六年级假设法解题(二)习题

合集下载

六年级假设法解题练习题

六年级假设法解题练习题

六年级假设法解题练习题一、题目描述假设你是六年级学生小明,以下是关于饮食健康的一些假设,根据提供的假设和相关信息,回答问题。

1. 假设小明每天早餐都吃面包,午餐都吃米饭,晚餐都吃面条,能保证他的膳食均衡吗?2. 假设小明每天吃很多巧克力,他会变得更高吗?3. 假设小明经常吃糖果和甜饮料,他的牙齿会更健康吗?4. 假设小明非常喜欢吃垃圾食品,这对他的身体有什么影响?二、解题过程1. 饮食的均衡是指摄入的食物中包含了充足的营养元素。

尽管小明每天吃的是不同种类的主食,但仅仅靠面包、米饭和面条是无法保证膳食的均衡。

膳食均衡应包括五大类食物,即谷物、蔬菜、水果、肉类和奶制品。

建议小明在餐食中适当增加蔬菜和水果的摄入,以确保膳食的均衡。

2. 吃巧克力并不能让人变得更高。

人的身高主要由遗传因素和生长发育水平决定。

巧克力含有糖分和脂肪,过量摄入可能会导致肥胖和牙齿问题。

因此,小明应该适量饮食,保持均衡营养,而不是指望吃巧克力来增加身高。

3. 糖果和甜饮料含有大量的糖分,过量摄入对牙齿是有害的。

糖分容易被细菌利用,形成酸性环境,导致牙齿脱矿、蛀牙等问题。

因此,频繁食用糖果和甜饮料不利于牙齿的健康。

建议小明减少对这些食物的摄入,并养成良好的口腔卫生习惯,例如刷牙、漱口等。

4. 垃圾食品通常指含有高糖、高脂肪、高盐等不健康成分的食物。

经常食用垃圾食品会引发多种健康问题,如肥胖、心脏病、高血压等。

对于小明来说,经常吃垃圾食品可能导致体重增加、营养不良,还可能影响他的身体发育和免疫力。

因此,建议小明远离垃圾食品,选择健康的食物,保持良好的饮食习惯。

三、小结通过对以上假设的分析,我们可以得出以下结论:- 小明单一主食的饮食习惯无法保证膳食均衡,应适当增加其他食物的摄入。

- 吃巧克力并不能增加身高,应均衡膳食来维持健康。

- 经常食用糖果和甜饮料会对牙齿健康产生不利影响,应减少摄入并注意口腔卫生。

- 垃圾食品会对身体健康产生负面影响,应远离这些食物,选择健康的饮食。

举一反三- 六年级奥数 -第11讲 假设法解题(二)

举一反三- 六年级奥数 -第11讲 假设法解题(二)

第11讲假设法解题(二)一、知识要点已知甲是乙的几分之几,又知甲与乙各改变一定的数量后两者之间新的倍数关系,要求甲、乙两个数是多少,这样的应用题称为变倍问题。

应用题中的变倍问题,有两数同增、两数同减、一增一减等各种情况。

虽然其中的数量关系比较复杂,但解答时的关键仍是确定哪个量为单位“1”,然后通过假设,找出变化前后的相差数相当于单位“1”的几分之几,从而求出单位“1”的量,其他要求的量就迎刃而解了。

二、精讲精练【例题1】两根铁丝,第一根长度是第二根的3倍,两根各用去6米,第一根剩下的长度是第二根剩下的长度的5倍,第二根原来有多少米?练习1:1、丁晓原有书的本数是王阳的5倍,若两人同时各借出5本给其他同学,则丁晓书的本数是王阳的10倍,两人原来各有书多少本?2、在植树劳动中,光明中学植树的棵数是光明小学的3倍,如果中学增加450棵,小学增加400棵,则中学是小学的2倍。

求中、小学原来各植树多少棵?【例题2】王明平时积蓄下来的零花钱比陈刚的3倍多6.40元,若两个人各买了一本4.40元的故事书后,王明的钱就是陈刚的8倍,陈刚原来有零花钱多少元?练习2:1、甲书架上的书比乙书架上的3倍多50本,若甲、乙两个书架上各增加150本,则甲书架上的书是乙书架上的2倍,甲、乙两个书架原来各有多少本书?2、上学年,马村中学的学生比牛庄小学的学生的2倍多54人,本学年马村中学增加了20人,牛庄小学减少了8人,则马村中学的学生比牛庄小学的学生的4倍少26人,上学年马村中学和牛庄小学各有学生多少人?【例题3】小红的彩笔枝数是小刚的21,两人各买5枝后,小红的彩笔枝数是小刚的32,两人原来各有彩笔多少枝?练习3:1、小华今年的年龄是爸爸年龄的61,四年后小华的年龄是爸爸的41,求小华和爸爸今年的年龄各是多少岁?2、小红今年的年龄是妈妈的83,10年后小红的年龄是妈妈的21,小红今年多少岁?【例题4】王芳原有的图书本数是李卫的54,两人各捐给“希望工程”10本后,则王芳的图书的本数是李卫的107,两人原来各有图书多少本?练习4:1、甲书架上的书是乙书架上的54,从这两个书架上各借出112本后,甲书架上的书是乙书架上的74,原来甲、乙两个书架上各有多少本书?2、小明今年的年龄是爸爸的116,10年前小明的年龄是爸爸的94,小明和爸爸今年各多少岁?【例题5】某校六年级男生人数是女生的23,后来转进2名男生,转走3名女生,这时男生人数是女生的43,现在男、女生各有多少人?练习5:1、甲车间的工人是乙车间的52,后来甲车间增加20人,乙车间减少35人,这样甲车间的人数是乙车间的97,现在甲、乙两个车间各有多少人?2、有一堆棋子,黑子是白子的32,现在取走12粒黑子,添上18粒白子后,黑子是白子的125,现在白子、黑子各有多少粒?三、课后作业1、两堆煤,第一堆是第二堆的2倍,第一堆用去8吨,第二堆用去11吨,第一堆剩下的重量是第二堆的4倍。

小学六年级奥数:假设法解题

小学六年级奥数:假设法解题

小学六年级奥数:假设法解题1.假设有x台彩色电视机,那么黑白电视机的数量就是250-x台。

根据题意,x+5=1.1(250-x),解得x=95,所以彩色电视机卖出95台,黑白电视机卖出155台。

2.设冰箱数量为x,则洗衣机数量为126-x。

根据题意,x-23=2(126-x),解得x=89,所以冰箱卖出89台,洗衣机卖出37台。

3.设上学期男同学数量为x,则女同学数量为750-x。

本学期男同学增加y人,女同学减少y人,则男女同学数量分别为x+y和(750-x)-y=750-x-y。

根据题意,x+y+(750-x-y)=710,解得y=65,所以男同学增加65人,女同学减少65人。

4.设___今年的年龄为x岁,则他爸爸今年的年龄为2x岁。

根据题意,x+12=2(x+12),解得x=24,所以___今年24岁。

5.设甲队挖了x米,则乙队挖了300-x米。

根据题意,x+55=1.1(300-x),解得x=105,所以甲队挖了105米,乙队挖了195米。

6.设第一包糖中奶糖、水果糖、巧克力糖的粒数分别为x、y、z,则第二包糖中糖的总粒数为9x,水果糖的粒数为0.5(9y),巧克力糖的粒数为2z。

根据题意,x+y+z=0.28(x+y+z+9x),解得8x=3(y+z),再代入第三个条件,解得z=0.16(9y),代入第二个条件,解得y=20x。

最后代入第一个条件,解得x=10,所以第一包糖中奶糖、水果糖、巧克力糖的粒数分别为10、200、80,第二包糖中奶糖、水果糖、巧克力糖的粒数分别为90、180、90.混合后水果糖的粒数为200+180=380,所以水果糖占的百分比为380/900=42.22%。

7.设去年初中招生人数为x,则高中招生人数为4752-x。

今年初中招生人数为1.48x,高中招生人数为1.2(4752-x)。

根据题意,1.48x+1.2(4752-x)=640,解得x=1680,所以去年初中招生人数为1680人,高中招生人数为3072人,今年初中招生人数为2486人,高中招生人数为154.8.设每个足球加价为x元,则每个篮球加价为(2800-100x)/80元。

小学奥数训练第11周假设法解题(二)

小学奥数训练第11周假设法解题(二)

第11周假设法解题(二)专题简析已知甲是乙的几分之几,又知甲与乙各改变一定的数量后两者之间新的倍数关系,要求甲、乙两个数各是多少,这样的应用题称为变倍问题。

应用题中的变倍问题,有两数同增、两数同减、一增一减等各种情况。

虽然其中的数量关系比较复杂,但解答的H t关键仍是确定哪个量为单位“ 1”,然后通过假设,找出变化] 前后的相差数相当于单位“1”的几分之几,从而求出单位“1”的量,其他要求的量就迎刃而解了。

王牌例题1水果店里西瓜的个数与白兰瓜的个数的比为7 : 5,如果每天卖白兰瓜40个、西瓜50个,若干天后白兰瓜正好卖完,西瓜还剩 36个。

水果店里原有西瓜多少个?【思路导航】如果白兰瓜每天卖40个,西瓜每天卖56 (个),则若干天后,西瓜和白兰瓜一起卖完。

实际西瓜每天少卖 56 —50=6(个),所以白兰瓜卖完时,西瓜还剩36个,卖了 36 ÷ 6 = 6(天)。

=336(个)答:水果店里原有西瓜336个。

举一反三11. 红星幼儿园里白皮球的个数与红皮球的个数的比是3 : 5,给每个班发4个白皮球和10个红皮球,结果发现红皮球刚好发完,还多18个白皮球。

红星幼儿园有多少个班?2. 食堂里面粉的质量是大米质量的1/2,每天吃去,30吨面粉,45吨大米。

若干天后,面粉正好吃完,大米还有150吨,食堂里原有面粉多少吨?3. 师、徒两人加工一批零件,师傅的任务比徒弟的任务多1/5,徒弟每天加工7个,师傅每天加工12个,若干天后,师傅正好完成了任务,徒弟还有30个零件没有加工。

这批零件共有多少个?王牌例题2王明平时积攒下来的零花钱比陈刚的3倍还多6. 40元。

若两人各买了一本4. 40元的故事书后,王明的钱数就是陈刚的7 倍。

陈刚原来有零花钱多少元?【思路导航】假设仍然保持王明的钱比陈刚的钱的3倍多6. 40 元,则王明要相应地花去4. 40×3 = 13. 20(元),但王明只花去了4. 40元,比13. 20元少13. 20—4. 40=8. 80(元),那么王明买书后的钱比陈刚买书后的钱的3倍多6. 40+8. 80=15. 20(元),而题中已告诉:买书后王明的钱是陈刚的7倍,所以15. 20元就对应着陈刚花钱后剩下钱的7—3=4(倍)。

小六培优专题14-假设法解应用题

小六培优专题14-假设法解应用题

假设法解应用题一、夯实基础所谓“假设法”就是依照已知条件进行推算,根据数量上出现的矛盾,做适当调整,从而找到正确答案。

我国古代趣题“鸡兔同笼”就是运用假设法解题的一个范例,其基本关系式是:方法1:设鸡求兔(总足数-2×总头数)÷(4-2)=兔头数总头数-兔头数=鸡头数方法2:设兔求鸡(4×总头数-总足数)÷(4-2)=鸡头数总头数-鸡头数=兔头数二、典型例题例1.学校买回4个篮球和5个排球,一共用了185元,一个篮球比一个排球贵8元,篮球、排球的单价各多少元?分析:假设买的是9个排球,可以少花8×4=32(元),即如果买9个排球会花185-32=153(元),当然,也可以假设买的是9个蓝球。

会多花8×5=40(元),即如果买9个篮球会花185+40=225(元)解(一):假设买回的是9个排球排球的单价:(185-8×4)÷9=17(元)篮球的单价:17+8=25(元)解(二):假设买回的是9个篮球蓝球的单价:(185+8×5)÷9=25(元)排球的单价:25-8=17(元)答:排球的单价是17元,篮球的单价是25元。

例2.一只松鼠采松子,睛天每天采24个,雨天每天采16个,它一连8天共采168个松子,问这8天当中有几天睛天?分析:假设这8天全是睛天,应采24×8=192(个),比实际采到的多192-168=24(个),怎么会多24个呢?因为这8天中有雨天,每个睛天比每个雨天多采24-16=8(个),24里面有3个8,所以有3个雨天,5个睛天。

亦可以假设全是雨天,求出睛天的天数。

解(一):假设这8天全是睛天雨天:(24×8-168)÷(24-16)=3(天)睛天:8-3=5(天)解(二):假设这8天全是雨天睛天:(168-16×8)÷(24-16)=5(天)答:这几天中有5天睛天。

六年级奥数:假设法解题

六年级奥数:假设法解题

六年级奥数:假设法解题六年级奥数:假设法解题假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。

有些题目用假设法思考,能找到巧妙的解答思路。

运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。

二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。

解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。

练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。

抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。

如果彩色电视机卖出1/9,则比黑白电视机多5台。

问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。

黑白电视机增加5台后,相当于彩色电视机的(1-1/9)=8/9。

(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。

练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。

假设法解题(6年级)

假设法解题(6年级)

假设法解题假设法解题的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。

有些题目用假设法思考,能找到巧妙的解答思路。

运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。

例1 甲、乙两数之和是185,已知甲数的与乙数的的和是42,求两数各是多少?练习:1.甲、乙两人共有钱150元,甲的与乙的的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。

抽调甲队人数的,乙队人数的,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的多50吨,五月份完成总数的少70吨,还有420吨没完成,第二季度原计划生产多少吨?例2 彩色电视机和黑白电视机共250台。

如果彩色电视机卖出,则比黑白电视机多5台。

问:两种电视机原来各有多少台?练习:1.姐妹俩养兔120只,如果姐姐卖掉,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?例3 师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的与徒弟加工零件个数的的和为49个,师、徒各加工零件多少个?练习:1.某商店有彩色电视机和黑白电视机共136台,卖出彩色电视机的和黑白电视机的,共卖出57台。

问:原来彩色电视机和黑白电视机各有多少台?2.甲、乙两个消防队共有336人,抽调甲队人数的、乙队人数的,共抽调188人参加灭火。

问:甲、乙两个消防队原来各有多少人?3.学校买来足球和排球共64个,从中借出排球个数的和足球个数的后,还剩下46个,买来排球和足球各是多少个?例4 甲、乙两数的和是300,甲数的比乙数的多55,甲、乙两数各是多少?练习:1.畜牧场有绵羊、山羊共800只,山羊的比绵羊的多50只,这个畜牧场有山羊、绵羊各多少只?2.师傅和徒弟共加工零件840个,师傅加工零件的个数的比徒弟加工零件个数的多60个,师傅和徒弟各加工零件多少个?3.某校六年级甲、乙两个班共种100棵树,乙班种的比甲班种的少16棵,两个班各种多少棵?例5 育红小学上学期共有学生750人,本学期男学生增加,女学生减少,共有710人,本学期男、女学生各有多少人?练习:1.金放在水里称,重量减轻,银放在水里称,重量减少,一块重770克的金银合金,放在水里称是720克,这块合金含金、银各多少克?2.某中学去年共招新生475人,今年共招新生640人,其中初中招的新生比去年增加48%,高中招的新生比去年增加20%,今年初、高中各招收新生多少人?3.袋子里原有红球和黄球共119个。

小学奥数六年级举一反三

小学奥数六年级举一反三

第十一周假设法解题(二)专题简析:已知甲是乙的几分之几,又知甲与乙各改变一定的数量后两者之间新的倍数关系,要求甲、乙两个数是多少,这样的应用题称为变倍问题。

应用题中的变倍问题,有两数同增、两数同减、一增一减等各种情况。

虽然其中的数量关系比较复杂,但解答时的关键仍是确定哪个量为单位“1”,然后通过假设,找出变化前后的相差数相当于单位“1”的几分之几,从而求出单位“1”的量,其他要求的量就迎刃而解了。

例题1 两根铁丝,第一根长度是第二根的3倍,两根各用去6米,第一根剩下的长度是第二根剩下的长度的5倍,第二根原来有多少米?【思路导航】假设第一根用去6×3=18米,那么第一根剩下的长度仍是第二根剩下长度的3倍,而事实上第一根比假设的少用去(6×3-6)=12米,也就多剩下第二根剩下的长度的(5-3)=2倍。

(6×3-3)÷(5-3)+6=12(米)答:第二根原来有12米。

练习11.丁晓原有书的本数是王阳的5倍,若两人同时各借出5本给其他同学,则丁晓书的本数是王阳的10倍,两人原来各有书多少本?2.在植树劳动中,光明中学植树的棵数是光明小学的3倍,如果中学增加450棵,小学增加400棵,则中学是小学的2倍。

求中、小学原来各植树多少棵?3.两堆煤,第一堆是第二堆的2倍,第一堆用去8吨,第二堆用去11吨,第一堆剩下的重量是第二堆的4倍。

求第二堆煤原来是多少吨?例题2 王明平时积蓄下来的零花钱比陈刚的3倍多6.40元,若两个人各买了一本4.40元的故事书后,王明的钱就是陈刚的8倍,陈刚原来有零花钱多少元?【思路导航】假设仍然保持王明的钱比陈刚的3倍多6.40元,则王明要相应地花去4.40×3 =13.20元,但王明只花去了4.40元,比13.20元少13.20-4.40=8.80元,那么王明买书后的钱比陈刚买书后的钱的3倍多6.40+8.80=15.20元,而题中已告诉:买书后王明的钱是陈刚的8倍,所以,15.20元就对应着陈刚花钱后剩下钱的8-3=5倍。

假设法解题(2)

假设法解题(2)

假设法解题(二)班级:________ 姓名:________例1:一列快车从甲地开往乙地,每小时行200千米;与此同时一列慢车从乙地开往甲地,每小时行160千米。

途中快车因故停留了4小时,所以比慢车迟1小时到达目的地。

求甲、乙两地的距离?例2:甲车站有222辆汽车,乙车站有48辆汽车。

每天从甲站开往乙站23辆,从乙站开往甲站26辆。

多少天后,甲站的汽车辆数是乙站的8倍?例3:甲仓库有货物58吨,乙仓库有货物32吨。

现在甲仓库每天进货4吨,乙仓库每天进货20吨。

多少天后,乙仓库的货物是甲仓库的2倍?例4:某农民饲养鸡、兔若干,已知鸡比兔多13只,鸡的脚比兔的脚多16只,鸡和兔各几只?例5:百货公司委托物流公司运送1000只玻璃花瓶,双方商定每只的运费是1元5角;如打破一只,这一只不但不计运费,并且要赔偿9元5角。

物流公司最后共得运费1456元。

搬运过程中共打破了多少只花瓶?例6:甲、乙两人投飞镖比赛,规定每投中一次得10分,脱靶一次倒扣6分。

两人各投10次,共得152分,其中甲比乙多得16分。

两人各投中多少次?例7:文化宫电影院有座位2000张,前排票每张20元,后排票每张15元。

已知前排票比后排票的总价少9000元,该电影院有前排座位和后排座位各多少个?练习:1、甲每小时行12千米,乙每小时行8千米。

某日甲从东村到西村,乙同时从西村到东村,已知乙到东村时,甲已先到西村5小时。

求东、西两村的距离。

2、一艘船从甲地到乙地,去时每小时行75千米,回来时每小时行50千米,求这艘船往返的平均速度是每小时多少千米?3、加工一批机器零件,王师傅要4小时,李师傅要6小时。

如果两人一起加工,几小时可以完成任务?4、甲池有水112吨,乙池有水120吨。

每小时从甲池往乙池流入9吨,几小时后,乙池的水为甲池的3倍?5、哥哥和弟弟同时从家往学校走,走了1分钟后,哥哥发现忘带铅笔盒,原路返回;取盒后重新出发,最后与弟弟同时到学校。

六年级上册数学思维训练讲义-第十一讲 假设法解题(二) 人教版

六年级上册数学思维训练讲义-第十一讲  假设法解题(二)  人教版

第十一讲假设法解题(二)第一部分:趣味数学《算学宝鉴》古算题几个牧童闲耍,张家院内偷瓜。

将来林下共分拿,三人七枚便罢。

分讫剩余一个,内有伴歌兜搭。

四人九个又分拿,又余两个厮打。

试问精明能算者,问有多少人和瓜。

【答案】12个牧童,29个瓜第二部分:习题精讲【例题1】两根铁丝,第一根长度是第二根的3倍,两根各用去6米,第一根剩下的长度是第二根剩下的长度的5倍,第二根原来有多少米?【思路导航】假设第一根用去6×3=18米,那么第一根剩下的长度仍是第二根剩下长度的3倍,而事实上第一根比假设的少用去(6×3-6)=12米,也就多剩下第二根剩下的长度的(5-3)=2倍。

(6×3-3)÷(5-3)+6=12(米)答:第二根原来有12米。

练习一:1.丁晓原有书的本数是王阳的5倍,若两人同时各借出5本给其他同学,则丁晓书的本数是王阳的10倍,两人原来各有书多少本?2.在植树劳动中,光明中学植树的棵数是光明小学的3倍,如果中学增加450棵,小学增加400棵,则中学是小学的2倍。

求中、小学原来各植树多少棵?3.两堆煤,第一堆是第二堆的2倍,第一堆用去8吨,第二堆用去11吨,第一堆剩下的重量是第二堆的4倍。

求第二堆煤原来是多少吨?【例题2】王明平时积蓄下来的零花钱比陈刚的3倍多6.40元,若两个人各买了一本4.40元的故事书后,王明的钱就是陈刚的8倍,陈刚原来有零花钱多少元?【思路导航】假设仍然保持王明的钱比陈刚的3倍多6.40元,则王明要相应地花去4.40×3 =13.20元,但王明只花去了4.40元,比13.20元少13.20-4.40=8.80元,那么王明买书后的钱比陈刚买书后的钱的3倍多6.40+8.80=15.20元,而题中已告诉:买书后王明的钱是陈刚的8倍,所以,15.20元就对应着陈刚花钱后剩下钱的8-3=5倍。

【6.40+(4.40×3-4.40】÷(8-3)+4.40=7.44(元)答:陈刚原来有零花钱7.44元。

假设法解题举例2

假设法解题举例2

假设法解题举例(二)例1某农民养鸡和兔若干。

已知鸡比兔多13只,鸡的脚比兔的脚多16只。

问鸡和兔各有多少只?分析与解答:(1)提出假设:假设兔也是2只脚.(2)假设结论:那么鸡的脚应该比兔的脚多13×2=26(只).(3)与实际的差距:比实际多算26-16=10(只)脚.(4)原因:这是因为,每只兔子只算了2只脚,鸡脚数与兔脚数相减时,就会多出2只脚.一共多出10只脚,可求有多少只兔子:(13×2-16)÷(4-2)=10÷2=5(只)鸡的只数是:5+13=18(只)检验:18×2-5×4=36-20=16(只).正确.答:鸡有18只,兔有5只.例2五(1)班50名同学为灾区人民捐款.平均每个女同学捐8元,每个男同学捐5元.已知全班女同学共比男同学多捐101元,求这个班男、女同学各多少人?分析与解答:(1)提出假设:假设男、女同学一样多,都是25人。

(2)假设结论:女同学应比男同学共多捐(8-5)×25=75(元)(3)与实际的差距:比实际少算了101-75=26(元)(4)原因:每少算一个女同学,同时就多算了一个男同学.女同学的捐款总数就会比男同学的捐款总数少算(8+5)=13元.共少算了26元,所以,女同学少算了(26÷13)=2(人).女同学有(25+2)=27(人).男同学有(50-27)=23(人)检验:27×8-23×5=216-115=101(元).正确.答:男同学有23人,女同学有27人.例3有面值分别为10元、5元、2元的人民币共34张,总面值为178元。

10元的张数和5元的张数相同。

10元、5元和2元的人民币各有多少张?分析和解答:(1)提出假设:假设34张都是2元的.(2)假设结论:总面值应为:34×2=68(元)(3)与实际差距:比实际总面值少了178-68=110(元)(4)原因:把10元和5元的人民币当作2元的算了.而10元的和5元人民币的张数一样多.所以,需要每次拿2张2元的换1张10元和1张5元的.每换一次,总面值可增加(10+5-2×2)=11(元).要增加110元,需要换(110÷11)=10次,因此.10元和5元的人民币各有10张.2元的人民币有(34-10×2)=14(张)检验:10×10+5×10+2×14=100+50+28=178(元).正确.答:10元的和5元的人民币各有10张.2元的有14张.例4一群公猴、母猴和小猴共38只,每天共摘桃266个。

六年级奥数-8假设法解题(二)

六年级奥数-8假设法解题(二)

假设法解题(二)1.掌握用假设法解决鸡兔同笼问题、归一问题的方法。

2.学会利用假设法、列举法解决归一问题。

3.逐步培养学生的数学抽象能力,并向学生渗透转化、函数等数学思想和方法。

1.弄清题意,找出一个适当的未知数,用字母x表示;2.找出题目中数量间的相等关系;3.根据相等关系列出方程;4.解方程并检验,写出答案。

鸡兔同笼问题:笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。

鸡和兔各有几只?(1)分析题意①鸡和兔共8只。

②鸡和兔共有26条腿。

③鸡有2条腿。

④兔有4条腿。

解题关键:采用假设法,假设全是一种动物(如全是鸡或全是兔),然后根据腿的差数可以推断出一种动物的头数。

解题规律:假设全是鸡,兔子头数=(总腿数-鸡腿数)÷2;即兔子头数=(总腿数-2×总头数)÷2。

假设全是兔子,鸡的只数=(兔子腿数-总腿数)÷2,即鸡的只数=(4×总头数-总腿数)÷2(2)列表法:这里我们需要求兔的只数和鸡的只数,共有两个未知数。

那我们可以设一个未知数为X,再把另一个表示出来。

这道题我们可以设鸡的知数为X只,根据兔和鸡共有8只。

那兔的只数就可以表示成:(8-X)只,因为一只鸡有2条腿,所以X只鸡就共有2X条腿。

一只兔有4只脚,(8-X)只兔就有4(8-X)只脚。

又因为鸡和兔共有26只脚,所以2X+4(8-X)=26①解:设鸡有X只,兔有(8-X)只。

2X+4(8-X)=26在解的时候可以根据等式的性质将减变成加,分别加上4X,再来解。

②解:设有兔X只,鸡有(8-X)只。

4X+2(8-X)=26同样抽生说出自己想法。

那种方程好解一点,(设兔的只数为X好解点)所以我们可以设脚数多的兔为X,在解的时候容易一点。

列方程的重点是找出等量关系:设头数,以脚数相等来列出方程;小结:请同学们回忆一下,在解决鸡兔同笼问题时,用到了哪些方法?(列表法,假设法和列方程)求比一个数的几倍多几(或少几)的数例1.甲、乙两数的和是300,甲数的25比乙数的14多55,甲、乙两数各是多少?练习1.畜牧场有绵羊、山羊共800只,山羊的25比绵羊的12多50只,这个畜牧场有山羊、绵羊各多少只?练习2.师傅和徒弟共加工零件840个,师傅加工零件的个数的58比徒弟加工零件个数的23多60个,师傅和徒弟各加工零件多少个?运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。

假设法解题六年级练习题

假设法解题六年级练习题

假设法解题六年级练习题假设法(也称为猜想法)是一种常用的数学解题方法,在解决复杂问题时,通过假设或猜测问题的一些条件来寻找解答的思路。

在六年级数学练习题中,假设法也是一个经常被使用的解题技巧。

本文将通过几个案例来展示如何运用假设法解决六年级练习题。

案例一:小明的饮料小明一天能喝下10瓶矿泉水,如果小明每天都喝矿泉水,那么30天后他喝了多少瓶矿泉水?解题思路:假设小明每天都喝矿泉水,且每天喝10瓶。

那么30天后,他总共喝了10 * 30 = 300瓶矿泉水。

案例二:鸡兔同笼一个笼子里有鸡和兔子,一共有35个头,94只脚。

问鸡和兔子各有多少只?解题思路:假设笼子里只有鸡,没有兔子。

由于鸡只有一只头,所以35只鸡就有35个头。

但是,94只脚明显超过了只有鸡的情况(假设每只鸡有两只脚)。

所以我们需要调整假设。

因为兔子有一只头和四只脚,所以鸡和兔子的总脚数为:2 * 鸡的数量 + 4 * 兔子的数量 = 94由此可知,鸡的数量和兔子的数量必然是整数。

通过尝试不同的鸡的数量,我们可以找到满足条件的解答:当假设有20只鸡时,我们发现35 - 20 = 15,15只兔子的脚数为60。

而20只鸡的脚数为40,加在一起正好是94只脚。

所以鸡有20只,兔子有15只。

案例三:书包中的苹果与梨小明的书包里有苹果和梨,一共有12个。

如果我们无法看见书包里的水果,而只能摸得到,问小明最少需要摸几次才能保证摸到两个梨或两个苹果?解题思路:假设小明一开始摸到的是苹果。

从简单的情况出发,我们假设书包里只有苹果。

那么,小明最多需要摸11次才能保证他摸到两个苹果。

同理,如果书包里只有梨,最多也只需要摸11次就能摸到两个梨。

但是,由于题目中说书包里既有苹果又有梨,所以我们需要调整假设。

通过尝试不同的情况,我们发现若小明摸到的是10个苹果和2个梨,他只需要摸3次就能摸到两个梨或者两个苹果。

所以小明最少需要摸3次。

通过以上案例,我们可以看到假设法在解决六年级数学练习题中的重要作用。

用假设法解题

用假设法解题
用假设法解题
例题1 鸡、兔共30只,共有脚84只。鸡、兔 各有多少
练习:鸡兔共笼,鸡兔共60只,一共有脚 170只。鸡、兔各几只?
例题2 鸡兔共48只,鸡与兔共有脚 120只。鸡、兔各几只?
例题3 某学校举行数学竞赛,每做 对一题分。王刚 做错了几题?
例题4 水果糖的块数是巧克力糖的 3倍,如果小红每天吃2块水果糖, 1块巧克力糖,若干天后,水果糖 还剩下7块,巧克力糖正好吃完。 原来水果糖有几块?
例题5 学校买来8张办公桌和6把椅 子,共花去1650元。每张办公桌的 价钱是每把椅子的2倍,每张办公 桌和每把椅子各多少元?

8 用假设法解题第二课7

8 用假设法解题第二课7
答:原有大米120千克,原有面粉240千克。
试一试4:服装店运进西服是运动服的2倍,如果每天 卖出西服15套,运动服9套,则运动服卖完时,西 服还剩30套。这个服装店运进西服和运动服各多少 套? 假设每天卖西服9×2=18(套) 比实际每天少卖18—15=3(套) 可求出卖了30÷3=10(天) 原有运动服9×10=90(套)
原有西服90×2=180(套)
答:原有西服180套,原有运动服90套。
例5: 王师傅每天早上在农贸市场卖菜。晴天大 约能卖200千克青菜,雨天能卖50千克。他一 连几天共卖了1350千克青菜,平均每天卖150 千克。这几天当中有几天是晴天? 1350÷150=9(天)
200×9=1800(千克) 1800—1350=450 (千克) 200—50=150(千克)
用假设法解题
第二课时
例3某运输公司为温馨家居商场运送2000只玻璃花 瓶,双方商定每10只花瓶的运费为5元。但损坏一只 花瓶,不但不付给这只花瓶的运费,而且还要赔偿8 元钱。结果运输公司共得运费949元,运输中损坏几 只花瓶? 假设全部运到。应得运费2000 ÷10×5=1000(元)
每损坏一只则少得5 ÷ 10 +8=8.5(元) 运输公司共少得运费1000 —949=51(元)
损坏的花瓶数为51÷8.5=6(只)
答:运输中损坏了6只花瓶。
试一试3:搬运1000只玻璃瓶,规定每搬运一只可 得运费为3角。但打碎一只要赔偿5角。结果搬完后 共得运费260元,运输中打碎了几只玻璃瓶?
假设全部安全运到应得运费 0.3×1000=300(元) 每打碎一只则少得0.3 +0.5=0.8(元) 运输公司共少得运费300 —260=40(元) 损坏的玻璃数为40÷0.8=50(只) 答:搬运中打碎了50只玻璃瓶。

小学六年级奥数--假设法解题

小学六年级奥数--假设法解题

假设法解题假设法解题的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。

有些题目用假设法思考,能找到巧妙的解答思路。

运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾来求解。

例1:学校阅览室有文艺书和科技书一共125本,如果文艺书借出1/7,比科技书还多5本。

原来文艺书和科技书各有多少本?例2:二年级两个班共有学生90人,其中少先队员71人。

一班少先队员占本班人数的75%,二班少先队员人数占本班人数的5/6,一班少先队员比二班少先队员多几人?例3:甲乙两数的和是300,甲数的2/5比乙数的1/4多55,甲乙两数各是多少?例4:水果店里西瓜与白瓜个数比是7:5,如果每天卖白瓜40个、西瓜50个,若干天后白瓜正好卖完,西瓜还剩36个。

水果店里原有西瓜多少个?例5:王明平时积蓄下来的零花钱比陈刚的3倍还多6.4元,若两人各买了一本4.4元的故事书后,王明的钱是陈刚的8倍。

陈刚原有零花钱多少元?作业:1.甲乙两种商品成本价共200元,若甲乙商品分别按20%和30%的利润定价,并按9折出售,共可获得利润27.7元,则乙商品的成本价是多少元?2.一项工程,小王单独干6天后,小刘接着单独干9天,可以完成任务总量的2/5,如果小王单独干9天后,小刘接着干6天,可以完成任务总量的7/20。

则小王和小刘一起完成这项工程需要多少天?3.田径世锦赛男子4*100米接力,每队可报6名选手参赛,唯一一个起跑最快的跑第一棒,第四棒有2个人选,则可排出的组合有多少种?4.某商场搞促销,消费100元送20元代金券,某顾客先花100元买了一件衬衫,再用代金券及现金买了同样的衬衫,则顾客得到的折扣相当于几折?5.王老师在课堂上出了一道加法算术题,张明把个位上的4看成9,把十位上的8看成3,结果算错为118,那么正确答案是?6.一本300页的书,将所有页码排成一列,其中数字3一共有多少个?7.某学校共有10个获奖名额分配到某年级各个班,每个班至少有一个名额,若有36种不同的分配方案,该年级最多有多少个班?8.某知识竞赛,共有50道选择题,评分标准是:答对一题得3分,答错一题扣1分,不答的题得0分。

小学六年级上奥数教程:第十一讲 假设法解题(二)--学生版

小学六年级上奥数教程:第十一讲  假设法解题(二)--学生版

第11讲假设法解题(二)【解题秘钥】已知甲是乙的几分之几,又知甲与乙各改变一定的数量后两者之间新的倍数关系,要求甲、乙两个数是多少,这样的应用题称为变倍问题。

应用题中的变倍问题,有两数同增、两数同减、一增一减等各种情况。

虽然其中的数量关系比较复杂,但解答时的关键仍是确定哪个量为单位“1”,然后通过假设,找出变化前后的相差数相当于单位“1”的几分之几,从而求出单位“1”的量,其他要求的量就迎刃而解了。

【经典例题】例题1:两根铁丝,第一根长度是第二根的3倍,两根各用去6米,第一根剩下的长度是第二根剩下的长度的5倍,第二根原来有多少米?练习1:1.丁晓原有书的本数是王阳的5倍,若两人同时各借出5本给其他同学,则丁晓书的本数是王阳的10倍,两人原来各有书多少本?2.在植树劳动中,光明中学植树的棵数是光明小学的3倍,如果中学增加450棵,小学增加400棵,则中学是小学的2倍。

求中、小学原来各植树多少棵?例题2:王明平时积蓄下来的零花钱比陈刚的3倍多6.40元,若两个人各买了一本4.40元的故事书后,王明的钱就是陈刚的8倍,陈刚原来有零花钱多少元?练习2:1.甲书架上的书比乙书架上的3倍多50本,若甲、乙两个书架上各增加150本,则甲书架上的书是乙书架上的2倍,甲、乙两个书架原来各有多少本书?2.上学年,马村中学的学生比牛庄小学的学生的2倍多54人,本学年马村中学增加了20人,牛庄小学减少了8人,则马村中学的学生比牛庄小学的学生的4倍少26人,上学年马村中学和牛庄小学各有学生多少人?例题3:小红的彩笔枝数是小刚的1/2,两人各买5枝后,小红的彩笔枝数是小刚的2/3,两人原来各有彩笔多少枝?练习3:1.小华今年的年龄是爸爸年龄的1/6,四年后小华的年龄是爸爸的1/4,求小华和爸爸今年的年龄各是多少岁?2.小红今年的年龄是妈妈的3/8,10年后小红的年龄是妈妈的1/2,小红今年多少岁?例题4:王芳原有的图书本数是李卫的4/5,两人各捐给“希望工程”10本后,则王芳的图书的本数是李卫的7/10,两人原来各有图书多少本?练习4:1.甲书架上的书是乙书架上的4/5,从这两个书架上各借出112本后,甲书架上的书是乙书架上的4/7,原来甲、乙两个书架上各有多少本书?2.小明今年的年龄是爸爸的6/11,10年前小明的年龄是爸爸的4/9,小明和爸爸今年各多少岁?例题5:某校六年级男生人数是女生的23,后来转进2名男生,转走3名女生,这时男生人数是女生的3/4,现在男、女生各有多少人?练习5:1.甲车间的工人是乙车间的2/5,后来甲车间增加20人,乙车间减少35人,这样甲车间的人数是乙车间的7/9,现在甲、乙两个车间各有多少人?2.有一堆棋子,黑子是白子的2/3,现在取走12粒黑子,添上18粒白子后,黑子是白子的5/12,现在白子、黑子各有多少粒?【作业】1.两堆煤,第一堆是第二堆的2倍,第一堆用去8吨,第二堆用去11吨,第一堆剩下的重量是第二堆的4倍。

第11讲 假设法解题(二)

第11讲 假设法解题(二)

第11讲假设法解题(二)一、知识要点已知甲是乙的几分之几,又知甲与乙各改变一定的数量后两者之间新的倍数关系,要求甲、乙两个数是多少,这样的应用题称为变倍问题。

应用题中的变倍问题,有两数同增、两数同减、一增一减等各种情况。

虽然其中的数量关系比较复杂,但解答时的关键仍是确定哪个量为单位“1”,然后通过假设,找出变化前后的相差数相当于单位“1”的几分之几,从而求出单位“1”的量,其他要求的量就迎刃而解了。

二、精讲精练【例题1】两根铁丝,第一根长度是第二根的3倍,两根各用去6米,第一根剩下的长度是第二根剩下的长度的5倍,第二根原来有多少米?练习1:1、丁晓原有书的本数是王阳的5倍,若两人同时各借出5本给其他同学,则丁晓书的本数是王阳的10倍,两人原来各有书多少本?2、在植树劳动中,光明中学植树的棵数是光明小学的3倍,如果中学增加450棵,小学增加400棵,则中学是小学的2倍。

求中、小学原来各植树多少棵?【例题2】王明平时积蓄下来的零花钱比陈刚的3倍多6.40元,若两个人各买了一本4.40元的故事书后,王明的钱就是陈刚的8倍,陈刚原来有零花钱多少元?练习2:1、甲书架上的书比乙书架上的3倍多50本,若甲、乙两个书架上各增加150本,则甲书架上的书是乙书架上的2倍,甲、乙两个书架原来各有多少本书?2、上学年,马村中学的学生比牛庄小学的学生的2倍多54人,本学年马村中学增加了20人,牛庄小学减少了8人,则马村中学的学生比牛庄小学的学生的4倍少26人,上学年马村中学和牛庄小学各有学生多少人?【例题3】小红的彩笔枝数是小刚的21,两人各买5枝后,小红的彩笔枝数是小刚的32,两人原来各有彩笔多少枝?练习3:1、小华今年的年龄是爸爸年龄的61,四年后小华的年龄是爸爸的41,求小华和爸爸今年的年龄各是多少岁?2、小红今年的年龄是妈妈的83,10年后小红的年龄是妈妈的21,小红今年多少岁?【例题4】王芳原有的图书本数是李卫的54,两人各捐给“希望工程”10本后,则王芳的图书的本数是李卫的107,两人原来各有图书多少本?练习4:1、甲书架上的书是乙书架上的54,从这两个书架上各借出112本后,甲书架上的书是乙书架上的74,原来甲、乙两个书架上各有多少本书?2、小明今年的年龄是爸爸的116,10年前小明的年龄是爸爸的94,小明和爸爸今年各多少岁?【例题5】某校六年级男生人数是女生的23,后来转进2名男生,转走3名女生,这时男生人数是女生的43,现在男、女生各有多少人? 练习5:1、甲车间的工人是乙车间的52,后来甲车间增加20人,乙车间减少35人,这样甲车间的人数是乙车间的97,现在甲、乙两个车间各有多少人?2、有一堆棋子,黑子是白子的32,现在取走12粒黑子,添上18粒白子后,黑子是白子的125,现在白子、黑子各有多少粒?三、课后作业1、两堆煤,第一堆是第二堆的2倍,第一堆用去8吨,第二堆用去11吨,第一堆剩下的重量是第二堆的4倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一周 假设法解题(二)
专题简析:
已知甲是乙的几分之几,又知甲与乙各改变一定的数量后两者之间新的倍数关系,要求甲、乙两个数是多少,这样的应用题称为变倍问题。

例题1 两根铁丝,第一根长度是第二根的3倍,两根各用去6米,第一根剩下的长度是第二根剩下的长度的5倍,第二根原来有多少米?
练习1:丁晓原有书的本数是王阳的5倍,若两人同时各借出5本给其他同学,则丁晓书的本数是王阳的10倍,两人原来各有书多少本?
例题2 王明平时积蓄下来的零花钱比陈刚的3倍多6.40元,若两个人各买了一本4.40元的故事书后,王明的钱就是陈刚的8倍,陈刚原来有零花钱多少元?
练习2:甲书架上的书比乙书架上的3倍多50本,若甲、乙两个书架上各增加150本,则甲书架上的书是乙书架上的2倍,甲、乙两个书架原来各有多少本书?
例题3 小红的彩笔枝数是小刚的12 ,两人各买5枝后,小红的彩笔枝数是小刚的23
,两人原来各有彩笔多少枝?
练习3:小华今年的年龄是爸爸年龄的16 ,四年后小华的年龄是爸爸的14
,求小华和爸爸今年的年龄各是多少岁?
练习题
1.在植树劳动中,光明中学植树的棵数是光明小学的3倍,如果中学增加450棵,小学增加400棵,则中学是小学的2倍。

求中、小学原来各植树多少棵?
2.上学年,马村中学的学生比牛庄小学的学生的2倍多54人,本学年马村中学增加了20人,牛庄小学减少了8人,则马村中学的学生比牛庄小学的学生的4倍少26人,上学年马村中学和牛庄小学各有学生多少人?
3.小红今年的年龄是妈妈的38 ,10年后小红的年龄是妈妈的12
,小红今年多少岁?
例题4 王芳原有的图书本数是李卫的45
,两人各捐给“希望工程”10本后,则王芳的图书的本数是李卫的710
,两人原来各有图书多少本?
练习4:甲书架上的书是乙书架上的45
,从这两个书架上各借出112本后,甲书架上的书是乙书架上的47
,原来甲、乙两个书架上各有多少本书?
例题5 某校六年级男生人数是女生的23
,后来转进2名男生,转走3名女生,这时男生人数是女生的34
,现在男、女生各有多少人?
练习5:甲车间的工人是乙车间的25
,后来甲车间增加20人,乙车间减少35人,这样甲车间的人数是乙车间的79
,现在甲、乙两个车间各有多少人?
练习题
1. 小明今年的年龄是爸爸的611 ,10年前小明的年龄是爸爸的49
,小明和爸爸今年各多少岁?
2. 有一堆棋子,黑子是白子的23
,现在取走12粒黑子,添上18粒白子后,黑子是白子的512 ,现在白子、黑子各有多少粒?。

相关文档
最新文档