蚁群算法(D为最短路矩阵)
蚁群算法及案例分析精选全文
群在选择下一条路径的时
候并不是完全盲目的,而是
按一定的算法规律有意识
地寻找最短路径
自然界蚁群不具有记忆的
能力,它们的选路凭借外
激素,或者道路的残留信
息来选择,更多地体现正
反馈的过程
人工蚁群和自然界蚁群的相似之处在于,两者优先选择的都
是含“外激素”浓度较大的路径; 两者的工作单元(蚂蚁)都
正反馈、较强的鲁棒性、全
局性、普遍性
局部搜索能力较弱,易出现
停滞和局部收敛、收敛速度
慢等问题
优良的分布式并行计算机制
长时间花费在解的构造上,
导致搜索时间过长
Hale Waihona Puke 易于与其他方法相结合算法最先基于离散问题,不
能直接解决连续优化问题
蚁群算法的
特点
蚁群算法的特点及应用领域
由于蚁群算法对图的对称性以
及目标函数无特殊要求,因此
L_ave=zeros(NC_max,1);
%各代路线的平均长度
while NC<=NC_max
%停止条件之一:达到最大迭代次数
% 第二步:将m只蚂蚁放到n个城市上
Randpos=[];
for i=1:(ceil(m/n))
Randpos=[Randpos,randperm(n)];
end
Tabu(:,1)=(Randpos(1,1:m))';
scatter(C(:,1),C(:,2));
L(i)=L(i)+D(R(1),R(n));
hold on
end
plot([C(R(1),1),C(R(N),1)],[C(R(1),2),C(R(N),2)])
最短路径问题的蚁群算法优化设计
最短路径问题的蚁群算法优化设计蚁群算法是一种以模拟蚂蚁觅食行为为基础的启发式优化算法,已经广泛应用于解决最短路径问题。
在这篇文章中,我们将探讨如何对蚁群算法进行优化设计,以提高其在解决最短路径问题上的效率和准确性。
1. 引言最短路径问题是在图论中经常遇到的问题,其目标是找到两个节点之间最短路径的距离和路径。
传统的解决方法,如迪杰斯特拉算法和贝尔曼-福特算法等,虽然能够得到最短路径结果,但在处理大规模图时效率较低。
因此,研究者们开始探索新的算法来解决这个问题。
2. 蚁群算法原理蚁群算法模拟了蚂蚁在寻找食物时释放信息素和选择路径的行为。
蚂蚁释放的信息素会在路径上逐渐积累,其他蚂蚁会根据信息素浓度选择路径。
路径上的信息素浓度和路径的长度成反比,从而使得较短路径上的信息素浓度更高,其他蚂蚁更容易选择该路径。
3. 蚁群算法的优化设计虽然蚁群算法在解决最短路径问题中表现出良好的性能,但仍有一些问题需要解决,比如收敛速度慢和易陷入局部最优解等。
下面我们将介绍一些优化设计来解决这些问题。
3.1 蚂蚁数量的合理设置蚂蚁数量的设置对蚁群算法的性能有很大影响。
过少的蚂蚁数量会导致搜索空间不充分,可能无法找到最优解;过多的蚂蚁数量会增加计算量,在较大规模问题上不可行。
因此,通过实验和经验,选择合适的蚂蚁数量是一项重要的优化设计。
3.2 信息素更新策略信息素更新策略决定了信息素的挥发和补充速度。
为了避免蚂蚁陷入局部最优解,我们可以引入一定程度的信息素挥发,使得信息素不断更新和调整。
此外,对于发现更短路径的蚂蚁,可以适当加大其留下信息素的量,以便其他蚂蚁更有可能选择这条路径。
3.3 启发函数的设计蚂蚁选择下一步路径时,需要根据路径上的信息素浓度和启发函数计算出路径的吸引度。
启发函数的设计应该符合最短路径问题的特点,比如节点间距离的衡量指标和路径选择的偏好等。
合理的启发函数设计可以提高蚁群算法的搜索效率和准确性。
4. 实验与结果通过在不同规模图上进行实验,我们可以得到蚁群算法在解决最短路径问题上的表现。
蚁群算法概述
蚁群算法概述一、蚁群算法蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来寻找最优解决方案的机率型技术。
它由Marco Dorigo于1992年在他的博士论文中引入,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。
蚂蚁在路径上前进时会根据前边走过的蚂蚁所留下的分泌物选择其要走的路径。
其选择一条路径的概率与该路径上分泌物的强度成正比。
因此,由大量蚂蚁组成的群体的集体行为实际上构成一种学习信息的正反馈现象:某一条路径走过的蚂蚁越多,后面的蚂蚁选择该路径的可能性就越大。
蚂蚁的个体间通过这种信息的交流寻求通向食物的最短路径。
蚁群算法就是根据这一特点,通过模仿蚂蚁的行为,从而实现寻优。
这种算法有别于传统编程模式,其优势在于,避免了冗长的编程和筹划,程序本身是基于一定规则的随机运行来寻找最佳配置。
也就是说,当程序最开始找到目标的时候,路径几乎不可能是最优的,甚至可能是包含了无数错误的选择而极度冗长的。
但是,程序可以通过蚂蚁寻找食物的时候的信息素原理,不断地去修正原来的路线,使整个路线越来越短,也就是说,程序执行的时间越长,所获得的路径就越可能接近最优路径。
这看起来很类似与我们所见的由无数例子进行归纳概括形成最佳路径的过程。
实际上好似是程序的一个自我学习的过程。
3、人工蚂蚁和真实蚂蚁的异同ACO是一种基于群体的、用于求解复杂优化问题的通用搜索技术。
与真实蚂蚁通过外激素的留存/跟随行为进行间接通讯相似,ACO中一群简单的人工蚂蚁(主体)通过信息素(一种分布式的数字信息,与真实蚂蚁释放的外激素相对应)进行间接通讯,并利用该信息和与问题相关的启发式信息逐步构造问题的解。
人工蚂蚁具有双重特性:一方面,他们是真实蚂蚁的抽象,具有真实蚂蚁的特性,另一方面,他们还有一些在真实蚂蚁中找不到的特性,这些新的特性,使人工蚂蚁在解决实际优化问题时,具有更好地搜索较好解的能力。
人工蚂蚁与真实蚂蚁的相同点为:1.都是一群相互协作的个体。
蚁群算法简述及实现
蚁群算法简述及实现1 蚁群算法的原理分析蚁群算法是受自然界中真实蚁群算法的集体觅食行为的启发而发展起来的一种基于群体的模拟进化算法,属于随机搜索算法,所以它更恰当的名字应该叫“人工蚁群算法”,我们一般简称为蚁群算法。
M.Dorigo等人充分的利用了蚁群搜索食物的过程与著名的TSP问题的相似性,通过人工模拟蚁群搜索食物的行为来求解TSP问题。
蚂蚁这种社会性动物,虽然个体行为及其简单,但是由这些简单个体所组成的群体却表现出及其复杂的行为特征。
这是因为蚂蚁在寻找食物时,能在其经过的路径上释放一种叫做信息素的物质,使得一定范围内的其他蚂蚁能够感觉到这种物质,且倾向于朝着该物质强度高的方向移动。
蚁群的集体行为表现为一种正反馈现象,蚁群这种选择路径的行为过程称之为自催化行为。
由于其原理是一种正反馈机制,因此也可以把蚁群的行为理解成所谓的增强型学习系统(Reinforcement Learning System)。
引用M.Dorigo所举的例子来说明蚁群发现最短路径的原理和机制,见图1所示。
假设D 和H之间、B和H之间以及B和D之间(通过C)的距离为1,C位于D和B的中央(见图1 (a))。
现在我们考虑在等间隔等离散世界时间点(t=0,1,2……)的蚁群系统情况。
假设每单位时间有30只蚂蚁从A到B,另三十只蚂蚁从E到D,其行走速度都为1(一个单位时间所走距离为1),在行走时,一只蚂蚁可在时刻t留下浓度为1的信息素。
为简单起见,设信息素在时间区间(t+1,t+2)的中点(t+1.5)时刻瞬时完全挥发。
在t=0时刻无任何信息素,但分别有30只蚂蚁在B、30只蚂蚁在D等待出发。
它们选择走哪一条路径是完全随机的,因此在两个节点上蚁群可各自一分为二,走两个方向。
但在t=1时刻,从A到B的30只蚂蚁在通向H的路径上(见图1 (b))发现一条浓度为15的信息素,这是由15只从B走向H的先行蚂蚁留下来的;而在通向C的路径上它们可以发现一条浓度为30的信息素路径,这是由15只走向BC的路径的蚂蚁所留下的气息与15只从D经C到达B留下的气息之和(图1 (c))。
蚁群算法
tabu(k)满吗?
N
Y 更新最佳路线,清空tabu(k), NC+1
2.2 参数选择
• 2.2.1 信息素更新模型的选择 前面介绍关于 k 有三种实现方法,分别 ij 对应三种不同的模型,称为蚁周模型(antcycle)、蚁密模型(ant-quantity)、蚁量模型 (ant-density)。这里我们给出这三种AS系统 基本模型的实验结果。
r 1 r ij
1
* ij
若边(i,j)是第r只蚂蚁路径的一部分
否则
3.3 蚁群系统(ACS)
蚁群系统是AS算法的改进版本,改进之处: • 采用了与AS不同的伪随机比例游历选择概率; • 不仅有信息素释放,还有信息素挥发,且只对 精英蚂蚁执行 • 增加了局部信息素更新。
伪随机比例选择规则:第K只蚂蚁在结点i处选择结点j作为 下一个结点的计算公式为
蚁群优化算法
1.蚁群算法的背景和概述
平时我们观察蚂蚁在寻 找食物的过程,总可以 发现条密集很多蚂蚁的 轨迹线路,大多数蚂蚁 都沿着这条线路往返与 食物与巢穴。那么这条 路是如何形成的呢?
• 据昆虫学家的观察和研究,发现蚂蚁有能力在没有 任何可见提示下找出从蚁穴到食物源的最短路径, 并且能随环境变化适应性地搜索新的路径,产生新 的选择。 • 生物学家和仿生学家研究发现,蚂蚁在觅食走过的 路径上释放一种蚂蚁特有的分泌物—信息激素 (Pheormnoe)。蚂蚁个体之间正是通过这种信息 激素进行信息传递,从而能相互协作,完成复杂任务。 在一定范围内蚂蚁能够察觉到这种信息激素并指 导它的行为,当一些路径通过的蚂蚁越多,则留下的 信息激素轨迹也就越多,招致后来更多的蚂蚁选择 该路径的概率也越高,于是越发增加了该路径的信 息素强度。
蚁群算法——精选推荐
蚁群算法蚁群算法⽬录1 蚁群算法基本思想 (1)1.1蚁群算法简介 (1)1.2蚁群⾏为分析 (1)1.3蚁群算法解决优化问题的基本思想 (2)1.4蚁群算法的特点 (2)2 蚁群算法解决TSP问题 (3)2.1关于TSP (3)2.2蚁群算法解决TSP问题基本原理 (3)2.3蚁群算法解决TSP问题基本步骤 (5)3 案例 (6)3.1问题描述 (6)3.2解题思路及步骤 (6)3.3MATLB程序实现 (7)3.1.1 清空环境 (7)3.2.2 导⼊数据 (7)3.3.3 计算城市间相互距离 (7)3.3.4 初始化参数 (7)3.3.5 迭代寻找最佳路径 (7)3.3.6 结果显⽰ (7)3.3.7 绘图 (7)1 蚁群算法基本思想1.1 蚁群算法简介蚁群算法(ant colony algrothrim,ACA)是由意⼤利学者多⾥⼽(Dorigo M)、马聂佐(Maniezzo V )等⼈于20世纪90初从⽣物进化的机制中受到启发,通过模拟⾃然界蚂蚁搜索路径的⾏为,提出来的⼀种新型的模拟进化算法。
该算法⽤蚁群在搜索⾷物源的过程中所体现出来的寻优能⼒来解决⼀些系统优化中的困难问题,其算法的基本思想是模仿蚂蚁依赖信息素,通过蚂蚁间正反馈的⽅法来引导每个蚂蚁的⾏动。
蚁群算法能够被⽤于解决⼤多数优化问题或者能够转化为优化求解的问题,现在其应⽤领域已扩展到多⽬标优化、数据分类、数据聚类、模式识别、电信QoS管理、⽣物系统建模、流程规划、信号处理、机器⼈控制、决策⽀持以及仿真和系统辩识等⽅⾯。
蚁群算法是群智能理论研究领域的⼀种主要算法。
1.2 蚁群⾏为分析Bm=20t=0 m=10m=10t=11.3 蚁群算法解决优化问题的基本思想⽤蚂蚁的⾏⾛路径表⽰待优化问题的可⾏解,整个蚂蚁群体的所有路径构成待优化问题的解空间。
路径较短的蚂蚁释放的信息量较多,随着时间的推进,较短路径上积累的信息浓度逐渐增⾼,选择该路径的蚂蚁个数愈来愈多。
蚁群算法——精选推荐
蚁群算法同进化算法(进化算法是受⽣物进化机制启发⽽产⽣的⼀系列算法)和⼈⼯神经⽹络算法(神经⽹络是从信息处理⾓度对⼈脑的神经元⽹络系统进⾏了模拟的相关算法)⼀样,群智能优化算法也属于⼀种⽣物启发式⽅法,它们三者可以称为是⼈⼯智能领域的三驾马车(实际上除了上述三种算法还有⼀些智能算法应⽤也很⼴泛,⽐如模拟⾦属物质热⼒学退⽕过程的模拟退⽕算法(Simulated Algorithm,简称SA),模拟⼈体免疫系统在抗原刺激下产⽣抗体过程的⼈⼯免疫系统算法(Artificial Immune System,简称AIS)等,但是相对三者⽽⾔,模拟退⽕算法和⼈⼯免疫系统算法已逐渐处于低潮期)。
群智能优化算法主要是模拟了昆⾍,兽群、鸟群和鱼群的群集⾏为,这些群体按照⼀种合作的⽅式寻找⾷物,群体中的每个成员通过学习它⾃⾝的经验和其他成员的经验来不断地改变搜索的⽅向。
群体智能优化算法的突出特点就是利⽤了种群的群体智慧进⾏协同搜索,从⽽在解空间内找到最优解。
常见的群体智能优化算法主要有如下⼏类:蚁群算法(Ant Colony Optimizatio,简称ACO)【1992年提出】;粒⼦群优化算法(Particle Swarm Optimization,简称PSO)【1995年提出】菌群优化算法(Bacterial Foraging Optimization,简称BFO)【2002年提出】蛙跳算法(Shuffled Frog Leading Algorithm,简称SFLA)【2003年提出】⼈⼯蜂群算法(Artificial Bee Colony Algorithm,简称ABC)【2005年提出】除了上述⼏种常见的群体智能算法以外,还有⼀些并不是⼴泛应⽤的群体智能算法,⽐如萤⽕⾍算法,布⾕鸟算法,蝙蝠算法以及磷虾群算法等等。
蚁群算法蚂蚁寻找⾷物的过程单只蚂蚁的⾏为及其简单,⾏为数量在10种以内,但成千上万只蚂蚁组成的蚁群却能拥有巨⼤的智慧,这离不开它们信息传递的⽅式———信息素。
(word完整版)蚁群算法内容简介
蚁群算法内容简介蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法群算法是由意大利学者Dorigo等人于20世纪90年代初期通过模拟自然界中蚂蚁集体寻经的行为而提出的一种基于种群的启发式随机搜索算法,蚁群算法具有并行性、鲁棒性、正反馈性等特点.蚁群算法最早成功应用于解决著名的旅行商问题以及二次分配问题、车间任务调度问题、图的着色问题、网络路由等许多复杂的组合问题。
蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。
随着人们对效益的要求越来越高,人们发现组合优化的各种方法,但在一些复杂度比较高的问题上,一些传统的方法显示了他的限制,列如计算量上升太快,时间复杂度很高,这就需要一些新的方法来解决这些问题,从而有效地克服传统蚁群算法中容易陷入局部最优解和收敛速度慢的现象。
蚁群系统(Ant Colony System),这种算法是目前国内外启发式算法中的研究热点和前沿课题,被成功地运用于旅行商问题的求解,蚁群算法在求解复杂优化问题方面具有很大的优越性和广阔的前景。
但是,根据观察实验发现,蚁群中的多个蚂蚁的运动是随机的,在扩散范围较大时,在较短时间内很难找出一条较好的路径,在算法实现的过程中容易出现停滞现象和收敛速度慢现象。
在这种弊端的情况下,学者们提出了一种自适应蚁群算法,通过自适应地调整运行过程中的挥发因子来改变路径中信息素浓度,从而有效地克服传统蚁群算法中容易陷入局部最优解和收敛速度慢的现象。
下面是一些最常用的变异蚁群算法精英蚂蚁系统全局最优解决方案在每个迭代以及其他所有的蚂蚁的沉积信息素.最大最小蚂蚁系统( MMAS)添加的最大和最小的信息素量[ τmax ,τmin ],只有全局最佳或迭代最好的巡逻沉积的信息素。
蚁群算法
四、结论
蚁群算法是由M.Dorigo于1992年提出来的一种新型进化算 法。该算法不依赖于具体问题的数学描述,具有全局优化能力 和本质上的并行性,同时比遗传算法、模拟退火算法等早期进 化算法具备更强的鲁棒性、求解时间短、易于计算机实现等优 点。已被用于高度复杂的组合优化问题、通讯网络的路由选择 问题、多机器人任务分配问题、图形生成及划分等问题中。 但由于蚁群算法的研究历史很短,在实际问题中应用还较 少,因此存在许多有待进一步研究改进的地方。如信息素分配 策略、路径搜索策略、最优解保留策略等方面,均带有经验性 和直觉性,没有经过细致的研究和分析。因此算法的求解效率 不高,收敛性较差。
它们的区别在于后两种模型中利用的是局部信息, 而前者利用的是整体信息。参数α,β,Q,ρ,可以用 实验方法确定其最优组合,停止条件可以用固定进化 代数或当进化趋势不明显时停止计算。
pij (t ) =
α β τ ij (t ) × η ij (t ) α β τ ik (t ) × η ik (t ) ∑(i,k )∈S ,k∉U
ant cycle system, ant quantity system, ant density system。
他们的差别在于表达式的不同。 在ant cycle system模型中,
Q k ∆τ ij = f k 0 第k只蚂蚁在第t次循环中经过边(i, j ) 其他
f k 第k只蚂蚁在整个路径中的目标函数值。
谢谢!
二、蚁群算法原理
人工蚁群算法是模仿真实的蚁群行为而提出的。仿生 学家经过大量细致的观察研究发现,蚂蚁个体之间是通过一 种称为“外激素”(Stigmergy)的物质进行信息传递的。蚂蚁 在运动过程中,能够在它所经过的路径上留下该种物质,而 且蚂蚁在运动过程中能感知这种物质,并以此指导自己的运 动方向(蚂蚁选择有这些物质的路径的可能性,比选择没有这 些物质的路径的可能性大得多)。因此,有大量蚂蚁组成的蚁 群的集体行为便表现出一种信息正反馈现象:某一路径上走 过的蚂蚁越多,则后来者选择该路经的概率就越大。蚂蚁个 体之间就是通过这种信息的交流达到搜索食物的目的。
蚁群算法公式
蚁群算法公式蚁群算法(AntColonyAlgorithm)是一种基于自然生态的数学优化模型,是一个迭代的搜索算法,用来解决动态规划问题。
这种算法是在蚂蚁群体行为的理论的基础上发展出来的,通过模拟蚂蚁如何寻找最佳的路径来寻找最优解。
它是一种用于解决复杂优化问题的自然计算算法,它可以分析解决复杂系统中大量变量和限制条件所建立的非线性优化问题。
蚁群算法是一种基于概率的搜索算法,它采用“相互学习”的方式,通过种群间的信息共享,形成一个多维度的相互关联的搜索空间。
由于蚁群算法可以获得更多关于搜索空间的信息,它比传统的优化算法更有效地搜索最优解。
蚁群算法是一种非治疗性的优化算法,它可以用来解决多种复杂的优化问题,如全局优化、组合优化、最佳化框架优化以及机器学习等。
蚁群算法是基于规则的智能算法,它包括四个主要部分:蚁群、时间、规则和变量。
在运行蚁群算法的过程中,先生成一组初始解,再根据算法的规则(也可称为搜索引擎)进行蚁群迭代,每次迭代会更新解的模型和搜索空间的参数,直到达到最优解。
蚁群算法的核心公式如下:第一步:更新ij:ρij = (1-ρ)*ij +*Δρij其中,ρji表示节点i到j转移的概率ρ为一个参数,表示蚂蚁搜索行为的一致性Δρji为一个参数,表示节点i到j路径的通过数量第二步:更新ρij:Δρij = q/Lij + (1-q)*Δρij其中,Lij表示节点i到j路径的长度q为一个参数,表示蚂蚁搜索行为的一致性Δρji为一个参数,表示节点i到j路径的通过数量第三步:更新tij:tij = (1-ρ)*tij +*Δtij其中,tji表示节点i到j转移的概率ρ为一个参数,表示蚂蚁搜索行为的一致性Δtij为一个参数,表示节点i到j路径的通过次数以上就是蚁群算法的核心公式,它结合了蚂蚁的行为,通过迭代的方式,找到最佳的路径,路径的长度由节点之间转移的概率决定,路径的变化则由节点之间通过的次数来决定。
蚁群算法最短路径通用Matlab程序(附图)
if i~=EEta(1,i)=1/((ix-Ex)^2+(iy-Ey)^2)^0.5;elseEta(1,i)=100;endendROUTES=cell(K,M);%用细胞结构存储每一代的每一只蚂蚁的爬行路线PL=zeros(K,M);%用矩阵存储每一代的每一只蚂蚁的爬行路线长度%% -----------启动K轮蚂蚁觅食活动,每轮派出M只蚂蚁-------------------- for k=1:Kdisp(k);for m=1:M%% 第一步:状态初始化W=S;%当前节点初始化为起始点Path=S;%爬行路线初始化PLkm=0;%爬行路线长度初始化TABUkm=ones(1,N);%禁忌表初始化TABUkm(S)=0;%已经在初始点了,因此要排除DD=D;%邻接矩阵初始化%% 第二步:下一步可以前往的节点DW=DD(W,:);DW1=find(DWfor j=1:length(DW1)if TABUkm(DW1(j))==0DW(j)=inf;endendLJD=find(DWLen_LJD=length(LJD);%可选节点的个数%% 觅食停止条件:蚂蚁未遇到食物或者陷入死胡同while W~=E&&Len_LJD>=1%% 第三步:转轮赌法选择下一步怎么走PP=zeros(1,Len_LJD);for i=1:Len_LJDPP(i)=(Tau(W,LJD(i))^Alpha)*(Eta(LJD(i))^Beta);endPP=PP/(sum(PP));%建立概率分布Pcum=cumsum(PP);Select=find(Pcum>=rand);%% 第四步:状态更新和记录Path=[Path,to_visit];%路径增加PLkm=PLkm+DD(W,to_visit);%路径长度增加W=to_visit;%蚂蚁移到下一个节点for kk=1:Nif TABUkm(kk)==0DD(W,kk)=inf;DD(kk,W)=inf;endendTABUkm(W)=0;%已访问过的节点从禁忌表中删除for j=1:length(DW1)if TABUkm(DW1(j))==0DW(j)=inf;endendLJD=find(DWLen_LJD=length(LJD);%可选节点的个数end%% 第五步:记下每一代每一只蚂蚁的觅食路线和路线长度ROUTES{k,m}=Path;if Path(end)==EPL(k,m)=PLkm;elsePL(k,m)=inf;endend%% 第六步:更新信息素Delta_Tau=zeros(N,N);%更新量初始化for m=1:Mif PL(k,m) ROUT=ROUTES{k,m};TS=length(ROUT)-1;%跳数PL_km=PL(k,m);for s=1:TSx=ROUT(s);Delta_Tau(x,y)=Delta_Tau(x,y)+Q/PL_km;Delta_Tau(y,x)=Delta_Tau(y,x)+Q/PL_km;endendendTau=(1-Rho).*Tau+Delta_Tau;%信息素挥发一部分,新增加一部分end%% ---------------------------绘图-------------------------------- plotif=1;%是否绘图的控制参数if plotif==1%绘收敛曲线meanPL=zeros(1,K);minPL=zeros(1,K);for i=1:KPLK=PL(i,:);Nonzero=find(PLKPLKPLK=PLK(Nonzero);meanPL(i)=mean(PLKPLK);minPL(i)=min(PLKPLK);endfigure(1)plot(minPL);hold onplot(meanPL);grid ontitle('收敛曲线(平均路径长度和最小路径长度)');xlabel('迭代次数');ylabel('路径长度');%绘爬行图figure(2)axis([0,MM,0,MM])for i=1:MMfor j=1:MMif G(i,j)==1x1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[0.2,0.2,0.2]); hold onelsex1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]);hold onendendendhold onROUT=ROUTES{K,M};LENROUT=length(ROUT);Rx=ROUT;Ry=ROUT;for ii=1:LENROUTRx(ii)=a*(mod(ROUT(ii),MM)-0.5);if Rx(ii)==-0.5Rx(ii)=MM-0.5;endRy(ii)=a*(MM+0.5-ceil(ROUT(ii)/MM));endplot(Rx,Ry)endplotif2=1;%绘各代蚂蚁爬行图if plotif2==1figure(3)axis([0,MM,0,MM])for i=1:MMfor j=1:MMif G(i,j)==1x1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[0.2,0.2,0.2]); hold onelsex1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]);hold onendendendfor k=1:KPLK=PL(k,:);minPLK=min(PLK);pos=find(PLK==minPLK);m=pos(1);ROUT=ROUTES{k,m};LENROUT=length(ROUT);Rx=ROUT;Ry=ROUT;for ii=1:LENROUTRx(ii)=a*(mod(ROUT(ii),MM)-0.5);if Rx(ii)==-0.5Rx(ii)=MM-0.5;endRy(ii)=a*(MM+0.5-ceil(ROUT(ii)/MM));将上述算法应用于机器人路径规划,优化效果如下图所示。
浅谈蚁群算法
一、引言蚁群算法(Ant Colony Optimization, ACO),是一种用来在图中寻找优化路径的算法。
它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。
蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质。
蚁群算法成功解决了旅行商问题(Traveling Salesman Problem, TSP):一个商人要到若干城市推销物品,从一个城市出发要到达其他各城市一次而且最多一次最后又回到第一个城市。
寻找一条最短路径,使他从起点的城市到达所有城市一遍,最后回到起点的总路程最短。
若把每个城市看成是图上的节点,那么旅行商问题就是在N个节点的完全图上寻找一条花费最少的回路。
最基本的蚁群算法见第二节。
目前典型的蚁群算法有随机蚁群算法、排序蚁群算法和最大最小蚁群算法,其中后两种蚁群算法是对前一种的优化。
本文将终点介绍随机蚁群算法。
二、基本蚁群算法(一)算法思想各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。
当一只找到食物以后,它会向环境释放一种信息素,信息素多的地方显然经过这里的蚂蚁会多,因而会有更多的蚂蚁聚集过来。
假设有两条路从窝通向食物,开始的时候,走这两条路的蚂蚁数量同样多(或者较长的路上蚂蚁多,这也无关紧要)。
当蚂蚁沿着一条路到达终点以后会马上返回来,这样,短的路蚂蚁来回一次的时间就短,这也意味着重复的频率就快,因而在单位时间里走过的蚂蚁数目就多,洒下的信息素自然也会多,自然会有更多的蚂蚁被吸引过来,从而洒下更多的信息素。
因此,越来越多地蚂蚁聚集到较短的路径上来,最短的路径就找到了。
蚁群算法的基本思想如下图表示:图1 等概率选择图2 最优路径图3 最优比重(二)算法描述基本蚁群算法的算法简单描述如下:1.所有蚂蚁遇到障碍物时按照等概率选择路径,并留下信息素;2.随着时间的推移,较短路径的信息素浓度升高;3.蚂蚁再次遇到障碍物时,会选择信息素浓度高的路径;4.较短路径的信息素浓度继续升高,最终最优路径被选择出来。
蚁群算法
蚁群算法.txt懂得放手的人找到轻松,懂得遗忘的人找到自由,懂得关怀的人找到幸福!女人的聪明在于能欣赏男人的聪明。
生活是灯,工作是油,若要灯亮,就要加油!相爱时,飞到天边都觉得踏实,因为有你的牵挂;分手后,坐在家里都觉得失重,因为没有了方向。
社会性动物的群集活动往往能产生惊人的自组织行为,如个体行为显得盲目的蚂蚁在组成蚁群后能够发现从蚁巢到食物源的最短路径。
生物学家经过仔细研究发现蚂蚁之间通过一种称之为“外激素”的物质进行间接通讯、相互协作来发现最短路径。
受其启发,1991年由意大利学者 M. Dorigo,V. Maniezzo 和 A. Colorni 通过模拟蚁群觅食行为提出了一种基于种群的模拟进化算法——蚁群优化。
本文阐述了算法的基本原理及特性以及一些优化的蚁群算法,阐述了蚁群算法在数据挖掘中的应用,最后总结了蚁群算法在数据挖掘应用中尚待解决的问题。
关键词: 蚁群算法; 蚁群优化; 数据挖掘正文文字大小:大中小 1 蚁群算法原理自1991年由意大利学者 M. Dorigo,V. Maniezzo 和 A. Colorni 通过模拟蚁群觅食行为提出了一种基于种群的模拟进化算法——蚁群优化。
该算法的出现引起了学者们的极大关注,蚁群算法的特点:①其原理是一种正反馈机制或称增强型学习系统; 它通过【最优路径上蚂蚁数量的增加→信息素强度增加→后来蚂蚁选择概率增大→最优路径上蚂蚁数量更大增加】达到最终收敛于最优路径上L②它是一种通用型随机优化方法, 它吸收了蚂蚁的行为特(内在搜索机制) , 它是使用人工蚂蚁仿真(也称蚂蚁系统) 来求解问题L但人工蚂蚁决不是对实际蚂蚁的一种简单模拟, 它融进了人类的智能L人工蚂蚁有一定的记忆; 人工蚂蚁不完全是瞎的; 人工蚂蚁生活的时空是离散的L③它是一种分布式的优化方法, 不仅适合目前的串行计算机, 而且适合未来的并行计算机L④它是一种全局优化的方法, 不仅可用于求解单目标优化问题, 而且可用于求解多目标优化问题L⑤它是一种启发式算法, 计算复杂性为o (Nc*n2*m) , 其中Nc 是迭代次数, m 是蚂蚁数目, n 是目的节点数目L蚁群发现最短路径的原理和机制[1]下面用图 1解释蚁群发现最短路径的原理和机制。
蚁群算法的基本原理
2.1 蚁群算法的基本原理蚁群优化算法是摹拟蚂蚁觅食的原理,设计出的一种群集智能算法。
蚂蚁在觅食过程中能够在其经过的路径上留下一种称之为信息素的物质,并在觅食过程中能够感知这种物质的强度,并指导自己行动方向,它们总是朝着该物质强度高的方向挪移,因此大量蚂蚁组成的集体觅食就表现为一种对信息素的正反馈现象。
某一条路径越短,路径上经过的蚂蚁越多,其信息素遗留的也就越多,信息素的浓度也就越高,蚂蚁选择这条路径的几率也就越高,由此构成的正反馈过程,从而逐渐的逼近最优路径,找到最优路径。
蚂蚁在觅食过程时,是以信息素作为媒介而间接进行信息交流,当蚂蚁从食物源走到蚁穴,或者从蚁穴走到食物源时,都会在经过的路径上释放信息素,从而形成为了一条含有信息素的路径,蚂蚁可以感觉出路径上信息素浓度的大小,并且以较高的概率选择信息素浓度较高的路径。
蚁穴食物源AB 15cm(a) 蚁穴 1 2 食物源A B (b)人工蚂蚁的搜索主要包括三种智能行为:(1)蚂蚁的记忆行为。
一只蚂蚁搜索过的路径在下次搜索时就再也不被该蚂蚁选择,因此在蚁群算法中建立禁忌表进行摹拟。
(2)蚂蚁利用信息素进行相互通信。
蚂蚁在所选择的路径上会释放一种信息素的物质,当其他蚂蚁进行路径选择时,会根据路径上的信息素浓度进行选择,这样信息素就成为蚂蚁之间进行通信的媒介。
(3)蚂蚁的集群活动。
通过一只蚂蚁的运动很难达到事物源,但整个蚁群进行搜索就彻底不同。
当某些路径上通过的蚂蚁越来越多时,路径上留下的信息素数量也就越多,导致信息素强度增大,蚂蚁选择该路径的概率随之增加,从而进一步增加该路径的信息素强度,而通过的蚂蚁比较少的路径上的信息素会随着时间的推移而挥发,从而变得越来越少。
3.3.1蚂蚁系统蚂蚁系统是最早的蚁群算法。
其搜索过程大致如下:在初始时刻,m 只蚂蚁随机放置于城市中,各条路径上的信息素初始值相等,设为:0(0)ij ττ=为信息素初始值,可设0m m L τ=,m L 是由最近邻启示式方法构造的路径长度。
蚁群算法
蚁群算法Ant Colony Algorithms真实世界的蚂蚁行为真实世界的蚂蚁行为即使两条路径一样长,蚂蚁也会强化对其中一条的选择(收敛性)蚁群算法(Ant Algorithms)蚂蚁几乎是没有视力的,它们是如何找到食物和家之间的路径的?在觅食过程中,蚂蚁在它所经过的路径上留下浓度与食物源质量成比例的信息素(pheromone) ,并能够感知信息素的存在及其浓度,以此指导自己的运动方向,倾向于朝着信息素浓度高的方向移动.蚁群算法(Ant Algorithms)于是,蚁群的集体行为便表现出一种信息正反馈现象:某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大,因此质量好、距离近的食物源会吸引越来越多的蚂蚁,信息素浓度的增长速度会更快. 蚂蚁个体之间就是通过这种信息的交流达到寻找食物和蚁穴之间最短路径的目的蚁群算法(d=1d=1A蚁群算法(Ant Algorithms)我们感兴趣的是对解空间的探索,而非简单的数路径; 应允许蚂蚁们以概率的方式选择路径以及确定最佳路径,概率与信息素的浓度成比例。
不希望蚂蚁们简单地根据最高浓度来选择路径,如果这样的话,搜索会迅速地陷入局部最优。
一个蚂蚁选择一个确定路径的概率,不仅取决于信息素地浓度,同时也取决于该蚂蚁所看到的信息。
信息素的痕迹不能无限增加,因此,需要引入“挥发”机制。
蚁群算法(Ant Algorithms)由此获得灵感而设计出的算法称蚁群算法ant algorithms(或蚁群系统ant systems)蚁群算法(系统)是一种基于群体策略的搜索方法。
有一群蚂蚁,每个蚂蚁找到一个解,然后通过某种方式(信息素)与其它蚂蚁通信。
以加速群体向最优解的收敛。
利用条件概率p ij描述前一状态i与后一状态j之间的转移概率。
属于bivariate model。
蚁群算法(Ant Algorithms)蚁群算法可以用于解决许多组合优化问题,只要能做到用一个图表来阐述将要解决的问题,能定义一种正反馈过程(如TSP 问题中的残留信息) ,问题结构本身能提供解题用的启发式信息(如TSP 问题中城市间的距离) ,约束机制的建立(如TSP 问题中已访问城市的列表) 。
蚁群算法简述
4.蚁群算法的模型类型
下面是一些最常用的变异蚁群算法 1.精英蚂蚁系统 全局最优解决方案在每个迭代以及其他所有的蚂蚁的沉积信息素。 2.最大最小蚂蚁系统( MMAS) 添加的最大和最小的信息素量[ τmax , τmin ],只有全局最佳或迭代最好的 巡逻沉积的信息素。所有的边缘都被初始化为τmax并且当接近停滞时重新初始化 为τmax。 3.蚁群系统 蚁群系统已被提出。 4.基于排序的蚂蚁系统( ASrank ) 所有解决方案都根据其长度排名。然后为每个解决方案衡量信息素的沉积量, 最短路径相比较长路径的解沉积了更多的信息素。 5.连续正交蚁群(COAC) COAC的信息素沉积机制能使蚂蚁协作而有效地寻解。 利用正交设计方法, 在可行域的蚂蚁可以使用增大的全局搜索能力和精度,快速、高效地探索他们选 择的区域。 正交设计方法和自适应半径调整方法也可推广到其他优化算法中,在 解决实际问题施展更大的威力。
4.蚁群算法的模型类型
根据信息素更新策略的不同, M. Dorigo 曾提出3 种不同的基本蚁群算法模型,其差别在于Δτkij (t)求法的 不同,即: Ant - Cycle 模型 Ant - Quantity 模型 Ant - Density 模型 其中Ant - antity 模型和Ant - Density 模型利用的 是局部信息; 而Ant- Cycle 模型利用的是整体信息, 在 求解TSP 时性能较好, 因此通常采用Ant - Cycle 模型 作为蚁群算法的基本模型。
4.蚁群算法的模型类型
Ant-Cycle模型
式中,Q表示信息素强度,它在一定程度上影 响算法的收敛速度;Lk表示第k只蚂蚁在本次 循环中所走路径的总长度。
蚁群算法简介
1. 蚁群算法简介蚁群算法(Ant Clony Optimization,ACO)是一种群智能算法,它是由一群无智能或有轻微智能的个体(Agent)通过相互协作而表现出智能行为,从而为求解复杂问题提供了一个新的可能性。
蚁群算法最早是由意大利学者Colorni A., Dorigo M. 等于1991年提出。
经过20多年的发展,蚁群算法在理论以及应用研究上已经得到巨大的进步。
蚁群算法是一种仿生学算法,是由自然界中蚂蚁觅食的行为而启发的。
在自然界中,蚂蚁觅食过程中,蚁群总能够按照寻找到一条从蚁巢和食物源的最优路径。
图(1)显示了这样一个觅食的过程。
图(1)蚂蚁觅食在图1(a)中,有一群蚂蚁,假如A是蚁巢,E是食物源(反之亦然)。
这群蚂蚁将沿着蚁巢和食物源之间的直线路径行驶。
假如在A和E之间突然出现了一个障碍物(图1(b)),那么,在B点(或D点)的蚂蚁将要做出决策,到底是向左行驶还是向右行驶?由于一开始路上没有前面蚂蚁留下的信息素(pheromone),蚂蚁朝着两个方向行进的概率是相等的。
但是当有蚂蚁走过时,它将会在它行进的路上释放出信息素,并且这种信息素会议一定的速率散发掉。
信息素是蚂蚁之间交流的工具之一。
它后面的蚂蚁通过路上信息素的浓度,做出决策,往左还是往右。
很明显,沿着短边的的路径上信息素将会越来越浓(图1(c)),从而吸引了越来越多的蚂蚁沿着这条路径行驶。
2. TSP问题描述蚁群算法最早用来求解TSP问题,并且表现出了很大的优越性,因为它分布式特性,鲁棒性强并且容易与其它算法结合,但是同时也存在这收敛速度慢,容易陷入局部最优(local optimal)等缺点。
TSP问题(Travel Salesperson Problem,即旅行商问题或者称为中国邮递员问题),是一种,是一种NP-hard问题,此类问题用一般的算法是很大得到最优解的,所以一般需要借助一些启发式算法求解,例如遗传算法(GA),蚁群算法(ACO),微粒群算法(PSO)等等。
蚁群算法简述
3.蚁群算法的数学模型
蚁群的规模和停止规则
蚁群大小: 一般情况下蚁群中蚂蚁的个数不超过TSP图中节点的个数。
终止条件: 1 给定一个外循环的最大数目,表明已经有足够的蚂蚁工作; 2 当前最优解连续K次相同而停止,其中K是一个给定的整数,表 示算法已经收敛,不再需要继续; 3 目标值控制规则,给定优化问题(目标最小化)的一个下界和一 个误差值,当算法得到的目标值同下界之差小于给定的误差值时, 算法终止。
1.蚁群算法的提出
假设蚂蚁每经过一处所留下的信息素为一个单位,则经过36 个时间单位后,所有开始一起出发的蚂蚁都经过不同路径从D点取 得了食物,此时ABD的路线往返了2趟,每一处的信息素为4个单 位,而 ACD的路线往返了一趟,每一处的信息素为2个单位,其 比值为2:1。
寻找食物的过程继续进行,则按信息素的指导,蚁群在ABD路 线上增派一只蚂蚁(共2只),而ACD路线上仍然为一只蚂蚁。再 经过36个时间单位后,两条线路上的信息素单位积累为12和4,比 值为3:1。
2.蚁群算法的特征
移动规则 每只蚂蚁都朝向信息素最多的方向移,并且,当周围没有信息素指引的时候,
蚂蚁会按照自己原来运动的方向惯性的运动下去,并且,在运动的方向有一个随 机的小的扰动。为了防止蚂蚁原地转圈,它会记住刚才走过了哪些点,如果发现 要走的下一点已经在之前走过了,它就会尽量避开。 避障规则
1.蚁群算法的提出
1) 标有距离的路径图 2) 在0时刻,路径上没有信息素累积,蚂蚁选择路径为任意 3) 在1时刻,路径上信息素堆积,短边信息素多与长边,所以蚂蚁更倾向于选择
ABCDE
蚁群算法 文档
蚁群算法理论:生物学家发现,蚁群在外出寻找食物时,总能合理运用最短的时间,找到蚁穴与食物最短的路径。
蚁群中的每一只蚂蚁都是一个单独的个体,蚁群算法理论:生物学家发现,蚁群在外出寻找食物时,总能合理运用最短的时间,找到蚁穴与食物最短的路径。
蚁群中的每一只蚂蚁都是一个单独的个体,他们在寻找食物时,能够在自己所走的线路上留下信息(一种化学成分的信息,可以帮助蚂蚁判断这条路走过了多少只蚂蚁),如果有2条路,都能够从蚁穴到达食物源,当蚂蚁来到“十字路口”他们会判断这2条路那一条路走过的蚂蚁更多,然后选择自己认为的最短的路线。
在寻到食物的过程中每一只蚂蚁都在不断斧正自己路线是否是最短的。
蚁群算法理论运用到seo优化Maoseomao经常听说这样的一句话:“做seo就是比的资源,言外之意就是比的外链的质量和数量”。
那么我们如何把蚁群算法理论运用到seo外链获取上面呢?下面笔者做一个对比,大家就能明白如何利用蚁群算法理论了:蚁群:蚁群都有一个共同的目标-获得最近的食物。
Seo:获得更多,更好质量的外链。
蚁群:拥有几百万,甚至几千万的蚂蚁个体同时协作。
Seo:至少拥有5个以上的seo外链专员。
蚁群:能够在其路过的地方留下信息素。
Seo:5个seo外链专员可以有一个负责人,记录这5个seo外链专员的工作,并且时时刻刻做到相互沟通。
蚁群:食物与蚁穴比较长的路线慢慢会被抛弃掉。
Seo:外链效果查的方法慢慢被抛弃掉。
蚁群:食物与蚁穴最近的线路会被蚁群采用。
Seo:做外联效果好的方法慢慢被5个seo外链专员采用。
蚁群:最后在最短的时间,把最美味的食物运回蚁穴中。
Seo:最短的时间,比高出对手一倍的速度增加高质量的外链,获得关键词排名前10名。
总结:通过以上对比,我想大家应该知道这个蚁群算法理论该如何运用了。
网络推广在运用这个蚁群算法理论的过程中我们需要注意的几点:1.蚂蚁是一个群体,他们每一只蚂蚁的共同目标是:“寻找到食物与蚁穴最短的路线,更快的把食物运回蚁穴”;seo外链专员的共同目标:“寻找自己所做优化网站相关的更高质量的,更多的外链”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
function
[R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(D,NC_max,m,Alpha,Bet a,Rho,Q)
%%=========================================================================
%% ACATSP.m
%% Ant Colony Algorithm for Traveling Salesman Problem
%% ChengAihua,PLA Information Engineering University,ZhengZhou,China
%% Email:aihuacheng@
%% All rights reserved
%%-------------------------------------------------------------------------
%% 主要符号说明
%% C n个城市的坐标,n×2的矩阵
%% NC_max 最大迭代次数
%% m 蚂蚁个数
%% Alpha 表征信息素重要程度的参数
%% Beta 表征启发式因子重要程度的参数
%% Rho 信息素蒸发系数
%% Q 信息素增加强度系数
%% R_best 各代最佳路线
%% L_best 各代最佳路线的长度
%%=========================================================================
n=length(D);%n 为市个数
Eta=1./D;%Eta为启发因子,这里设为距离的倒数
Tau=ones(n,n);%Tau为信息素矩阵
Tabu=zeros(m,n);%存储并记录路径的生成
NC=1;%迭代计数器
R_best=zeros(NC_max,n);%各代最佳路线
L_best=inf.*ones(NC_max,1);%各代最佳路线的长度
L_ave=zeros(NC_max,1);%各代路线的平均长度
while NC<=NC_max%停止条件之一:达到最大迭代次数
%%第二步:将m只蚂蚁放到n个城市上
Randpos=[];
for i=1:(ceil(m/n))
Randpos=[Randpos,randperm(n)];
end
Tabu(:,1)=(Randpos(1,1:m))';
%%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游
for j=2:n
for i=1:m
visited=Tabu(i,1:(j-1));%已访问的城市
J=zeros(1,(n-j+1));%待访问的城市
P=J;%待访问城市的选择概率分布
Jc=1;
for k=1:n
if length(find(visited==k))==0
J(Jc)=k;
Jc=Jc+1;
end
end
%下面计算待选城市的概率分布
for k=1:length(J)
P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);
end
第 1 页
P=P/(sum(P));
%按概率原则选取下一个城市
Pcum=cumsum(P);
Select=find(Pcum>=rand);
to_visit=J(Select(1));
Tabu(i,j)=to_visit;
end
end
if NC>=2
Tabu(1,:)=R_best(NC-1,:);
end
%%第四步:记录本次迭代最佳路线
L=zeros(m,1);
for i=1:m
R=Tabu(i,:);
for j=1:(n-1)
L(i)=L(i)+D(R(j),R(j+1));
end
L(i)=L(i)+D(R(1),R(n));
end
L_best(NC)=min(L);
pos=find(L==L_best(NC));
R_best(NC,:)=Tabu(pos(1),:);
L_ave(NC)=mean(L);
NC=NC+1
%%第五步:更新信息素
Delta_Tau=zeros(n,n);
for i=1:m
for j=1:(n-1)
Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i); end
Delta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i);
end
Tau=(1-Rho).*Tau+Delta_Tau;
%%第六步:禁忌表清零
Tabu=zeros(m,n);
end
%%第七步:输出结果
Pos=find(L_best==min(L_best));
Shortest_Route=R_best(Pos(1),:)
Shortest_Length=L_best(Pos(1))
subplot(1,2,1)
subplot(1,2,2)
plot(L_best)
hold on
plot(L_ave)
第 2 页。