初三圆知识点复习总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学圆知识点

一.垂径定理

垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;

(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

简单记成:一条直线:①过圆心②垂直弦 ③平分弦 ④平分弦所对的劣弧⑤平分弦所对的优弧弧

以上以任意两个为已知条件,其它三个都成立,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①

AB 是直径 ②AB CD ⊥ ③CE DE = ④⌒BC =⌒BD ⑤⌒AC =⌒AD

任意2个条件推出其他3个结论。

例1.如图,在⊙O 中,弦CD 垂直于直径AB 于点E ,若∠BAD=30°,且BE=2,则CD= ___. 例2 .已知⊙O 的直径10CD cm =,

AB 是⊙O 的弦,8AB cm =,且AB CD ⊥,垂足为M ,则AC 的长为( C )

A

B

C

D

例3、如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A 、B ,并使AB 与车轮内圆相切于点D ,做CD⊥AB 交外圆于点C .测得CD=10cm ,AB=60cm ,则这个车轮的外圆半径为 .

例4、如图,在5×5的正方形网格中,一条圆弧经过A ,B ,C 三点,那么这条圆弧所在圆的圆心是 A .点P B .点Q C .点R D .点M 二、圆周角定理

1、圆周角定理:在同圆或等圆中,同弧所对的圆周角相等,等于它所对的圆心的角的一半。即:∵AOB ∠和

ACB ∠是⌒AB

所对的圆心角和圆周角 ∴2AOB ACB ∠=∠

2、圆周角定理的推论:

推论1:半圆或直径所对的圆周角是直角;90︒圆周角所对的弦直径 推论2:圆内接四边形的对角互补;

由对称性还可知:1、在同圆或等圆中,如果圆心角相等,那么它们所对的弧相等,所对的弦相等; 2、在同圆或等圆中,如果弧相等,那么它们所对的圆心角相等,所对的弦相等; 3、在同圆或等圆中,如果弦相等,那么它们所对的圆心角相等,所对的弧相等; 简记:在同圆或等圆中,①弦②圆心角③弧中只要一个相等,其它两个也相等。

例1、如图,已知A 、B 、C 三点在⊙O 上,AC ⊥BO 于D ,∠B =55°,则∠BOC 的度数是 70° .

例2、从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是( )

A .

B .

C .

D .

例3、如图,□ABCD 的顶点A 、B 、D 在⊙0上,顶点C 在⊙0的直径BE 上,连接AE ,∠E=360

B

则∠ADC=( ) A,440 B.540 C.720 D.530

学生练习:

三、与圆有关的位置关系

1.点与圆的位置关系:设圆的半径为r,点到圆心的距离为d,则点在圆内⇔______;点在圆上⇔_______;•点在圆外⇔_______.

2.直线与圆的位置关系:如果⊙O 的半径为r ,圆心O 到直线L 的距离为d ,那么:

(1)直线和圆有_____个公共点时,叫做直线与圆相交,这时直线叫做圆的_____,公共点叫做_____,此时d_____r ; (2)直线和圆有_____个公共点时,叫做直线与圆相切,这时直线叫做圆的______,公共点叫做______,此时d_______r . (3)直线和圆有____个公共点时,叫做直线与圆相离,此时d______r . 3.切线的性质与判定定理

(1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可即:∵MN OA ⊥且MN 过半径OA 外端 ∴MN 是⊙O 的切线

(2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。

以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。 4.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。 即:∵PA 、PB 是的两条切线 ∴PA PB = PO 平分BPA ∠

例1.已知⊙O 的半径为3,A 为线段PO 的中点,则当OP=6时,点A 与⊙O 的位置关系为( )

A.点在圆内

B.点在圆上

C.点在圆外

D.不能确定

2.⊙O 的半径为6,⊙O 的一条弦AB 长为

,以3为半径的同心圆与直线AB 的位置关系是( ) A.相离 B.相切 C.相交 D.不能确定

3.如图所示,⊙O 的外形梯形ABCD 中,如果AD ∥BC,那么∠DOC 的度数为( ) A.70° B.90° C.60° D.45°

4.如图所示,PA 与PB 分别切⊙O 于A 、B 两点,C 是AB 上任意一点,过C 作⊙O 的切线,交PA 及PB 于D 、E 两点,若PA=PB=5cm,则△PDE 的周长是_______cm.

5、如图2,在平面直角坐标系xOy 中,半径为2的⊙P 的圆心P 的坐标为(3,0)-,将⊙P 沿x 轴正方向平移,使⊙P 与y 轴相切,则平移的距离为 A .1 B .1或5 C .3 D .5

6、如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作半圆⊙O 交AC 与点D ,点E 为BC 的中点,连接DE .

(1)求证:DE 是半圆⊙O 的切线. (2)若∠BAC=30°,DE=2,求AD 的长.

7.如图,在△ABO 中,OA=OB ,C 是边AB 的中点,以O 为圆心的圆过点C . (1)求证:AB 与⊙O 相切; (2)若∠AOB=120°,

AB=4

,求⊙O 的面积.

(

第6题)

O

相关文档
最新文档