接圆半径是( ) A .4B .72C .258D .25917.下列说法中说法正确的有( )①零向量与任一向量平行;②若//a b ,则()a b R λλ=∈;③()()a b c a b c ⋅⋅=⋅⋅④||||||a b a b +≥+;⑤若0AB BC CA ++=,则A ,B ,C 为一个三角形的三个顶点;⑥一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底; A .①④B .①②④C .①②⑤D .③⑥18.已知在四边形ABCD 中, 2, 4,53AB a b BC a b CD a b =--=+=+,则四边形ABCD 的形状是( )A .矩形B .梯形C .平行四边形D .以上都不对19.a ,b 为单位向量,且27a b +=,则向量a ,b 夹角为( )A .30B .45︒C .60︒D .90︒20.ABC ∆内有一点O ,满足3450OA OB OC ++=,则OBC ∆与ABC ∆的面积之比为( ) A .1:4B .4:5C .2:3D .3:521.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O ,H 分别是△ABC 的外心、垂心,且M 为BC 中点,则 ( )A .33AB AC HM MO +=+ B .33AB AC HM MO +=- C .24AB AC HM MO +=+D .24AB AC HM MO +=-22.在△ABC 中,AB =a ,BC =b ,且a b ⋅>0,则△ABC 是( ) A .锐角三角形 B .直角三角形C .等腰直角三角形D .钝角三角形23.在ABC ∆中,若cos cos a A b B =,则ABC 的形状一定是( )A .等腰直角三角形B .直角三角形C .等腰三角形D .等腰或直角三角形24.在ABC ∆中,已知2AB =,4AC =,若点G 、W 分别为ABC ∆的重心和外心,则()AG AW BC +⋅=( )A .4B .6C .10D .1425.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( ) A .1()2a b + B .1()2a b - C .12a b + D .12a b +26.已知1a b ==,12a b ⋅=,(),1c m m =-,(),1d n n =-(m ,n R ∈).存在a ,b ,对于任意实数m ,n ,不等式a c b d T -+-≥恒成立,则实数T 的取值范围为( ) A .(,32⎤-∞+⎦B .)32,⎡++∞⎣C .(,32⎤-∞-⎦D .)32,⎡-+∞⎣27.如图所示,在山底A 处测得山顶B 的仰角为45︒,沿倾斜角为30的山坡向山顶走1000米到达S 点,又测得山顶的仰角为75︒,则山高BC =( )A .500米B .1500米C .1200米D .1000米28.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x上,线段AB 为圆C的直径,则PA PB ⋅的最小值为() A .2B .52C .3D .7229.在ABC 中,()2BC BA AC AC +⋅=,则ABC 的形状一定是( )A .等边三角形B .等腰三角形C .等腰直角三角形D .直角三角形30.若两个非零向量a ,b 满足2a b a b b +=-=,则向量a b +与a 的夹角为( ) A .3π B .23π C .56π D .6π 31.已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且•••PA PB PB PC PC PA ==,则点O ,N ,P 依次是ABC ∆的( ) (注:三角形的三条高线交于一点,此点为三角型的垂心) A .重心外心垂心 B .重心外心内心 C .外心重心垂心 D .外心重心内心32.如图所示,设P 为ABC ∆所在平面内的一点,并且1142AP AB AC =+,则BPC ∆与ABC ∆的面积之比等于( )A .25B .35C .34D .1433.在ABC ∆中,8AB =,6AC =,60A ∠=,M 为ABC ∆的外心,若AM AB AC λμ=+,λ、R μ∈,则43λμ+=( )A .34B .53C .73D .8334.如图,在ABC 中,14AD AB →→=,12AE AC →→=,BE 和CD 相交于点F ,则向量AF →等于( )A .1277AB AC →→+B .1377AB AC →→+C .121414AB AC →→+ D .131414AB AC →→+ 35.如图,ADC 是等边三角形,ABC 是等腰直角三角形,90ACB ∠︒=,BD 与AC 交于E 点.若2AB =,则AE 的长为( )A 62B .1(62)2C 62D .1(62)2【参考答案】***试卷处理标记,请不要删除一、多选题 1.AC 【分析】对于,利用正弦定理可将条件转化得到,即可求出; 对于,利用正弦定理可求得,进而可得;对于,利用正弦定理条件可转化为,结合原题干条件可得,进而求得; 对于,根据三角形面积公式求得,利 解析:AC 【分析】对于A 32sin sin A C A =,即可求出C ; 对于B ,利用正弦定理可求得sin B ,进而可得cos B ;对于C ,利用正弦定理条件可转化为2cos a c B =,结合原题干条件可得B ,进而求得A B C ==;对于D ,根据三角形面积公式求得a ,利用余弦定理求得c ,进而由正弦定理求得R . 【详解】32sin a c A =32sin sin A C A =, 因为sin 0A ≠,故3sin C =, 因为(0,)2C π∈,则3C π=,故A 正确;若72c =,则由正弦定理可知sin sin c b C B =,则4343sin sin 72b B Cc == 因为(0,)B π∈,则2481cos 11497B sin B =±-±-±,故B 错误; 若sin 2cos sin A B C =,根据正弦定理可得2cos a c B =,2sinc A =,即sina A=sin2cosA c B=,所以sin A B=,因为23A B Cππ+=-=,则23A Bπ=-,故2sin()3B Bπ-=,1sin2B B B+=,即1sin cos22B B=,解得tan B=3Bπ=,则3Aπ=,即3A B Cπ===,所以ABC是等边三角形,故C正确;若ABC的面积是1sin2ab C=2a=,由余弦定理可得22212cos416224122c a b ab C=+-=+-⨯⨯⨯=,即c=设三角形的外接圆半径是R,由正弦定理可得24sincRC===,则该三角形外接圆半径为2,故D错误,故选:AC.【点睛】本题考查正余弦定理的应用及同角三角函数的基本关系和两角和与差的三角公式,转化思想,计算能力,属于中档题.2.ABD【分析】对于A,利用及余弦函数单调性,即可判断;对于B,由,可得,根据二倍角的余弦公式,即可判断;对于C,利用和正弦定理化简,即可判断;对于D,利用两角和的正切公式进行运算,即可判断.【解析:ABD【分析】对于A,利用A Bπ+<及余弦函数单调性,即可判断;对于B,由a b>,可得sin sinA B>,根据二倍角的余弦公式,即可判断;对于C,利用in12sS ab C=和正弦定理化简,即可判断;对于D,利用两角和的正切公式进行运算,即可判断.【详解】对于A,∵A Bπ+<,∴0A Bππ<<-<,根据余弦函数单调性,可得()cos cos cosA B Bπ>-=-,∴cos cos0A B+>,故A正确;对于B ,若sin sin a b A B >⇔>,则22sin sin A B >,则2212sin 12sin A B -<-,即cos2cos2A B <,故B 正确;对于C ,211sin 2sin 2sin sin 2sin sin sin 22S ab C R A R B C R A B C ==⋅⋅⋅=,故C 错误;对于D ,在ABC 为非直角三角形,()tan tan tan tan 1tan tan B CA B C B C+=-+=--⋅,则tan tan tan tan tan tan A B C A B C ++=,故D 正确. 故选:ABD. 【点睛】本题主要考查了正弦定理在解三角形中的应用,三角函数基本性质.考查了推理和归纳的能力.3.ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在,由正弦定理得,则,故A 正确; 对于B ,若,则或,所以和不一定相等,故B 错误; 对于C ,若,由正弦定理知,由于三角形中,大边对大角解析:ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在ABC ,由正弦定理得2sin sin sin a b cR A B C===,则::2sin :2sin :2sin sin :sin :sin a b c R A R B R C A B C ==,故A 正确;对于B ,若sin 2sin 2A B =,则A B =或2A B π+=,所以a 和b 不一定相等,故B 错误;对于C ,若sin sin A B >,由正弦定理知a b >,由于三角形中,大边对大角,所以A B >,故C 正确;对于D ,由正弦定理得2sin sin sin a b cR A B C===,则2sin 2sin 2sin sin sin sin b c R B R CR B C B C ++==++,故D 正确.故选:ACD. 【点睛】本题考查正弦定理的应用,属于基础题.4.AC 【分析】由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:根据三角形中线性质和平行四边形法则知, , A 是正确的;因为EF 是中位线,所以B 是正确的; 根据三角形重心解析:AC 【分析】由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:根据三角形中线性质和平行四边形法则知,111()()222AE AB BE AB BC AB AC AB AC AB →→→→→→→→→→=+=+=+-=+, A 是正确的;因为EF 是中位线,所以B 是正确的; 根据三角形重心性质知,CP =2PG ,所以22113323CP CG CA CB CA CB →→→→→→⎛⎫⎛⎫==⨯+=+ ⎪ ⎪⎝⎭⎝⎭,所以C 是正确的,D 错误. 故选:AC 【点睛】本题主要考查了平面向量基本定理的简单应用,熟记一些基本结论是求解问题的关键,属于中档题.5.AB 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】中,,由得,A 正确;锐角三角形中,,∴,B 正确; 中,解析:AB 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】ABC 中,A B a b >⇔>,由sin sin a b A B=得sin sin A B >,A 正确; 锐角三角形ABC 中,222cos 02b c a A bc+-=>,∴2220b c a +->,B 正确;ABC 中,若sin 2sin 2A B =,则22A B =或22180A B +=︒,即A B =或90A B +=︒,ABC 为等腰三角形或直角三角形,C 错;ABC 中,若3b =,60A =︒,三角形面积S =11sin 3sin 6022S bc A c ==⨯︒=4c =,∴2222cos 13a b c bc A =+-=,a =,∴2sin a R A ===,R =D 错. 故选:AB . 【点睛】本题考查正弦定理,余弦定理,正弦函数的性质,三角形面积公式等,考查学生的逻辑推理能力,分析问题解决问题的能力.6.ACD 【分析】对于A ,由正弦定理得a :b :c =sinA :sinB :sinC ,故该选项正确; 对于B ,由题得A =B 或2A+2B =π,即得a =b 或a2+b2=c2,故该选项错误; 对于C ,在ABC 中解析:ACD 【分析】对于A ,由正弦定理得a :b :c =sin A :sin B :sin C ,故该选项正确; 对于B ,由题得A =B 或2A +2B =π,即得a =b 或a 2+b 2=c 2,故该选项错误; 对于C ,在ABC 中,由正弦定理可得A >B 是sin A >sin B 的充要条件,故该选项正确; 对于D ,由正弦定理可得右边=2sin 2sin 2sin sin R B R CR B C+=+=左边,故该选项正确.【详解】对于A ,由正弦定理2sin sin sin a b cR A B C===,可得a :b :c =2R sin A :2R sin B :2R sin C =sin A :sin B :sin C ,故该选项正确;对于B ,由sin2A =sin2B ,可得A =B 或2A +2B =π,即A =B 或A +B =2π,∴a =b 或a 2+b 2=c 2,故该选项错误;对于C ,在ABC 中,由正弦定理可得sin A >sin B ⇔a >b ⇔A >B ,因此A >B 是sin A >sin B 的充要条件,故该选项正确;对于D ,由正弦定理2sin sin sin a b cR A B C===,可得右边=2sin 2sin 2sin sin sin sin b c R B R CR B C B C ++==++=左边,故该选项正确.故选:ACD. 【点睛】本题主要考查正弦定理及其变形,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.AD 【分析】根据向量的数量积关系判断各个选项的正误. 【详解】对于A ,,故A 正确; 对于B ,,故B 错误; 对于C ,,故C 错误; 对于D ,, ,故D 正确. 故选:AD. 【点睛】 本题考查三角形解析:AD 【分析】根据向量的数量积关系判断各个选项的正误. 【详解】 对于A ,2cos AB AB AC AB AC A AB ACAB AC,故A 正确;对于B ,2cos cos CB CB AC CB AC C CB AC C CB ACCB AC,故B 错误; 对于C ,2cos cos BD AB BD AB BD ABD AB BD ABD AB BDBDAB,故C 错误; 对于D ,2cos BD BA BDBA BD ABD BA BD BD BA,2cos BD BC BDBC BD CBD BC BDBDBC,故D 正确.故选:AD. 【点睛】本题考查三角形中的向量的数量积问题,属于基础题.8.BC 【分析】由题意结合正弦定理可得,再由即可得解. 【详解】由正弦定理可得,所以, 又,所以, 所以或. 故选:BC. 【点睛】本题考查了正弦定理的应用,考查了运算求解能力,属于基础题.解析:BC 【分析】由题意结合正弦定理可得sin C =()0,150C ∈︒︒即可得解. 【详解】由正弦定理可得sin sin AB AC C B =,所以1sin 2sin 2AB B C AC ⋅===, 又30B =︒,所以()0,150C ∈︒︒, 所以60C =︒或120C =︒. 故选:BC.【点睛】本题考查了正弦定理的应用,考查了运算求解能力,属于基础题.9.AB 【分析】由向量的线性运算,结合其几何应用求得、、、,即可判断选项的正误 【详解】 ,即A 正确 ,即B 正确连接AC ,知G 是△ADC 的中线交点, 如下图示由其性质有 ∴,即C 错误 同理 ,解析:AB 【分析】由向量的线性运算,结合其几何应用求得12AF AD AB =+、1()2EF AD AB =+、2133AG AD AB =+、2BG GD =,即可判断选项的正误 【详解】 1122AF AD DF AD DC AD AB =+=+=+,即A 正确 11()()22EF ED DF AD DC AD AB =+=+=+,即B 正确连接AC ,知G 是△ADC 的中线交点, 如下图示由其性质有||||1||||2GF GE AG CG == ∴211121()333333AG AE AC AD AB BC AD AB =+=++=+,即C 错误 同理21212()()33333BG BF BA BC CF BA AD AB =+=++=-211()333DG DF DA AB DA =+=+,即1()3GD AD AB =- ∴2BG GD =,即D 错误 故选:AB 【点睛】本题考查了向量线性运算及其几何应用,其中结合了中线的性质:三角形中线的交点分中线为1:2,以及利用三点共线时,线外一点与三点的连线所得向量的线性关系10.ABCD 【分析】应用正弦定理将边化角,由二倍角公式有即或,进而有△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形 【详解】 根据正弦定理 , 即. , 或. 即或解析:ABCD 【分析】应用正弦定理将边化角,由二倍角公式有sin 2sin 2A B =即A B =或2A B π+=,进而有△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形 【详解】根据正弦定理sin sin a bA B= cos cos a A b B =sin cos sin cos A A B B =, 即sin 2sin 2A B =. 2,2(0,2)A B π∈,22A B =或22A B π+=. 即A B =或2A B π+=,△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形. 故选:ABCD 【点睛】本题考查了正弦定理的边化角,二倍角公式解三角形判断三角形的形状,注意三角形内角和为180°11.AD 【分析】利用正弦定理可求得的值,再利用同角三角函数的平方关系可求得的值. 【详解】由正弦定理,可得, ,则,所以,为锐角或钝角. 因此,. 故选:AD. 【点睛】本题考查利用正弦定理与同解析:AD 【分析】利用正弦定理可求得sin B 的值,再利用同角三角函数的平方关系可求得cos B 的值. 【详解】由正弦定理sin sin b a B A=,可得120sin 22sin 153b A B a ⨯===, b a >,则30B A >=,所以,B 为锐角或钝角.因此,cos B ==. 故选:AD. 【点睛】本题考查利用正弦定理与同角三角函数的基本关系求值,考查计算能力,属于基础题.12.ACD 【分析】依次判断各选项中的两向量是否共线即可. 【详解】A ,C ,D 中向量与共线,不能作为基底;B 中,不共线,所以可作为一组基底. 【点睛】本题主要考查平面向量的基本定理及基底的定义,属解析:ACD 【分析】依次判断各选项中的两向量是否共线即可. 【详解】A ,C ,D 中向量1e 与2e 共线,不能作为基底;B 中1e ,2e 不共线,所以可作为一组基底.本题主要考查平面向量的基本定理及基底的定义,属于基础题.13.BCD 【分析】根据向量的定义及运算逐个分析选项,确定结果. 【详解】解:分别以图中的格点为起点和终点的向量中,与是相反向量的共有 18个,故错,以为原点建立平面直角坐标系,, 设,若, 所以解析:BCD 【分析】根据向量的定义及运算逐个分析选项,确定结果. 【详解】解:分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有 18个,故A 错, 以O 为原点建立平面直角坐标系,()1,2A , 设(,)B m n ,若10OA OB -=,所以22(1)(2)10m n -+-=,(33m -,22n -,且m Z ∈,)n Z ∈, 得(0,1)B -,(2,1)-,(2,1)-共三个,故B 正确. 当(1,0)B ,(0,2)C 时,使得OA OB OC =+,故C 正确.若1OA OB ⋅=,则21m n +=,(33m -,22n -,且m Z ∈,)n Z ∈, 得(1,0)B ,(3,1)-,(1,1)-,(3,2)-共4个,故D 正确. 故选:BCD .【点睛】本题考查向量的定义,坐标运算,属于中档题.【分析】根据平面向量的平行四边形法则与三角不等式分析即可. 【详解】如图,根据平面向量的平行四边形或三角形法则,当不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有. 当同向时解析:ABD 【分析】根据平面向量的平行四边形法则与三角不等式分析即可. 【详解】如图,根据平面向量的平行四边形或三角形法则,当,a b 不共线时,根据三角形两边之和大于第三边,两边之差小于第三边有||||||||||||a b a b a b -<±<+. 当,a b 同向时有||||||a b a b +=+,||||||a b a b -=-. 当,a b 反向时有||||||||a b a b +=-,||+||||a b a b =-故选:ABD 【点睛】本题主要考查了平面向量的线性运算与三角不等式,属于基础题型.15.无二、平面向量及其应用选择题16.C 【分析】在ABC 中,根据5AB AC ==,6BC =,由余弦定理求得7cos 25A =,再由平方关系得到sin A ,然后由正弦定理2sin BCR A=求解. 【详解】在ABC 中,5AB AC ==,6BC =,由余弦定理得:2222225567cos 225525AB AC BC A AB AC +-+-===⋅⨯⨯,所以24sin 25A ==, 由正弦定理得:625224sin 425BC R A ===, 所以258R =, 此三角形的外接圆半径是258故选:C 【点睛】本题主要考查余弦定理,正弦定理的应用,还考查了运算求解的能力,属于中档题. 17.A 【分析】直接利用向量的基础知识的应用求出结果. 【详解】对于①:零向量与任一向量平行,故①正确;对于②:若//a b ,则()a b R λλ=∈,必须有0b ≠,故②错误; 对于③:()()a b c a b c ⋅⋅=⋅⋅,a 与c 不共线,故③错误; 对于④:a b a b +≥+,根据三角不等式的应用,故④正确;对于⑤:若0AB BC CA ++=,则,,A B C 为一个三角形的三个顶点,也可为0,故⑤错误;对于⑥:一个平面内,任意一对不共线的向量都可以作为该平面内所有向量的基底,故⑥错误. 综上:①④正确. 故选:A. 【点睛】本题考查的知识要点:向量的运算的应用以及相关的基础知识,主要考察学生的运算能力和转换能力,属于基础题. 18.B 【分析】计算得到BC A CD B -=,得到BCDM ,ABCM 为平行四边形,得到答案. 【详解】2, 4,53AB a b BC a b CD a b =--=+=+,则53BC AB BC B a b CD A -=+=+=.设BC BA BM +=,故BCDM ,ABCM 为平行四边形,故ABCD 为梯形.故选:B .【点睛】本题考查了根据向量判断四边形形状,意在考查学生的综合应用能力. 19.C 【分析】首先根据题的条件27a b +=,得到2()7a b +=,根据a ,b 为单位向量,求得12a b ⋅=,进而求得向量夹角. 【详解】 因为27a b +=,所以2()7a b +=,即22447a a b b +⋅+=, 因为221a b ==,所以12a b ⋅=, 所以1cos ,2a b <>=,因为向量a ,b 夹角的范围为[0,180]︒︒, 所以向量a ,b 夹角的范围为60︒, 故选:C. 【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的平方与向量模的平方是相等的,已知向量数量积求向量夹角,属于简单题目. 20.A 【解析】分析:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,利用三角形的奔驰定理,即可求解结论.详解:由题意,在ABC ∆内有一点O ,满足3450++=OA OB OC ,由奔驰定理可得::3:4:5BOC AOC BOA S S S ∆∆∆=,所以:3:121:4BOC ABC S S ∆∆==, 故选A .点睛:本题考查了向量的应用,对于向量的应用问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用,利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决. 21.D 【分析】构造符合题意的特殊三角形(例如直角三角形),然后利用平面向量的线性运算法则进行计算即可得解. 【详解】解:如图所示的Rt ABC ∆,其中角B 为直角,则垂心H 与B 重合,O 为ABC ∆的外心,OA OC ∴=,即O 为斜边AC 的中点,又M 为BC 中点,∴2AH OM =, M 为BC 中点,∴22()2(2)AB AC AM AH HM OM HM +==+=+.4224OM HM HM MO =+=-故选:D . 【点睛】本题考查平面向量的线性运算,以及三角形的三心问题,同时考查学生分析问题的能力和推理论证能力. 22.D 【分析】由数量积的定义判断B 角的大小,得三角形形状. 【详解】由题意cos()0a b a b B π⋅=->,∴cos()0B π->,cos 0B ->,cos 0B <,又B 是三角形内角,∴2B ππ<<.∴ABC 是钝角三角形. 故选:D . 【点睛】本题考查考查三角形形状的判断,解题关键是掌握数量积的定义.向量夹角的概念. 23.D 【分析】首先利用正弦定理求得sin 2sin 2A B =,进一步利用三角函数的诱导公式求出结果. 【详解】解:已知:cos cos a A b B =,利用正弦定理:2sin sin sin a b c R A B C ===, 解得:sin cos sin cos A A B B =,即sin 2sin 2A B =,所以:22A B =或21802A B =︒-,解得:A B =或90A B +=︒ 所以:ABC 的形状一定是等腰或直角三角形故选:D .【点评】本题考查的知识要点:正弦定理的应用,三角函数的诱导公式的应用,属于中档题. 24.C【解析】【分析】取BC 的中点D ,因为G 、W 分别为ABC ∆的重心和外心,则0DW BC ⋅=, 再用AB 、AC 表示AW ,AG ,BC 再根据向量的数量积的运算律计算可得.【详解】解:如图,取BC 的中点D ,因为G 、W 分别为ABC ∆的重心和外心0DW BC ∴⋅=()()22113323AG AD AB AC AB AC ∴==⨯+=+ ()12AW AD DW AB AC DW =+=++ ()()()115326AW AG AB AC AB AC DW AB AC DW +=++++=++ ()()()5566AB AC DW AB AG AW BC BC B W C BC AC D ⎡⎤∴+⋅=⋅=⋅⋅⎢++++⎥⎣⎦ ()56AB A BC C =⋅+ ()()56C AC AB AB A =⋅+- ()()222242105566AC AB =-=-= 故选:C【点睛】本题考查平面向量的数量积的定义和性质,考查三角形的重心和外心的性质及向量中点的向量表示,考查运算能力,属于中档题.25.D【分析】根据向量的加法的几何意义即可求得结果.【详解】在ABC ∆中,M 是BC 的中点,又,AB a BC b ==, 所以1122AM AB BM AB BC a b =+=+=+, 故选D.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的加法运算,属于简单题目. 26.A【分析】 不等式a c b d T -+-≥恒成立,即求a c b d -+-最小值,利用三角不等式放缩+=+()a c b d a c b d a b c d -+-≥---+,转化即求+()a b c d -+最小值,再转化为等边三角形OAB 的边AB 的中点M 和一条直线上动点N 的距离最小值. 当M N ,运动到MN CD ⊥时且,OM ON 反向时,MN 取得最小值得解.【详解】1a b ==,12a b ⋅=,易得,3a b π<>= 设,,,OA a OB b OC c OD d ====,AB 中点为M ,CD 中点为N则,A B 在单位圆上运动,且三角形OAB 是等边三角形, (.1),(,1)1CD C m m D n n k ,CD 所在直线方程为10x y +-= 因为a c b d T -+-≥恒成立, +=+()a c b d a c b d a b c d -+-≥---+,(当且仅当a c -与b d -共线同向,即a b +与c d +共线反向时等号成立)即求+()a b c d -+最小值.+()=()()a b c d OA OB OC OD -++-+=22=2OM ON NM -三角形OAB 是等边三角形,,A B 在单位圆上运动,M 是AB 中点,∴ M 的轨迹是以原点为圆心,半径为2的一个圆.又N 在直线方程为10x y +-=上运动,∴ 当M N ,运动到MN CD ⊥时且,OM ON 反向时,MN 取得最小值此时M 到直线10x y +-=的距离322MN232T NM故选:A【点睛】本题考查平面向量与几何综合问题解决向量三角不等式恒成立.平面向量与几何综合问题的求解坐标法:把问题转化为几何图形的研究,再把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.27.D【分析】作出图形,过点S 作SE AC ⊥于E ,SH AB ⊥于H ,依题意可求得SE 在BDS ∆中利用正弦定理可求BD 的长,从而可得山顶高BC .【详解】解:依题意,过S 点作SE AC ⊥于E ,SH AB ⊥于H ,30SAE ∠=︒,1000AS =米,sin30500CD SE AS ∴==︒=米,依题意,在Rt HAS ∆中,453015HAS ∠=︒-︒=︒,sin15HS AS ∴=︒,在Rt BHS ∆中,30HBS ∠=︒,22000sin15BS HS ∴==︒,在Rt BSD ∆中,sin75BD BS =︒2000sin15sin75=︒︒2000sin15cos15=︒︒1000sin30=⨯︒500=米, 1000BC BD CD ∴=+=米,故选:D .【点睛】本题主要考查正弦定理的应用,考查作图与计算的能力,属于中档题.28.B【分析】将PA PB ⋅转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB ⋅的最小值.【详解】()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-2222||||||22PC CA PC =-=-≥-52=.故选B. 【点睛】本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题.29.D【分析】先根据向量减法与向量数量积化简得边之间关系,再判断三角形形状.【详解】因为()()()222BC BA AC BC BA BC BA BC BA AC +⋅=+⋅-=-=,所以222a c b -=,即ABC 是直角三角形,选D.【点睛】判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状. ②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用πA B C ++=这个结论. 30.D【分析】根据条件利用平方法得到向量数量积的数值,结合向量数量积与夹角之间的关系进行求解即可.【详解】 ∵非零向量a ,b 满足2a b a b b +=-=, ∴平方得22a b a b +=-,即2222||2||2a b a b a b a b ++⋅=+-⋅ , 则0a b ⋅=,由2a b b +=, 平方得222||24||a b a b b ++⋅=,得223a b =,即3a b =则2a b b +=,22|3|a b a a a b b +⋅=+⋅=(),则向量a b +与a 的夹角的余弦值23223a b a cos a b a b bθ+⋅===+⋅⋅(), ,0.6πθπθ≤≤∴=, , 故选D.【点睛】本题主要考查向量数量积的应用,求解向量数量积的大小是解决本题的关键. 31.C【详解】试题分析:因为OA OB OC ==,所以O 到定点,,A B C 的距离相等,所以O 为ABC ∆的外心,由0NA NB NC ++=,则NA NB NC +=-,取AB 的中点E ,则2NA NB NE CN +=-=,所以2NE CN =,所以N 是ABC ∆的重心;由•••PA PB PB PC PC PA ==,得()0PA PC PB -⋅=,即0AC PB ⋅=,所以AC PB ⊥,同理AB PC ⊥,所以点P 为ABC ∆的垂心,故选C.考点:向量在几何中的应用.32.D【分析】由题,延长AP 交BC 于点D ,利用共线定理,以及向量的运算求得向量,,CP CA CD 的关系,可得DP 与AD 的比值,再利用面积中底面相同可得结果.【详解】延长AP 交BC 于点D ,因为A 、P 、D 三点共线,所以(1)CP mCA nCD m n =++=,设CD kCB =代入可得CP mCA nkCB =+即()(1)AP AC mAC nk AB AC AP m nk AC nk AB -=-+-⇒=--+又因为1142AP AB AC =+,即11,142nk m nk =--=,且1m n += 解得13,44m n ==所以1344CP CA CD=+可得4AD PD=因为BPC∆与ABC∆有相同的底边,所以面积之比就等于DP与AD之比所以BPC∆与ABC∆的面积之比为14故选D【点睛】本题考查了向量的基本定理,共线定理以及四则运算,解题的关键是在于向量的灵活运用,属于较难题目.33.C【分析】作出图形,先推导出212AM AB AB⋅=,同理得出212AM AC AC⋅=,由此得出关于实数λ、μ的方程组,解出这两个未知数的值,即可求出43λμ+的值.【详解】如下图所示,取线段AB的中点E,连接ME,则AM AE EM=+且EM AB⊥,()212AM AB AE EM AB AE AB EM AB AB∴⋅=+⋅=⋅+⋅=,同理可得212AM AC AC⋅=,86cos6024AB AC⋅=⨯⨯=,由221212AM AB ABAM AC AC⎧⋅=⎪⎪⎨⎪⋅=⎪⎩,可得()()3218AB AC ABAB AC ACλμλμ⎧+⋅=⎪⎨+⋅=⎪⎩,即642432243618λμλμ+=⎧⎨+=⎩,解得512λ=,29,因此,52743431293λμ+=⨯+⨯=.故选:C.【点睛】本题考查利用三角形外心的向量数量积的性质求参数的值,解题的关键就是利用三角形外心的向量数量积的性质列方程组求解,考查分析问题和解决问题的能力,属于中等题.34.B【分析】过点F 分别作//FM AB 交AC 于点M ,作//FN AC 交AB 于点N ,由平行线得出三角形相似,得出线段成比例,结合14AD AB →→=,12AE AC →→=,证出37AM AC →→=和17AN AB →→=,最后由平面向量基本定理和向量的加法法则,即可得AB →和AC →表示AF →. 【详解】 解:过点F 分别作//FM AB 交AC 于点M ,作//FN AC 交AB 于点N , 已知14AD AB →→=,12AE AC →→=, //FN AC ,则MFE ABE △△和MCF ACD △△, 则:MF ME AB AE =且MF MC AD AC=, 即:2MF ME AB AC =且14MF MC AC AB =,所以124MC MF ME AB AC AC ==, 则:8MC ME =,所以37AM AC =, 解得:37AM AC →→=, 同理//FM AB ,NBF ABE △△和NFD ACD △△, 则:NF NB AE AB =且NF ND AC AD=, 即:12NF NB AB AC =且14NF ND AC AB =,所以142NB NF ND AC AB AB ==, 则:8NB ND =,即()8AB AN AD AN -=-, 所以184AB AN AB AN ⎛⎫-=- ⎪⎝⎭,即28AB AN AB AN -=-, 得:17AN AB =, 解得:17AN AB →→=, 四边形AMFN 是平行四边形,∴由向量加法法则,得AF AN AM →→→=+, 所以1377AF AB AC →→→=+. 故选:B.【点睛】本题考查平面向量的线性运算、向量的加法法则和平面向量的基本定理,考查运算能力. 35.A【分析】由条件求得∠BCD =150°,∠CBE =15°,故∠ABE =30°,可得∠AEB =105°.计算sin105°,代入正弦定理sin30sin105AE AB =︒︒,化简求得AE 62=-. 【详解】由题意可得,AC =BC =CD =DA 2=BAC =45°,∠BCD =∠ACB +∠ACD =90°+60°=150°.又△BCD 为等腰三角形,∴∠CBE =15°,故∠ABE =45°﹣15°=30°,故∠BEC =75°,∠AEB =105°.再由 sin105°=sin (60°+45°)=sin60°cos45°+cos60°sin45°62+=, △ABE 中,由正弦定理可得sin30sin105AE AB =︒︒, ∴1622AE =+,∴AE 62=), 故选:A .【点睛】本题考查勾股定理、正弦定理的应用,两角和的正弦公式,属于中档题.。
黄冈中学高考数学知识点与典型例题
黄冈中学高考知识点与典型例题集合敬请搜索“黄冈中学高考数学知识点”结合起来看效果更好第一部分高考数学知识点重点难点解集合题首先想到Φ=方程无解一,数学思想应用1、数形结合思想在解集合题中的具体应用:数轴法, 文氏图法, 几何图形法数几文2、函数与方程思想在解集合题中具体应用:函数法方程法判别式法构造法3、分类讨论思想 在解集合题中具体应用:列举法 补集法 空集的运用 数学结合4、化归与转化思想 在解集合题中具体应用:列方程 补集法 文氏图法二,集合的含义与表示方法1、一般地,我们把研究对象统称为元素把一些元素组成的总体叫做集合2、集合元素三特性1.确定性;2.互异性;3.无序性3、 a 是集合A 的元素,a ∈A a 不属于集合A 记作 a ∉A 立体几何中体现为 点与直线/ 点与面 的关系元素与集合之间的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.4、非负整数集(自然数集)记作:N 含0正整数集N*或 N+ 不含0整数集Z 有理数集Q 实数集R3、集合表示方法: 列举法 描述法 韦恩图4、列举法:把集合中的元素一一列举出来,用大括号括上。
描述法:将集合中元素的共同特征描述出来,写在大括号内表用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:{不是直角三角形的三角形}②数学式子描述法:不等式x-3>2的解集是{x ∈R| x-3>2} {x| x-3>2}集合的分类: 有限集 无限集 空集三、集合间的基本关系“包含”关系—子集B A ⊆有两种可能立体几何中体现为 直线与面关系(a )A 是B 的一部分(b )A 与B 是同一集合。
反之: A ⊆/B B ⊇/A (c )A ∩B=A ⇔B A ⊆⇔C U B ⊆C U A(d )A ∪B=B ⇔B A ⊆⇔ C U B ⊆C U A(e )A B ⊆⇔C U A ⊆C U B2.“相等”关系(5≥5,且5≤5⇒5=5)① 任何一个集合是它本身的子集。
向量高考经典试题(附详细答案)
向量高考经典试题一、选择题1.(全国1文理)已知向量(5,6)a =-,(6,5)b =,则a 与bA .垂直B .不垂直也不平行C .平行且同向D .平行且反向 解.已知向量(5,6)a =-,(6,5)b =,30300a b ⋅=-+=,则a 与b 垂直,选A 。
2、(文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( )A .1BC .2D .4【答案】:C 【分析】:2(3,)n -a b =,由2-a b 与b 垂直可得:2(3,)(1,)30n n n n ⋅-=-+=⇒= 2=a 。
3、(文4理10)若向量,a b 满足||||1a b ==,,a b 的夹角为60°,则a a a b ⋅+⋅=______; 答案:32;解析:1311122a a ab ⋅+⋅=+⨯⨯=, 4、(天津理10) 设两个向量22(2,cos )a λλα=+-和(,sin ),2mb m α=+其中,,m λα为实数.若2,a b =则mλ的取值围是( )A.[6,1]-B.[4,8]C.(,1]-∞D.[1,6]-【答案】A【分析】由22(2,cos )a λλα=+-,(,sin ),2mb m α=+2,a b =可得2222cos 2sin m m λλαα+=⎧⎨-=+⎩,设k m λ=代入方程组可得22222cos 2sin km m k m m αα+=⎧⎨-=+⎩消去m 化简得2222cos 2sin 22k k k αα⎛⎫-=+ ⎪--⎝⎭,再化简得22422cos 2sin 022k k αα⎛⎫+-+-= ⎪--⎝⎭再令12t k =-代入上式得222(sin 1)(16182)0t t α-+++=可得2(16182)[0,4]t t -++∈解不等式得1[1,]8t ∈--因而11128k -≤≤--解得61k -≤≤.故选A5、(理11)在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是 (A )2AC AC AB =⋅ (B ) 2BC BA BC =⋅ (C )2AB AC CD =⋅ (D ) 22()()AC AB BA BC CD AB⋅⨯⋅=【答案】:C.【分析】: 2()00AC AC AB AC AC AB AC BC =⋅⇔⋅-=⇔⋅=,A 是正确的,同理B 也正确,对于D 答案可变形为2222CD AB AC BC ⋅=⋅,通过等积变换判断为正确.6、(全国2 理5)在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则λ=(A)32(B)31(C) -31(D) -32 解.在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,=CB CA λ+31,则22()33CD CA AD CA AB CA CB CA =+=+=+-=1233CA CB +,4 λ=32,选A 。
用向量方法解立体几何的的题目
用向量方法求空间角和距离前言:在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1.求空间角问题空间的角主要有:异面直线所成的角;直线和平面所成的角;(平面和平面所成的角)二面角.(1)求异面直线所成的角设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos ||||||a ba b(2)求线面角设l 是斜线l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin ||||||l nl n(3)求二面角a l ⊥,在β内b l ⊥,其方向如图,则二方法一:在α内平面角α=arccos||||a ba b 面角l αβ--的方法二:设12,,n n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平面角α=1212arccos||||n n n n2.求空间距离问题构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,像异面直线间的 距离、线面距离、面面距离都可化为点面距离来求. (1)求点面距离方法一:设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|||||cos |||AB n d AB n θ==方法二:设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO .(2)求异面直线的距离方法一:找平面β使b β⊂且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离.方法二:在a 上取一点A, 在b 上取一点B, 设a 、b 分别为异面直线a 、b 的方向向量,求n (n a ⊥,n b ⊥),则异面直线a 、b 的距离|||||cos |||AB n d AB n θ==(此方法移植于点面距离的求法).例1.如图,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是棱1111,A D A B 的中点.(Ⅰ)求异面直线1DE FC 与所成的角; (II )求1BC 和面EFBD 所成的角;(III )求1B 到面EFBD 的距离 记异面直线1DE FC与所成的角为α,解:(Ⅰ)则α等于向量1DE FC 与的夹角或其补角,11||||111111cos ||()()||||||DE FC DE FC DD D E FB B C DE FC α∴=++=(II )如图建立空间坐标系D xyz -, 则(1,0,2)DE =,(2,2,0)DB =设面EFBD 的法向量为(,,1)n x y = 由0DE n DB n ⎧⋅=⎪⎨⋅=⎪⎩得(2,2,1)n =- 又1(2,0,2)BC =- 记1BC 和面EFBD 所成的角为θ 则 1112sin |cos ,|||2||||BC n BC n BC n θ⋅=〈〉== ∴ 1BC 和面EFBD 所成的角为4π. (III )点1B 到面EFBD 的距离d等于向量1BB 在面EFBD 的法向量上的投影的绝对值,1||||BB n d n ∴==23 点评:1.作为本专题的例1,首先选择以一个容易建立空间直角坐标系的多面体―正方体为载体, 来说明空间角和距离的向量求法易于学生理解.2.解决(1)后,可让学生进一步求这两条异面直线的距离,并让学生体会一下:如果用传统方法恐怕很难(不必多讲,高考对公垂线的作法不作要求).3.完成这3道小题后,总结:对于易建立空间直角坐标系的立几题,无论求角、距离还是证明平行、垂直(是前者的特殊情况),都可用向量方法来解决,向量方法可以人人学会,它程序化,不需技巧.例2.如图,三棱柱中,已知A BCD 是边长为1的正方形,四边形B BA A '' 是矩形,。
湖北省黄冈中学高考数学二轮复习 向量及其运算习教案
向量及其运算习题课一. 教学内容:向量及其运算习题课二. 重点与难点:1. 向量的概念:向量是既有大小,又有方向的量。
向量的大小(长度)叫做向量的模,模是非负数,可以比较大小,但由于方向不能比较大小,所以,向量不可以比较大小,这是数量与向量的最大差异。
2. 向量的表示方法:(1)几何表示法。
向量可以用有向线段表示,如:A →B3. 零向量与单位向量:零向量:长度为零的向量叫做零向量,记作0。
单位向量:长度等于1个单位长度的向量叫做单位向量。
4. 平行向量、相等向量、共线向量。
平行向量(共线向量):方向相同或相反的非零向量叫做平行向量。
规定0与任一向量平行,平行向量也叫做共线向量。
相等向量:长度相等且方向相同的向量叫做相等向量。
任意两个相等的非零向量都可以用同一条有向线段表示。
5. 向量的加法:已知向量、,在平面内任取一点,作,,则向量叫a b A AB a BC b AC →=→=→做与的和,记作,即。
求两个向量和的运算,叫做向量的加a b a b AC a b +→=+法。
注意:(1)两个向量的和仍为向量。
(2)对于零向量与任一向量a 有a+0=0+a=a 。
6. 向量的加法法则(1)三角形法则:(首尾连接)(2)平行四边形法则:(共起点)7. 向量的加法运算律。
(1)交换律:a+b=b+a(2)结合律:a+(b+c)=(a+b)+c8. 相反向量:与a 长度相等,方向相反的向量叫做a 的相反向量,记作-a 。
零向量的相反向量为零向量。
相反向量性质:9. 向量的减法:向量a 加上向量b 的相反向量叫做a 与b 的差。
记求两个向量差的运算叫做向量的减法。
10. 实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下:11. 实数与向量的积的运算律:12. 一个向量与非零向量共线的充要条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b=λa 。
13. 平面向量的基本定理:如果e 1、e 2是平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使a λλλλ121122a e e =+把不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底。
向量经典例题及解析
向量经典例题及解析一、向量的基本概念与线性运算例题例1:已知向量→a=(1,2),→b=(3, - 4),求→a+→b,→a-→b。
解析:1. 对于向量的加法,如果→a=(x_1,y_1),→b=(x_2,y_2),则→a+→b=(x_1+x_2,y_1+y_2)。
- 已知→a=(1,2),→b=(3,-4),那么→a+→b=(1 + 3,2+( - 4))=(4,-2)。
2. 对于向量的减法,如果→a=(x_1,y_1),→b=(x_2,y_2),则→a-→b=(x_1-x_2,y_1-y_2)。
- 所以→a-→b=(1 - 3,2-( - 4))=(-2,6)。
例2:设→e_1,→e_2是两个不共线向量,已知→AB=2→e_1+k→e_2,→CB=→e_1+3→e_2,→CD=2→e_1-→e_2,若A,B,D三点共线,求k的值。
解析:1. 首先求→BD,因为→BD=→CD-→CB。
- 已知→CB=→e_1+3→e_2,→CD=2→e_1-→e_2,则→BD=(2→e_1-→e_2)-(→e_1+3→e_2)=→e_1-4→e_2。
2. 因为A,B,D三点共线,所以存在实数λ,使得→AB=λ→BD。
- 即2→e_1+k→e_2=λ(→e_1-4→e_2)=λ→e_1-4λ→e_2。
- 由向量相等的定义,可得<=ft{begin{array}{l}2=λ k = - 4λend{array}right.。
- 把λ = 2代入k=-4λ,得k=-8。
二、向量的数量积例题例3:已知向量→a=(3,4),→b=( - 2,1),求→a·→b,|→a|,|→b|以及cos〈→a,→b〉。
解析:1. 对于向量的数量积,如果→a=(x_1,y_1),→b=(x_2,y_2),则→a·→b=x_1x_2+y_1y_2。
- 已知→a=(3,4),→b=(-2,1),则→a·→b=3×(-2)+4×1=-6 + 4=-2。
黄冈中学高考数学典型例题3:运用向量法解题
黄冈中学高考数学典型例题详解运用向量法解题平面向量是新教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐渐加大了对这部分内容的考查力度,本节内容主要是帮助考生运用向量法来分析,解决一些相关问题.●难点磁场(★★★★★)三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:(1)BC边上的中线AM的长;(2)∠CAB的平分线AD的长;(3)cos ABC的值.●案例探究[例1]如图,已知平行六面体ABCD —A 1B 1C 1D 1ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD .(1)求证:C 1C ⊥BD .(2)当1CC CD 的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明.命题意图:本题主要考查考生应用向量法解决向量垂直,夹角等问题以及对立体几何图形的解读能力.知识依托:解答本题的闪光点是以向量来论证立体几何中的垂直问题,这就使几何问题代数化,使繁琐的论证变得简单.错解分析:本题难点是考生理不清题目中的线面位置关系和数量关系的相互转化,再就是要清楚已知条件中提供的角与向量夹角的区别与联系.技巧与方法:利用a ⊥b ⇔a ·b =0来证明两直线垂直,只要证明两直线对应的向量的数量积为零即可.(1)证明:设CD =a , CB =b ,1CC =c ,依题意,|a |=|b |,CD 、CB 1CC 中两两所成夹角为θ,于是DB CD BD -==a -b ,BD CC ⋅1=c (a -b )=c ·a -c ·b =|c |·|a |cos θ-|c |·|b |cos θ=0,∴C 1C ⊥BD .(2)解:若使A 1C ⊥平面C 1BD ,只须证A 1C ⊥BD ,A 1C ⊥DC 1, 由)()(1111CC CD AA CA D C CA -⋅+=⋅ =(a +b +c )·(a -c )=|a |2+a ·b -b ·c -|c |2=|a |2-|c |2+|b |·|a |cos θ-|b |·|c |·cos θ=0,得当|a |=|c |时,A 1C ⊥DC 1,同理可证当|a |=|c |时,A 1C ⊥BD , ∴1CC CD =1时,A 1C ⊥平面C 1BD .[例2]如图,直三棱柱ABC —A 1B 1C 1,底面△ABC 中,CA =CB =1,∠BCA =90°,AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.(1)求BN 的长;(2)求cos<11,CB BA >的值; (3)求证:A 1B ⊥C 1M .命题意图:本题主要考查考生运用向量法中的坐标运算的方法来解决立体几何问题.属★★★★级题目.知识依托:解答本题的闪光点是建立恰当的空间直角坐标系O -xyz ,进而找到点的坐标和求出向量的坐标.错解分析:本题的难点是建系后,考生不能正确找到点的坐标.技巧与方法:可以先找到底面坐标面xOy 内的A 、B 、C 点坐标,然后利用向量的模及方向来找出其他的点的坐标.(1) 解:如图,以C 为原点建立空间直角坐标系O -xyz .依题意得:B (0,1,0),N (1,0,1)∴|BN |=3)01()10()01(222=-+-+-.(2) 解:依题意得:A 1(1,0,2),C (0,0,0),B 1(0,1,2). ∴1BA =1),2,1,1(CB -=(0,1,2) 11CB BA ⋅=1×0+(-1)×1+2×2=3 |1BA |=6)02()10()01(222=-+-+-5)02()01()00(||2221=-+-+-=CB .1030563||||,cos 111111=⋅=⋅⋅>=<∴CB BC CB BA CB BA(3) 证明:依题意得:C 1(0,0,2),M (2,21,21) )2,1,1(),0,21,21(11--==B A M C ∴,,00)2(21121)1(1111M C B A M C B A ⊥∴=⨯-+⨯+⨯-=⋅∴A 1B ⊥C 1M .●锦囊妙计1.解决关于向量问题时,一要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,加深对向量的本质的认识.二是向量的坐标运算体现了数与形互相转化和密切结合的思想.2.向量的数量积常用于有关向量相等,两向量垂直、射影、夹角等问题中.常用向量的直角坐标运算来证明向量的垂直和平行问题;利用向量的夹角公式和距离公式求解空间两条直线的夹角和两点间距离的问题.3.用空间向量解决立体几何问题一般可按以下过程进行思考:(1)要解决的问题可用什么向量知识来解决?需要用到哪些向量?(2)所需要的向量是否已知?若未知,是否可用已知条件转化成的向量直接表示?(3)所需要的向量若不能直接用已知条件转化成的向量表示,则它们分别最易用哪个未知向量表示?这些未知向量与由已知条件转化的向量有何关系?(4)怎样对已经表示出来的所需向量进行运算,才能得到需要的结论?●歼灭难点训练一、选择题1. (★★★★) 设A、B、C、D四点坐标依次是(-1,0),(0,2),(4,3),(3,1),则四边形ABCD为( )A.正方形B.矩形C.菱形D.平行四边形2. (★★★★) 已知△ABC AB=a,AC=b,a·b<0,S△ABC=415,|a|=3,|b|=5,则a与b 的夹角是( )A.30°B.-150°C.150°D.30°或150°二、填空题3. (★★★★★) 将二次函数y=x2的图象按向量a平移后得到的图象与一次函数y=2x-5的图象只有一个公共点(3,1),则向量a=_________.4.(★★★★)等腰△ABC和等腰Rt△ABD有公共的底边AB,它们所在的平面成60°角,若AB=16 cm,AC=17 cm,则CD=_________.三、解答题5.(★★★★★)如图,在△ABC中,设AB=a,AC=b,AP=c,AD=λa,(0<λ<1),AE=μb(0<μ<1),试用向量a,b表示c.6.(★★★★)正三棱柱ABC—A1B1C1的底面边长为a,侧棱长为2a.(1)建立适当的坐标系,并写出A、B、A1、C1的坐标;(2)求AC1与侧面ABB1A1所成的角.7.(★★★★★)已知两点M (-1,0),N (1,0),且点P 使NP NM PN PM MN MP ⋅⋅⋅,,成公差小于零的等差数列.(1)点P 的轨迹是什么曲线?(2)若点P 坐标为(x 0,y 0),Q 为PM 与PN 的夹角,求tan θ.8.(★★★★★)已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA.(1)用向量法证明E 、F 、G 、H 四点共面;(2)用向量法证明:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有)(41OD OC OB OA OM +++=.参考答案难点磁场解:(1)点M的坐标为x M =)29,0(,29227;0211M y M ∴=+==+-.2221)291()05(||22=--+-=∴AM5)21()15(||,10)71()15(||)2(2222=--+-==--++=AC AB D 点分BC 的比为2.∴x D =31121227,3121121=+⨯+==+⨯+-D y.2314)3111()315(||22=--+-=AD(3)∠ABC 是BA 与BC 的夹角,而BA =(6,8),BC =(2,-5).1452629291052)5(2)8(6)5()8(26||||cos 2222==-+⋅-+-⨯-+⨯=⋅⋅=∴BC BA BCBA ABC歼灭难点训练一、1.解析:AB =(1,2),DC =(1,2),∴AB =DC ,∴AB ∥DC ,又线段AB 与线段DC 无公共点,∴AB ∥DC 且|AB |=|DC |,∴ABCD 是平行四边形,又|AB |=5,AC =(5,3),|AC |=34,∴|AB |≠|AC },ABCD 不是菱形,更不是正方形;又BC =(4,1),∴1·4+2·1=6≠0,∴AB 不垂直于BC ,∴ABCD 也不是矩形,故选D.答案:D2.解析:∵21415=·3·5sin α得sin α=21,则α=30°或α=150°.又∵a ·b <0,∴α=150°. 答案:C二、3.(2,0) 4.13 cm 三、5.解:∵BP与BE共线,∴BP=m BE =m (AE -AB )=m (μb -a ),∴AP =AB +BP =a +m (μb -a )=(1-m )a +mμb ①又CP 与CD 共线,∴CP =n CD =n (AD-AC)=n (λa -b ),∴AP =AC +CP =b +n (λa -b )=n λa +(1-n )b ②由①②,得(1-m )a +μm b =λn a +(1-n )b .∵a 与b 不共线,∴⎩⎨⎧=-+=-+⎩⎨⎧-==-010111m n m n n m a m μλμλ即③解方程组③得:m =λμμλμλ--=--11,11n 代入①式得c =(1-m )a +m μb =πμ-11[λ(1-μ)a +μ(1-λ)b ].6.解:(1)以点A 为坐标原点O ,以AB 所在直线为Oy 轴,以AA 1所在直线为Oz 轴,以经过原点且与平面ABB 1A 1垂直的直线为Ox 轴,建立空间直角坐标系.由已知,得A (0,0,0),B (0,a ,0),A 1(0,0,2a ),C 1(-,2,23a a 2a ).(2)取A 1B 1的中点M ,于是有M (0,2,2a a ),连AM ,MC 1,有1MC =(-23a ,0,0),且AB =(所以AM AC 与1所成的角,即AC 1与侧面ABB 1A 1所成的角为30°.7.解:(1)设P (x ,y ),由M (-1,0),N (1,0)得,PM =-MP =(-1-x ,-y ),NP PN -= =(1-x ,-y ),MN =-NM =(2,0),∴MP ·MN =2(1+x ),PM·PN =x 2+y 2-1,NP NM ⋅ =2(1-x ).于是,NPNM PN PM MN MP ⋅⋅⋅,,是公差小于零的等差数列,等价于⎩⎨⎧>=+⎪⎩⎪⎨⎧<+---++=-+03 0)1(2)1(2)]1(2)1(2[211222x y x x x x x y x 即所以,点P 的轨迹是以原点为圆心,3为半径的右半圆.(2)点P 的坐标为(x 0,y 0),30,1cos 21,3041||cos 42)24)(24()1()1(||||,210220002020*******πθθθ<≤≤<∴≤<-=⋅⋅=∴-=-+=+-⋅++=⋅=-+=⋅x x PNPM PN PM x x x y x y x PN PM y x PN PM||3cos sin tan ,411cos 1sin 02022y x x =-==∴--=-=∴θθθθθ8.证明:(1)连结BG ,则EHEF EH BF EB BD BC EB BG EB EG +=++=++=+=)(21由共面向量定理的推论知:E 、F 、G 、H 四点共面,(其中21BD =EH ) (2)因为BD AB AD AB AD AE AH EH 21)(212121=-=-=-=.所以EH ∥BD ,又EH ⊂面EFGH ,BD ⊄面EFGH所以BD ∥平面EFGH .(3)连OM ,OA ,OB ,OC ,OD ,OE ,OG由(2)知BD EH 21=,同理BD FG 21=,所以FGEH =,EH FG ,所以EG 、FH 交于一点M且被M 平分,所以).(41)](21[21)](21[212121)(21OD OC OB OA OD OC OB OA OG OE OG OE OM +++=+++=+=+=.。
高三数学向量专项练习题及答案
高三数学向量专项练习题及答案一、选择题1. 设向量a = (2, 3)、b = (4, -1),则a + b的坐标表示为:A. (6, 2)B. (2, 2)C. (6, -2)D. (2, -2)答案:A. (6, 2)2. 设向量a = (3, 2),则2a的坐标表示为:A. (3, 2)B. (6, 4)C. (2, 3)D. (6, 2)答案:B. (6, 4)3. 已知向量a = (5, -3)和b = (1, 2),则向量a与向量b的数量积为:A. 5B. 1C. -7D. -1答案:C. -74. 向量a, b的夹角θ满足sinθ = 1/2,则θ的大小为:A. 30°B. 45°C. 60°D. 90°答案:C. 60°5. 平面上三点A(1, 2),B(3, 4),C(5, 1)所确定的三角形ABC的面积为:A. 4B. 6C. 7D. 8答案:B. 6二、填空题1. 设向量a = (2, 5),则|a|的值为________。
答案:sqrt(29)2. 设向量a与向量b的夹角θ满足cosθ = 1/√2,则θ的大小为________。
答案:45°3. 平面直角坐标系中,若点A(3, 4)到点B(-2, -3)的距离为√k,则k= ________。
答案:504. 已知向量a = (2, 3),向量b = (4, -1),则向量a - b = (_______,_______)。
答案:(-2, 4)5. 平面上三点A(1, 2),B(3, 4),C(5, 1)所确定的三角形ABC的周长为________。
答案:约9.21三、解答题1. 已知向量a = (2, 3),向量b = (4, -1),求向量a与向量b的数量积。
解答:向量a与向量b的数量积为:a·b = 2×4 + 3×(-1) = 8 - 3 = 5。
向量高考经典试题(附详细答案)
向量高考经典试题一、选择题1.(全国1文理)已知向量(5,6)a =- ,(6,5)b =,则a 与bA .垂直B .不垂直也不平行C .平行且同向D .平行且反向解.已知向量(5,6)a =- ,(6,5)b =,30300a b ⋅=-+= ,则a 与b 垂直,选A 。
2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( )A .1BC .2D .4【答案】:C 【分析】:2(3,)n -a b =,由2-a b 与b 垂直可得:2(3,)(1,)30n n n n ⋅-=-+=⇒= 2=a 。
3、(广东文4理10)若向量,a b满足||||1a b == ,,a b 的夹角为60°,则a a a b ⋅+⋅=______; 答案:32;解析:1311122a a ab ⋅+⋅=+⨯⨯= ,4、(天津理10) 设两个向量22(2,cos )a λλα=+- 和(,sin ),2mb m α=+其中,,m λα为实数.若2,a b = 则mλ的取值范围是( )A.[6,1]-B.[4,8]C.(,1]-∞D.[1,6]-【答案】A【分析】由22(2,cos )a λλα=+- ,(,sin ),2mb m α=+2,a b = 可得2222cos 2sin m m λλαα+=⎧⎨-=+⎩,设k m λ=代入方程组可得22222cos 2sin km m k m m αα+=⎧⎨-=+⎩消去m 化简得2222cos 2sin 22k k k αα⎛⎫-=+ ⎪--⎝⎭,再化简得22422cos 2sin 022k k αα⎛⎫+-+-= ⎪--⎝⎭再令12t k =-代入上式得222(sin 1)(16182)0t t α-+++=可得2(16182)[0,4]t t -++∈解不等式得1[1,]8t ∈--因而11128k -≤≤--解得61k -≤≤.故选A5、(山东理11)在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是(A )2AC AC AB =⋅ (B ) 2BC BA BC =⋅(C )2AB AC CD =⋅(D ) 22()()AC AB BA BC CD AB⋅⨯⋅=【答案】:C.【分析】: 2()00AC AC AB AC AC AB AC BC =⋅⇔⋅-=⇔⋅=,A 是正确的,同理B 也正确,对于D 答案可变形为2222CD AB AC BC ⋅=⋅ ,通过等积变换判断为正确.6、(全国2 理5)在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则λ=(A)32(B)31(C) -31(D) -32 解.在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,=CB CA λ+31,则22()33CD CA AD CA AB CA CB CA =+=+=+- =1233CA CB + ,4 λ=32,选A 。
最新黄冈中学高考数学二轮复习考点解析11:平面向量及其运用考点透析优秀名师资料
黄冈中学高考数学二轮复习考点解析11:平面向量及其运用考点透析曲一线高考网11考点1:向量的概念、向量的加法和减法、实数与向量的积.考点2:向量的坐标运算、平面向量的数量积.考点3:向量的模与角的计算。
.1设向量2abc,,,0abc,,abab,,,,||1,||2||c,满足,,则(A)1 (B)2 (C)4 (D)52.(2003年天津高考题)O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足ABAC,,,,,0,+,,则的轨迹一定通过?的()PABCOP,OA,,(,)A|AB||AC|(A)外心()内心(C)重心(D)垂心 D 3.如图1所示,是的边上的中点,则向量 CD,,ABCABDCB 1111图1 A.BCBA,BCBA,,,BCBA B. ,,BCBA C. D. 222224.已知x||2||0ab= xaxab++?||0ab,且关于的方程有实根,则与的夹角的取值范pp2ppp围是 ( )A.[0,] B. C. D. [,]p[,]p[,]366335.已知向量a满足,且,则与的夹角为 ab、ab,,1,4,ab,2b,,,,A. B.. D. 64326.设向量a=(1, -2),b=(-2,4),c=(-1,-2),若表示向量4a,4b-2c,2(a -c),d的有向线段首尾相接能构成四边形,则向量d为(A)(2,6) (B)(-2,6) (C)(2,-6) (D)(-2,-6) 7. ()如图,在平行四边形ABCD中,下列结论中错误的是() ,,,,,,,,,,,,,,,D C (A)=;(B)+=; DCACABADABA B ,,,,,,,,,,,,,,,,(C)-=;(D)+=. 0CBABADBDAD1118.若三点,共线,则的值等于_________.ABaCbab(2,2),(,0),(0,)(0),ab29(2005年全国卷?)点P在平面上作匀速直线运动,速度向量v=(4,-3)(即点P的运动方向与v相同,且每秒移动的距离为|v|个单位.设开始时点P的坐标为(-10,10),则5秒后点P的坐标为(10,-5)10(湖南卷)已知直线ax+by+c=0与圆O:2x23OA,OB+y=1相交于A、B 两点,且|AB|=,则1= . ,2- 1 -曲一线高考网1此类题经常出现在选择题与填空题中,在复习中要充分理解平面向量的相关概念,熟练掌握向量的坐标运算、数量积运算,掌握两向量共线、垂直的充要条件.1已知a是以点A(3,-1)为起点,且与向量b = (-3,4)平行的单位向量,则向量a的终点坐标是 .a思路分析:与a平行的单位向量e=?|a|方法一:设向量a的终点坐标是(x,y),则a =(x-3,y+1),则题意可知1218,,,,xx121189,,4,3,3,1,0,(x)(y),,55,故填 (,-)或(,-) ,,, 解得或555522,,119(x-3)(y+1),,,,,,,yy,,55,,134与向量b = (-3,4)平行的单位向量是?(-3,4),故可得a=?(-,),从而向量a的终点坐标是555(x,y)= a-(3,-1),便可得结果.向量的概念较多,且容易混淆,在学习中要分清、理解各概念的实质,注意区分共线向量、平行向量、同向向量、反向向量、单位向量等概念.2已知| a |=1,| b |=1,a与b的夹角为60?, x =2a-b,y=3b-a,则x与y的夹角的余弦是多少?要计算x与y的夹角θ,需求出|x|,|y|,xy的值.计算时要注意计算的准确性.由已知|a|=|b|=1,a与b的夹角α为60?,得a?b=|a||b|cosα=1. 2要计算x与y的夹角θ,需求出|x|,|y|,xy的值.122222?|x|=x=(2a-b)=4a-4a?b+b=4-4?+1=3, 2122222|y|=y=(3b-a)=9b-6b?a+a=9-6?+1=7. 222xy=(2a-b)?(3b-a)=6a?b-2a-3b+a?b1322 =7a?b-2a-3b =7?-2-3=-, 22213又?xy=|x||y|cosθ,即-37=?cosθ, ?cosθ=- 14222本题利用模的性质|a|=a,?在计算x,y的模时,还可以借助向量加法、减法的几何意义获得:如图所示,设ACABBDABADAD=b, =a, =2a,?BAC=60?.由向量减法的几何意义,得=-=2a-b.由余弦定理易得|337BD|=,即|x|=,同理可得|y|=.23平面直角坐标系中,O为坐标原点,已知两点A(3, 1),B(-1, 3),若点C 满足OCOAOB,,,,,其中,,,?R且+=1,求点C的轨迹方程。
湖北黄冈中学高考数学的平面向量多选题含解析
湖北黄冈中学高考数学的平面向量多选题含解析一、平面向量多选题1.对于给定的ABC ,其外心为O ,重心为G ,垂心为H ,则下列结论正确的是( ) A .212AO AB AB ⋅=B .OA OB OA OC OB OC ⋅=⋅=⋅C .过点G 的直线l 交AB AC 、于E F 、,若AE AB λ=,AF AC μ=,则113λμ+=D .AH 与cos cos AB AC AB BAC C+共线【答案】ACD 【分析】根据外心在AB 上的射影是AB 的中点,利用向量的数量积的定义可以证明A 正确;利用向量的数量积的运算法则可以OA OB OA OC =即OA BC ⊥,在一般三角形中易知这是不一定正确的,由此可判定B 错误;利用三角形中线的定义,线性运算和平面向量基本定理中的推论可以证明C 正确;利用向量的数量积运算和向量垂直的条件可以判定cos cos AB AC AB BAC C+与BC 垂直,从而说明D 正确.【详解】如图,设AB 中点为M,则OM AB ⊥,AO cos OAM AM ∴∠=()21·cos cos ?22ABAO AB AO AB OAB AB AO OAB AB AB ∴=∠=∠==,故A 正确;··OAOB OAOC =等价于()·0OA OB OC -=等价于·0OACB =,即OA BC ⊥,对于一般三角形而言,O 是外心,OA 不一定与BC 垂直,比如直角三角形ABC 中, 若B 为直角顶点,则O 为斜边AC 的中点,OA 与BC 不垂直.故B 错误;设BC 的中点为D ,则()211111133333AG AD AB AC AE AF AE AF λμλμ⎛⎫==+=+=+ ⎪⎝⎭, ∵E,F,G 三点共线,11133λμ∴+=,即113λμ+=,故C 正确; cos cos cos cos AB AC AB BC AC BC BC AB B AC C AB B AC C ⎛⎫⋅⋅ ⎪+⋅=+ ⎪⎝⎭()cos cos cos cos AB BC B AC BC C AB BAC Cπ⋅-⋅=+0BC BC =-+=,∴cos cos AB AC AB BAC C+与BC 垂直,又AH BC ⊥,∴cos cos AB AC AB BAC C+与AH共线,故D 正确. 故选:ACD. 【点睛】本题考查平面向量线性运算和数量及运算,向量垂直和共线的判定,平面向量分解的基本定理,属综合小题,难度较大,关键是熟练使用向量的线性运算和数量积运算,理解三点共线的充分必要条件,进而逐一作出判定.2.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知()()(::5:)4:6b c c a a b +++=,下列结论正确的是( )A .::7:5:3sinA sinB sinC = B .0AB AC ⋅>C .若6c =,则ABC 的面积是3D .若8+=b c ,则ABC 的外接圆半径是33【答案】ACD 【分析】先利用已知条件设4,5,6b c k c a k a b k +=+=+=,进而得到3.5, 2.5, 1.5a k b c k ===,利用正弦定理可判定选项A ;利用向量的数量积公式可判断选项B ;利用余弦定理和三角形的面积公式可判定选项C ;利用余弦定理和正弦定理可判断选项D. 【详解】依题意,设4,5,6b c k c a k a b k +=+=+=, 所以 3.5, 2.5, 1.5a k b c k ===,由正弦定理得:::::7:5:3sinA sinB sinC a b c ==, 故选项A 正确;222222cos 22b c a b c a AB AC bc A bc bc +-+-⋅==⨯=222222.5 1.5 3.515028k k +-==-<,故选项B 不正确;若6c =,则4k =, 所以14,10a b ==,所以222106141cos 21062A +-==-⨯⨯,所以sin 2A =,故ABC 的面积是:11sin 610222bc A =⨯⨯⨯= 故选项C 正确;若8+=b c ,则2k =, 所以7,5,3a b c ===,所以2225371cos 2532A +-==-⨯⨯,所以sin 2A =, 则利用正弦定理得:ABC 的外接圆半径是:12sin 3a A ⨯=, 故选项D 正确; 故选:ACD. 【点睛】关键点睛:本题主要考查正余弦定理以及三角形面积公式. 利用已知条件设4,5,6b c k c a k a b k +=+=+=,再利用正余弦定理以及三角形面积公式求解是解决本题的关键.3.已知ABC 是边长为2的等边三角形,D 是边AC 上的点,且2AD DC =,E 是AB 的中点,BD 与CE 交于点O ,那么( )A .0OE OC +=B .1AB CE ⋅=-C .3OA OB OC ++=D .132DE =【答案】AC 【分析】建立平面直角坐标系,结合线段位置关系以及坐标形式下模长的计算公式逐项分析. 【详解】建立平面直角坐标系如下图所示:取BD 中点M ,连接ME ,因为,M E 为,BD BA 中点,所以1//,2ME AD ME AD =,又因为12CD AD =, 所以//,ME CD ME CD =,所以易知EOM COD ≅,所以O 为CE 中点, A .因为O 为CE 中点,所以0OE OC +=成立,故正确; B .因为E 为AB 中点,所以AB CE ,所以0AB CE ⋅=,故错误;C .因为()()(3,1,0,1,0,3O A B C ⎛- ⎝⎭,所以33331,1,0,0,2222OA OB OC ⎛⎛⎫⎛⎛++=-+--+=- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭, 所以32OA OB OC ++=,故正确; D .因为()123,,0,033D E ⎛⎫ ⎪ ⎪⎝⎭,所以123,33DE ⎛⎫=-- ⎪ ⎪⎝⎭,所以133DE =,故错误,故选:AC. 【点睛】关键点点睛:对于规则的平面图形(如正三角形、矩形、菱形等)中的平面向量的数量积和模长问题,采用坐标法计算有时会更加方便.4.如图,BC ,DE 是半径为1的圆O 的两条不同的直径,2BF FO =,则( )A .13BF FC = B .89FD FE ⋅=-C .41cos ,5FD FE -<<->≤ D .满足FC FD FE λμ=+的实数λ与μ的和为定值4 【答案】BCD 【分析】A. 根据2BF FO =易得12BF FC =判断;B. 由()()FD FE OD OF OE OF ⋅=-⋅-运算求解判断;,C.建立平面直角坐标系:设,0,2DOF παα⎡⎤∠=∈⎢⎥⎣⎦,则()()1cos ,sin ,cos ,sin ,,03D E F αααα⎛⎫--- ⎪⎝⎭,得到11cos ,sin ,cos ,sin 33FD FE αααα⎛⎫⎛⎫=-=+- ⎪ ⎪⎝⎭⎝⎭,由cos ,FD FE FD FE FD FE ⋅<>=⋅利用三角恒等变换和三角函数的性质判断;D. 将FC FD FE λμ=+,利用线性运算变形为()()4OF OD OF λμλμ-=--+判断;【详解】A. 因为2BF FO =,所以12BF FC =,故错误;B. ()()2FD FE OD OF OE OF OD OE OD OF OF OE OF ⋅=-⋅-=⋅-⋅-⋅+,()22181099OE OF OD OE OF =-+++=-++=-,故正确; C.建立如图所示平面直角坐标系:设,(0,]2DOF παα∠=∈,则()()1cos ,sin ,cos ,sin ,,03D E F αααα⎛⎫--- ⎪⎝⎭, 所以11cos ,sin ,cos ,sin 33FD FE αααα⎛⎫⎛⎫=-=+- ⎪ ⎪⎝⎭⎝⎭,所以222289cos ,11cos sin cos sin 33FD FE FD FE FD FEαααα-⋅<>==⋅⎛⎫⎛⎫-+⋅++ ⎪ ⎪⎝⎭⎝⎭,849(1,]5822cos2819α----⋅,故正确;D. 由FC FD FE λμ=+,得()()()()4OF OD OF OE OF OD OF λμλμλμ-=-+-=--+,所以4λμ+=,故正确; 故选:BCD 【点睛】本题主要考查平面向量的线性运算和数量积运算,还考查了运算求解的能力,属于中档题.5.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )A .//PB CQ B .2133BP BA BC =+ C .0PA PC ⋅<D .2S =【答案】BCD 【分析】本题先确定B 是AQ 的中点,P 是AC 的一个三等分点,判断选项A 错误,选项C 正确; 再通过向量的线性运算判断选项B 正确;最后求出2APQ S =△,故选项D 正确. 【详解】解:因为20PA PC +=,2QA QB =,所以B 是AQ 的中点,P 是AC 的一个三等分点,如图:故选项A 错误,选项C 正确;因为()121333BP BA AP BA BC BA BA BC =+=+-=+,故选项B 正确; 因为112223132APQ ABCAB hS S AB h ⨯⨯==⋅△△,所以,2APQ S =△,故选项D 正确. 故选:BCD 【点睛】本题考查平面向量的线性运算、向量的数量积、三角形的面积公式,是基础题.6.在三棱锥P ABC -中,三条侧棱,,PA PB PC 两两垂直,且3PA PB PC ===,G 是PAB △的重心,E ,F 分别为,BC PB 上的点,且::1:2BE EC PF FB ==,则下列说法正确的是( ) A .EG PG ⊥ B .EG BC ⊥ C .//FG BC D .FG EF ⊥ 【答案】ABD 【分析】取,,PA a PB b PC c ===,以{},,a b c 为基底表示EG ,FG ,EF ,结合向量数量积运算性质、向量共线定理即可选出正确答案. 【详解】如图,设,,PA a PB b PC c ===,则{},,a b c 是空间的一个正交基底, 则0a b a c b c ⋅=⋅=⋅=,取AB 的中点H ,则22111()33233PG PH a b a b ==⨯+=+,1121111,3333333EG PG PE a b b c a b c BC c b =-=+--=--=-,11113333FG PG PF a b b a =-=+-=,1121133333EF PF PE b c b c b ⎛⎫=-=-+=-- ⎪⎝⎭,∴0EG PG ⋅=,A 正确;0EG BC ⋅=,B 正确;()FG BC R λλ≠∈,C 不正确;0FG EF ⋅=,D 正确.故选:ABD.【点睛】本题考查了平面向量共线定理,考查了由数量积求两向量的位置关系,考查了平面向量基本定理的应用,属于中档题.7.ABC 是边长为2的等边三角形,已知向量a 、b 满足AB a =、AC a b =+,则下列结论正确的是( ) A .2b = B .a b ⊥C .2a b ⋅=D .(2)a b BC +⊥【答案】AD 【分析】本题首先可以根据向量的减法得出BC b =,然后根据ABC 是边长为2的等边三角形得出A 正确以及B 错误,再然后根据向量a 、b 之间的夹角为120计算出2a b ⋅=-,C 错误,最后通过计算得出(2)0a b BC +⋅=,D 正确. 【详解】因为AB a =,AC a b =+,所以BC AC AB a b a b =-=+-=, 因为ABC 是边长为2的等边三角形,所以2b BC ==,A 正确, 因为AB a =,BC b =,所以向量a 、b 之间的夹角为120,B 错误, 所以1cos1202222a b a b ⎛⎫⋅=⋅⋅=⨯⨯-=- ⎪⎝⎭,C 错误,因为()22(2)(2)22220a b BC a b b a b b +⋅=+⋅=⋅+=⨯-+=, 所以(2)a b BC +⊥,D 正确, 故选:AD. 【点睛】本题考查向量的减法运算以及向量的数量积,若向量a 、b 之间的夹角为θ,则cos a b a b θ⋅=⋅⋅,若0a b ⋅=,则a b ⊥,考查推理能力与计算能力,是中档题.8.已知向量()1,3OA =-,()2,1OB =-,()3,8OC t t =+-,若点A ,B ,C 能构成三角形,则实数t 可以为( ) A .-2 B .12C .1D .-1【答案】ABD 【分析】若点A ,B ,C 能构成三角形,故A ,B ,C 三点不共线,即向量,AB BC 不共线,计算两个向量的坐标,由向量共线的坐标表示,即得解 【详解】若点A ,B ,C 能构成三角形,故A ,B ,C 三点不共线,则向量,AB BC 不共线, 由于向量()1,3OA =-,()2,1OB =-,()3,8OC t t =+-, 故(3,4)AB OB OA =-=-,(5,9)BC OC OB t t =-=+- 若A ,B ,C 三点不共线,则 3(9)4(5)01t t t ---+≠∴≠ 故选:ABD 【点睛】本题考查了向量共线的坐标表示,考查了学生转化划归,概念理解,数学运算能力,属于中档题.9.关于平面向量有下列四个命题,其中正确的命题为( ) A .若a b a c ⋅=⋅,则b c =;B .已知(,3)a k =,(2,6)b =-,若//a b ,则1k =-;C .非零向量a 和b ,满足||||||a b a b ==-,则a 与a b +的夹角为30º;D .0||||||||a b a b a b a b ⎛⎫⎛⎫+⋅-= ⎪ ⎪⎝⎭⎝⎭【答案】BCD 【分析】通过举反例知A 不成立,由平行向量的坐标对应成比例知B 正确,由向量加减法的意义知,C 正确,通过化简计算得D 正确.【详解】对A ,当0a = 时,可得到A 不成立; 对B ,//a b 时,有326k =-,1k ∴=-,故B 正确. 对C ,当||||||a b a b ==-时,a 、b 、a b -这三个向量平移后构成一个等边三角形,a b + 是这个等边三角形一条角平分线,故C 正确.对D ,22()()()()110||||||||||||a b a b a b a a a b b b +⋅-=-=-=,故D 正确. 故选:BCD . 【点睛】本题考查两个向量的数量积公式,两个向量加减法的几何意义,以及共线向量的坐标特点.属于基础题.10.设a 、b 是两个非零向量,则下列描述正确的有( ) A .若a b a b +=-,则存在实数λ使得λa bB .若a b ⊥,则a b a b +=-C .若a b a b +=+,则a 在b 方向上的投影向量为aD .若存在实数λ使得λa b ,则a b a b +=-【答案】AB 【分析】根据向量模的三角不等式找出a b a b +=-和a b a b +=+的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论. 【详解】当a b a b +=-时,则a 、b 方向相反且a b ≥,则存在负实数λ,使得λa b ,A选项正确,D 选项错误;若a b a b +=+,则a 、b 方向相同,a 在b 方向上的投影向量为a ,C 选项错误; 若a b ⊥,则以a 、b 为邻边的平行四边形为矩形,且a b +和a b -是这个矩形的两条对角线长,则a b a b +=-,B 选项正确. 故选:AB. 【点睛】本题考查平面向量线性运算相关的命题的判断,涉及平面向量模的三角不等式的应用,考查推理能力,属于中等题.。
湖北省黄冈中学高三数学平面向量及其应用测试题 百度文库
一、多选题1.题目文件丢失! 2.题目文件丢失!3.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S .下列ABC 有关的结论,正确的是( ) A .cos cos 0A B +>B .若a b >,则cos2cos2A B <C .24sin sin sin S R A B C =,其中R 为ABC 外接圆的半径D .若ABC 为非直角三角形,则tan tan tan tan tan tan A B C A B C ++=4.在ABC ∆中,内角,,A B C 的对边分别为,,,a b c 若,2,6A a c π===则角C 的大小是( ) A .6π B .3π C .56π D .23π 5.已知点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,与向量AB 平行的向量的坐标可以是( ) A .14,33⎛⎫⎪⎝⎭B .97,2⎛⎫ ⎪⎝⎭C .14,33⎛⎫-- ⎪⎝⎭D .(7,9)6.在△ABC 中,点E ,F 分别是边BC 和AC 上的中点,P 是AE 与BF 的交点,则有( )A .1122AE AB AC →→→=+B .2AB EF →→=C .1133CP CA CB →→→=+D .2233CP CA CB →→→=+7.已知向量()1,0a =,()2,2b =,则下列结论正确的是( ) A .()25,4a b += B .2b = C .a 与b 的夹角为45°D .()//2a a b +8.ABC 中,2AB =,30ACB ∠=︒,则下列叙述正确的是( ) A .ABC 的外接圆的直径为4.B .若4AC =,则满足条件的ABC 有且只有1个 C .若满足条件的ABC 有且只有1个,则4AC =D .若满足条件的ABC 有两个,则24AC << 9.下列结论正确的是( )A .已知a 是非零向量,b c ≠,若a b a c ⋅=⋅,则a ⊥(-b c )B .向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则a 在b 上的投影向量为12b C .点P 在△ABC 所在的平面内,满足0PA PB PC ++=,则点P 是△ABC 的外心 D .以(1,1),(2,3),(5,﹣1),(6,1)为顶点的四边形是一个矩形10.在ABC 中,角A ,B ,C 所对各边分别为a ,b ,c ,若1a =,b =30A =︒,则B =( )A .30B .45︒C .135︒D .150︒ 11.在△ABC 中,若cos cos a A b B =,则△ABC 的形状可能为( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形12.下列命题中,正确的是( ) A .在ABC ∆中,A B >,sin sin A B ∴> B .在锐角ABC ∆中,不等式sin cos A B >恒成立C .在ABC ∆中,若cos cos a A b B =,则ABC ∆必是等腰直角三角形D .在ABC ∆中,若060B =,2b ac =,则ABC ∆必是等边三角形 13.给出下面四个命题,其中是真命题的是( ) A .0ABBA B .AB BC AC C .AB AC BC += D .00AB +=14.化简以下各式,结果为0的有( ) A .AB BC CA ++ B .AB AC BD CD -+- C .OA OD AD -+D .NQ QP MN MP ++-15.下列命题中正确的是( )A .对于实数m 和向量,a b ,恒有()m a b ma mb -=-B .对于实数,m n 和向量a ,恒有()m n a ma na -=-C .若()ma mb m =∈R ,则有a b =D .若(,,0)ma na m n a =∈≠R ,则m n =二、平面向量及其应用选择题16.中华人民共和国国歌有84个字,37小节,奏唱需要46秒,某校周一举行升旗仪式,旗杆正好处在坡度15︒的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60︒和30,第一排和最后一排的距离为米(如图所示),旗杆底部与第一排在同一个水平面上.要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为(米/秒)A 33B 53C 73D 8317.已知两不共线的向量()cos ,sin a αα=,()cos ,sin b ββ=,则下列说法一定正确的是( )A .a 与b 的夹角为αβ-B .a b ⋅的最大值为1C .2a b +≤D .()()a b a b +⊥-18.已知向量OA 与OB 的夹角为θ,2OA =,1OB =,=OP tOA ,()1OQ t OB =-,PQ 在t t =0时取得最小值,则当0105t <<时,夹角θ的取值范围为( ) A .0,3π⎛⎫ ⎪⎝⎭B .,32ππ⎛⎫ ⎪⎝⎭C .2,23ππ⎛⎫⎪⎝⎭D .20,3π⎛⎫ ⎪⎝⎭19.设θ为两个非零向量,a b →→的夹角,已知对任意实数t ,||b t a →→-的最小值为1,则( )A .若θ确定,则||a →唯一确定 B .若θ确定,则||b →唯一确定 C .若||a →确定,则θ唯一确定D .若||b →确定,则θ唯一确定20.在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,若22sin cos sin a b cA B B===ABC ∆的面积为( ) A .2B .4C 2D .2221.如图,测量河对岸的塔高AB 时,选与塔底B 在同一水平面内的两个测点C 与D .现测得15BCD ∠=︒,45BDC ∠=︒,302CD m =,并在点C 测得塔顶A 的仰角为30,则塔高AB 为( )A .302mB .203mC .60mD .20m22.在ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,则下列各等式中不正确...的是( ) A .23BG BE = B .2CG GF = C .12DG AG =D .0GA GB GC ++=23.在△ABC 中,AB =a ,BC =b ,且a b ⋅>0,则△ABC 是( ) A .锐角三角形B .直角三角形C .等腰直角三角形D .钝角三角形24.在ABC ∆中,E ,F 分别为AB ,AC 的中点,P 为EF 上的任一点,实数x ,y 满足0PA xPB yPC ++=,设ABC ∆、PBC ∆、PCA ∆、PAB ∆的面积分别为S 、1S 、2S 、3S ,记ii S Sλ=(1,2,3i =),则23λλ⋅取到最大值时,2x y +的值为( ) A .-1B .1C .32-D .3225.ABC 中,5AB AC ==,6BC =,则此三角形的外接圆半径是( ) A .4 B .72C .258D .25926.题目文件丢失!27.已知1a =,3b =,且向量a 与b 的夹角为60︒,则2a b -=( ) A 7B .3C 11D 1928.如图,四边形ABCD 是平行四边形,E 是BC 的中点,点F 在线段CD 上,且2CF DF =,AE 与BF 交于点P ,若AP AE λ=,则λ=( )A .34B .58C .38D .2329.在ABC 中,()2BC BA AC AC +⋅=,则ABC 的形状一定是( ) A .等边三角形B .等腰三角形C .等腰直角三角形D .直角三角形30.在ABC ∆中,60A ∠=︒,1b =,3ABC S ∆=,则2sin 2sin sin a b cA B C++=++( )A .393B .2633C .833D .2331.在ABC ∆中,下列命题正确的个数是( )①AB AC BC -=;②0AB BC CA ++=;③点O 为ABC ∆的内心,且()()20OB OC OB OC OA -⋅+-=,则ABC ∆为等腰三角形;④0AC AB ⋅>,则ABC ∆为锐角三角形.A .1B .2C .3D .432.在ABC 中,AB AC BA BC CA CB →→→→→→⋅=⋅=⋅,则ABC 的形状为( ). A .钝角三角形 B .等边三角形C .直角三角形D .不确定33.题目文件丢失!34.题目文件丢失!35.在△ABC 中,M 为BC 上一点,60,2,||4ACB BM MC AM ∠=︒==,则△ABC 的面积的最大值为( ) A .123B .3C .12D .183【参考答案】***试卷处理标记,请不要删除一、多选题 1.无 2.无 3.ABD【分析】对于A ,利用及余弦函数单调性,即可判断;对于B ,由,可得,根据二倍角的余弦公式,即可判断;对于C ,利用和正弦定理化简,即可判断;对于D ,利用两角和的正切公式进行运算,即可判断. 【 解析:ABD 【分析】对于A ,利用A B π+<及余弦函数单调性,即可判断;对于B ,由a b >,可得sin sin A B >,根据二倍角的余弦公式,即可判断;对于C ,利用in 12s S ab C =和正弦定理化简,即可判断;对于D ,利用两角和的正切公式进行运算,即可判断. 【详解】对于A ,∵A B π+<,∴0A B ππ<<-<,根据余弦函数单调性,可得()cos cos cos A B B π>-=-,∴cos cos 0A B +>,故A 正确;对于B ,若sin sin a b A B >⇔>,则22sin sin A B >,则2212sin 12sin A B -<-,即cos2cos2A B <,故B 正确;对于C ,211sin 2sin 2sin sin 2sin sin sin 22S ab C R A R B C R A B C ==⋅⋅⋅=,故C 错误;对于D ,在ABC 为非直角三角形,()tan tan tan tan 1tan tan B CA B C B C+=-+=--⋅,则tan tan tan tan tan tan A B C A B C ++=,故D 正确. 故选:ABD. 【点睛】本题主要考查了正弦定理在解三角形中的应用,三角函数基本性质.考查了推理和归纳的能力.4.BD 【分析】由正弦定理可得,所以,而,可得,即可求得答案. 【详解】 由正弦定理可得, ,而, , , 故或. 故选:BD. 【点睛】本题考查了根据正弦定理求解三角形内角,解题关键是掌握解析:BD 【分析】由正弦定理可得sin sin a c A C =,所以sin sin c C A a ==,而a c <,可得A C <,即可求得答案. 【详解】 由正弦定理可得sin sin a cA C=,∴ sin sin c C A a ==而a c <,∴ A C <, ∴566C ππ<<, 故3C π=或23π. 故选:BD. 【点睛】本题考查了根据正弦定理求解三角形内角,解题关键是掌握正弦定理和使用正弦定理多解的判断,考查了分析能力和计算能力,属于中等题.5.ABC 【分析】先求出向量的坐标,然后由向量平行的条件对选项进行逐一判断即可. 【详解】 由点,,则选项A . ,所以A 选项正确. 选项B. ,所以B 选项正确. 选项C . ,所以C 选解析:ABC 【分析】先求出向量AB 的坐标,然后由向量平行的条件对选项进行逐一判断即可. 【详解】由点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,则972,AB ⎛⎫=-- ⎪⎝⎭选项A . 91473023⎛⎫-⨯--⨯= ⎪⎝⎭,所以A 选项正确. 选项B. 9977022⎛⎫-⨯--⨯= ⎪⎝⎭,所以B 选项正确.选项C . ()91473023⎛⎫⎛⎫-⨯---⨯-= ⎪ ⎪⎝⎭⎝⎭,所以C 选项正确. 选项D. 979702⎛⎫-⨯--⨯≠ ⎪⎝⎭,所以选项D 不正确 故选:ABC 【点睛】本题考查根据点的坐标求向量的坐标,根据向量的坐标判断向量是否平行,属于基础题.6.AC 【分析】由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:根据三角形中线性质和平行四边形法则知, , A 是正确的;因为EF 是中位线,所以B 是正确的; 根据三角形重心解析:AC 【分析】由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:根据三角形中线性质和平行四边形法则知,111()()222AE AB BE AB BC AB AC AB AC AB →→→→→→→→→→=+=+=+-=+, A 是正确的;因为EF 是中位线,所以B 是正确的; 根据三角形重心性质知,CP =2PG ,所以22113323CP CG CA CB CA CB →→→→→→⎛⎫⎛⎫==⨯+=+ ⎪ ⎪⎝⎭⎝⎭,所以C 是正确的,D 错误. 故选:AC 【点睛】本题主要考查了平面向量基本定理的简单应用,熟记一些基本结论是求解问题的关键,属7.AC 【分析】利用向量线性的坐标运算可判断A ;利用向量模的坐标求法可判断B ;利用向量数量积的坐标运算可判断C ;利用向量共线的坐标表示即可求解. 【详解】 由向量,, 则,故A 正确; ,故B 错误;解析:AC 【分析】利用向量线性的坐标运算可判断A ;利用向量模的坐标求法可判断B ;利用向量数量积的坐标运算可判断C ;利用向量共线的坐标表示即可求解. 【详解】由向量()1,0a =,()2,2b =,则()()()21,022,25,4a b +=+=,故A 正确;222b =+=,故B 错误;2cos ,21a b a b a b⋅<>===⋅+,又[],0,a b π<>∈,所以a 与b 的夹角为45°,故C 正确; 由()1,0a =,()25,4a b +=,140540⨯-⨯=≠,故D 错误. 故选:AC 【点睛】本题考查了向量的坐标运算,考查了基本运算能力,属于基础题.8.ABD 【分析】根据正弦定理,可直接判断的对错,然后,,三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可. 【详解】解:由正弦定理得,故正确; 对于,,选项:如图解析:ABD 【分析】根据正弦定理,可直接判断A 的对错,然后B ,C ,D 三个选项,都是已知两边及一边的对角,判断解得个数的问题,做出图象,构造不等式即可.解:由正弦定理得224sin sin30AB R ACB ===∠︒,故A 正确;对于B ,C ,D 选项:如图:以A 为圆心,2AB =为半径画圆弧,该圆弧与射线CD 的交点个数,即为解得个数. 易知当122x =,或即4AC =时,三角形ABC 为直角三角形,有唯一解; 当2AC AB ==时,三角形ABC 是等腰三角形,也是唯一解;当AD AB AC <<,即122x x <<,24x ∴<<时,满足条件的三角形有两个.故B ,D 正确,C 错误. 故选:ABD .【点睛】本题考查已知两边及一边的对角的前提下,三角形解得个数的判断问题.属于中档题.9.ABD 【分析】利用平面向量的数量积运算,结合向量的线性运算,对每个选项进行逐一分析,即可容易判断选择. 【详解】对:因为,又,故可得, 故,故选项正确;对:因为||=1,||=2,与的夹角为解析:ABD 【分析】利用平面向量的数量积运算,结合向量的线性运算,对每个选项进行逐一分析,即可容易判断选择. 【详解】对A :因为()a b c a b a c ⋅-=⋅-⋅,又a b a c ⋅=⋅,故可得()0a b c ⋅-=, 故()a b c ⊥-,故A 选项正确;对B :因为|a |=1,|b |=2,a 与b 的夹角为60°,故可得1212a b ⋅=⨯=.故a 在b 上的投影向量为12a b b b b ⎛⎫⋅ ⎪= ⎪⎝⎭,故B 选项正确; 对C :点P 在△ABC 所在的平面内,满足0PA PB PC ++=,则点P 为三角形ABC 的重心,故C 选项错误;对D :不妨设()()()()1,1,2,3,6,1,5,1A B C D -, 则()()()1,24,25,0AB AD AC +=+-==,故四边形ABCD 是平行四边形; 又()14220AB AD ⋅=⨯+⨯-=,则AB AD ⊥,故四边形ABCD 是矩形.故D 选项正确;综上所述,正确的有:ABD .故选:ABD .【点睛】本题考查向量数量积的运算,向量的坐标运算,向量垂直的转化,属综合中档题.10.BC【分析】用正弦定理求得的值,由此得出正确选项.【详解】解:根据正弦定理得: ,由于,所以或. 故选:BC.【点睛】本题考查利用正弦定理解三角形,是基础题.解析:BC【分析】用正弦定理求得sin B的值,由此得出正确选项. 【详解】解:根据正弦定理sin sin a b A B =得: 1sin 2sin 12b A B a ===, 由于1b a =>=,所以45B =或135B =.故选:BC.【点睛】本题考查利用正弦定理解三角形,是基础题. 11.ABCD【分析】应用正弦定理将边化角,由二倍角公式有即或,进而有△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形【详解】根据正弦定理,即.,或.即或解析:ABCD【分析】应用正弦定理将边化角,由二倍角公式有sin 2sin 2A B =即A B =或2A B π+=,进而有△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形【详解】 根据正弦定理sin sin a b A B= cos cos a A b B =sin cos sin cos A A B B =,即sin 2sin 2A B =.2,2(0,2)A B π∈, 22A B =或22A B π+=.即A B =或2A B π+=,△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形.故选:ABCD【点睛】本题考查了正弦定理的边化角,二倍角公式解三角形判断三角形的形状,注意三角形内角和为180°12.ABD【分析】对于选项在中,由正弦定理可得,即可判断出正误;对于选项在锐角中,由,可得,即可判断出正误;对于选项在中,由,利用正弦定理可得:,得到或即可判断出正误;对于选项在中,利用余弦定理可得解析:ABD【分析】对于选项A 在ABC ∆中,由正弦定理可得sin sin A B a b A B >⇔>⇔>,即可判断出正误;对于选项B 在锐角ABC ∆中,由022A B ππ>>->,可得sin sin()cos 2A B B π>-=,即可判断出正误;对于选项C 在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin 2sin 2A B =,得到22A B =或222A B π=-即可判断出正误;对于选项D 在ABC ∆中,利用余弦定理可得:2222cos b a c ac B =+-,代入已知可得a c =,又60B =︒,即可得到ABC ∆的形状,即可判断出正误.【详解】对于A ,由A B >,可得:a b >,利用正弦定理可得:sin sin A B >,正确; 对于B ,在锐角ABC ∆中,A ,(0,)2B π∈,2A B π+>,∴022A B ππ>>->,sin sin()cos 2A B B π∴>-=,因此不等式sin cos A B >恒成立,正确; 对于C ,在ABC ∆中,由cos cos a A b B =,利用正弦定理可得:sin cos sin cos A A B B =,sin 2sin 2A B ∴=, A ,(0,)B π∈,22A B ∴=或222A B π=-,A B ∴=或2A B π+=, ABC ∆∴是等腰三角形或直角三角形,因此是假命题,C 错误.对于D ,由于060B =,2b ac =,由余弦定理可得:222b ac a c ac ==+-,可得2()0a c -=,解得a c =,可得60A C B ===︒,故正确.故选:ABD .【点睛】本题考查正弦定理与余弦定理及三角形边角关系,主要涉及的考点是三角形内角的诱导公式的应用,同时考查正弦定理进行边角转化,属于中等题.13.AB【解析】【分析】根据向量加法化简即可判断真假.【详解】因为,正确;,由向量加法知正确;,不满足加法运算法则,错误;,所以错误.故选:A B.【点睛】本题主要考查了向量加法的解析:AB【解析】【分析】根据向量加法化简即可判断真假.【详解】因为0AB BA AB AB,正确;AB BC AC,由向量加法知正确;AB AC BC+=,不满足加法运算法则,错误;+=,所以000,AB AB+=错误.AB故选:A B.【点睛】本题主要考查了向量加法的运算,属于容易题.14.ABCD【分析】根据向量的线性运算逐个选项求解即可.【详解】;;;.故选:ABCD【点睛】本题主要考查了向量的线性运算,属于基础题型.解析:ABCD【分析】根据向量的线性运算逐个选项求解即可.【详解】++=+=;AB BC CA AC CA-+-=+-+=-=; AB AC BD CD AB BD AC CD AD AD()()0 -+=+-=-=;OA OD AD OA AD OD OD OD()0++-=++=-=.NQ QP MN MP NP PM MN NM NM故选:ABCD【点睛】本题主要考查了向量的线性运算,属于基础题型.15.ABD【详解】解:对于:对于实数和向量、,根据向量的数乘满足分配律,故恒有:,故正确.对于:对于实数,和向量,根据向量的数乘运算律,恒有,故 正确. 对于:若,当 时,无法得到,故不正确.对解析:ABD【详解】解:对于A :对于实数m 和向量a 、b ,根据向量的数乘满足分配律,故恒有:()m a b ma mb -=-,故A 正确.对于B :对于实数m ,n 和向量a ,根据向量的数乘运算律,恒有()m n a ma na -=-,故 B 正确.对于C :若()ma mb m =∈R ,当 0m =时,无法得到a b =,故C 不正确. 对于D :若(,,0)ma na m n a =∈≠R ,则m n =成立,故D 正确.故选:ABD .【点睛】本题考查相等的向量,相反的向量的定义,向量的数乘法则以及其几何意义,注意考虑零向量的情况.二、平面向量及其应用选择题16.B【分析】如解析中图形,可在HAB ∆中,利用正弦定理求出HB ,然后在Rt HBO ∆中求出直角边HO 即旗杆的高度,最后可得速度.【详解】如图,由题意45,105HAB HBA ∠=︒∠=︒,∴30AHB ∠=︒,在HAB ∆中,sin sin HB AB HAB AHB =∠∠,即102sin 45sin 30HB =︒︒,20HB =. ∴sin 20sin 60103OH HB HBO =∠=︒=,4623v ==/秒). 故选B .【点睛】本题考查解三角形的应用,解题关键是掌握正弦定理和余弦定理,解题时要根据条件选用恰当的公式,适当注意各个公式适合的条件.17.D【分析】由向量夹角的范围可判断A 选项的正误;计算出a b ⋅,利用余弦函数的值域以及已知条件可判断B 选项的正误;利用平面向量模的三角不等式可判断C 选项的正误;计算()()a b a b +⋅-的值可判断D 选项的正误.综合可得出结论.【详解】()cos ,sin a αα=,()cos ,sin b ββ=,则2cos 1a α==,同理可得1b =,a 与b 不共线,则()sin cos cos sin sin 0αβαβαβ-=-≠,则()k k Z αβπ-≠∈. 对于A 选项,由题意知,a 与b 的夹角的范围为()0,π,而()R αβ-∈且()k k Z αβπ-≠∈,A 选项错误;对于B 选项,设向量a 与b 的夹角为θ,则0θπ<<,所以,()cos cos 1,1a b a b θθ⋅=⋅=∈-,B 选项错误;对于C 选项,由于a 与b 不共线,由向量模的三角不等式可得2a b a b +<+=,C 选项错误;对于D 选项,()()22220a b a b a b a b +⋅-=-=-=,所以,()()a b a b +⊥-,D 选项正确.故选:D.【点睛】本题考查平面向量有关命题真假的判断,涉及平面向量的夹角、数量积与模的计算、向量垂直关系的处理,考查运算求解能力与推理能力,属于中等题.18.C【解析】 【分析】 根据向量的数量积运算和向量的线性表示可得,()()22254cos 24cos 1PQ PQ t t θθ==+-++,根据二次函数的最值可得出012cos 54cos t θθ+=+,再由0105t <<,可求得夹角θ的取值范围.【详解】因为2cos OA OB θ⋅=,()1PQ OQ OP t OB tOA =-=--,()()22254cos 24cos 1PQ PQ t t θθ==+-++,∵PQ 在t t =0时取得最小值,所以012cos 54cos t θθ+=+,又0105t <<,则12cos 1054cos 5θθ+<<+,得1cos 02θ-<<,∵0θπ≤≤, 所以223ππθ<<, 故选:C.【点睛】 本题考查向量的数量积运算和向量的线性表示,以及二次函数的最值和分式不等式的求解,关键在于由向量的模的平方等于向量的平方,得到关于角度的三角函数的不等式,属于中档题.19.B【分析】 2222||2b ta b a bt a t -=-⋅+,令222()2f t b a bt a t =-⋅+,易得2cos b a b t a a θ⋅==时,222min 244()()14a b a b f t a-⋅==,即222||cos 1b b θ-=,结合选项即可得到答案. 【详解】 2222||2b ta b a bt a t -=-⋅+,令222()2f t b a bt a t =-⋅+,因为t R ∈, 所以当2cos b a b t a aθ⋅==时,222min 244()()4a b a b f t a -⋅=,又||b t a →→-的最小值为1, 所以2||b ta -的最小值也为1,即222min 244()()14a b a b f t a -⋅==,222||cos 1b b θ-=, 所以22||sin 1(0)b b θ=≠,所以1sin b θ=,故若θ确定,则||b →唯一确定. 故选:B【点睛】本题考查向量的数量积、向量的模的计算,涉及到二次函数的最值,考查学生的数学运算求解能力,是一道容易题.20.A【分析】首先由条件和正弦定理判断ABC 是等腰直角三角形,由三角形的性质可知直角三角形的外接圆的圆心在斜边的中点,所以由ABC 外接圆的半径可求得三角形的边长,再求面积.【详解】 由正弦定理可知2sin sin sin a b c r A B C ===已知sin cos sin a b c A B B===sin cos B B =和sin sin C B =, 所以45B =,45C =,所以ABC 是等腰直角三角形,由条件可知ABC ,即等腰直角三角形的斜边长为所以122ABC S =⨯=. 故选:A【点睛】本题考查正弦定理判断三角形形状,重点考查直角三角形和外接圆的性质,属于基础题型. 21.D【分析】由正弦定理确定BC 的长,再tan30AB BC 求出AB .【详解】 15BCD ∠=︒,45BDC ∠=︒120CBDsin 45BC 302sin 45203sin120BC 3tan 30203203ABBC故选D 【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出BC ,属于基础题.22.C【分析】由三角形的重心定理和平面向量的共线定理可得答案.【详解】ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,可得G 为重心,则23BG BE =,2CG GF =,12DG GA =且0GA GB GC ++= 故选:C【点睛】本题考查了三角形的重心定理和向量共线定理,属于中档题.23.D【分析】由数量积的定义判断B 角的大小,得三角形形状.【详解】 由题意cos()0a ba b B π⋅=->,∴cos()0B π->,cos 0B ->,cos 0B <,又B 是三角形内角,∴2B ππ<<.∴ABC 是钝角三角形.故选:D .【点睛】本题考查考查三角形形状的判断,解题关键是掌握数量积的定义.向量夹角的概念. 24.D【分析】根据三角形中位线的性质,可得P 到BC 的距离等于△ABC 的BC 边上高的一半,从而得到12312S S S S ==+,由此结合基本不等式求最值,得到当23λλ⋅取到最大值时,P 为EF 的中点,再由平行四边形法则得出11022PA PB PC ++=,根据平面向量基本定理可求得12x y ==,从而可求得结果. 【详解】如图所示:因为EF 是△ABC 的中位线,所以P 到BC 的距离等于△ABC 的BC 边上高的一半,所以12312S S S S ==+, 由此可得22232322322()1216S S S S S S S S S S λλ+=⨯=≤=, 当且仅当23S S =时,即P 为EF 的中点时,等号成立,所以0PE PF +=,由平行四边形法则可得2PA PB PE +=,2PA PC PF +=,将以上两式相加可得22()0PA PB PC PE PF ++=+=, 所以11022PA PB PC ++=, 又已知0PA xPB yPC ++=, 根据平面向量基本定理可得12x y ==, 从而132122x y +=+=. 故选:D【点睛】本题考查了向量加法的平行四边形法则,考查了平面向量基本定理的应用,考查了基本不等式求最值,属于中档题.25.C【分析】在ABC 中,根据5AB AC ==,6BC =,由余弦定理求得7cos 25A =,再由平方关系得到sin A ,然后由正弦定理2sin BC R A=求解. 【详解】在ABC 中,5AB AC ==,6BC =, 由余弦定理得:2222225567cos 225525AB AC BC A AB AC +-+-===⋅⨯⨯,所以24sin 25A ==, 由正弦定理得:625224sin 425BC R A ===, 所以258R =, 此三角形的外接圆半径是258故选:C【点睛】 本题主要考查余弦定理,正弦定理的应用,还考查了运算求解的能力,属于中档题.26.无27.A【分析】根据向量的数量积的运算公式,以及向量的模的计算公式,准确运算,即可求解.【详解】 因为1a =,3b =,a 与b 的夹角为60︒,所以2224424697a a b b a b =-⋅+=-+=-,则27a b -=.故选:A.【点睛】 本题主要考查了向量的数量积的运算,以及向量的模的求解,其中解答中熟记向量的数量积的运算公式是解答的关键,着重考查推理与运算能力.28.A【分析】设出()()()11AP mAB m AF mAB m AD DF =+-=+-+,求得()2113m AP AB m AD +=+-,再利用向量相等求解即可. 【详解】 连接AF ,因为B ,P ,F 三点共线,所以()()()11AP mAB m AF mAB m AD DF =+-=+-+,因为2CF DF =,所以1133DF DC AB ==, 所以()2113m AP AB m AD +=+-. 因为E 是BC 的中点, 所以1122AE AB BC AB AD =+=+. 因为AP AE λ=,所以()211132m AB m AD AB AD λ+⎛⎫+-=+ ⎪⎝⎭, 则213112m m λλ+⎧=⎪⎪⎨⎪-=⎪⎩, 解得34λ=. 故选:A【点睛】本题主要考查平面向量的线性运算,考查了平面向量基本定理的应用,属于基础题. 29.D【分析】先根据向量减法与向量数量积化简得边之间关系,再判断三角形形状.【详解】因为()()()222BC BA AC BC BA BC BA BC BA AC +⋅=+⋅-=-=,所以222a c b -=,即ABC 是直角三角形,选D.【点睛】判断三角形形状的方法①化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.②化角:通过三角恒等变形,得出内角的关系,从而判断三角形的形状,此时要注意应用πA B C ++=这个结论.30.A【分析】根据面积公式得到4c =,再利用余弦定理得到a =,再利用正弦定理得到答案.【详解】1sin 42ABC S bc A c ∆==== 利用余弦定理得到:2222cos 116413a b c bc A a =+-=+-=∴= 正弦定理:sin sin sina b c A B C == 故2sin 2sin sin sin a b c a A B C A ++===++ 故选A【点睛】本题考查了面积公式,正弦定理,余弦定理,综合性强,意在考查学生的综合应用能力. 31.B【解析】【分析】利用向量的定义和运算法则逐一考查所给的命题是否正确即可得到正确命题的个数.【详解】逐一考查所给的命题:①由向量的减法法则可知:AB AC CB -=,题中的说法错误;②由向量加法的三角形法则可得:0AB BC CA ++=,题中的说法正确;③因为()(2)0OB OC OB OC OA -⋅+-=,即()0CB AB AC ⋅+=; 又因为AB AC CB -=,所以()()0AB AC AB AC -⋅+=,即||||AB AC =,所以△ABC 是等腰三角形.题中的说法正确;④若0AC AB ⋅>,则cos 0AC AB A ⨯⨯>,据此可知A ∠为锐角,无法确定ABC ∆为锐角三角形,题中的说法错误.综上可得,正确的命题个数为2.故选:B .【点睛】本题主要考查平面向量的加法法则、减法法则、平面向量数量积的应用,由平面向量确定三角形形状的方法等知识,意在考查学生的转化能力和计算求解能力.32.B【分析】根据向量运算可知三角形中中线与垂线重合,可知三角形为等腰三角形,即可确定三角形形状.【详解】因为AB AC BA BC →→→→⋅=⋅,所以0AB AC BC →→→⎛⎫⋅+= ⎪⎝⎭, 即0AB CA CB →→→⎛⎫⋅+= ⎪⎝⎭, 所以在ABC 中,AB 与AB 边上的中线垂直,则CA CB →→=,同理0BC AC AB →→→⎛⎫⋅+= ⎪⎝⎭,AC AB →→=, 所以AC AB CB →→→==,ABC 是等边三角形.故选:B【点睛】本题主要考查了向量的数量积,向量垂直,考查了运算能力,属于中档题. 33.无34.无35.A【分析】由已知条件,令||AC a =,||BC b =,则在△ACM 中结合余弦定理可知48ab ≤,根据三角形面积公式即可求最大值【详解】由题意,可得如下示意图令||AC a =,||BC b =,又2BM MC =,即有1||||33b CM CB == ∴由余弦定理知:222||||||2||||cos AM CA CM CA CM ACB =+-∠2221216()332333a ab ab ab ab b =+-⨯≥-=,当且仅当3a b =时等号成立 ∴有48ab ≤ ∴113sin 48123222ABC S ab C ∆=≤⨯⨯=故选:A【点睛】本题考查了正余弦定理,利用向量的知识判断线段的长度及比例关系,再由余弦定理并应用基本不等式求三角形两边之积的范围,进而结合三角形面积公式求最值。
湖北黄岗中学高考数学二轮复习考点解析平面向量及其运用考点透析
湖北黄岗中学高考数学二轮复习考点解析11:平面向量及其运用考点透析【考点聚焦】考点1:向量的概念、向量的加法和减法、实数与向量的积.考点2:向量的坐标运算、平面向量的数量积.考点3:向量的模与角的计算。
.【考点小测】1.(浙江卷)设向量,,a b c 满足0a b c ++=,,||1,||2a b a b ⊥==,则2||c =(A)1 (B)2 (C)4 (D )52.(2003年天津高考题)O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足||||(AC AB +=λ,[)∞∈+,0λ,则P 的轨迹一定通过△ABC 的( ) (A )外心 (B )内心 (C )重心 (D )垂心3.(广东卷)如图1所示,D 是ABC ∆的边AB 上的中点,则向量CD = A.12BC BA -+ B. 12BC BA -- C. 12BC BA - D. 12BC BA + 4.(湖南卷)已知||2||0a b ,且关于x 的方程2||0x a x a b 有实根,则a 与b 的夹角的取值范围是 ( )A.[0,6] B.[,]3 C.2[,]33 D.[,]65.(全国卷I )已知向量a b 、满足1,4,a b ==,且2a b =,则a 与b 的夹角为 A .6π B .4π C .3π D .2π 6.(山东卷)设向量a=(1, -2),b=(-2,4),c =(-1,-2),若表示向量4a ,4b -2c ,2(a -c ),d 的有向线段首尾相接能构成四边形,则向量d 为(A)(2,6) (B)(-2,6) (C)(2,-6) (D )(-2,-6)7. (上海卷)如图,在平行四边形ABCD 中,下列结论中错误的是 ( )(A )→--AB =→--DC ; (B )→--AD +→--AB =→--AC ;(C )→--AB -→--AD =→--BD ; (D )→--AD +→--CB =→0.8.(北京卷)若三点(2,2),(,0),(0,)(0)A B a C b ab ≠共线,则11a b +的值等于_________.129.(2005年全国卷Ⅱ)点P 在平面上作匀速直线运动,速度向量v =(4,-3)(即点P 的运动方向与v 相同,且每秒移动的距离为|v |个单位.设开始时点P 的坐标为(-10,10),则A C B 图1 A B D5秒后点P 的坐标为 (10,-5) 10.(湖南卷)已知直线ax +by +c =0与圆O :x 2+y 2=1相交于A 、B 两点,且|AB|=3,则OB OA ⋅ = . 21-【典型考例】【考型1】向量的有关概念与运算此类题经常出现在选择题与填空题中,在复习中要充分理解平面向量的相关概念,熟练掌握向量的坐标运算、数量积运算,掌握两向量共线、垂直的充要条件.例1:已知a 是以点A (3,-1)为起点,且与向量b = (-3,4)平行的单位向量,则向量a 的终点坐标是 .思路分析:与a 平行的单位向量e =±||a a方法一:设向量a 的终点坐标是(x ,y ),则a =(x -3,y +1),则题意可知⎪⎪⎩⎪⎪⎨⎧-==⎪⎪⎩⎪⎪⎨⎧-==⎩⎨⎧=+=++-55185512101334229y x 1y x 13)()(或 解得)+()-(y x y x ,故填 (512,-51)或(518,-59) 方法二 与向量b = (-3,4)平行的单位向量是±51(-3,4),故可得a =±(-53,54),从而向量a 的终点坐标是(x ,y )= a -(3,-1),便可得结果. 点评:向量的概念较多,且容易混淆,在学习中要分清、理解各概念的实质,注意区分共线向量、平行向量、同向向量、反向向量、单位向量等概念.例2:已知| a |=1,| b |=1,a 与b 的夹角为60°, x =2a -b ,y =3b -a ,则x 与y 的夹角的余弦是多少?思路分析:要计算x 与y 的夹角θ,需求出|x |,|y |,x ·y 的值.计算时要注意计算的准确性. 解:由已知|a |=|b |=1,a 与b 的夹角α为60°,得a ·b =|a ||b |cosα=21. 要计算x 与y 的夹角θ,需求出|x |,|y |,x ·y 的值.∵|x |2=x 2=(2a -b )2=4a 2-4a ·b +b 2=4-4×21+1=3, |y |2=y 2=(3b -a )2=9b 2-6b ·a +a 2=9-6×21+1=7. x ·y =(2a -b )·(3b -a )=6a ·b -2a 2-3b 2+a ·b=7a ·b -2a 2-3b 2 =7×21-2-3=-23,又∵x ·y =|x ||y |cosθ,即-23=3×7cosθ, ∴cosθ=-1421 点评:①本题利用模的性质|a |2=a 2,②在计算x ,y 的模时,还可以借助向量加法、减法的几何意义获得:如图所示,设=b , =a , =2a ,∠BAC =60°.由向量减法的几何意义,得BD =AD -AB =2a -b .由余弦定理易得|BD |=3,即|x |=3,同理可得|y |=7.【考型2】向量共线与垂直条件的考查例3.平面直角坐标系中,O 为坐标原点,已知两点A(3, 1),B(-1, 3), 若点C 满足OC OA OB =α+β,其中α,β∈R 且α+β=1,求点C 的轨迹方程。
湖北省黄冈市新高考数学平面向量多选题之知识梳理与训练含答案
湖北省黄冈市新高考数学平面向量多选题之知识梳理与训练含答案一、平面向量多选题1.已知边长为4的正方形ABCD 的对角线的交点为O ,以O 为圆心,6为半径作圆;若点E 在圆O 上运动,则( )A .72EA EB EB EC EC ED ED EA ⋅+⋅+⋅+⋅=B .56EA EC EB ED ⋅+⋅= C .144EA EB EB EC EC ED ED EA ⋅+⋅+⋅+⋅=D .28EA EC EB ED ⋅+⋅= 【答案】BC【分析】以O 为坐标原点,线段BC ,AB 的垂直平分线分别为x 、y 轴建立平面直角坐标系xOy ,再利用向量坐标的线性运算以及向量数量积的坐标运算即可求解.【详解】作出图形如图所示,以O 为坐标原点,线段BC ,AB 的垂直平分线分别为x 、y 轴建立平面直角坐标系xOy ;观察可知,()2,2A --,()2,2B -,()2,2C ,()2,2D -,设(),E x y ,则2236x y +=, 故()2,2EA x y =----,()2,2EB x y =---,()2,2EC x y =--,故ED =()2,2x y ---,故EA EB EB EC EC ED ED EA ⋅+⋅+⋅+⋅()()24144EA EC EB ED EO =+⋅+==, 56EA EC EB ED ⋅+⋅=.故选:BC2.已知向量(2,1),(3,1)a b ==-,则( )A .()a b a +⊥B .|2|5a b +=C .向量a 在向量b 上的投影是2D .向量a 的单位向量是⎝⎭【答案】ABD【分析】多项选择题需要要对选项一一验证:对于A:利用向量垂直的条件判断;对于B:利用模的计算公式;对于C:利用投影的计算公式;对于D:直接求单位向量即可.【详解】 (2,1),(3,1)a b ==-对于A: (1,2),()(1)2210,a b a b a +=-+⋅=-⨯+⨯=∴()a b a +⊥,故A 正确; 对于B: 222(2,1)2(3,1)(4,3),|2|(4)35a b a b +=+-=-∴+=-+=,故B 正确;对于C: 向量a 在向量b 上的投影是2||(3)a b b ⋅==--,故C 错误;对于D: 向量a 的单位向量是55⎛ ⎝⎭,故D 正确.故选:ABD .【点睛】多项选择题是2020年高考新题型,需要要对选项一一验证.3.已知ABC 是边长为2的等边三角形,D ,E 分别是,AC AB 上的点,且AE EB =,2AD DC =,BD 与CE 交于点O ,则( )A .0OC EO +=B .0AB CE ⋅=C .3OA OB OC OD +++=D .ED 在BC 方向上的投影为76【答案】BD【分析】 可证明EO CE =,结合平面向量线性运算法则可判断A ;由AB CE ⊥结合平面向量数量积的定义可判断B ;建立直角坐标系,由平面向量线性运算及模的坐标表示可判断C ;由投影的计算公式可判断D.【详解】因为ABC 是边长为2的等边三角形,AE EB =,所以E 为AB 的中点,且CE AB ⊥,以E 为原点如图建立直角坐标系,则()0,0E ,()1,0A -,()10B ,,(3C , 由2AD DC =可得222333AD AC ⎛== ⎝⎭,则1233D ⎛- ⎝⎭, 取BD 的中点G ,连接GE ,易得//GE AD 且12GE AD DC ==, 所以CDO ≌EGO △,EO CO =,则30,2O ⎛⎝⎭, 对于A ,0OC EO EC +=≠,故A 错误;对于B ,由AB CE ⊥可得0AB CE ⋅=,故B 正确;对于C ,31,2OA ⎛=-- ⎝⎭,31,2OB ⎛⎫=- ⎪ ⎪⎝⎭,30,2OC ⎛⎫= ⎪ ⎪⎝⎭,13,36OD ⎛=- ⎝⎭, 所以13,3OA OB OC OD ⎛+++=- ⎝⎭,所以23OA OB OC OD +++=,故C 错误; 对于D ,(3BC =-,123,33ED ⎛⎫=- ⎪ ⎪⎝⎭, 所以ED 在BC 方向上的投影为127326BC ED BC+⋅==,故D 正确. 故选:BD.【点睛】关键点点睛:建立合理的平面直角坐标系是解题关键.4.已知ABC 是边长为2的等边三角形,D 是边AC 上的点,且2AD DC =,E 是AB 的中点,BD 与CE 交于点O ,那么( )A .0OE OC +=B .1AB CE ⋅=-C .3OA OB OC ++=D .13DE = 【答案】AC【分析】 建立平面直角坐标系,结合线段位置关系以及坐标形式下模长的计算公式逐项分析.【详解】建立平面直角坐标系如下图所示:取BD 中点M ,连接ME ,因为,M E 为,BD BA 中点,所以1//,2ME AD ME AD =,又因为12CD AD =, 所以//,ME CD ME CD =,所以易知EOM COD ≅,所以O 为CE 中点, A .因为O 为CE 中点,所以0OE OC +=成立,故正确;B .因为E 为AB 中点,所以ABCE ,所以0AB CE ⋅=,故错误; C .因为()()(30,,1,0,1,0,32O A B C ⎛- ⎝⎭,所以33331,1,0,OA OB OC ⎛⎛⎛⎛++=+-+= ⎝⎭⎝⎭⎝⎭⎝⎭, 所以3OA OB OC ++=D .因为()123,0,03DE ⎛ ⎝⎭,所以123,3DE ⎛=- ⎝⎭,所以13DE =,故错误, 故选:AC.【点睛】关键点点睛:对于规则的平面图形(如正三角形、矩形、菱形等)中的平面向量的数量积和模长问题,采用坐标法计算有时会更加方便.5.下列说法中错误的为( )A .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是5,3⎛⎫-+∞ ⎪⎝⎭B .向量1(2,3)e =-,213,24e ⎛⎫=- ⎪⎝⎭不能作为平面内所有向量的一组基底 C .若//a b ,则a 在b 方向上的投影为||aD .非零向量a 和b 满足||||||a b a b ==-,则a 与a b +的夹角为60°【答案】ACD【分析】由向量的数量积、向量的投影、基本定理与向量的夹角等基本知识,逐个判断即可求解.【详解】对于A ,∵(1,2)a =,(1,1)b =,a 与a b λ+的夹角为锐角,∴()(1,2)(1,2)a a b λλλ⋅+=⋅++142350λλλ=+++=+>,且0λ≠(0λ=时a 与a b λ+的夹角为0), 所以53λ>-且0λ≠,故A 错误; 对于B ,向量12(2,3)4e e =-=,即共线,故不能作为平面内所有向量的一组基底,B 正确;对于C ,若//a b ,则a 在b 方向上的正射影的数量为||a ±,故C 错误;对于D ,因为|||a a b =-∣,两边平方得||2b a b =⋅, 则223()||||2a a b a a b a ⋅+=+⋅=, 222||()||2||3||a b a b a a b b a +=+=+⋅+=,故23||()32cos ,2||||3||a a a b a a b a a b a a ⋅+<+>===+⋅∣, 而向量的夹角范围为[]0,180︒︒,得a 与a b λ+的夹角为30°,故D 项错误.故错误的选项为ACD故选:ACD【点睛】本题考查平面向量基本定理及向量的数量积,向量的夹角等知识,对知识广度及准确度要求比较高,中档题.6.八卦是中国文化的基本哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八边形ABCDEFGH,其中1OA=,则下列结论正确的有()A.22 OA OD⋅=-B.2OB OH OE+=-C.AH HO BC BO⋅=⋅D.AH在AB向量上的投影为2【答案】AB【分析】直接利用向量的数量积的应用,向量的夹角的应用求出结果.【详解】图2中的正八边形ABCDEFGH,其中||1OA=,对于32:11cos4A OA ODπ=⨯⨯=;故正确.对于:22B OB OH OA OE+==-,故正确.对于:||||C AH BC=,||||HO BO=,但对应向量的夹角不相等,所以不成立.故错误.对于:D AH在AB向量上的投影32||cos||4AH AHπ=-,||1AH≠,故错误.故选:AB.【点睛】本题考查的知识要点:向量的数量积的应用,向量的夹角的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.7.已知M为ABC的重心,D为BC的中点,则下列等式成立的是()A.1122AD AB AC=+B.0MA MB MC++=C.2133BM BA BD=+D.1233CM CA CD=+【答案】ABD 【分析】根据向量的加减法运算法则依次讨论即可的答案.【详解】解:如图,根据题意得M 为AD 三等分点靠近D 点的点.对于A 选项,根据向量加法的平行四边形法则易得1122AD AB AC =+,故A 正确; 对于B 选项,2MB MC MD +=,由于M 为AD 三等分点靠近D 点的点,2MA MD =-,所以0MA MB MC ++=,故正确;对于C 选项,()2212=3333BM BA AD BA BD BA BA BD =+=+-+,故C 错误; 对于D 选项,()22123333CM CA AD CA CD CA CA CD =+=+-=+,故D 正确. 故选:ABD【点睛】本题考查向量加法与减法的运算法则,是基础题.8.已知ABC ∆是边长为()20a a >的等边三角形,P 为ABC ∆所在平面内一点,则()PA PB PC ⋅+的值可能是( )A .22a -B .232a -C .243a -D .2a -【答案】BCD【分析】通过建系,用坐标来表示向量,根据向量的乘法运算法则以及不等式,可得结果.【详解】建立如图所示的平面直角坐标系.设(),P x y ,又()A ,(),0B a -, (),0C a ,则()PA x y =--, (),PB a x y =---,(),PC a x y =--.则()(),,a x y a P PC x y B -+--+-=-即()2,2PB x y PC --+=所以()()()2,2x PA PB P y x y C =--⋅--⋅+则()PA PB PC ⋅+2222x y =+-即()PA PB PC ⋅+22232222x y a a ⎛⎫=+-- ⎪ ⎪⎝⎭. 所以()PA PB PC ⋅+232a ≥-故选:BCD.【点睛】本题主要通过建系的方法求解几何中向量的问题,属中档题.9.ABC ∆是边长为3的等边三角形,已知向量a 、b 满足3AB a =,3AC a b =+,则下列结论中正确的有( )A .a 为单位向量B .//b BC C .a b ⊥D .()6a b BC +⊥ 【答案】ABD【分析】 求出a 可判断A 选项的正误;利用向量的减法法则求出b ,利用共线向量的基本定理可判断B 选项的正误;计算出a b ⋅,可判断C 选项的正误;计算出()6a b BC +⋅,可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,3AB a =,13a AB ∴=,则113a AB ==,A 选项正确; 对于B 选项,3AC a b AB b =+=+,b AC AB BC ∴=-=,//b BC ∴,B 选项正确;对于C 选项,21123cos 0333a b AB BC π⋅=⋅=⨯⨯≠,所以a 与b 不垂直,C 选项错误; 对于D 选项,()()()2260a b BC AB AC AC AB AC AB +⋅=+⋅-=-=,所以,()6a b BC +⊥,D 选项正确.故选:ABD.【点睛】本题考查向量有关命题真假的判断,涉及单位向量、共线向量的概念的理解以及垂直向量的判断,考查推理能力,属于中等题.10.如图,46⨯的方格纸(小正方形的边长为1)中有一个向量OA (以图中的格点O 为起点,格点A 为终点),则( )A .分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有11个B .满足10OA OB -=B 共有3个C .存在格点B ,C ,使得OA OB OC =+D .满足1OA OB ⋅=的格点B 共有4个【答案】BCD【分析】 根据向量的定义及运算逐个分析选项,确定结果.【详解】解:分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有 18个,故A 错, 以O 为原点建立平面直角坐标系,()1,2A ,设(,)B m n ,若10OA OB -= 22(1)(2)10m n -+-(33m -,22n -,且m Z ∈,)n Z ∈, 得(0,1)B -,(2,1)-,(2,1)-共三个,故B 正确.当(1,0)B ,(0,2)C 时,使得OA OB OC =+,故C 正确. 若1OA OB ⋅=,则21m n +=,(33m -,22n -,且m Z ∈,)n Z ∈, 得(1,0)B ,(3,1)-,(1,1)-,(3,2)-共4个,故D 正确.故选:BCD .【点睛】本题考查向量的定义,坐标运算,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄冈中学高考数学典型例题3运用向量法解题黄冈中学高考数学典型例题详解运用向量法解题每临大事,必有静气;静则神明,疑难冰释; 积极准备,坦然面对;最佳发挥,舍我其谁?平面向量是新教材改革增加的内容之一,近几年的全国使用新教材的高考试题逐渐加大了对这部分内容的考查力度,本节内容主要是帮助考生运用向量法来分析,解决一些相关问题.●难点磁场(★★★★★)三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:(1)BC边上的中线AM的长;(2)∠CAB的平分线AD的长;(3)cos ABC的值.23 ●案例探究 [例1]如图,已知平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD .(1)求证:C 1C ⊥BD .(2)当1CC CD 的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明.命题意图:本题主要考查考生应用向量法解决向量垂直,夹角等问题以及对立体几何图形的解读能力.知识依托:解答本题的闪光点是以向量来论证立体几何中的垂直问题,这就使几何问题代数化,使繁琐的论证变得简单.错解分析:本题难点是考生理不清题目中的线面位置关系和数量关系的相互转化,再就是要清楚已知条件中提供的角与向量4夹角的区别与联系.技巧与方法:利用a ⊥b ⇔a ·b =0来证明两直线垂直,只要证明两直线对应的向量的数量积为零即可.(1)证明:设CD =a , CB =b ,1CC =c ,依题意,|a |=|b |,CD 、CB 、1CC 中两两所成夹角为θ,于是-==a -b ,CC⋅1=c (a -b )=c ·a -c ·b =|c |·|a |cos θ-|c |·|b |cos θ=0,∴C 1C ⊥BD . (2)解:若使A 1C ⊥平面C 1BD ,只须证A 1C ⊥BD ,A 1C ⊥DC 1,由)()(1111CC AA C CA -⋅+=⋅ =(a +b +c )·(a -c )=|a |2+a ·b -b ·c -|c |2=|a |2-|c |2+|b |·|a |cos θ-|b |·|c |·cos θ=0,得当|a |=|c |时,A 1C ⊥DC 1,同理可证当|a |=|c |时,A 1C ⊥BD ,∴1CC CD =1时,A 1C ⊥平面C 1BD .5[例2]如图,直三棱柱ABC —A 1B 1C 1,底面△ABC 中,CA =CB =1,∠BCA =90°,AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.(1)求BN 的长;(2)求cos<11,CB BA >的值; (3)求证:A 1B ⊥C 1M .命题意图:本题主要考查考生运用向量法中的坐标运算的方法来解决立体几何问题.属★★★★级题目.知识依托:解答本题的闪光点是建立恰当的空间直角坐标系O -xyz ,进而找到点的坐标和求出向量的坐标.错解分析:本题的难点是建系后,考生不能正确找到点的坐标.技巧与方法:可以先找到底面坐标面xOy 内的A 、B 、C 点坐标,然后利用向量的模及方向来找出其他的点的坐标.(1) 解:如图,以C 为原点建立空间直6角坐标系O -xyz .依题意得:B (0,1,0),N (1,0,1) ∴|BN |=3)01()10()01(222=-+-+-.(2) 解:依题意得:A 1(1,0,2),C (0,0,0),B 1(0,1,2). ∴1BA =1),2,1,1(CB -=(0,1,2) 11CB BA ⋅=1×0+(-1)×1+2×2=3 |1BA |=6)02()10()01(222=-+-+-5)02()01()00(||2221=-+-+-=CB.1030563||||,cos 111111=⋅=⋅>=<∴CB BC CB BA(3) 证明:依题意得:C 1(0,0,2),M (2,21,21) )2,1,1(),0,21,21(11--==A C ∴,,00)2(21121)1(1111C A C A ⊥∴=⨯-+⨯+⨯-=⋅∴A 1B ⊥C 1M .●锦囊妙计1.解决关于向量问题时,一要善于运用向量的平移、伸缩、合成、分解等变换,正确地进行向量的各种运算,加深对向量的本质的认识.二是向量的坐标运算体现了数与形互相转化和密切结合的思想.2.向量的数量积常用于有关向量相等,两向量垂直、射影、夹角等问题中.常用向量的直角坐标运算来证明向量的垂直和平行问题;利用向量的夹角公式和距离公式求解空间两条直线的夹角和两点间距离的问题.3.用空间向量解决立体几何问题一般可按以下过程进行思考:(1)要解决的问题可用什么向量知识来解决?需要用到哪些向量?(2)所需要的向量是否已知?若未知,是否可用已知条件转化成的向量直接表示?(3)所需要的向量若不能直接用已知条件转化成的向量表示,则它们分别最易用哪个未知向量表示?这些未知向量与由已知7条件转化的向量有何关系?(4)怎样对已经表示出来的所需向量进行运算,才能得到需要的结论?●歼灭难点训练一、选择题1. (★★★★) 设A、B、C、D四点坐标依次是(-1,0),(0,2),(4,3),(3,1),则四边形ABCD为( )A.正方形B.矩形C.菱形D.平行四边形2. (★★★★) 已知△ABC中,=a,15,|a|=3,|b|=5,则a与b =b,a·b<0,S△ABC=4的夹角是( )A.30°B.-150°C.150°D.30°或150°二、填空题83. (★★★★★) 将二次函数y=x2的图象按向量a平移后得到的图象与一次函数y=2x-5的图象只有一个公共点(3,1),则向量a=_________.4.(★★★★)等腰△ABC和等腰Rt△ABD有公共的底边AB,它们所在的平面成60°角,若AB=16 cm,AC=17 cm,则CD=_________.三、解答题5.(★★★★★)如图,在△ABC中,设AB=a,AC=b,AP=c,AD=λa,(0<λ<1),AE=μb(0<μ<1),试用向量a,b表示c.6.(★★★★)正三棱柱ABC—A1B1C1的底面边长为a,侧棱长为2a.(1)建立适当的坐标系,并写出A、B、910 A 1、C 1的坐标;(2)求AC 1与侧面ABB 1A 1所成的角.7.(★★★★★)已知两点M (-1,0),N (1,0),且点P 使NP NM PN PM MN MP ⋅⋅⋅,,成公差小于零的等差数列.(1)点P 的轨迹是什么曲线?(2)若点P 坐标为(x 0,y 0),Q 为PM 与PN 的夹角,求tan θ. 8.(★★★★★)已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、DA 的中点. (1)用向量法证明E 、F 、G 、H 四点共面;(2)用向量法证明:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有)(41+++=.参考答案 难点磁场 解:(1)点M的坐标为x M =)29,0(,29227;0211M yM∴=+==+-.2221)291()05(||22=--+-=∴AM5)21()15(||,10)71()15(||)2(2222=--+-==--++=D 点分BC 的比为2.∴x D =31121227,3121121=+⨯+==+⨯+-Dy.2314)3111()315(||22=--+-=(3)∠ABC 是与的夹角,而=(6,8),=(2,-5).1452629291052)5(2)8(6)5()8(26||||cos 2222==-+⋅-+-⨯-+⨯=⋅=∴BC BA ABC歼灭难点训练一、1.解析: =(1,2), =(1,2),∴=DC ,∴∥DC ,又线段AB 与线段DC无公共点,∴AB ∥DC 且|AB |=|DC |,∴ABCD 是平行四边形,又|AB |=5,AC =(5,3),|AC |=34,∴|AB |≠|AC },∴ABCD 不是菱形,更不是正方形;又=(4,1),∴1·4+2·1=6≠0,∴不垂直于,∴ABCD 也不是矩形,故选D.答案:D2.解析:∵21415 ·3·5sin α得sin α=21,则α=30°或α=150°.又∵a ·b <0,∴α=150°. 答案:C二、3.(2,0) 4.13 cm 三、5.解:∵与共线,∴=m =m (-)=m (μb -a ),∴=+=a +m (μb -a )=(1-m )a +mμb ①又与共线,∴=n =n (-)=n (λa -b ),∴=+=b +n (λa -b )=n λa +(1-n )b ②由①②,得(1-m )a +μmb =λna +(1-n )b .∵a 与b 不共线,∴⎩⎨⎧=-+=-+⎩⎨⎧-==-010111m n m n n m a m μλμλ即③解方程组③得:m =λμμλμλ--=--11,11n 代入①式得c =(1-m )a +m μb =πμ-11[λ(1-μ)a +μ(1-λ)b ].6.解:(1)以点A 为坐标原点O ,以AB 所在直线为Oy 轴,以AA 1所在直线为Oz 轴,以经过原点且与平面ABB 1A 1垂直的直线为Ox 轴,建立空间直角坐标系.由已知,得A (0,0,0),B (0,a ,0),A 1(0,0,2a ),C 1(-,2,23a a 2a ).(2)取A 1B 1的中点M ,于是有M (0,2,2a a ),连AM ,MC 1,有1MC =(-23a ,0,0),且=(所以AM AC 与1所成的角,即AC 1与侧面ABB 1A 1所成的角为30°.7.解:(1)设P (x ,y ),由M (-1,0),N (1,0)得,PM =-=(-1-x ,-y ),-= =(1-x ,-y ),MN =-=(2,0),∴·=2(1+x ),·=x 2+y 2-1,⋅ =2(1-x ).于是,PM ⋅⋅⋅,,是公差小于零的等差数列,等价于⎩⎨⎧>=+⎪⎩⎪⎨⎧<+---++=-+03 0)1(2)1(2)]1(2)1(2[211222x y x x x x x y x 即所以,点P 的轨迹是以原点为圆心,3为半径的右半圆.(2)点P 的坐标为(x 0,y 0),30,1cos 21,3041||cos 42)24)(24()1()1(||||,210220002020*******πθθθ<≤≤<∴≤<-=⋅=∴-=-+=+-⋅++=⋅=-+=⋅x x PNPM x x x y x y x PN PM y x PN PM||3cos sin tan ,411cos 1sin 02022y x x =-==∴--=-=∴θθθθθ8.证明:(1)连结BG ,则EHEF EH BF EB BD BC EB BG EB EG +=++=++=+=)(21由共面向量定理的推论知:E 、F 、G 、H 四点共面,(其中21BD =EH ) (2)因为BD AB AD AB AD AE AH EH 21)(212121=-=-=-=.所以EH ∥BD ,又EH ⊂面EFGH ,BD ⊄面EFGH所以BD ∥平面EFGH .(3)连OM ,OA ,OB ,OC ,OD ,OE ,OG由(2)知BD EH 21=,同理BD FG 21=,所以FGEH =,EH FG ,所以EG 、FH 交于一点M且被M 平分,所以).(41)](21[21)](21[212121)(21+++=+++=+=+=.。