九年级 圆的知识点总结
九年级_圆_全章知识点总结
九年级_圆_全章知识点总结1、圆的定义:在同一平面内,线段OP 绕它固定的一个端点O ,另一端点P 所经过的 叫做圆,定点O 叫做 ,线段OP 叫做圆的 ,以点O 为圆心的圆记作 ,读作圆O 。
2、弦和直径:连接圆上任意 叫做弦,其中经过圆心的弦叫做 , 是圆中最长的弦。
3、弧:圆上任意 叫做圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成的两条弧,每一条弧都叫做 。
小于半圆的弧叫做 ,用弧两端的字母上加上“⌒”就可表示出来,大于半圆的弧叫做 ,用弧两端的字母和中间的字母,再加上“⌒”就可表示出来。
4、等圆:半径相等的两个圆叫做等圆;也可以说能够完全重合的两个圆叫做等圆。
5、点与圆的三种位置关系:若点P 到圆心O 的距离为d ,⊙O 的半径为R ,则:点P 在⊙O 外;点P 在⊙O 上;点P 在⊙O 内。
6、线段垂直平分线上的点 距离相等;到线段两端点距离相等的点在 上 7、过一点可作 个圆。
过两点可作 个圆,以这两点之间的线段的 上任意一点为圆心即可。
8、过 的三点确定一个圆。
9、经过三角形三个顶点的圆叫做三角形的 ,外接圆的圆心叫做三角形的 ,这个三角形叫做圆的 。
三角形的外心是三角形三条边的 例1、有下列七个命题:① 直径是弦;② 经过三个点一定可以作圆;③ 三角形的外心到三角形各顶点的距离都相等;④ 半径相等的两个半圆是等弧;⑤三角形的三个顶点在同一个圆上;⑥ 三角形的外心在三角形的内部;⑦过圆心的线段叫做圆的直径。
其中正确的有 (填序号)。
例2、⊙O 的半径为5,圆心O 在坐标原点上,点P 的坐标为(4,2),则点P 与⊙O 的位置关系是( ) A .点P 在⊙O 内 B .点P 在⊙O 上 C .点P 在⊙O 外 例3、已知矩形ABCD 的边AB=3cm ,AD=4cm ,若以A 点为圆心作⊙A ,使B 、C 、D 三点中至少有一个点在圆内且至少有一个点在圆外,则⊙A 的半径r 的取值范围是 . 例4、如果⊙O 所在平面内一点P 到⊙O 上的点的最大距离为7,最小距离为1,那么此圆的半径为 1、圆是轴对称图形, 都是它的对称轴2、垂径定理:垂直于弦的直径 ,并且平分3、垂径定理的推论:平分弦( )的直径垂直于弦,并且平分 例5、如图1,直径CE 垂直于弦AB ,CD=1,且AB+CD=CE ,求圆的半径。
九年级数学上册圆的知识点总结
九年级数学上册圆的知识点总结一、圆的概念1.圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆(或圆可以看做是所有到定点O的距离等于定长r的点的集合)。
2.圆心O、半径r、直径d:使圆上任意一点与定点O的距离等于r的动点O叫做圆心,连接圆心与圆上任意一点的线段叫做半径,圆心O与定点A之间的距离叫做直径。
二、圆的性质1.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等,所对的弦的弦心距相等。
2.在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
3.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
4.圆内接四边形的对角互补。
三、垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
四、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
五、点和圆的三种位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:1.d>r 点P在⊙O外;2.d=r 点P在⊙O上;3.d<r 点P在⊙O内。
六、直线和圆的三种位置关系设⊙O的半径为r,圆心O到直线l的距离为d,则有:1.d>r 直线l与⊙O相离;2.d=r 直线l与⊙O相切;3.d<r 直线l与⊙O相交。
七、正多边形和圆各边相等,各内角都相等的多边形叫做正多边形。
在平面内,各边相等,各内角也都相等的多边形叫做正多边形。
正多边形的外接圆的半径叫做半径;正多边形的中心叫做中心;正多边形的内切圆的半径叫做内心;正多边形的一组邻边的垂直平分线的交点叫做中心。
正n边形的中心角公式:360°/n;正n边形一条边的长度公式:2rsin(180°/n)。
九年级圆的知识点总结
九年级圆的知识点总结一、圆的基本定义1. 圆的定义:平面上所有与给定点(圆心)距离相等的点的集合。
2. 圆心(O):圆心是圆的中心点,所有圆上的点到圆心的距离都等于半径。
3. 半径(r):圆心到圆上任意一点的距离。
4. 直径(d):通过圆心的最长弦,是半径的两倍长度。
5. 弦(c):连接圆上任意两点的线段。
6. 弧(a):圆上两点之间的圆周部分。
7. 优弧:大于半圆的弧。
8. 劣弧:小于半圆的弧。
9. 半圆:圆的一半,由直径所界定的弧。
10. 切线(t):与圆只有一个公共点的直线。
二、圆的性质1. 所有半径的长度相等。
2. 直径是圆内最长的弦。
3. 圆的任意两点之间的弧,优弧总是大于劣弧。
4. 切线与半径相交于圆外的一点,形成直角。
5. 圆周角定理:圆周上任意一点引出的两条半径与圆周所形成的角,其大小是圆心角的一半。
6. 圆心角定理:同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
三、圆的计算公式1. 圆的周长(C):C = πd = 2πr2. 圆的面积(A):A = πr²3. 扇形面积:S = (θ/360) × πr²,其中θ是扇形的中心角的度数。
4. 弓形面积:S = (θ/360) × πr² - (θ/360) × rθ/2,其中θ是弓形的中心角的度数。
四、圆的应用问题1. 圆与直线的关系:相交、相切、相离。
2. 圆与圆的关系:内含、外离、相交、内切、外切。
3. 圆的切线问题:求切线长度、切点坐标等。
4. 圆的弦长问题:根据圆心距、半径、弦心距等求弦长。
5. 圆的面积问题:根据圆的半径、直径、周长等求面积。
五、圆的作图方法1. 用圆规画圆:确定圆心和半径,旋转圆规即可画出圆。
2. 作圆的切线:通过圆外一点作圆的切线,需要利用圆心到切点的垂线与切线垂直的性质。
3. 作圆的中垂线:连接圆上任意两点,作其中点的垂线,即为圆的中垂线。
九年级圆的知识点详细总结归纳
九年级圆的知识点详细总结归纳一、圆的定义和关键概念圆是一个平面上的简单闭曲线,由与一个固定点的所有点到该点的距离相等的点组成。
下面是一些重要的圆的关键概念:1. 圆心 (Center):圆心是圆的中心点,标记为O。
2. 圆周 (Circumference):圆的周长,也称为圆周,用C表示。
3. 直径 (Diameter):直径是通过圆心的、连接圆上两点的线段。
直径的长度是圆直径的两倍。
直径用d表示。
4. 半径 (Radius):半径是从圆心到圆上任意一点的线段。
半径的长度是直径的一半。
半径用r表示。
5. 弧 (Arc):圆上两点之间的一段路径叫做弧。
6. 弦 (Chord):圆上两点之间的线段叫做弦。
7. 切线 (Tangent):切线是切于圆的一条直线,且与圆仅有一个交点。
二、圆的性质和定理圆的性质和定理是研究圆的重要基础,下面是一些常见的圆的性质和定理:1. 直径定理:直径是最长的弦,且它把一个圆分成两个半圆。
2. 弧长定理:一个圆的弧长是根据圆的半径和弧度来计算的。
弧长等于半径乘以弧的弧度。
3. 弧心角定理:圆心角是以圆心为顶点的角,它的弧度等于弧长与半径的比值。
4. 切线定理:切线与半径的关系是垂直。
5. 切线和半径的性质:当一条直线与圆相切时,与切点相连的半径垂直于切线。
6. 切割定理:如果一个弦垂直于一个半径,那么它将被切分成两个互为正方向的弧。
7. 切割角度定理:互不相交的弧它们对应的圆心角相等,相交的弧,它们对应切线切割的角相等。
8. 重合弧定理:在同一个圆上,两个重合的弧对应的圆心角相等。
三、圆的应用圆在日常生活和实际问题中有很多应用,下面是一些常见的圆的应用:1. 圆的测量:通过测量圆的直径或半径可以计算圆的周长和面积。
2. 圆的构造:通过给定圆的半径或直径可以构造圆。
3. 圆的几何关系:圆与直线、圆与圆之间有各种几何关系,如相离、相切、相交等。
4. 圆的运动学:在物理学中,圆的运动学广泛应用于描述物体的圆周运动和周期性运动。
九年级数学下册圆的知识点整理
1.圆的定义与性质-定义:圆是平面上所有距离等于半径的点的集合。
-圆心:圆上任意两点的连线的垂直平分线的交点。
-半径:从圆心到圆上任意一点的长度。
-直径:通过圆心的两个点所确定的线段的长度,等于半径的2倍。
-弦:连接圆上两点的线段。
-弧:圆上的一段弯曲的连续的部分。
-弧长:弧所对应的圆的周长的比例,弧长等于弧所对应的圆的弧度乘以半径。
-圆周角:以圆心为顶点的角,大小等于所对弧的弧度。
2.圆心角与弧长的关系-弧度制:弧所对应的圆的半径长的角,记作弧长/半径。
-弧度制与度角制的换算:180°=Π弧度,1°=Π/180弧度。
-圆心角的弧度等于所对弧的弧长除以半径。
3.圆的位置关系-相交:两个圆的内部有公共点。
-外切:一个圆与另一个圆的外部只有一个公共点。
-两圆相切:两个圆的外部有一个公共点。
-相离:两个圆的内部没有公共点,也没有公共切点。
4.弧与弦的关系-弦分弧:一个弦所对的两条弧,互为补角。
-等弧等价:等长的弧。
5.切线与圆的关系-切线:与圆仅有一个公共点的直线。
-切线的性质:切线与半径垂直,半径在切点上的垂线上。
6.直径、弦与切线的关系-直径是两个切点的连线。
-沿切线作的直径过切点的垂线,则直径上的垂直弦与切线相交于切点。
-公共切线:与两个圆分别有且仅有一个公共切点的直线。
7.线段与圆的位置关系-线段在圆内:线段的两个端点在圆内部。
-线段与圆相交:线段的一个端点在圆内部,另一个端点在圆外部。
-线段切圆:线段的一个端点在圆上,另一个端点在圆外部。
-线段被圆所截:线段的两个端点都在圆外部。
8.弦的性质-弦的中点:连接圆弧两端点的线段的中点在圆的内部。
-等弧等价:等长的弦所对的两条弧相等。
-弦的位置:两个相等长的弦互为等幅弦。
-垂直弦:以圆心为直径的弦是直径。
-到圆心的距离:从圆心到弦的中点的距离等于半径的长度。
九年级数学圆的知识点总结大全
一、圆的定义和性质1.圆的定义:平面上到定点的距离等于定长的点的集合。
2.圆的要素:圆心、半径、圆周。
3.圆的性质:(1)半径相等的两个圆是同心圆;(2)同圆中,圆心角等于圆周角的1/2;(3)同弧上的两条弦所对的圆心角相等;(4)圆心角相等的弧相等;(5)相等弧所对的弦相等;(6)正多边形的内角和是定值,因此内接于一个圆的正多边形的各个内角相等;(7)直径是弦中最长的。
二、弧与圆周角1.弧的定义:圆上两点间的弧是以这两点为端点的两条互不相交的圆弧中,长的那一段。
2.弧的性质:(1)圆周角所对的弧是唯一确定的;(2)全周角所对的弧是定长的。
3.圆周角的定义:以圆心为端点的两条互不相交的射线所夹的角。
4.圆周角的度量:可以用角的度数来衡量。
三、切线与弦1.切线的定义:切线是与圆只有一个公共点的直线。
2.切线与半径的关系:切线与半径的关系是切线⊥半径。
3.弦的定义:两点之间的线段叫做弦。
4.弦的性质:(1)圆内的弦比它们所对的圆心角小,而且与一个圆心角的两个弧所对的弧一样;(2)相等的弦所对的圆心角相等。
四、相交弦定理1.弦上的点:如果一个点在弦上,则这个点到两个端点的距离相等。
2.相交弦定理:如果两个弦相交于圆内的一个点,则这两个弦上的两个点一定分别在另一个弦上的两侧。
五、余弦定理1.面积的性质:圆内、圆外的面积相等,夹在一个圆内的圆周弧的面积也相等。
2.余弦定理:在一个圆上,任意两条弧所对的圆心角的余弦值相等。
六、正多边形的面积公式1.正六边形的面积:正六边形的面积=3×(边长)²×√3÷22.正八边形的面积:正八边形的面积=2×(边长)²×√23.正十二边形的面积:正十二边形的面积=3×(边长)²×√34. 正十六边形的面积:正十六边形的面积=4×(边长)²×tan(22.5°)。
九年级数学圆的知识点总结
第四章:《圆》一、知识回顾圆周长:C=2πr或C=πd、圆面积:S=πr²圆环面积计算方法:S=πR²-πr²或S=π(R²-r²)(R是大圆半径,r是小圆半径)二、知识要点一、圆概念集合形式概念:1、圆可以看作是到定点距离等于定长点集合;2、圆外部:可以看作是到定点距离大于定长点集合;3、圆内部:可以看作是到定点距离小于定长点集合轨迹形式概念:1、圆:到定点距离等于定长点轨迹就是以定点为圆心,定长为半径圆;固定端点O为圆心。
连接圆上任意两点线段叫做弦,经过圆心弦叫直径。
圆上任意两点之间部分叫做圆弧,简称弧。
2、垂直平分线:到线段两端距离相等点轨迹是这条线段垂直平分线;3、角平分线:到角两边距离相等点轨迹是这个角平分线;4、到直线距离相等点轨迹是:平行于这条直线且到这条直线距离等于定长两条直线;5、到两条平行线距离相等点轨迹是:平行于这两条平行线且到两条直线距离都相等一条直线。
二、点与圆位置关系1、点在圆内点在圆内;2、点在圆上点在圆上;3、点在圆外点在圆外;三、直线与圆位置关系1、直线与圆相离无交点;2、直线与圆相切有一个交点;3、直线与圆相交有两个交点;四、圆与圆位置关系外离(图1)无交点;外切(图2)有一个交点;相交(图3)有两个交点;内切(图4)有一个交点;内含(图5)无交点;五、垂径定理垂径定理:垂直于弦直径平分弦且平分弦所对弧。
推论1:(1)平分弦(不是直径)直径垂直于弦,并且平分弦所对两条弧;(2)弦垂直平分线经过圆心,并且平分弦所对两条弧;(3)平分弦所对一条弧直径,垂直平分弦,并且平分弦所对另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①是直径②③④弧弧⑤弧弧中任意2个条件推出其他3个结论。
推论2:圆两条平行弦所夹弧相等。
即:在⊙中,∵∥∴弧弧六、圆心角定理顶点到圆心角,叫圆心角。
九年级数学圆知识点总结
圆是数学中的一个重要几何概念,九年级数学主要涉及圆的性质、周长、面积、弧长、扇形、切线等知识。
以下是九年级数学圆知识点的总结:一、基本概念1.圆的定义:平面上的点到一个固定点的距离等于一个给定的正数,这个固定点叫做圆心,这个正数叫做半径,所有满足这一条件的点的集合就是圆。
2.圆的元素:圆心、半径、直径、弦、弧、圆心角、半径角、弧长、圆周、切线等。
二、性质与定理1.圆周率:圆周长与直径的比值叫做圆周率,通常用希腊字母π表示,近似取值为3.14162.半径与直径的关系:直径是半径的两倍,即直径等于半径的2倍。
3.圆的周长:圆的周长等于直径与圆周率的乘积,公式为C=2πr,其中C表示圆的周长,π表示圆周率,r表示半径。
4.弧长与圆心角的关系:弧长等于半径与圆心角的乘积,公式为L=rθ,其中L表示弧长,r表示半径,θ表示圆心角。
5.圆的面积:圆的面积等于圆周率与半径的平方的乘积,公式为S=πr²,其中S表示圆的面积,r表示半径。
6.弓形的面积:弓形的面积等于扇形的面积减去三角形的面积。
7. 相交弦的性质:相交弦与垂直弦的乘积相等,即ad=bc,其中a、b表示相交弦的两个部分,c、d表示垂直弦的两个部分。
8.切线与半径的关系:与同一弦相交的切线段相等,且切线段的平方等于切点到圆心的线段与相切弦的乘积。
9.相切线与半径的关系:相切线与半径的关系是垂直关系,且切点、圆心、相切线的交点三点在同一条直线上。
三、图形计算1.求圆周长:已知半径或直径,利用公式C=2πr或C=πd计算圆的周长。
2.求圆面积:已知半径,利用公式S=πr²计算圆的面积。
3.求弧长:已知半径和圆心角,利用公式L=rθ计算弧长。
4.求扇形面积:已知半径和圆心角,利用公式S=½r²θ计算扇形的面积。
5. 求弓形面积:已知半径、圆心角和弦长,利用公式S=½r²θ-½ab计算弓形的面积。
九年级圆的知识点总结
九年级圆的知识点总结圆是几何学的一个重要概念,它在数学和物理学中都有广泛的应用。
在九年级数学学习的过程中,我们也会学习到圆的相关知识。
下面是对九年级圆的知识点的总结。
一、圆的定义与性质1. 圆的定义:圆是由平面上的所有离一个固定点相等距离的点构成的图形。
2. 圆的元素:圆心、半径和直径。
3. 圆心角:以圆心为顶点的角,角的度数等于其所对应的弧的度数。
4. 弧与弦:圆上两点之间的部分叫做弧,连接圆上两点的线段叫做弦。
5. 弧长:弧所对应的圆周的长度。
6. 正多边形与圆:当正多边形的边数越多时,它的外接圆越接近于圆。
二、圆的周长和面积1. 周长:圆的周长又称为圆周长,可以用公式C = 2πr表示,其中r为圆的半径。
2. 面积:圆的面积可以用公式A = πr²表示,其中r为圆的半径。
三、圆的方程及其性质1. 标准方程:圆的标准方程为(x - a)² + (y - b)² = r²,其中(a, b)为圆心坐标,r为半径长度。
2. 圆的参数方程:圆的参数方程为x = a + rcosθ,y = b + rsinθ,其中(a, b)为圆心坐标,r为半径长度,θ为参数。
3. 圆与坐标轴的交点:根据圆的方程,可以求得圆与x轴和y轴的交点坐标。
4. 圆的切线:圆上一点的切线垂直于过该点的半径,并且只有唯一一条切线。
四、判定定理及应用1. 判定定理一:定理述说的是一个圆上的弦与该弦所对应的两个圆心角的情况,具体有“角的对应弦相等”和“角的对应弦互补”的情况。
2. 判定定理二:判定圆、圆周、弦和切线的关系,具体有“圆的切线垂直于半径”和“错切弦垂直于过弦中点的直径”的情况。
3. 判定定理三:当两个圆相交时,它们的交点满足“角的合”和“弦的合”等性质。
4. 判定定理四:当两个圆相切时,它们的切点与切线满足“切点在过两圆心连线上”和“切线垂直于过切点的半径”的性质。
总的来说,九年级圆的知识点主要包括圆的定义、性质和元素、周长和面积的计算、圆的方程及其性质、判定定理及应用等内容。
圆九年级知识点总结
圆九年级知识点总结一、圆的定义和性质1. 圆的定义:圆是由平面上与一定点的距离都相等的点组成的图形。
2. 圆的要素:圆心、半径和直径。
3. 圆的性质:a. 圆心到圆上任意一点的距离相等。
b. 圆的直径是圆上任意两点的最长距离,直径是半径的2倍。
c. 圆的周长是圆周上任意一段弧长。
二、圆的周长与面积计算1. 周长公式:C = 2πr,其中C表示周长,r表示半径,π是一个常数,约等于3.14。
2. 面积公式:A = πr²,其中A表示面积,r表示半径,π是一个常数,约等于3.14。
3. 解题技巧:a. 已知半径求周长或面积:根据公式直接计算。
b. 已知直径求周长或面积:先将直径除以2得到半径,再根据公式计算。
c. 已知面积求半径或直径:根据面积公式求解,注意单位的转换。
三、弧长和扇形面积1. 弧长:圆上两点间的弧长是圆周的一部分。
弧长公式:L = 2πr * (θ/360°),其中L表示弧长,r表示半径,θ表示圆心角的度数。
2. 扇形面积:以圆心为顶点的两条半径所围成的区域。
扇形面积公式:A = 0.5 * r² * (θ/360°),其中A表示扇形面积,r表示半径,θ表示扇形所对的圆心角的度数。
3. 解题技巧:a. 已知弧长求圆心角:根据弧长公式,将已知条件带入计算。
b. 已知扇形面积求圆心角:根据扇形面积公式,将已知条件带入计算。
四、切线与弦1. 切线:与圆相切于一点且在该点的切线垂直于半径。
切线定理:切线与半径垂直。
2. 弦:圆上连接两点的线段。
3. 弦长定理:圆内弦的两边所夹的圆心角等于其所对的弦的圆心角的一半。
五、相交弧和相交线段1. 相交弧:当两个圆相交时,每个圆上都有两个弧与相交点相对应。
相交弧的性质:相交弧的和为360°。
2. 相交弦:当两个圆相交时,连接相交点的线段称为相交弦。
相交弦的性质:相交弦的和相等于且只等于它们夹的相交弧的和。
九年级数学圆的知识点总结大全
一、圆的基本概念和性质1.圆的定义:平面上的点到圆心的距离等于半径的点的集合。
2.圆的要素:圆心、半径、圆周。
3.圆的性质:a.对于圆上任意一点P和圆心O,OP是半径;b.圆上任意两点P和Q的半径相等;c.圆上两个不同的弧所对的圆心角相等;d.圆心角的度数等于它所对的弧的度数;e.圆的内切四边形的对角线互相垂直;f.圆的内切四边形的对边互相平行且相等;g.圆内接正方形的边长等于半径的2倍。
4.圆心角与弧的关系:a.弧所对的圆心角是其两倍;b.圆心角相等的弧相等;c.同弧度数的圆心角相等;d.弧需要圆的整个周长的弧数表示。
二、圆的运算1.圆周长:圆周长是圆周上的弧长,可以通过半径和直径推导得到。
2.圆的面积:圆的面积是圆心角度和圆的半径之间的数学关系,可以通过面积公式πr²计算得到。
三、圆的位置关系1.圆的判定:a.两个圆相交,如果两个圆的圆心距离小于半径之和但大于半径之差;b.两个圆相切,如果两个圆的圆心距离等于半径之和或半径之差;c.两个圆外离,如果两个圆的圆心距离大于半径之和;d.两个圆内含,如果一个圆完全位于另一个圆内部。
2.相切圆的性质:a.相切圆的切点在半径的连线上;b.相切圆的切线相互垂直;c.相切圆的切线公共切点的连线通过两个圆的圆心。
四、圆与线的位置关系1.弦的性质:a.弦和圆心连线垂直,那么弦是直径;b.弦的中点位于圆心。
2.弧与弦:a.弧上的两个弦相等,则它们所对的圆心角相等;b.两个等圆弧所对的圆心角相等;c.弦所夹的圆弧是圆心角的一半。
3.弦的长度:等于两个切线段的和。
4.直线和圆的位置关系:a.直线与圆相交于两点;b.直线与圆相切于一点;c.直线与圆不相交。
五、切线和切线长1.切线的定义:从圆外的一点引一条直线,直线与圆相交于该点,这条直线叫做切线。
2.切线的性质:a.切线与半径垂直;b.切线与切线垂直;c.相切圆的切线相互垂直。
3.切线长的计算:可以通过勾股定理得到切线长的计算公式。
九年级数学圆的知识点总结大全
第四章:《圆》一、学问回忆圆的周长: C=2πr 或C=πd 、圆的面积:S=πr ²圆环面积计算方法:S=πR ²-πr ²或S=π(R ²-r ²)(R 是大圆半径,r 是小圆半径) 二、学问要点 一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的间隔 等于定长的点的集合; 2、圆的外部:可以看作是到定点的间隔 大于定长的点的集合;3、圆的内部:可以看作是到定点的间隔 小于定长的点的集合轨迹形式的概念:1、圆:到定点的间隔 等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O 为圆心。
连接圆上随意两点的线段叫做弦,经过圆心的弦叫直径。
圆上随意两点之间的局部叫做圆弧,简称弧。
2、垂直平分线:到线段两端间隔 相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边间隔 相等的点的轨迹是这个角的平分线;4、到直线的间隔 相等的点的轨迹是:平行于这条直线且到这条直线的间隔 等于定长的两条直线;5、到两条平行线间隔 相等的点的轨迹是:平行于这两条平行线且到两条直线间隔 都相等的一条直线。
二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;A2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外; 三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点; 四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-; 五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
九年级圆数学知识点总结
九年级圆数学知识点总结在九年级的数学学习中,圆是一个重要的几何形状。
本文将总结九年级学生需要了解的关于圆的数学知识点,包括圆的定义、圆的性质、圆的周长和面积计算公式等。
一、圆的定义圆是平面上所有到圆心距离相等的点的集合。
圆由圆心和半径两个要素唯一确定。
二、圆的性质1. 圆心角性质:圆心角的度数等于所对弧的度数。
2. 弧长角性质:圆心角和所对弧的弧长成正比,即圆心角是所对弧的弧长的一半。
3. 正切线性质:切线与半径的垂直关系。
4. 直径性质:直径是过圆心的两个端点,也是圆的两个切线的临界情况。
5. 弦性质:弦是圆上任意两点的连线,圆心角大于所对弦的弦长所对应的圆心角。
三、圆的周长和面积计算公式1. 圆的周长计算公式:周长等于直径乘以π(π取近似值3.14),或者等于半径乘以2π。
2. 圆的面积计算公式:面积等于半径的平方乘以π。
四、圆的相关概念和定理1. 弧:弧是圆上的一段弧段,可以用圆心角的度数或弧长来表示。
2. 弧度制和角度制:弧度制是以圆的半径长度为单位,角度制是以度数为单位。
3. 弧长公式:弧长等于圆心角的弧度数乘以半径。
4. 扇形:扇形是由圆心角和所对弧组成的图形。
5. 圆锥曲线:圆是一种特殊的椭圆,椭圆的两个焦点重合形成圆。
6. 圆和直线的位置关系:直线可能与圆相切、相交或不相交。
五、九年级圆的应用1. 圆的测量:了解如何使用直径、弧长和半径求圆的周长和面积。
2. 圆的运动学应用:了解圆的运动学应用,如圆周运动和圆周速度的计算等。
3. 圆的工程应用:了解圆在工程领域中的应用,如轮胎的制造和车辆的转弯半径计算等。
六、小结在九年级数学学习中,圆是一个重要的几何形状。
通过掌握圆的定义、性质、周长和面积计算公式,以及相关概念和定理,学生可以更好地理解圆的特点和应用。
掌握圆的知识,有助于解决和应用各类与圆相关的数学问题,同时也为进一步学习高级几何打下坚实的基础。
九年级数学圆的知识点总结
圆是一种特殊的几何图形,是平面上所有到一些点的距离相等的点的集合。
在九年级数学中,我们学习了许多与圆相关的知识点,包括圆的性质、圆的方程、圆的切线和弦、圆与直线的位置关系等。
下面是对这些知识点的详细总结。
一、圆的性质1.圆的定义:平面上到一个固定点的距离相等的点的集合叫做圆。
2.圆的元素:圆心、半径、直径、弦、弧等。
3.圆的表示方法:圆心为O,半径为r的圆可以表示为O(r),或者简写为O。
二、圆的方程1.标准方程:以圆心为原点O(0,0),半径为r的圆的方程为x²+y²=r²。
2.一般方程:以圆心为(h,k),半径为r的圆的方程为(x-h)²+(y-k)²=r²。
三、圆的切线和弦1.切线:与圆只有一个交点的直线叫做圆的切线。
切线垂直于半径。
2.弦:连接圆上两个不相邻点的线段叫做圆的弦。
圆心到弦的中点的线段垂直于弦。
四、圆与直线的位置关系1.直线与圆的位置关系有三种情况:a.直线与圆相交于两点:直线穿过圆的内部,与圆有两个交点。
b.直线与圆相切:直线与圆只有一个交点,且切点在圆上。
c.直线与圆相离:直线没有与圆的交点。
五、圆的相关定理1.切线定理:切线与半径的垂直定理。
切线与半径的垂线相互垂直。
2.弦切角定理:圆弦上的两个角对相同弧的度数相等。
3.弧上的角等于圆心角的一半:弧上的角等于它所对的圆心角的一半。
4.切线垂直半径定理:过圆的切点作切线,与过切点的半径垂直。
六、圆的计算1.弧长公式:弧长L=2πr(θ/360°),其中r为半径,θ为圆心角度数。
2.弧度制与角度制转换:1°=π/180,1弧度=180/π。
以上是九年级数学中圆的主要知识点的总结,通过对这些知识点的学习和理解,能够更好地理解和解决与圆相关的问题。
九年级数学圆的知识点总结大全
第四章:《圆》一、知识回顾圆的周长:C=2πr或C=πd、圆的面积:S=πr²圆环面积计算方法:S=πR²-πr²或S=π(R²-r²)(R是大圆半径,r是小圆半径)二、知识要点一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O为圆心。
连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。
圆上任意两点之间的部分叫做圆弧,简称弧。
2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系A1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点;四、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
图1图2图4图5推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的知识点汇总1.在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。
固定的端点O叫做圆心,线段OA叫做半径。
2.连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径。
3.圆上任意两点间的部分叫作圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
能够重合的两个圆叫做等圆。
在同圆或等圆中,能够互相重合的弧叫做等弧。
4.圆是轴对称图形,任何一条直径所在直线都是它的对称轴。
5.垂直于弦的直径平分弦,并且平分弦所对的两条弧。
6.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
7.我们把顶点在圆心的角叫做圆心角。
8.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
9.在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。
10.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。
11.顶点在圆上,并且两边都与圆相交的角叫做圆周角。
12.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
13.半圆(或半径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
14.如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。
15.在同圆或等圆中,如果两个圆周角相等,他们所对的弧一定相等。
16.圆内接四边形的对角互补。
17.点P在圆外——d > r 点P在圆上——d = r 点P在圆内——d < r18.不在同一直线上的三个点确定一个圆。
19.经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心。
20.直线和圆有两个公共点,这时我们说这条直线和圆相交,这条直线叫做圆的割线。
21.直线和圆只有一个公共点,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点。
22.直线和圆没有公共点,这时我们说这条直线和圆相离。
23.直线L和○O—d < r 直线L和○O相切——d = r24.直线L和○O相离——d > r25.经过半径的外端并且垂直于这条半径的直线是圆的切线。
26.圆的切线垂直于过切点的半径。
27.经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长。
28.从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
29.与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心。
30.如果两个圆没有公共点,那么就说这两个圆相离,(分外离和内含)如果两个圆只有一个公共点,那么就说这两个圆相切,(分外切和内切)。
如果这两个圆有两个公共点,那么就说这两个圆相交。
31.两圆圆心的距离叫做圆心距。
32.我们把一个正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做正多边形的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心到正多边形的一边的距离叫做正多边形的边心距。
33.在半径是R的圆中,因为360°圆心角所对的弧长就是圆周长C=2πR,所以n°的圆心角所对的弧长为n R L 180π= 34.由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形35.在半径是R 的圆中,因为360°的圆心角所对的扇形的面积就是圆面积S =πR ²,所以n °圆心角所对的扇形的面积为2n R S 360π=扇形 36.我们把连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线37.38.RT △中,=2a b c r +-内 39.任意三角形中,2=C S r 内圆的知识点测试1.下列命题:①长度相等的弧是等弧 ②任意三点确定一个圆 ③相等的圆心角所对的弦相等 ④外心在三角形的一条边上的三角形是直角三角形,其中真命题共有( )A.0个B.1个C.2个D.3个2.同一平面内两圆的半径是R 和r ,圆心距是d ,若以R 、r 、d 为边长,能围成一个三角形,则这两个圆的位置关系是( )A.外离B.相切C.相交D.内含3.如图,四边形ABCD 内接于⊙O ,若它的一个外角∠DCE=70°,则∠BOD=( )A.35°B.70°C.110°D.140°4.如图,⊙O 的直径为10,弦AB 的长为8,M 是弦AB 上的动点,则OM 的长的取值范围( )A.3≤OM ≤5B.4≤OM ≤5C.3<OM <5D.4<OM <55.如图,⊙O 的直径AB 与弦CD 的延长线交于点E ,若DE=OB , ∠AOC=84°,则∠E 等于( )A.42 °B.28°C.21°D.20°第7题图 第6题图 第5题图第4题图 第3题第15题6.如图,△ABC 内接于⊙O ,AD ⊥BC 于点D ,AD=2cm ,AB=4cm ,AC=3cm ,则⊙O 的直径是( )A.2cmB.4cmC.6cmD.8cm7.如图,圆心角都是90°的扇形OAB 与扇形OCD 叠放在一起,OA=3,OC=1,分别连结AC 、BD ,则图中阴影部分的面积为( )A. B. C. D.8.已知⊙O 1与⊙O 2外切于点A ,⊙O 1的半径R=2,⊙O 2的半径r=1,若半径为4的⊙C 与⊙O 1、⊙O 2都相切,则满足条件的⊙C 有( )A.2个B.4个C.5个D.6个9.设⊙O 的半径为2,圆心O 到直线的距离OP=m ,且m 使得关于x 的方程有实数根,则直线与⊙O 的位置关系为( )A.相离或相切B.相切或相交C.相离或相交D.无法确定10.如图,把直角△ABC 的斜边AC 放在定直线上,按顺时针的方向在直线上转动两次,使它转到△A 2B 2C 2的位置,设AB=,BC=1,则顶点A 运动到点A 2的位置时,点A 所经过的路线为( )A. B. C. D.二、填空题11.(山西)某圆柱形网球筒,其底面直径是10cm ,长为80cm ,将七个这样的网球筒如图所示放置并包装侧面,则需________________的包装膜(不计接缝,取3).12.(山西)如图,在“世界杯”足球比赛中,甲带球向对方球门PQ 进攻,当他带球冲到A 点时,同样乙已经助攻冲到B 点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅从射门角度考虑,应选择________种射门方式.13.如果圆的内接正六边形的边长为6cm ,则其外接圆的半径为___________.14.(北京)如图,直角坐标系中一条圆弧经过网格点A 、B 、C ,其中,B 点坐标为(4,4),则该圆弧所在圆的圆心坐标为_____________.15.如图,两条互相垂直的弦将⊙O 分成四部分,相对的两部分面积之和分别记为S 1、第14题第12题图第11题图第10题第17题图 S 2,若圆心到两弦的距离分别为2和3,则|S 1-S 2|=__________.三、解答题16.为了探究三角形的内切圆半径r 与周长、面积S 之间的关系,在数学实验活动中,选取等边三角形(图甲)和直角三角形(图乙)进行研究.⊙O 是△ABC 的内切圆,切点分别为点D 、E 、F.(1)用刻度尺分别量出表中未度量的△ABC 的长,填入空格处,并计算出周长和面积S.(结果精确到0.1厘米)(2)观察图形,利用上表实验数据分析.猜测特殊三角形的r 与、S 之间关系,并证明这种关系对任意三角形(图丙)是否也成立?17.(成都)如图,以等腰三角形的一腰为直径的⊙O 交底边于点,交于点,连结,并过点作,垂足为.根据以上条件写出三个正确结论(除外)是:(1)________________;(2)________________;(3)________________.18.(黄冈)如图,要在直径为50厘米的圆形木板上截出四个大小相同的圆形凳面.问怎样才能截出直径最大的凳面,最大直径是多少厘米?19.(山西)如图是一纸杯,它的母线AC和EF延长后形成的立体图形是圆锥,该圆锥的侧面展开图形是扇形OAB.经测量,纸杯上开口圆的直径是6cm,下底面直径为4cm,母线长为EF=8cm.求扇形OAB的圆心角及这个纸杯的表面积(面积计算结果用表示) .20.如图,在△ABC中,∠BCA =90°,以BC为直径的⊙O交AB于点P,Q是AC的中点.判断直线PQ 与⊙O的位置关系,并说明理由.21.(武汉)有这样一道习题:如图1,已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,过Q点作⊙O的切线交OA的延长线于R.说明:RP=RQ.请探究下列变化:变化一:交换题设与结论.已知:如图1,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点(不与O、A重合),BP的延长线交⊙O于Q,R是OA的延长线上一点,且RP=RQ.说明:RQ为⊙O的切线.变化二:运动探求.(1)如图2,若OA向上平移,变化一中的结论还成立吗?(只需交待判断) 答:_________.(2)如图3,如果P在OA的延长线上时,BP交⊙O于Q,过点Q作⊙O的切线交OA的延长线于R,原题中的结论还成立吗?为什么?22.(深圳南山区)如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F.(1)求OA、OC的长; (2)求证:DF为⊙O′的切线;(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.答案与解析:一、选择题1.B2.C3.D4.A5.B6.C7.C提示:易证得△AOC≌△BOD,8.D 9.B 10.B二、填空题11.12000 12.第二种13.6cm 14.(2,0) 15.24(提示:如图,由圆的对称性可知,等于e的面积,即为4×6=24)三、解答题16.(1)略(2)由图表信息猜测,得,并且对一般三角形都成立.连接OA、OB、OC,运用面积法证明:17.(1),(2)∠BAD=∠CAD,(3)是的切线(以及AD⊥BC,弧BD=弧DG等).18.设计方案如左图所示,在右图中,易证四边形OAO′C为正方形,OO′+O′B=25,所以圆形凳面的最大直径为25(-1)厘米.19.扇形OAB的圆心角为45°,纸杯的表面积为44.解:设扇形OAB的圆心角为n°。