圆锥曲线基础题及标准答案

合集下载

圆锥曲线练习题含答案(很基础,很好的题)

圆锥曲线练习题含答案(很基础,很好的题)

圆锥曲线练习题含答案(很基础,很好的题)1.抛物线y=10x的焦点到准线的距离是()2答案:52.若抛物线y=8x上一点P到其焦点的距离为9,则点P的坐标为()。

答案:(7,±14)3.以椭圆x^2/25+y^2/16=1的顶点为顶点,离心率为2的双曲线方程是()。

答案:x^2/9 - y^2/16 = 14.F1,F2是椭圆x^2/16+y^2/27=1的两个焦点,A为椭圆上一点,且∠AF1F2=45,则ΔAF1F2的面积()。

答案:75.以坐标轴为对称轴,以原点为顶点且过圆x^2+y^2-2x+6y+9=0的圆心的抛物线的方程是()。

答案:y=3x或y=-3x6.若抛物线y=x上一点P到准线的距离等于它到顶点的距离,则点P的坐标为()。

答案:(±1/4.1/8)7.椭圆x^2/48+y^2/27=1上一点P与椭圆的两个焦点F1、F2的连线互相垂直,则△PF1F2的面积为()。

答案:288.若点A的坐标为(3,2),F是抛物线y=2x的焦点,点M 在抛物线上移动时,使MF+MA取得最小值的M的坐标为()。

答案:(2/5.4/5)9.与椭圆4x^2+y^2=1共焦点且过点Q(2,1)的双曲线方程是()。

答案:x^2/3 - y^2/4 = 110.若椭圆x/√3 + y/√2 = 1的离心率为2/3,则它的长半轴长为_______________。

答案:√611.双曲线的渐近线方程为x±2y=0,焦距为10,这双曲线的方程为______________。

答案:x^2/4 - y^2/36 = 112.抛物线y=6x的准线方程为y=3,焦点为(0,3)。

13.椭圆5x^2+k^2y^2=5的一个焦点是(0,2),那么k=____________。

答案:√314.椭圆kx^2+8y^2=9的离心率为2/3,则k的值为____________。

答案:7/315.根据双曲线的定义,其焦点到准线的距离等于其焦距的一半,因此该双曲线的焦距为3.又根据双曲线的标准方程,8kx-ky=8,将焦点代入方程可得8k(0)-3k=8,解得k=-8/3.16.将直线x-y=2代入抛物线y=4x中,得到交点为(2,8)和(-1,-5)。

圆锥曲线基础题(附答案)

圆锥曲线基础题(附答案)

1.已知椭圆的离心率为 12,焦点是(-3,0),(3,0),则椭圆方程为______________. 2.抛物线y 2=4x 的焦点到准线的距离是__________.3.当a 为任意实数时,直线(2a +3)x +y -4a +2=0恒过定点P ,则过点P 的抛物线的标准方程是__________________.4.设椭圆x 2m 2+y 2n 2=1 (m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12,则此椭圆的方程为________________.5.已知F 1,F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A ,B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是________.6.若直线mx -ny =4与⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是________.7.虚半轴长为2,离心率e =3的双曲线两焦点为F 1,F 2,过F 1作直线交双曲线左支于A 、B 两点,且AB =8,则△ABF 2的周长为________.8.过椭圆x 2a 2+y 2b 2=1(a >b >0)中心的直线与椭圆交于A 、B 两点,右焦点为F 2 (c,0),则△ABF 2的最大面积是______.9.双曲线C 与椭圆x 28+y 24=1有相同的焦点,直线y =3x 为C 的一条渐近线,求双曲线C 的方程.10.已知点P (3,4)是椭圆x 2a 2+y 2b 2=1 (a >b >0)上的一点,F 1、F 2为椭圆的两焦点,若PF 1⊥PF 2,试求:(1)椭圆的方程;(2)△PF 1F 2的面积.11.在直角坐标系xOy 中,点P 到两点(0,-3)、(0,3)的距离之和等于4,设点P 的轨迹为C ,直线y =kx +1与C 交于A 、B 两点.(1)写出C 的方程;(2)若OA →⊥OB →,求k 的值.1.x 236+y 227=1 2.23.y 2=32x 或x 2=-12y 4.x 216+y 212=1 5.336.27.16+2 28.bc9. 解 设双曲线方程为x 2a 2-y 2b 2=1. 由椭圆x 28+y 24=1,求得两焦点为(-2,0),(2,0), ∴对于双曲线C :c =2. 又y =3x 为双曲线C 的一条渐近线,∴b a=3,解得a 2=1,b 2=3, ∴双曲线C 的方程为x 2-y 23=1.10.解 (1)令F 1(-c,0),F 2(c,0),则b 2=a 2-c 2.因为PF 1⊥PF 2,所以k PF1·k PF2=-1,即43+c ·43-c =-1, 解得c =5,所以设椭圆方程为x 2a 2+y 2a 2-25=1. 因为点P(3,4)在椭圆上,所以9a 2+16a 2-25=1. 解得a 2=45或a 2=5. 又因为a>c ,所以a 2=5舍去.故所求椭圆方程为x 245+y 220=1. (2)由椭圆定义知PF 1+PF 2=65,①又PF 21+PF 22=F 1F 22=100,②①2-②得2PF 1·PF 2=80,所以S △PF1F2=12PF 1·PF 2=20. 11.-2(x -p 2). 20.解 (1)设P(x ,y),由椭圆定义可知,点P 的轨迹C 是以(0,-3),(0,3)为焦点,长半轴为2的椭圆,它的短半轴b =22-(3)2=1,故曲线C 的方程为x 2+y 24=1. (2)设A(x 1,y 1),B(x 2,y 2), 联立方程⎩⎪⎨⎪⎧x 2+y 24=1,y =kx +1.消去y 并整理得(k 2+4)x 2+2kx -3=0.其中Δ=4k 2+12(k 2+4)>0恒成立.故x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4. 若OA →⊥OB →,即x 1x 2+y 1y 2=0. 而y 1y 2=k 2x 1x 2+k(x 1+x 2)+1,于是x 1x 2+y 1y 2=-3k 2+4-3k 2k 2+4-2k 2k 2+4+1=0, 化简得-4k 2+1=0,所以k =±12.。

(完整版)圆锥曲线大题20道(含标准答案)

(完整版)圆锥曲线大题20道(含标准答案)

1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且①设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x OB OA kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得.1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ.(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y00(,)(,),a aAM AB x y a e eλλ=+=u u u u r u u u r 由得所以⎪⎩⎪⎨⎧=-=.)1(00a y e a x λλ因为点M 在椭圆上,所以,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以 ,0)1()1(2224=-+--λλe e解得.1122e e -=-=λλ即(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1||1|0)(|||21221c eec a e a c e d PF =+-=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形. 3.设R y x ∈,,j i ρρ、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a ρρρρϖρ)3( ,)3(-+=++=,且4=+b a ϖϖ.(Ⅰ)求点),(y x P 的轨迹C 的方程;(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长. [启思]4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+ 则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ),(y x M Θ在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.(1)求抛物线的方程;(2)若FP •FQ =0,求直线PQ 的方程;(3)设=λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP ∆=,且,3OF FP t OM j ⋅==+u u u r u u u r u u u u r u u ur r .(I )设4t OF FP θ<<u u u r u u u r求向量与 的夹角的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2c t c 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-u u u r u u u r ,0MA AP ⋅=u u ur u u u r . (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.8.已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫ ⎪⎝⎭三点.(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。

(完整版)圆锥曲线经典题目(含答案)

(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。

圆锥曲线基础训练题及答案

圆锥曲线基础训练题及答案

圆锥曲线基础训练题姓名____________分数______________一、选择题1 .抛物线y 2=ax 的焦点坐标为(-2,0),则抛物线方程为( )A .y 2=-4x B .y 2=4x C .y 2=-8x D .y 2=8x2 .如果椭圆的两个焦点三等分它所在的准线间的垂线段,那么椭圆的离心率为 ( )A .23 B .33 C .36 D .66 3 .双曲线191622=-y x 的渐近线方程为 ( )A . x y 34±= B .x y 45±= C .x y 35±= D .x y 43±= 4 .抛物线 x y 42= 的焦点坐标是( )A .(-1,0)B .(1,0)C .(0,-1)D .(0,1)5 .双曲线221916y x -=的准线方程是 ( ) A 165x =±B 95x =±C 95y =±D 165y =± 6 .双曲线221169x y -=上的点P 到点(5,0)的距离是15,则P 到点(-5,0)的距离是 ( )A .7B .23C .5或23D .7或237 .双曲线1322=-y x 的两条渐近线方程是 ( )A .03=±y xB .03=±y xC .03=±y xD .03=±y x8 .以椭圆的焦点为圆心,以焦距为半径的圆过椭圆的两个顶点,则椭圆的离心率为 ( )A .43)D (23)C (22)B (219 .抛物线y x 42=上一点A 纵坐标为4,则点A 与抛物线焦点的距离为( )A .2B .3C .4D .510.抛物线()042<=a ax y 的焦点坐标是( )A .⎪⎭⎫⎝⎛041,a B .⎪⎭⎫ ⎝⎛a 1610,C .⎪⎭⎫ ⎝⎛-a 1610,D .⎪⎭⎫⎝⎛0161,a 11.椭圆2x 2=1-3y 2的顶点坐标为( )A .(±3,0),(0,±2)B .(±2,0),(0,±3)C .(±22,0),(0,±33) D .(±12,0),(0,±13) 12.焦距是10,虚轴长是8,经过点(23, 4)的双曲线的标准方程是( )A .116922=-y x B .116922=-x y C .1643622=-y x D .1643622=-x y 13.双曲线22124x y -=-的渐近线方程为( )A .y =B .x =C .12y x =±D .12x y =±14.已知椭圆方程为1322=+y x ,那么左焦点到左准线的距离为 ( )A .22 B .223 C .2D .2315.抛物线的顶点在原点,对称轴为x 轴,焦点在直线3x-4y-12=0上,此抛物线的方程是 ( )A .y 2=16xB .y 2=12xC .y 2= -16xD .y 2= -12x16.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .13B .3C .12 D .217.下列表示的焦点在y 轴上的双曲线方程是( )A .13422=+y xB .14322=+y xC .13422=-y xD .13422=-x y 18.抛物线y =2px 2(p ≠0)的焦点坐标为( )A .(0,p )B .(10,4p ) C .(10,8p) D .(10,8p±) 19.与椭圆205422=+y x 有相同的焦点,且顶点在原点的抛物线方程是( )A .x y 42=B .x y 42±=C .y x 42=D .y y 42±=20.已知双曲线的渐近线方程为x y43±=,则此双曲线的( )A .焦距为10B .实轴和虚轴长分别是8和6C .离心率是45或35 D .离心率不确定21.双曲线122=-y x 的渐近线方程是( )A .±=x 1B .y =C .x y ±=D .x y 22±= 22.若命题“曲线C 上的点的坐标都是方程f(x ,y)=0的解”是正确的,则以下命题中正确的是( )A .方程(x ,y)=0的曲线是CB .坐标满足方程f(x ,y)=0的点都在曲线C 上 C .曲线C 是方程f(x ,y)=0的轨迹D .方程f(x ,y)=0的曲线不一定是C23.双曲线221916y x -=的准线方程是 ( )A .165x =±B .95x =±C .95y =±D .165y =±24.双曲线191622=-x y 的焦点坐标是 ( )A .()0,5和()0,5-B .()5,0和()5,0-C .()0,7和()0,7- D .()7,0和()7,0-25.已知抛物线的焦点坐标为(-3,0),准线方程为x =3,则抛物线方程是( )A .y 2+6x =0B .y 2+12x =0C .y +6x 2=0D .y +12x 2=0 26.双曲线 191622=-y x 的渐近线的方程是( )A .x y 43±= B .x y 34±= C .x y 169±= D .x y 916±= 27.对抛物线24y x =,下列描述正确的是( )A .开口向上,焦点为(0,1)B .开口向上,焦点为1(0,)16 C .开口向右,焦点为(1,0)D .开口向右,焦点为1(0,)1628.双曲线2y 2-x 2=4的一个焦点坐标是( )A .(0,-)6B .(6,0)C .(0,-2)D .(2,0)29.若抛物线px y 22=的焦点与椭圆12622=+y x 的右焦点重合,则p 的值为 ( )A .-2B .2C .-4D .430.到直线x=-2与定点P (2,0)距离相等的点的轨迹是( )A .抛物线B .双曲线C .椭圆D .直线二、填空题31.(1)短轴长为6,且过点(1,4)的椭圆标准方程是(2)顶点(-6,0),(6,0)过点(3,3)的椭圆方程是 32.与两坐标轴距离相等的点的轨迹方程是________________________33.椭圆4422=+y x 的焦点坐标为___________,__________. 34.抛物线x y 42=的准线方程为______ 35.到x 轴,y 轴距离相等的点的轨迹方程_________.36.已知两个定点1(4,0)F -,2(4,0)F ,动点P 到12,F F 的距离的差的绝对值等于6,则点P 的轨迹方程是 ;37.若双曲线22145x y -=上一点P 到右焦点的距离为8,则P 到左准线的距离为38.若定点(1,2)A 与动点(),Px y 满足,4OP OA ⋅=则点P 的轨迹方程是39.已知双曲线的离心率为2,则它的实轴长和虚轴长的比为 。

圆锥曲线基础练习与答案

圆锥曲线基础练习与答案

直线与圆一、考点容1、求直线斜率方法(1)知直线l 倾斜角)1800(00<≤αα,则斜率090(tan ≠=ααk 即倾斜角为090的直线没有斜率(2)知直线l 过两点),(11y x A ,),(22y x B ,则斜率___________=k )(21x x ≠ (3)知直线l 一般式方程0y x =++C B A ,则斜率________=k 知直线l 斜截式方程b kx y +=,可以直接写出斜率 2、求直线方程方法——点斜式知直线l 过点),(b a ,斜率为k ,则直线方程为__________________,化简即可! 特别在求曲线在点))(,(a f a 处切线方程,往往用点斜式! 4、平行与垂直问题若21//l l ,则1k ______2k ;若21l l ⊥,则1k =2k _________ 5、距离问题(1)两点间距离公式若点),(21x x A 、),(22y x B ,则=||AB _________________ (2)点到直线距离公式点),(n m 到直线0y x =++C B A 距离=d _________________ 注意:直线必须化为一般式方程! (3)两平行线间距离公式两平行线0y x 0y x 21=++=++C B A C B A 与的距离=d _________________ 注意:两平行线必须把x 与y 系数化为一样! 6、圆与方程(1)标准方程222)()(r b y a x =-+-,圆心坐标为__________,半径为______(2)一般方程022=++++F Ey Dx y x ,条件0422>-+F E D圆心坐标为__________,半径为____________ 7、直线与圆位置关系(1)相离:公共点个数为_____个,此时d ______ r (d 为圆心到直线距离)(2)相切:公共点个数为_____个,此时d ______r (圆心与切点连线垂直于切线) (3)相交:公共点个数为_____个,此时d ______r (弦长=L _________)二、课堂练习1.原点到直线052=-+y x 的距离为( D ) A .1B .3C .2D .52.经过圆x 2+2x +y 2=0的圆心G ,且与直线x +y =0垂直的直线方程是( C )A .x -y +1=0B .x -y -1=0C .x +y -1=0D .x +y +1=03.经过圆0222=+-y x x的圆心且与直线02=+y x 平行的直线方程是( A )A .012=-+y xB .220x yC .210x yD .022=++y x 4.以) 0 , 1 (为圆心,且与直线03=+-y x 相切的圆的方程是( A ) A .8)1(22=+-y x B .8)1(22=++y x C .16)1(22=+-y x D .16)1(22=++y x5.已知直线3430x y +-=与直线6140x my ++=平行,则它们之间的距离是( C )A .1710B .8C .2D .1756.直线3490x y +-=与圆()2211x y -+=的位置关系是( A )A .相离B .相切C .直线与圆相交且过圆心D .直线与圆相交但不过圆心7.圆:012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( B )A 、 2B 、21+C 、221+D 、221+ 8.圆心在原点,并与直线3x-4y-l0=0相切的圆的方程为___422=+y x _________.9.直线y x =被圆22(2)(4)10x y -+-=所截得的弦长等于.<十>圆锥曲线[椭圆]一、考点容:1、椭圆的定义: 12||||2MF MF a +=2、椭圆的简单几何性质:离心率(0,1)ce a=∈.,,a b c 间的关系 222a b c =+(0a b >>,0a c >>)二、基础练习:1 .已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是( D ) A .14322=+y x B .13422=+y x C .12422=+y x D .13422=+y x 2.已知椭圆C :x 2+2y 2=4. 则椭圆C 的离心率为_____22____ 3.已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0).求椭圆的方程;(x 24+y 23=1.)4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-2,0),离心率为63.求椭圆C 的标准方程;(x 26+y 22=1.)5.在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O,焦点在x 轴上,短轴长为2,离心率为22,求椭圆C 的方程.6.已知椭圆2222:1(0)x y C a b a b+=>>的焦距为4,且过点(23)P ,.求椭圆C 的方程;22184x y +=7.椭圆C:=1(a>b>0)的离心率,a+b=3(1) 求椭圆C 的方程;2214x C y ∴+=椭圆的方程为:[双曲线] 一、考点容:(1)双曲线定义:a PF PF 2|||-|||21=(2)标准方程: 焦点在x 轴上 焦点在y 轴上焦点坐标为:_______________________ ____________________________ 顶点坐标为:_______________________ ____________________________渐近线方程:_______________________ ____________________________ (3)性质:离心率_______=e )1(>e(4),,a b c 间的关系: ____________________________ 二、基础练习:1.已知双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a =( D )A .2 B.62 C.52D .1 2.已知双曲线2222:1x y C a b -=(0,0)a b >>5则C 的渐近线方程为( C )A .14y x =±B .13y x =±C .12y x =±D .y x =±1 .双曲线122=-y x的顶点到其渐近线的距离等于( B )A .21 B .22 C .1D .24.双曲线221y x m-=2的充分必要条件是 ( C ) A .12m >B .1m ≥C .1m >D .2m >5.已知双曲线22x a-25y =1的右焦点为(3,0),则该双曲线的离心率等于( C )A14C 32D 436.双曲线 x 24-y 2=1的离心率等于___52_____.7.双曲线221169x y -=的离心率为___45_____.8.在平面直角坐标系xOy 中,若双曲线22214x ym m -=+m 的值为2.9.设双曲线C 的两个焦点为(-2,0),(2,0),一个顶点是(1,0),则C 的方程为___ x 2-y 2=1_____.[抛物线](1)定义:抛物线上任意一点P 到焦点的距离等于点P 到准线的距离. (2)标准方程与性质二、基础练习:1. 抛物线y =14x 2的准线方程是( A )A .y =-1B .y =-2C .x =-1D .x =-22.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( C )A .-43B .-1C .-34D .-123 .抛物线28y x =的焦点到直线0x =的距离是( D )A .B .2C D .12.若抛物线22y px =的焦点坐标为(1,0)则p =_2___;准线方程为_1x =-____.5.抛物线y 2=4x 的准线方程为_____ x =-1___.6.已知抛物线28y x =的准线过双曲线22221(0,0)x y a b a b-=>>的一个焦点, 且双曲线的离心率为2, 则该双曲线的方程为___2213y x -=___.7. 已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线:20l x y --=的距离为2,求抛物线C 的方程; 24x y =。

高中数学圆锥曲线常考题型(含解析)

高中数学圆锥曲线常考题型(含解析)

(1)当5AC =时,求cos POM ∠(2)求⋅PQ MN 的最大值.7.已知抛物线1C :28x y =的焦点点,1C 与2C 公共弦的长为4(1)求2C 的方程;(2)过F 的直线l 与1C 交于A ,(i )若AC BD =,求直线l 的斜率;(ii )设1C 在点A 处的切线与系.8.已知圆()(2:M x a y b -+-点O 且与C 的准线相切.(1)求抛物线C 的方程;(2)点()0,1Q -,点P (与Q 不重合)在直线切线,切点分别为,A B .求证:9.已知椭圆2212:12x y C b+=的左、右焦点分别为2222:12x y C b -=的左、右焦点分别为于y 轴的直线l 交曲线1C 于点Q 两点.a b (1)求椭圆的方程;(2)P 是椭圆C 上的动点,过点P 作椭圆为坐标原点)的面积为5217,求点12.过坐标原点O 作圆2:(2)C x ++参考答案:)(),0a-,(),0F c,所以AF时,在双曲线方程中令x c=,即2bBFa=,又AF BF= ()所以BFA V 为等腰直角三角形,即易知2BFA BAF ∠=∠;当BF 与AF 不垂直时,如图设()()0000,0,0B x y x y >>00tan(π)y BFA x c -∠=-即tan -又因为00tan y BAF x a∠=+,002tan 2y x aBAF +∠=4.(1)21±2(2)证明见解析.【分析】(1)求出椭圆左焦点F1 1x5.(1)21 2x y =(2)1510,33 P⎛⎫± ⎪ ⎪⎝⎭【分析】(1)根据抛物线的焦半径公式可解;【点睛】方法技巧:圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多样,但主要有两种方法:(1)几何转化代数法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用圆锥曲线的定义、图形、几何性质来解决;(2)函数取值法:若题目的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值(或值域),常用方法:三角换元法;(5)平面向量;(7.(1)2213x y -=(2)(i )36±;(ii )点F 在以【分析】(1)根据弦长和抛物线方程可求得交点坐标,结合同焦点建立方程组求解可得;(2)(i )设()11,A x y ,(2,B x 物线方程和双曲线方程,利用韦达定理,结合以及点M 坐标,利用FA FM ⋅【详解】(1)1C 的焦点为(0,2F 又1C 与2C 公共弦的长为46,且所以公共点的横坐标为26±,代入所以公共点的坐标为(26,3±所以229241a b -=②联立228y kx x y =+⎧⎨=⎩,得28160x kx --=,Δ=联立22213y kx x y =+⎧⎪⎨-=⎪⎩,得()2231129k x kx -++则3421231kx x k +=--,342931x x k =-,9.(1)2212x y +=,2212x y -=(2)12y x =-或12y x=(3)2【分析】(1)用b 表示12,e e ,由12e e ⋅=10.(1)2222114222x y x y +=-=,;(2)1;(3)是,=1x -【分析】(1)根据椭圆和双曲线的关系,结合椭圆和双曲线的性质,求得343+因为AB 既是过1C 焦点的弦,又是过所以2212||1()AB k x x =+⋅+-且121||()()22p p AB x x x =+++=所以212(1)k +=2240123(34)k k +,【点睛】因为//l OT ,所以可设直线l 的方程为由22x y =,得212y x =,得y '所以曲线E 在T 处的切线方程为联立22y x m y x =+⎧⎨=-⎩,得2x m y m =+⎧⎨=⎩()2,22N m m ++NT。

专题50 圆锥曲线(多选题部分)(解析版)

专题50 圆锥曲线(多选题部分)(解析版)

专题50 圆锥曲线(多选题部分)一、题型选讲题型一 、圆锥曲线定义与性质的考查例1、(202年山东卷)已知曲线22:1C mx ny +=( ) A .若0m =,0n >,则C 是两条直线 B .若0m n =>,则CC .若0m n >>,则C 是椭圆,其焦点在x 轴上D .若0mn <,则C是双曲线,其渐近线方程为y = 【答案】AD【详解】对于A ,若0m =,0n >,则2:1C ny =即y =,为两条直线,故A 正确; 对于B ,若0m n =>,则221:C x y n +=,所以CB 错误; 对于C ,若0m n >>,则110m n<<, 所以22:1C mx ny +=即22:111x y C m n +=为椭圆,且焦点在y 轴上,故C 错误; 对于D ,若0mn <,则22:111x y C m n +=为双曲线,且其渐近线为y ==,故D 正确.例2、已知双曲线C过点(且渐近线方程为3y x =±,则下列结论正确的是( ) A .C 的方程为2213x y -=B .CC .曲线21x y e -=-经过C 的一个焦点 D.直线10x -=与C 有两个公共点【答案】AC【详解】对于A:由双曲线的渐近线方程为3y x =±,可设双曲线方程为223x y λ-=,把点代入,得923λ-=,即1λ=.∴双曲线C 的方程为2213x y -=,故A 正确; 对于B :由23a =,21b =,得2c =,∴双曲线C=,故B 错误; 对于C :取20x +=,得2x =-,0y =,曲线21x y e +=-过定点(2,0)-,故C 正确;对于D :双曲线的渐近线0x ±=,直线10x --=与双曲线的渐近线平行,直线10x -=与C 有1个公共点,故D 不正确.故选:AC .例3、(2020·山东济南外国语学校高三月考)已知双曲线的左、右焦点分别为为双曲线上一点,且,若,则对双曲线中的有关结论正确的是( ) A .B .C .D .【答案】ABCD【解析】由双曲线的定义知:, 由,在中,由余弦定理可得:,22221(0,0)x y a b a b-=>>12,,F F P122PF PF =12sin 4F PF ∠=,,,a b c e e =2e =b =b =12212,4PF PF PF a PF a -==∴=12sin F PF ∠=121cos 4F PF ∠=±12PF F △222416412244a a c a a +-=±⨯⨯解得或,, 或,又, 可得或故选:ABCD例4、已知双曲线,若的离心率最小,则此时( )A.BC .双曲线的一个焦点坐标为D【答案】AB【解析】因为,所以双曲线的焦点在轴上,所以,,所以.又双曲线的离心率,则.因为,所以,当且仅当,即时,等号成立,则双曲线的离心率最小时,,,,则双曲,故A ,B 正确;双曲线的焦点坐标为(,0),故C 错误;焦点,故D 错误.故选:AB .题型二圆锥曲线的综合性问题例5、的椭圆为“黄金椭圆”.如图,已知椭圆C :22221(0)x y a b a b +=>>,12,A A 分别为左、右顶点,1B ,2B 分别为上、下顶点,1F ,2F 分别为左、右焦点,P 为椭圆上一点,则满足下列条件能使椭圆C 为“黄金椭圆”的有( )224c a =226c a=2ce a∴==2c a ∴=c =222c a b =+b =b =()222:104x y C m m m m -=>-+C 2m =0y ±=)0m >C x 2a m =224b m m =-+224c m =+c e a =222244c m e m a m m+===+0m >244e m m =+≥=4m m=2m =C 22a =26b =28c =0y ±=±()0y +=2==A .2112212A F F A F F ⋅= B .11290F B A ∠=︒C .1PF x ⊥轴,且21//PO A BD .四边形221AB A B 的内切圆过焦点1F ,2F【答案】BD【详解】∵椭圆2222:1(0)x y C a b a b+=>>∴121212(,0),,0),(0,),(0,),(,0),(,)(0A a A a B b B b F c F c ---对于A ,若2112212A F F A F F ⋅=,则22()(2)a c c -=,∴2a c c -=,∴13e =,不满足条件,故A 不符合条件;对于B ,11290F B A ︒∠=,∴222211112A F B F B A =+ ∴2222()a c a a b +=++,∴220c ac a +-= ∴210e e +-=,解得e =e =,故B 符合条件; 对于C ,1PF x ⊥轴,且21//PO A B ,∴2,b P c a ⎛⎫- ⎪⎝⎭∵21PO A B k k =∴2b c ab a =--,解得 ∵,∴b c =222a b c =+a =∴,不满足题意,故C不符合条件;对于D,四边形的内切圆过焦点即四边形的内切圆的半径为c,∴∴,∴,解得(舍去)或,∴,故D符合条件.例6、已知椭圆()22:10x yC a ba b+=>>的左、右焦点分别为1F,2F且122F F=,点()1,1P在椭圆内部,点Q在椭圆上,则以下说法正确的是()A.1QF QP+的最小值为1B.椭圆C的短轴长可能为2C.椭圆C的离心率的取值范围为⎛⎝⎭D.若11PF FQ=,则椭圆C【答案】ACD【详解】A.因为12||2F F,所以22(1,0),||1F PF=,所以122||||||||||1QF QP QF QP PF+=+≥=,当2,,Q F P,三点共线时,取等号,故正确;B.若椭圆C的短轴长为2,则1,2b a==,所以椭圆方程为22121x y+=,11121+>,则点P在椭圆外,故错误;C.因为点(1,1)P在椭圆内部,所以111a b+<,又1a b-=,所以1b a=-,所以1111+<-a a,即2310a a-+>,解得236(1244a+++>==,12+>,所以12=<e,所以椭圆C的离心率的取值范围为,故正确;2cea===1221A B A B12,F F1221A B A B ab=422430c a c a-+=42310e e-+=235e+=235e-=51e-=D .若11PF FQ =,则1F 为线段PQ 的中点,所以(3,1)Q --,所以911+=a b,又1a b -=,即21190-+=a a ,解得a ====,所以椭圆C,故正确.例7、(2020·山东高三开学考试)已知双曲线,过其右焦点的直线与双曲线交于两点、,则( )A .若、同在双曲线的右支,则的斜率大于B .若在双曲线的右支,则最短长度为C .的最短长度为D .满足的直线有4条 【答案】BD【解析】易知双曲线的右焦点为,设点、,设直线的方程为, 当时,直线的斜率为, 联立,消去并整理得. 则,解得. 对于A 选项,当时,直线轴,则、两点都在双曲线的右支上,此时直线的斜率不存在,A 选项错误;对于B 选项,,B 选项正确; 对于C 选项,当直线与轴重合时,,C 选项错误; 对于D 选项,当直线与轴重合时,; 当直线与轴不重合时,由韦达定理得,, 22:1916x y C -=F l A B A B l 43A FA 2AB 32311AB =C ()5,0F ()11,A x y ()22,B x y l 5x my =+0m ≠l 1k m=225169144x my x y =+⎧⎨-=⎩x ()221691602560m y my -++=()()222222169016042561699610m m m m ⎧-≠⎪⎨∆=-⨯-=+>⎪⎩34m ≠0m =l x ⊥A B l min 532F c a A =-=-=l x 32263AB a ==<l x 2611AB a ==≠l x 122160169m y y m +=--122256169y y m =-由弦长公式可得,解得或.故满足的直线有条,D 选项正确. 故选:BD.例8、(2020·江苏扬州中学高二月考)已知椭圆的左、右焦点分别为,且,点在椭圆内部,点在椭圆上,则以下说法正确的是( )A .的最小值为B .椭圆的短轴长可能为2C .椭圆的离心率的取值范围为D .若,则椭圆【答案】ACD【解析】A. 因为,所以,所以,当,三点共线时,取等号,故正确;B.若椭圆的短轴长为2,则,所以椭圆方程为,,则点在椭圆外,故错误;C. 因为点在椭圆内部,所以,又,所以,所以,即,解得,所以,所以椭圆的离心率的取值范围为,故正确;()2122961169m AB y y m +=-==-()226161611169m m +==-4m =±m =11AB =4()22:10x y C a b a b+=>>1F 2F 122F F =()1,1P Q 1QF QP +21a -C C ⎛ ⎝⎭11PF FQ =C 122F F =()221,0,1=F PF 1222221+=-+≥-=-QF QP a QF QP a PF a 2,,Q F P C 1,2b a ==22121x y +=11121+>P ()1,1P 111a b+<1a b -=1b a =-1111+<-a a 2310a a -+>(2136244++>==a >12=<e C 10,2⎛⎫⎪ ⎪⎝⎭D. 若,则为线段的中点,所以,所以,又,即,解得,所以椭圆的,故正确.故选:ACD例9、(2020届山东省枣庄、滕州市高三上期末)在平面直角坐标系xOy 中,抛物线2:2C y px =(0)p >的焦点为F ,准线为l.设l 与x 轴的交点为K ,P 为C 上异于O 的任意一点,P 在l 上的射影为E ,EPF ∠的外角平分线交x 轴于点Q ,过Q 作QN PE ⊥交EP 的延长线于N ,作QM PF ⊥交线段PF 于点M ,则( )A .||||PE PF =B .||||PF QF =C .||||PN MF =D .||||PN KF =【答案】ABD 【解析】由抛物线的定义,PE PF =,A 正确;∵//PN QF ,PQ 是FPN ∠的平分线,∴FQP NPQ FPQ ∠=∠=,∴||||PF QF =,B 正确; 若||||PN MF =,由PQ 是外角平分线,QN PE ⊥,QM PF ⊥得QM QN =,从而有PM PN =,于是有PM FM =,这样就有QP QF =,PFQ ∆为等边三角形,60FPQ ∠=︒,也即有60FPE ∠=︒,11PF FQ =1F PQ ()3,1Q --911+=a b1a b -=21190-+=a a 21122244++===a =C这只是在特殊位置才有可能,因此C 错误;连接EF ,由A 、B 知PE QF =,又//PE QF ,EPQF 是平行四边形,∴EF PQ =,显然EK QN =,∴KF PN =,D 正确.二、达标训练1、(2020·山东高三其他模拟)关于双曲线与双曲线,下列说法正确的是( ).A .它们有相同的渐近线B .它们有相同的顶点C .它们的离心率不相等D .它们的焦距相等【答案】CD【解析】双曲线的顶点坐标,渐近线方程:,离心率为:,焦距为10.双曲线,即:,它的顶点坐标,渐近线方程:,离心率为:,焦距为10. 所以它们的离心率不相等,它们的焦距相等. 故选:.2、(2020届山东省滨州市高三上期末)已知双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点分别为1(5,0)F -,2(5,0)F ,则能使双曲线C 的方程为221169x y -=的是( )A .离心率为54B .双曲线过点95,4⎛⎫ ⎪⎝⎭C .渐近线方程为340±=x yD .实轴长为4【答案】ABC【解析】由题意,可得:焦点在x 轴上,且5c =;A 选项,若离心率为54,则4a =,所以2229b c a =-=,此时双曲线的方程为:221169x y -=,故A 正确;221:1916x y C -=222:1916y x C -=-221:1916x y C -=(3,0)430x y ±=53222:1916y x C -=-221169x y -=(4,0)±340±=x y 54CDB 选项,若双曲线过点95,4⎛⎫ ⎪⎝⎭,则22222812516125a b a b c ⎧⎪⎪-=⎨⎪+==⎪⎩,解得:22169a b ⎧=⎨=⎩;此时双曲线的方程为:221169x y -=,故B 正确;C 选项,若双曲线的渐近线方程为340±=x y ,可设双曲线的方程为:22(0)169x y m m -=>,所以216925c m m =+=,解得:1m =,所以此时双曲线的方程为:221169x y -=,故C 正确; D 选项,若实轴长为4,则2a =,所以22221b c a =-=,此时双曲线的方程为:224121x y -=,故D 错误;故选:ABC.3、(2020届山东省德州市高三上期末)已知抛物线2:2C y px =()0p >的焦点为F经过点F ,直线l 与抛物线C 交于点A 、B 两点(点A 在第一象限),与抛物线的准线交于点D ,若8AF =,则以下结论正确的是( ) A .4p = B .DF FA =C .2BD BF =D .4BF =【答案】ABC 【解析】 如下图所示:分别过点A 、B 作抛物线C 的准线m 的垂线,垂足分别为点E 、M .抛物线C 的准线m 交x 轴于点P ,则PF p =,由于直线l 60,//AE x 轴,60EAF ∴∠=,由抛物线的定义可知,AE AF =,则AEF ∆为等边三角形,60EFP AEF ∴∠=∠=,则30PEF ∠=,228AF EF PF p ∴====,得4p =,A 选项正确;2AE EF PF ==,又//PF AE ,F ∴为AD 的中点,则DF FA =,B 选项正确;60DAE ∴∠=,30ADE ∴∠=,22BD BM BF ∴==(抛物线定义),C 选项正确; 2BD BF =,118333BF DF AF ∴===,D 选项错误. 故选:ABC.4、(2020届山东省日照市高三上期末联考)过抛物线24y x =的焦点F 作直线交抛物线于A ,B 两点,M为线段AB 的中点,则( ) A .以线段AB 为直径的圆与直线32x =-相离 B .以线段BM 为直径的圆与y 轴相切 C .当2AF FB =时,92AB = D .AB 的最小值为4【答案】ACD【解析】对于选项A ,点M 到准线1x =-的距离为()1122AF BF AB +=,于是以线段AB 为直径的圆与直线1x =-一定相切,进而与直线32x =-一定相离: 对于选项B ,显然AB 中点的横坐标与12BM 不一定相等,因此命题错误. 对于选项C ,D ,设()11,A x y ,()22,B x y ,直线AB 方程为1x my =+,联立直线与抛物线方程可得2440y my --=,124y y =-,121=x x ,若设()24,4A a a ,则211,4B aa ⎛⎫- ⎪⎝⎭,于是21221424AB x x p a a=++=++,AB 最小值为4;当2AF FB =可得122y y =-, 142a a ⎛⎫=-- ⎪⎝⎭,所212a =,92AB =.故选:ACD.5、(2020届山东省临沂市高三上期末)已知P 是椭圆C :2216x y +=上的动点,Q 是圆D :()22115x y ++=上的动点,则( )A .CB .C 的离心率为6C .圆D 在C 的内部D .PQ 【答案】BC【解析】2216x y += a ∴=,1b =c ∴===C 的焦距为c e a ===.设(), P x y (x ≤≤, 则()()22222256441111665555x x y x x PD ⎛⎫++=++-=++≥> ⎪⎝⎭=,所以圆D 在C 的内部,且PQ =. 故选:BC .6、(2020届山东省烟台市高三上期末)已知抛物线2:4C y x =的焦点为F 、准线为l ,过点F 的直线与抛物线交于两点()11,P x y ,()22,Q x y ,点P 在l 上的射影为1P ,则 ( ) A .若126x x +=,则8PQ =B .以PQ 为直径的圆与准线l 相切C .设()0,1M ,则1PM PP +≥D .过点()0,1M 与抛物线C 有且仅有一个公共点的直线至多有2条 【答案】ABC【解析】对于选项A,因为2p =,所以122x x PQ ++=,则8PQ =,故A 正确;对于选项B,设N 为PQ 中点,设点N 在l 上的射影为1N ,点Q 在l 上的射影为1Q ,则由梯形性质可得111222PP QQ PF QF PQ NN ++===,故B 正确; 对于选项C,因为()1,0F ,所以1PM PP PM PF MF +=+≥=故C 正确; 对于选项D,显然直线0x =,1y =与抛物线只有一个公共点,设过M 的直线为1y kx =+, 联立214y kx y x=+⎧⎨=⎩,可得()222410k x k x +-+=,令0∆=,则1k =,所以直线1y x =+与抛物线也只有一个公共点,此时有三条直线符合题意,故D 错误; 故选:ABC7、(2020·福清西山学校高二期中)在平面直角坐标系中,动点与两个定点和连线的斜率之积等于,记点的轨迹为曲线,直线:与交于,两点,则( ) A .的方程为B .C .的渐近线与圆相切D .满足的直线仅有1条【答案】AC【解析】设点,整理得,所以点的轨迹为曲线的方程为,故A 正确;又离心率,故B 不正确; 圆的圆心到曲线的渐近线为的距离为,又圆的半径为1,故C 正确;直线与曲线的方程联立整理得,设, ,且,xOy P ()1F)2F 13P E l ()2y k x =-E A B E 221(3x y x -=≠E E ()2221x y -+=AB =l (),P xy 13=2213x y -=P E 221(3x y x -=≠e ==()2221x y -+=()20,E y x =1d ==()2221x y -+=l E ()2221(3y k x x y x ⎧=-⎪⎨-=≠⎪⎩()222213+121230k x x k k ---=()()1122,,A B x y x y ,()()()224214441312312+1>0kk kk ∆=----=2130k -≠有,所以, 要满足,则需或或,当,此时,而曲线E 上,所以满足条件的直线有两条,故D 不正确,故选:AC .2122221212123+,1313x xx k x kk k ---==--)221+13k AB k===-AB =)221+13k k=-0k =1k =1k =-0k =)()AB ,x ≠。

(完整版)圆锥曲线常见题型及答案

(完整版)圆锥曲线常见题型及答案

圆锥曲线常见题型归纳一、基础题涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。

此类题在考试中最常见,解此类题应注意:(1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况;(3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=;例题:(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( )A .421=+PF PFB .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)方程8=表示的曲线是_____ (答:双曲线的左支)(3)已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2)(4)已知方程12322=-++k y k x 表示椭圆,则k 的取值范围为____ (答:11(3,)(,2)22---); (5)双曲线的离心率等于25,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______(答:2214x y -=);(6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)二、定义题对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。

此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。

圆锥曲线经典题目(含答案解析)

圆锥曲线经典题目(含答案解析)

圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE||PF|=2.。

(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx

(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx

(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx圆锥曲线⼀、椭圆:( 1)椭圆的定义:平⾯内与两个定点F1 , F2的距离的和等于常数(⼤于| F1 F2 |)的点的轨迹。

其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。

注意: 2a | F1F2 | 表⽰椭圆;2a | F1F2|表⽰线段F1F2; 2a| F1F 2 |没有轨迹;(2)椭圆的标准⽅程、图象及⼏何性质:中⼼在原点,焦点在x 轴上中⼼在原点,焦点在y 轴上标准⽅程图形x2y2y2x2a2b 21( a b 0)a 2b21(ab 0)yB 2yB 2P F2 PA 1 A 2x A 1xA 2OF1O F21B 1FB 1顶点对称轴焦点焦距离⼼率通径2b2aA1 (a,0), A2 (a,0)A1( b,0), A2 (b,0)B1 (0, b), B2(0, b)B1( 0,a), B2 (0, a) x 轴,y轴;短轴为2b,长轴为2aF1 (c,0), F2(c,0)F1 ( 0,c), F2 (0,c)| F1 F2 | 2c(c 0)c2 a 2 b 2(0 e 1) (离⼼率越⼤,椭圆越扁)a(过焦点且垂直于对称轴的直线夹在椭圆内的线段)3.常⽤结论:(1)椭圆x2y21(a b 0) 的两个焦点为F1, F2,过F1的直线交椭圆于A, B两a2 b 2点,则ABF 2的周长=(2)设椭圆x2y2221( a b 0)左、右两个焦点为 F1, F2,过 F1且垂直于对称轴的直线a b交椭圆于 P, Q 两点,则 P, Q 的坐标分别是| PQ |⼆、双曲线:( 1)双曲线的定义:平⾯内与两个定点F1 , F2的距离的差的绝对值等于常数(⼩于| F1F2 | )的点的轨迹。

其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。

注意: | PF1 || PF2 | 2a 与 | PF2 | | PF1 |2a ( 2a| F1F2 | )表⽰双曲线的⼀⽀。

圆锥曲线求方程真题练习(解析版)

圆锥曲线求方程真题练习(解析版)

圆锥曲线求方程真题练习(解析版)学校:___________姓名:___________班级:___________考号:___________一、解答题1.设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =.(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.2.已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫ ⎪⎝⎭两点. (1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.3.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为(2,0)F ,渐近线方程为y =. (1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面①①①中选取两个作为条件,证明另外一个成立:①M 在AB 上;①PQ AB ∥;①||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.4.已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F 三点共线的充要条件是||MN =6.在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,,点M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.(1)求C 的方程:(2)点M ,N 在C 上,且AM AN ⊥,AD MN ⊥,D 为垂足.证明:存在定点Q ,使得DQ 为定值.8.已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12 ,(1)求C 的方程;(2)点N 为椭圆上任意一点,求①AMN 的面积的最大值.9.已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB 面积的最大值.10.抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ⊥.已知点()2,0M ,且M 与l 相切.(1)求C ,M 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M 相切.判断直线23A A 与M 的位置关系,并说明理由.【答案】(1)抛物线2:C y x =,M 方程为22(2)1x y -+=;(2)相切,理由见解析11.已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.12.已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.13.已知椭圆222:1(05)25x y C m m +=<<A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.14.已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点:(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.15.已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ①x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG 是直角三角形;(ii )求PQG 面积的最大值.(1C 上. (①)求C 的方程;(①)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.17.设O 为坐标原点,动点M 在椭圆C 22:12x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【答案】(1)222x y +=;(2)见解析.18.已知点()0,2A -,椭圆E :22221(0)x y a b a b +=>>F 是椭圆的焦点,直线AFO 为坐标原点. (1)求E 的方程; (2)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ △的面积最大时,求l 的方程.19.平面直角坐标系xOy 中,过椭圆 M :22221x y a b +=( 0a b >>)右焦点的直线0x y +交 M 于A ,B 两点,P 为AB 的中点,且 OP 的斜率为12.(①)求椭圆M 的方程; (①)C , D 为M 上的两点,若四边形ACBD的对角线 CD AB ⊥,求四边形ACBD 面积的最大值.20.已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,长轴长为4,离心率为12.过点(4,0)Q 的直线l 与椭圆C 交于A ,B 两点.(1)求椭圆C 的标准方程;(2)设直线,AF BF 的斜率分别为()122,0k k k ≠,求证:12k k 为定值.。

(完整版)圆锥曲线经典题目(含答案)

(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。

圆锥曲线练习题(附答案)

圆锥曲线练习题(附答案)

圆锥曲线一、填空题x2 1、对于曲线C∶4 ky2=1 ,给出下面四个命题:k 1①由线 C 不可能表示椭圆;②当1<k<4 时,曲线 C 表示椭圆;③若曲线 C 表示双曲线,则k<1 或k>4;④若曲线 C 表示焦点在x 轴上的椭圆,则 1 <k<52 其中所有正确命题的序号为.x2 2、已知椭圆2a y1(a bb 20) 的两个焦点分别为F1 , F2 ,点P 在椭圆上,且满足PF1 PF20 ,tan PF1 F252 ,则该椭圆的离心率为x 2 y23. 若m0 ,点P m, 在双曲线 1 上,则点P 到该双曲线左焦点的距离2 4 5为.4、已知圆 C : x2y2 6x 4 y 8 0 .以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为.5、已知点P 是抛物线y2 4x 上的动点,点P 在y 轴上的射影是M,点A 的坐标是(4 ,a),则当| a | 4 时,| PA | | PM | 的最小值是.76.在ABC 中, AB BC ,cos B .若以A ,B 为焦点的椭圆经过点 C ,则该椭圆的离18心率e .7.已知ABC 的顶点B -3, 0 、C 3, 0 ,E 、F 分别为AB、AC 的中点,AB 和AC 边上的中线交于G ,且| GF |+| GE |= 5 ,则点G 的轨迹方程为8.离心率e5,一条准线为x=3 的椭圆的标准方程是. 329. 抛物线 y4ax ( a 0) 的焦点坐标是;10 将抛物线 x 4a ( y 3) 2(a 0) 按向量 v =( 4 ,- 3 )平移后所得抛物线的焦点坐标为.1211 、抛物线yx (m m0) 的焦点坐标是 .x2 12. 已知 F 1、F 2 是椭圆2a(10 y2a)2=1(5 <a < 10 =的两个焦点, B 是短轴的一个端点,则△ F 1BF 2 的面积的最大值是13. 设 O 是坐标原点, F 是抛物线 y 22 px ( p 0) 的焦点, A 是抛物线上的一点, FA 与 x轴正向的夹角为 60 °,则| OA |为 .714. 在 △ABC 中, ABBC , cosB.若以 A ,B 为焦点的椭圆经过点 C ,则该椭圆18的离心率 e.二.解答题15 、已知动点 P 与平面上两定点(Ⅰ)试求动点 P 的轨迹方程 C.A(2,0),B( 2,0)1 连线的斜率的积为定值.2(Ⅱ)设直线 l : ykx 1 与曲线 C 交于 M 、N 两点,当 |MN |= 4 2 3时,求直线 l 的方程 . 21 2 1 2 1 216 、已知三点 P ( 5 ,2)、 F 1 (- 6 , 0 )、 F 2 ( 6, 0)。

圆锥曲线基础题(有答案)

圆锥曲线基础题(有答案)

圆锥曲线基础训练一、选择题:1. 已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为 ( ) A .2 B .3 C .5 D .72.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为 ( )A .116922=+y x B .1162522=+y x C .1162522=+y x 或1251622=+y x D .以上都不对 3.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是 ( )A .双曲线B .双曲线的一支C .两条射线D .一条射线4.抛物线x y 102=的焦点到准线的距离是 ( )A .25 B .5 C .215 D .10 5.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为 ( )A .(7,B .(14,C .(7,±D .(7,-±二、填空题6.若椭圆221x my +=的离心率为2,则它的长半轴长为_______________. 7.双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_______________。

8.若曲线22141x y k k +=+-表示双曲线,则k 的取值范围是 。

9.抛物线x y 62=的准线方程为 .10.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。

三、解答题11.k 为何值时,直线2y kx =+和曲线22236x y +=有两个公共点?有一个公共点?没有公共点?12.在抛物线24y x =上求一点,使这点到直线45y x =-的距离最短。

13.双曲线与椭圆有共同的焦点12(0,5),(0,5)F F -,点(3,4)P 是双曲线的渐近线与椭圆的一个交点, 求渐近线与椭圆的方程。

14.已知双曲线12222=-by a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23(1)求双曲线的方程; (2)已知直线)0(5≠+=k kx y 交双曲线于不同的点C ,D 且C ,D 都在以B 为圆心的圆上,求k 的值.15 经过坐标原点的直线l 与椭圆()x y -+=362122相交于A 、B 两 点,若以AB 为直径的圆恰好通过椭圆左焦点F ,求直线l 的倾斜角.16.已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程.参考答案1.D 点P 到椭圆的两个焦点的距离之和为210,1037a =-= 2.C 2222218,9,26,3,9,1a b a b c c c a b a b +=+====-=-=得5,4a b ==,2212516x y ∴+=或1251622=+y x 3.D 2,2PM PN MN -==而,P ∴在线段MN 的延长线上 4.B 210,5p p ==,而焦点到准线的距离是p5.C 点P 到其焦点的距离等于点P 到其准线2x =-的距离,得7,P p x y ==±6.1,2或 当1m >时,221,111x y a m+==; 当01m <<时,22222223111,1,,4,21144y x a b e m m a a a m m-+===-===== 7.221205x y -=± 设双曲线的方程为224,(0)x y λλ-=≠,焦距2210,25c c == 当0λ>时,221,25,2044x y λλλλλ-=+==;当0λ<时,221,()25,2044y x λλλλλ-=-+-==--- 8.(,4)(1,)-∞-+∞ (4)(1)0,(4)(1)0,1,4k k k k k k +-<+->><-或9.32x =-326,3,22p p p x ===-=- 10.1 焦点在y 轴上,则22251,14,151y x c k k k+==-== 三、解答题11.解:由222236y kx x y =+⎧⎨+=⎩,得2223(2)6x kx ++=,即22(23)1260k x kx +++= 22214424(23)7248k k k ∆=-+=-当272480k ∆=->,即k k ><或时,直线和曲线有两个公共点; 当272480k ∆=-=,即k k ==或时,直线和曲线有一个公共点; 当272480k ∆=-<,即k <<时,直线和曲线没有公共点。

圆锥曲线基础大题20道

圆锥曲线基础大题20道

圆锥曲线基础大题20道一、解答题1.(1)已知椭圆()22122:10x y C a b a b+=>>的焦距为x =±,求椭圆1C 的方程;(2)已知双曲线()22222:10,0x y C a b a b -=>>的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,求双曲线2C 的方程. 2.已知椭圆22149x y +=,一组平行直线的斜率是1. (1)这组直线何时与椭圆有公共点?(2)当它们与椭圆相交时,求这些直线被椭圆截得的线段的中点所在的直线方程. 3.过原点O 作圆x 2+y 2-8x=0的弦OA .(1)求弦OA 中点M 的轨迹方程;(2)延长OA 到N ,使|OA|=|AN|,求N 点的轨迹方程.4.已知动圆经过点F (2,0),并且与直线x =-2相切(1)求动圆圆心P 的轨迹M 的方程;(2)经过点(2,0)且倾斜角等于135°的直线l 与轨迹M 相交于A ,B 两点,求|AB | 5.已知抛物线2:2(0)C y px p =>的焦点为F ,点(1,2)P 在抛物线C 上.(1)求点F 的坐标和抛物线C 的准线方程;(2)过点F 的直线l 与抛物线C 交于,A B 两个不同点,若AB 的中点为(3,2)M -,求OAB 的面积.6.已知双曲线2222:1(0,0)x y C a b a b -=>>与双曲线22142-=y x 有相同的渐近线,且经过点M .(1)求双曲线C 的方程;(2)求双曲线C 的实轴长,离心率,焦点到渐近线的距离.7.焦点在x 轴上的椭圆的方程为2214x y m +=,点(2,1)P 在椭圆上. (1)求m 的值.(2)依次求出这个椭圆的长轴长、短轴长、焦距、离心率. 8.求适合下列条件的椭圆标准方程:(1)与椭圆2212x y +=有相同的焦点,且经过点3(1,)2(2)经过23(2,),(2,)A B ---两点 9.如图,若12,F F 是双曲线221916x y -=的两个焦点.(1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离;(2)若P 是双曲线左支上的点,且12·32PF PF =,试求12F PF ∆的面积. 10.已知条件p :空间向量(1,0,)a n =,(1,1,1)b =-,满足0a b ⋅>;条件q :方程2212x y n k -=-表示焦点在x 轴上的双曲线. (1)求使条件p 成立的n 的取值范围;(2)若p 成立是q 成立的充分条件,求实数k 的取值范围.11.已知椭圆的两个焦点坐标分别是()2,0-,()2,0,并且经过点53,22⎛⎫-⎪⎝⎭. (1)求椭圆的标准方程;(2)若直线1y x =+与椭圆交于A 、B 两点,求AB 中点的坐标和AB 长度. 12.已知双曲线22221x y a b-=的离心率为2e =(2,3)P (1)求双曲线的方程;(2)求双曲线的焦点到渐近线的距离13.已知椭圆()222210x y a b a b +=>>⎛ ⎝⎭,1F ,2F 是椭圆的左、右焦点.(1)求椭圆C 的方程;(2)点P 在椭圆上,且122PF PF -=,求12PF PF ⋅的值. 14.已知双曲线22:12x C y -=. (1)求与双曲线C有共同的渐近线,且过点((2)若直线l 与双曲线C 交于A 、B 两点,且A 、B 的中点坐标为(1,1),求直线l 的斜率.15.已知中心在原点的双曲线C 的右焦点为()2,0,实轴长为2.(1)求双曲线C 的标准方程;(2)若直线l:y kx =+C 的左支交于A 、B 两点,求k 的取值范围.16.已知椭圆C :22221(0)x y a b a b+=>>的长轴长为6,离心率为23. (1)求椭圆C 的方程;(2)直线y x m =+与椭圆C 交于A ,B 两点,求AB 的最大值.17.已知椭圆2222:1(0)x y a b a bΩ+=>>的焦距为4,短半轴长为2. (1)求椭圆Ω的方程;(2)若直线l 与椭圆Ω相交于A ,B 两点,点()2,1P -是线段AB 的中点,求直线l 的方程.18.已知双曲线C 的中心是原点,右焦点为F ,一条渐近线方程为0x =,直线:0l x y -+=与双曲线交于点A , B 两点.记F A , FB 的斜率分别为12,.k k (1)求双曲线C 的方程;(2)求1211k k +的值. 19.设椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,下顶点为A ,O 为坐标原点,O 到直线2AF 的距离为3,12AF F △为等边三角形. (1)求椭圆C 的标准方程; (2)若倾斜角为60 的直线经过椭圆C 的右焦点2F ,且与椭圆C 交于M ,N 两点(M 点在N 点的上方)求线段2MF 与2NF 的长度之比.20.已知抛物线C :y 2=2px (p >0)的焦点为F ,点M (2,m )为其上一点,且|MF |=4.(1)求p 与m 的值;(2)如图,过点F 作直线l 交抛物线于A 、B 两点,求直线OA 、OB 的斜率之积.参考答案1.(1)22196x y +=;(2)22145x y -= 【分析】(1)由已知可得c =2a c±=± (2)由已知可得b a =,29c =,计算即可得出结果. 【详解】 (1)焦距为c =x =±,则2a c±=±3a =, 由222a b c =+,可得:26b =,所以椭圆1C 的方程为22196x y +=; (2)由双曲线的一条渐近线方程为2y x =可知,b a =, 且与椭圆221123x y +=有公共焦点,则29c =, 又因为222a c b =-,即2223c b a a c b =⎧⎪⎪=⎨⎪=-⎪⎩,解得:2a =,b =3c =, 所以双曲线2C 的方程为22145x y -=. 【点睛】本题考查椭圆的标准方程及双曲线的标准方程,考查计算能力,属于基础题.2.(1)截距在[范围内;(2)940x y +=.【分析】(1)由已知设直线方程y x b =+结合椭圆方程,根据有公共点即所得方程的判别式2264208(9)0b b ∆=--≥即可知直线截距在[上有交点;(2)结合(1)由中点坐标可得49(,)1313b b -,而其中必有原点即可求直线方程; 【详解】 (1)设平行直线的方程为y x b =+,若直线与椭圆有公共点,则:将y x b =+代入22149x y +=,整理得:221384360x bx b ++-=,∴2264208(9)0b b ∆=--≥解得:b ≤≤;(2)令交点坐标分别为1122(,),(,)x y x y ,由(1)知:12813b x x +=-,而121218213b y y x x b +=++=, 所以线段中点坐标为49(,)1313b b -,其中必有一个中点为坐标原点,故直线的斜率为94k =-, ∴所在的直线方程:940x y +=;【点睛】本题考查了直线与椭圆的位置关系,计算确定何时它们会有公共点,以及求交点弦的中点所构成直线的方程.3.(1)x 2+y 2-4x="0;" (2)x 2+y 2-16x=0【解析】试题分析:(1)设M 点坐标为(x ,y ),那么A 点坐标是(2x ,2y ),A 点坐标满足圆x 2+y 2-8x=0的方程,所以, (2x )2+(2y )2-16x=0,化简得M 点轨迹方程为x 2+y 2-4x=0.(2)设N 点坐标为(x ,y ),那么A 点坐标是(,22x y ), A 点坐标满足圆x 2+y 2-8x=0的方程,得到:(2x )2+(y 2)2-4x=0, N 点轨迹方程为:x 2+y 2-16x=0.考点:轨迹方程点评:中档题,本题利用“相关点法”(“代入法”),较方便的使问题得解.4.(1)28y x =(2)16【分析】(1)设(,)P x y ,根据题目条件列方程可求得结果;(2)联立直线与抛物线方程,根据弦长公式可得结果.【详解】(1)设(,)P x y |(2)|x =--,化简得28y x =,所以动圆圆心P 的轨迹M 的方程为28y x =(2)直线l 的方程为(2)y x =--,即2y x =-+, 联立228y x y x=-+⎧⎨=⎩,消去y 并整理得21240x x -+=, 设11(,)A x y ,22(,)B x y ,则1212x x +=,124x x =,由弦长公式可得||AB =16==.所以|16|AB =【点睛】本题考查了求动点的轨迹方程,考查了直线与抛物线的位置关系,考查了韦达定理和弦长公式,属于基础题.5.(1)()1,0,1x =-;(2)【分析】(1)因为()1,2P 在抛物线C 上,可得2p =,由抛物线的性质即可求出结果;(2)由抛物线的定义可知1226AB x x =++=,根据点斜式可求直线AB 的方程为1y x =-+ ,利用点到直线距离公式求出高,进而求出面积.【详解】(1)∵()1,2P 在抛物线C 上,422p P ∴=∴=,, ∴点F 的坐标为()1,0,抛物线C 的准线方程为1x =-;(2)设,A B 的坐标分别为()()1122,,x y x y ,,则1228AB x x =++=,1MF k =-,∴直线AB 的方程为1y x =-+ ,点O 到直线AB 的距离2d =, 12OAB S AB d ∴=⋅=【点睛】本题主要考查了抛物线的基本概念,直线与抛物线的位置关系,属于基础题.6.(1)2212y x -=;(2)实轴长2 【分析】(1)由共渐近线双曲线方程的求法求解即可;(2)由双曲线方程及点到直线的距离求解即可.【详解】解:(1)解:在双曲线22142-=y x 中,2a '=,b '=,则渐近线方程为a y x b''=±=, ∵双曲线2222:1x y C a b -=与双曲线22142-=y x 有相同的渐近线,b a∴=, ∴方程可化为222212x y a a-=,又双曲线C 经过点M ,代入方程,222212a a∴-=,解得1a =,b = ∴双曲线C 的方程为2212y x -=.(2)解;由(1)知双曲线22:12y C x -=中,1a =,b =c =∴实轴长22a =,离心率为==c e a设双曲线C 的一个焦点为(,一条渐近线方程为y =,d ∴==,.【点睛】本题考查了共渐近线双曲线方程的求法,重点考查了点到直线的距离,属基础题.7.(1)2(2)长轴长4、短轴长2【分析】(1)根据题意,代入点P ,即可求解.(2)由(1),写出椭圆方程,求解,,a b c ,根据椭圆长轴长、短轴长、焦距、离心率定义,即可求解.【详解】(1)由题意,点P 在椭圆上,代入,得2114m +=,解得2m =(2)由(1)知,椭圆方程为22142x y +=,则2,a b c ===椭圆的长轴长24a =;’短轴长2b =焦距2c =;离心率c e a ==. 【点睛】 本题考查(1)代入点求椭圆方程(2)求解长轴长、短轴长、焦距、离心率;考查概念辨析,属于基础题.8.(1)22143x y +=(2)2218x y += 【分析】(1)利用已知椭圆可得焦点的坐标,结合椭圆的定义可求a ,从而可得椭圆标准方程: (2)利用待定系数法,设出方程,代入两点的坐标,解方程可求.【详解】(1)椭圆2212x y +=的焦点坐标为(1,0)±, ∵椭圆过点3(1,)2,∴24a ==,∴2,a b ==, ∴椭圆的标准方程为22143x y +=. (2)设所求的椭圆方程为221(0,0,)x y m n m n m n+=>>≠.把(2,(A B 两点代入, 得:14213241m n m n⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得81m n ==,, ∴椭圆方程为2218x y +=. 【点睛】本题主要考查椭圆方程的求解,待定系数法和定义法是常用的求解方法,侧重考查数学运算的核心素养.9.(1)10或22(2)1216F PF S ∆= 【分析】(1)设点M 到另一个焦点的距离为m ,由双曲线定义即可求得m 的值.(2)由双曲线定义及12·32PF PF =,可证明2221212PF PF F F +=,即12F PF ∆为直角三角形,即可求得12F PF ∆的面积. 【详解】(1)12,F F 是双曲线221916x y -=的两个焦点,则3,4,5,a b c ===设点M 到另一个焦点的距离为m , 由抛物线定义可知1626m a -==, 解得10m =或22m =,即点M 到另一个焦点的距离为10或22. (2)P 是双曲线左支上的点,1226PF PF a -==,则2211222·36PF PF PF PF -+=,代入12·32PF PF =, 可得221232321006PF PF +=+⨯=,即2212122100PF PF F F +==,所以12F PF ∆为直角三角形,所以12121·1232162F PF S PF PF ∆⨯===. 【点睛】本题考查了双曲线定义及性质的的简单应用,交点三角形面积求法,属于基础题.10.(1)1n >;(2)1k ≤ 【分析】(1)因为空间向量(1,0,)a n =,(1,1,1)b =-,可得(1,0,)(1,1,1)1a b n n ⋅=⋅-=-,即可求得答案;(2)方程2212x y n k -=-表示焦点在x 轴上的双曲线, 0n k ->,解得n k >,即可求得答案. 【详解】 (1)空间向量(1,0,)a n =,(1,1,1)b =-可得(1,0,)(1,1,1)1a b n n ⋅=⋅-=-,∴要使p 成立,只需1n >(2)方程2212x y n k -=-表示焦点在x 轴上的双曲线,∴0n k ->,解得n k >,若p 成立是q 成立的充分条件,∴k 的取值范围为1k ≤.【点睛】本题主要考查了根据命题成立求参数范围和根据充分条件求参数范围,解题关键是掌握充分条件定义,考查了分析能力和计算能力,属于基础题.11.(1)221106x y +=;(2)中点坐标为53,88⎛⎫- ⎪⎝⎭,4AB =. 【分析】(1)由题意设出椭圆方程并求得c ,由椭圆定义求得a ,再由隐含条件求得b ,则椭圆方程可求;(2)联立直线方程与椭圆方程,化为关于x 的一元二次方程,利用根与系数的关系及中点坐标公式求得AB 的中点坐标,再由弦长公式求弦长. 【详解】解:(1)由于椭圆的焦点在x 轴上,所以设它的标准方程为()222210x ya b a b+=>>,由椭圆定义知2c =,2a ==,所以a =,所以222104b a c =-=-, 所求椭圆标准方程为221106x y +=.(2)设直线与椭圆的交点为()11,A x y ,()22,B x y ,联立方程2211061x y y x ⎧+=⎪⎨⎪=+⎩,得2810250x x +-=,得1254x x +=-,12258x x =-. 设AB 的中点坐标为()00,x y ,则120528x x x +==-,038y =, 所以中点坐标为53,88⎛⎫- ⎪⎝⎭.由弦长公式4AB ===. 【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.12.(1)221x y -=;(2)1.【分析】(1)由条件得22431caa b ⎧=⎪⎪⎨⎪-=⎪⎩,从而可得方程;(2)分别写出焦点坐标和渐近线方程,再由点到直线距离公式可得解. 【详解】(1)双曲线22221x y a b-=的离心率为e =(2,P ,可得22431caa b⎧=⎪⎪⎨⎪-=⎪⎩ ,解得:2211a b ⎧=⎨=⎩,所以221x y -=;(2)双曲线的焦点为(,渐近线为0x y ±=,1=,13.(1)2214x y +=;(2)1-. 【分析】(1)根据离心率公式,可得c a =222c a b =-,即可求得a ,b 的值,即可求得答案;(2)根据椭圆定义,结合条件,可得12,PF PF 的值,根据余弦定理,可求得12cos F PF ∠的值,带入数量积公式,即可求得答案. 【详解】 (1)依题意有2c a =,221314a b +=,222c a b =-, 解得2a =,1b =,则椭圆的方程为2214x y +=.(2)因为点P 在椭圆上,由椭圆定义得:1224PF PF a +==所以121242PF PF PF PF ⎧+=⎪⎨-=⎪⎩,解得13PF = ,21PF =,在12PF F △中,由余弦定理222121212121cos 23PF PF F F F PF PF PF +-∠==-,221112co 1s 3113PF PF PF PF F PF ⎛⎫⋅=⋅⋅⋅-=- ⎪⎝∠=⎭.14.(1)2212x y -=;(2)12. 【分析】(1)设所求双曲线方程为22(0)2x y k k -=≠,代入点坐标,求得k ,即可得答案;(2)设1122(,),(,)A x y B x y ,利用点差法,代入A 、B 的中点坐标为(1,1),即可求得斜率. 【详解】(1)因为所求双曲线与双曲线C有共同的渐近线,所以设所求双曲线方程为22(0)2x y k k -=≠,代入(1k =-,所以所求双曲线方程为2212x y -=;(2)设1122(,),(,)A x y B x y ,因为A 、B 在双曲线上,所以221122221(1)21(2)2x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩,(1)-(2)得12121212()()()()2x x x x y y y y -+=-+,因为A 、B 的中点坐标为(1,1),即12122,2x x y y +=+=, 所以1212121212()2l y y x x k x x y y -+===-+.15.(1)2213x y -=;(2)13k <<.【分析】(1)由条件可得a =2c =,然后可得答案;(2)联立直线与双曲线的方程消元,然后可得()22221303610,0,1390,13A B A B k k x x k x x k ⎧-≠⎪∆=->⎪⎪⎪+=<⎨-⎪-⎪=>⎪-⎪⎩,解出即可. 【详解】(1)设双曲线方程为22221x y a b-=(0a >,0b >).由已知得:a =2c =,再由222+=a b c ,∴21b =,∴双曲线方程为2213x y -=.(2)设()A A A x y ,,()B B B x y ,,将y kx =+2213x y -=,得()221390k x ---=,由题意知()22221303610,0,1390,13A B A B k k x x k x x k ⎧-≠⎪∆=->⎪⎪⎪+=<⎨-⎪-⎪=>⎪-⎪⎩解得13k <<.1k <<时,l 与双曲线左支有两个交点. 16.(1)22195x y +=;(2)maxAB =. 【分析】(1)由题意得2623a c a =⎧⎪⎨=⎪⎩,求出,a c ,从而可求出b 的值,进而可得椭圆C 的方程;(2)设()()1122,,A x y B x y ,直线方程与椭圆方程联立方程组,消去y ,利用根与系数的关系得1297m x x +=- 21294514m x x -=,再利用弦长公式可得AB==【详解】解:(1)由题意可得2623aca=⎧⎪⎨=⎪⎩,解得3,2a c==,所以2225b a c,所以椭圆C的方程为22195x y+=;(2)设()()1122,,A x yB x y222214189450195y x mx mx mx y=+⎧⎪⇒++-=⎨+=⎪⎩,由22(18)414(945)0m m∆=-⨯⨯->,得2140m-<1297mx x+=-,21294514mx x-=AB∴==≤所以当0m=时,max7AB=.17.(1)22184x y+=;(2)30x y-+=.【分析】(1)直接求出,b c,即可求解;(2)利用点差法,设()11,A x y,()22,B x y,由题意得22112222184184x yx y⎧+=⎪⎪⎨⎪+=⎪⎩,然后,得到斜率()121212122y y x xkx x y y-+==--+,再代入中点,即可出k,进而求出直线l的方程【详解】(1)由题意可知24c =,2b = 所以24b =,24c =,2228a b c =+=所以椭圆Ω的方程为22184x y +=.(2)设()11,A x y ,()22,B x y ,由题意得22112222184184x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相减,得22221212084x x y y --+=,即()()()()12121212084x x x x y y y y +-+-+=,所以直线l 的斜率()121212122y y x x k x x y y -+==--+.因为点(2,1)P -是线段AB 的中点, 所以124x x +=-,122y y +=,所以1k =所以直线l 的方程为1(2)y x -=+,即30x y -+=. 【点睛】关键点睛:利用点差法和中点求出斜率k 是解题关键,属于基础题18.(1)2212x y -=;(2)10-. 【分析】(1)设双曲线方程,由焦点及渐近线方程运算即可得解;(2)设()()1122,,,A x y B x y ,联立方程组,结合韦达定理可得12y y +=-121y y =-,再由斜率公式即可得解. 【详解】(1)设双曲线的方程为()22221,0,0x y a b a b-=>>,由题意,223a b +=,该双曲线的渐近线方程by x a=±,又双曲线的一条渐近线方程为0x +=,所以2b a =, 所以222,1a b ==,所以双曲线C 的方程为2212x y -=;(2)设()()1122,,,A x y B x y ,由22120x y x y ⎧-=⎪⎨⎪-+=⎩,消去x化简可得210y +-=,0∆>,所以12y y +=-121y y =-,所以12121212121211112x x y y k k y y y y y y ⎛⎫--+=+=+=-+ ⎪⎝⎭121222101y y y y +-=-=-=--. 【点睛】关键点点睛:解决本题的关键是联立方程组,结合韦达定理对1211k k +变形.19.(1)22143x y +=;(2)35. 【分析】(1)由椭圆的定义结合平面几何的知识可直接求得a 、b ,即可得解; (2)联立直线方程与椭圆方程,求得点8,55M ⎛⎫ ⎪ ⎪⎝⎭,(0,N ,再由22MN MF y NF y =即可得解. 【详解】(1)因为12AF F △为等边三角形,1OA =即b =,又O 到直线2AF的距离d =2b d ==2a =, 则椭圆C 的标准方程为22143x y +=;(2)倾斜角为60°的直线经过椭圆C 的右焦点()21,0F ,则直线的方程为)1y x =-,联立)221143y x x y ⎧=-⎪⎨+=⎪⎩,解得0x y =⎧⎪⎨=⎪⎩85x y ⎧=⎪⎪⎨⎪=⎪⎩, 因为M 点在N点的上方,所以8,55M ⎛ ⎝⎭,(0,N , 所以2235M N MF y NF y ==. 20.(1)p =4,m =±4;(2)-4. 【分析】(1)利用抛物线的定义及题干条件,可求得p 的值,将M 点坐标代入,即可求得m 值; (2)当直线l 的斜率不存在时,方程为:x =2,代入抛物线方程,求得A 、B 点坐标,即可求得OA OB k k ⋅的值,当直线l 的斜率存在时,设直线为y =k (x -2),与抛物线联立,利用韦达定理,求得12y y ,12x x 的值,即可求得OA OB k k ⋅的值,综合即可得答案. 【详解】(1)抛物线C :y 2=2px (p >0)的焦点为(,0)2pF ,准线为2p x =-, 由抛物线定义知:点M (2,m )到F 的距离等于M 到准线的距离, ∴||242pMF =+=,∴p =4, 故抛物线C 的方程为y 2=8x , ∵点M (2,m )在抛物线C 上,∴m 2=16,∴m =±4,∴p =4,m =±4;(2)由(1)知:抛物线C 的方程为y 2=8x ,焦点为F (2,0),答案第17页,总17页 若直线l 的斜率不存在,则其方程为:x =2,代入y 2=8x ,可得:A (2,4),B (2,-4), 从而404042020OA OB k k ---=⨯=---⋅; 若直线l 的斜率存在,设为k (k ≠0),则其方程可表示为:y =k (x -2),由2(2)8y k x y x=-⎧⎨=⎩,消去x ,得:21(2)8y k y =-,即ky 2-8y -16k =0(k ≠0), Δ=64+64k 2>0,设A (x 1,y 1),B (x 2,y 2),则121616k y y k-==-, ∴22221212121111(()(16)4886464)()x x y y y y ===⨯-=⋅, 从而OA k ⋅1212121200164004OB y y y y k x x x x ---=⨯===---, 综上所述:直线OA 、OB 的斜率之积为-4.【点睛】处理抛物线问题,需熟练应用抛物线定义,在联立直线与抛物线方程时,消x 得到关于y 的一元二次方程为常用办法,可简化计算,提高正确率,属基础题.。

圆锥曲线练习题含答案很基础很好的题

圆锥曲线练习题含答案很基础很好的题

7B.— 46.若抛物线y 2=x 上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为( 1 72 1 721 721 72(4-^) B.(8-7)C . (4,丁)D .(8,7)2 2—=1上一点P 与椭圆的两个焦点 F 1、F 2的连线互相垂直,则^ PF 1F 2的面积为49 2420 B . 22 C . 28 D . 24C .(1,72)D . (2,2)29.与椭圆 一+ y 2=1共焦点且过点Q (2,1)的双曲线方程是()4圆锥曲线练习题21抛物线y= 10x 的焦点到准线的距离是( 5 A.— 2 2.若抛物线 B . 5 C . 15D . 10 2 y 2 =8x 上一点P 到其焦点的距离为9,则点P 的坐标为( A . (7, ±774) B . (14,±714) C . (7,±2714) D . (-7,±2714) 3-以椭圆25 2 2 —+ =1的顶点为顶点,离心率为 16 2的双曲线方程( 2 x A . 一 16 2 —1 48 B . 2 厶=1 27 2 x 16 2 2 丄=1或三 48 9 227 D .以上都不对2x 4. F 1,F 2是椭圆一 9 =1的两个焦点, A 为椭圆上一点,且/ AF 1F 2 =45° ,则△ AF 1F 2 的面积(5.以坐标轴为对称轴, 以原点为顶点且过圆 x 2 + y 2 -2x + 6y + 9 = 0的圆心的抛物线的方程是2 2A . y = 3x 或 y = -3x 2B . y = 3x 2C . y = -9x 或 y = 3xD . y = -3x 2或2 y =9x7^5 27.椭圆 8 .若点 A 的坐标为(3,2), 2F 是抛物线y =2x 的焦点,点M 在抛物线上移动时,使 MF + M A 取得最小值的 M 的坐标为(22 2 2 2x 2 」 x 2 」 x y A. ——-y =1 B. ——-y =1 C . ——=12 43 3310.若椭圆宀吋2/的离心率为一,则它的长半轴长为11.双曲线的渐近线方程为 x±2y =0,焦距为10,这双曲线的方程为 12.抛物线y 2 =6x 的准线方程为. 13•椭圆5x 2+ ky2=5的一个焦点是(0,2),那么k = _____ 。

圆锥曲线专题40大题练习(含答案)

圆锥曲线专题40大题练习(含答案)

圆锥曲线44道特训221.已知双曲线C:「-仁=1的离心率为心,点(V3,o)是双曲线的一个顶点.a-b'(1)求双曲线的方程;(2)经过的双曲线右焦点旦作倾斜角为30°直线/,直线/与双曲线交于不同的A,3两点,求A3的长.22[2.如图,在平面直角坐标系xOy中,椭圆、+与=1(。

〉力〉0)的离心率为一,过椭圆右a2b22焦点F作两条互相垂直的弦A3与CQ.当直线A3斜率为0时,AB+CD=7.(1)求椭圆的方程;(2)求AB+CD的取值范围.3.已知椭圆C:「+「=1(。

〉力〉0)的一个焦点为尸(1,0),离心率为土.设P是椭圆Zr2C长轴上的一个动点,过点P且斜率为1的直线/交椭圆于A,B两点.(1)求椭圆C的方程;(2)求|PA|2+|PB|2的最大值.224.已知椭圆C:「+七=1(0〉力〉0)的右焦点为『(L°),短轴的一个端点B到F的距离a'd等于焦距.(1)求椭圆。

的方程;(2)过点万的直线/与椭圆C交于不同的两点M,N,是否存在直线/,使得△3加与△B月V的面积比值为2?若存在,求出直线/的方程;若不存在,说明理由..2,25.已知椭圆C:=■+%■=1(a>b>0)过点p(—1,—1)-c为椭圆的半焦距,且c=姻b.过a"b~点P作两条互相垂直的直线L,L与椭圆C分别交于另两点M,N.(1)求椭圆C的方程;(2)若直线L的斜率为一1,求APMN的面积;第1页共62页(3)若线段MN的中点在x轴上,求直线MN的方程.6.已知椭圆E的两个焦点分别为(-1,0)和(1,0),离心率e=—.2(1)求椭圆£*的方程;(2)若直线l:y=kx+m(人主0)与椭圆E交于不同的两点A、B,且线段的垂直平分线过定点P(|,0),求实数女的取值范围.Ji7.已知椭圆E的两个焦点分别为(-1,0)和(1,0),离心率e.2(1)求椭圆E的方程;(2)设直线l-.y=x+m(m^O)与椭圆E交于A、3两点,线段A3的垂直平分线交x 轴于点T,当hi变化时,求面积的最大值.8.已知椭圆错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n
mn)
(
10
)
2
,
mn
2
将 m+n=2,代入得 m·n= 3

4
由①、②式得 故椭圆方程为
m= 1 ,n= 3 或 m= 3 ,n= 1
22
22
x 2 + 3 y2=1 或 3 x2+ 1 y2=1.
22
22
-4-/4
y 2 1.
3
( 2)把 y kx 5 代入 x 2 3 y 2 3 中消去 y,整理得 (1 3k 2 ) x 2 30kx 78 0 .
设 C(x1, y1), D (x 2, y 2), CD 的中点是 E( x0 , y0 ) ,则
x0 k BE
x1 x 2 2
y0 1 x0
15 k 1 3k 2 y0
y x1 由
mx2 ny2
得 (m+n)x2+2nx+n- 1=0, 1
Δ=4n2- 4(m+n)( n- 1)> 0,即 m+n-mn>0, 由 OP⊥OQ ,所以 x1x2+y1y2=0,即 2x1x2+(x1+x2 )+1=0,
∴ 2(n 1)
2n +1=0, ∴ m+n=2

mn mn
又 2 4(m
2 0 ,焦距为 10 ,这双曲线的方程为 _______________。
x2
8.若曲线
y2 1 表示双曲线,则
4 k 1k
9.抛物线 y2 6x 的准线方程为 .
k 的取值范围是。
10.椭圆 5 x2 ky 2 5 的一个焦点是 (0,2) ,那么 k 。
三、解答题
11. k 为何值时,直线 y kx 2 和曲线 2 x2 12.在抛物线 y 4x2 上求一点,使这点到直线
2. C 2a 2b 18, a b 9, 2c 6, c 3,c2 a2 b2 9, a b 1
得 a 5, b 4 , x2 y2 1 或 x2 y 2 1
25 16
16 25
3. D PM PN 2, 而 MN 2 , P 在线段 MN 的延长线上
4. B 2 p 10, p 5 ,而焦点到准线的距离是 p
2 3 ,过 A( a,0), B(0, b) 的直线到原点的距离是
3
3. 2
( 1)求双曲线的方程; (2)已知直线 y kx 5(k 0) 交双曲线于不同的点 C, D 且 C, D 都在以 B 为
圆心的圆上,求 k 的值 .
( x 3) 2 y 2
15(本小题满分 12 分)经过坐标原点的直线 l 与椭圆
15
C.
2
D. 10
8x 上一点 P 到其焦点的距离为 9 ,则点 P 的坐标为




A. (7, 14)
二、填空题
B. (14, 14)
C. (7, 2 14)
D. ( 7, 2 14)
6.若椭圆 x 2 my2 1 的离心率为 7.双曲线的渐近线方程为 x 2 y
3
,则它的长半轴长为 _______________.
x2 1,c 2 1
5 1 4, k 1
k
三、解答题
11.解:由
y kx 2 2x2 3y2
,得 2 x2 6
3(kx 2) 2
6 ,即 (2 3k 2 )x2 12 kx 6
0
144k 2 24(2 3k 2 ) 72k2 48
-2-/4

72k 2 48 0 ,即 k
6 ,或k
3
6
时,直线和曲线有两个公共点;
x2
C.
y2 1或 x2
y 2 1 D.以上都不对
25 16
16 25
3.动点 P 到点 M (1,0) 及点 N (3,0) 的距离之差为 2 ,则点 P 的轨迹是


A.双曲线
B.双曲线的一支
4.抛物线 y 2 10x 的焦点到准线的距离是
C.两条射线
D.一条射线
5
A.
2 5.若抛物线 y 2
B. 5
1. k
kx 0 5
5 1 3k 2 ,
x0 ky0 k 0,
15 k

1
3k 2
5k 1 3k 2
k
0,又 k
0, k 2
7
故所求 k=± 7 . ( 为了求出 k 的值 , 需要通过消元 , 想法设法建构 k 的方程 . )
-3-/4
15.(本小题满分 12 分)分析:左焦点 F(1,0),直线 y=kx 代入椭圆得 ( 3k 2 1) x2 6 x 30 ,
5. C 点 P 到其焦点的距离等于点 P 到其准线 x 2 的距离,得 xP 7, y p 2 14
6. 1,或 2
x2 当 m 1时,
1
y2 1,a 1 ;
1 m
当 0 m 1 时, y2 1
x2 1
1,e2
a2 b2 a2
3 1 m ,m
4
1 ,a2 4
1 m
4, a
2
m
2
2
7. x y
1 设双曲线的方程为 x2 4 y2 ,( 0) ,焦距 2c 10,c2 25
20 5
x2 y2
当 0 时,
1,
25, 20 ;
4
4
y2 x2
当 0 时,
1, ( ) 25, 20
4
4
8. ( , 4) (1, ) (4 k)(1 k) 0,( k 4)( k 1) 0, k 1,或 k 4
9. x
3 2p 6, p 3, x
p
3
2
22
10. 1
y2 焦点在 y 轴上,则
5 k
1 相交于 A、 B 两
6
2
点,若以 AB 为直径的圆恰好通过椭圆左焦点 F,求直线 l 的倾斜角.
16.(本小题满分 12 分)已知椭圆的中心在坐标原点 O,焦点在坐标轴上,直线 圆交于 P和 Q,且 OP⊥OQ, | PQ|= 10 ,求椭圆方程 . 2
y=x+1 与椭
参考答案
-1-/4
1. D 点 P 到椭圆的两个焦点的距离之和为 2a 10,10 3 7
3,b2 16
25 b2
所以椭圆方程为 y 2
x2
y2
1 ;双曲线方程为
x2 1
40 15
16 9
14 . ( 本 题 12 分 ) ∵ ( 1 ) c a
2 3 , 原 点 到 直 线 AB : x y 1 的 距 离
3
ab
ab
ab
d
a2
b2
c
b 1, a
3.
3 2 . . 故所求双曲线方程为
x2
一、选择题:
圆锥曲线训练题
x2
1. 已知椭圆
y 2 1 上的一点 P 到椭圆一个焦点的距离为 3 ,则 P 到另一焦点距离为


25 16
A. 2 B. 3C. 5
D. 7
2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为
18 ,焦距为 6 ,则椭圆的方程为


x2
A.
9
y2 1
16
x2 y2
B.
1
25 16
3
6
x12x
3k 2
, x1 1
x2
3k 2

1
y1 y2
2
3k 。 3k 2 1
由 AF BF 知 y1 · y2 x1 1 x2 1
1。
将上述三式代入得 k
3, 3
30 或 150 。
16.(本小题满分 12 分)解:设椭圆方程为 mx2+ny2=1( m> 0,n> 0), P(x1,y1),Q(x2,y2)
3

72k 2 48 0 ,即 k
6 ,或k
3
6
时,直线和曲线有一个公共点;
3

72k 2 48 0 ,即
6k
6
时,直线和曲线没有公共点。
3
3
12.解:设点 P (t, 4t 2 ) ,距离为 d , d
4t 4t 2 5 17
4t 2 4t 5 17
当t
1
1
时, d 取得最小值,此时 P( ,1)为所求的点。
3 y2 6 有两个公共点?有一个公共点?没有公共点? y 4x 5 的距离最短。
13.双曲线与椭圆有共同的焦点 求渐近线与椭圆的方程。
F1(0, 5), F2(0,5) ,点 P (3, 4) 是双曲线的渐近线与椭圆的一个交点,
14. (本题 12 分 )已知双曲线 x2 a2
y2 b2
1的离心率 e
2
2
Байду номын сангаас
13.解:由共同的焦点
F1(0, 5), F2(0,5) ,可设椭圆方程为
y2 a2
x2 a2 25
1;
y2 双曲线方程为 b2
x2 25 b 2
1,点 P(3, 4) 在椭圆上,
16 a2
9 a 2 25
1,a 2
40
双曲线的过点 P (3, 4) 的渐近线为 y
b x ,即 4 25 b2
b
相关文档
最新文档