六年级数学培优资料

合集下载

2020年六年级上册数学培优材料

2020年六年级上册数学培优材料

2020年六年级上册数学培优材料一、培优题易错题1.观察下列一组图形:它们是按照一定规律排列的,依照此规律,第个图形中共有________个“★”.【答案】(3n+1)【解析】【解答】解:①为4个★,②为7个★,③ 为10个★,④为13个★,通过观察,可得第n个图形为(3n+1)个★.故答案为:(3n+1)【分析】观察图形,先写出①②③④的★的个数,通过找规律,写出第n个图形中的★个数。

2.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东300m处. 商场在学校西200m处,医院在学校东500m处.若将马路近似地看做一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m.(1)在数轴上表示出四家公共场所的位置.(2)列式计算青少年宫与商场之间的距离.【答案】(1)解:如图所示:(2)解:由题意可得:300-(-200)=500或︱-200-300︱=500.答:青少年宫与商场之间的距离是500 m【解析】【分析】(1)根据题意画出学校为原点的数轴,在数轴上表示出四家公共场所的位置;(2)根据题意青少年宫与商场之间的距离是300-(-200),再根据减去一个数等于加上这个数的相反数,求出青少年宫与商场之间的距离.3.某工艺品厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况 (超产记为正,减产记为负):(1)写出该厂星期一生产工艺品的数量.:(2)本周产量最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺品厂在本周实际生产工艺品的数量.(4)已知该厂实行每周计件工资制,每生产一个工艺品可得60元,若超额完成任务,则超过部分每个可得50元,少生产一个扣80元.试求该工艺厂在这一周应付出的工资总额.【答案】(1)解:由表格可得周一生产的工艺品的数量是:300+5=305(个),答:该厂星期一生产工艺品的数量是305个.(2)解:本周产量最多的一天是星期六,最少的一天是星期五,∴(16+300)-【(-10)+300】=26(个),答:本周产量最多的一天比最少的一天多生产26个工艺品.(3)解:2100+【5+(-2)+(-5)+15+(-10)+16+(-9)】=2100+10=2110(个).答:该工艺品厂在本周实际生产工艺品的数量是2110个.(4)解:(+5)+(-2)+(-5)+(15)+(-10)+(+16)+(-9)=10(个).根据题意得该厂工人一周的工资总额为:2100×60+50×10=126500(元).答:该工艺厂在这一周应付出的工资总额是126500元.【解析】【分析】(1)根据表格中将300与5相加可求得周一的产量.(2)由表格中的数字可知星期六产量最高,星期五产量最低,用星期六对应的数字与300相加求出产量最高的量;同理用星期五对应的数字与300相加求出产量最低的量,两者相减即可求出所求的个数.(3)由表格中的增减情况,把每天对应的数字相加,利用互为相反数的两数和为0,且根据同号及异号两数相加的法则计算后,再加上2100即可得到工艺品一周的生产个数.(4)用计划的2100乘以单价60元,加超额的个数乘以50元,即为一周工人工资的总额. 4.已知:如图,这是一种数值转换机的运算程序.(1)若第1次输入的数为2,则第1次输出的数为1,那么第2次输出的数为;若第1次输入的数为12,则第5次输出的数为________.(2)若输入的数为5,求第2016次输出的数是多少.(3)是否存在输入的数x,使第3次输出的数是x?若存在,求出所有x的值;若不存在,请说明理由.【答案】(1)4、6(2)解:5+3=8,8× =4,4× =2,2× =1,1+3=4,∴若输入的数为5,则每次输出的数分别是8、4、2、1、4、2、1,…,(2016−1)÷3=2015÷3=671 (2)∴第2016次输出的数是2(3)解:当x为奇数时,有 (x+3)+3=x,解得x=9(舍去),× (x+3)=x,解得x=1,当x为偶数时,有 × × x=x,解得x=0,× x+3=x,解得x=4,×( x+3)=x,解得x=2,综上所述,x=0或1或2或4【解析】【解答】解:(1)∵1+3=4,∴第1次输出的数为1,则第2次输出的数为4.×12=6,6× =3,3+3=6,6× =3,3+3=6,∴第1次输入的数为12,则第5次输出的数为6.【分析】(1)根据运算程序得到第1次输出的数为1,第2次输出的数为3+1,第1次输入的数为12,则第5次输出的数(12÷2÷2+3)÷2+3;(2)根据题意由输入的数为5,每次输出的数分别是8、4、2、1、4、2、1···,得到3次一循环,求出第2016次输出的数;(3)根据运算程序得到当x为奇数时和为偶数时,求出所有x的值.5.数轴上有、、三点,分别表示有理数、、,动点从出发,以每秒个单位的速度向右移动,当点运动到点时运动停止,设点移动时间为秒.(1)用含的代数式表示点对应的数:________;(2)当点运动到点时,点从点出发,以每秒个单位的速度向点运动,点到达点后,再立即以同样的速度返回点.①用含的代数式表示点在由到过程中对应的数:________ ;②当 t=________ 时,动点 P、 Q到达同一位置(即相遇);③当PQ=3 时,求 t的值.________【答案】(1)(2)2t-58;当时,t=32 ;当时,t=;t=3,29,35,,【解析】(1)点所对应的数为:( 2 )①② 点从运动到点所花的时间为秒,点从运动到点所花的时间为秒当时,:,:,解之得当时,:,:,解之得【分析】(1)向右移动,左边的数加上移动的距离就得移动后的数;(2)需分类讨论,16≤t≤39 和39 ≤ t ≤ 46两类分别计算.6.已知x、y为有理数,现规定一种新运算“※”,满足x※y=xy+1.(1)求3※4的值;(2)求(2※4)※(﹣3)的值;(3)探索a※(b﹣c)与(a※c)的关系,并用等式表示它们.【答案】(1)解:3※4=3×4+1=13(2)解:(2※4)※(﹣3)=(2×4+1)※(﹣3)=9※(﹣3)=9×(﹣3)+1=﹣26(3)解:∵a※(b﹣c)=a•(b﹣c)+1=ab﹣ac+1=ab+1﹣ac﹣1+1,a※c=ac+1.∴a※(b﹣c)=a※b﹣a※c+1【解析】【分析】根据新运算的规律,求出计算式的值,求出探索的式子之间的关系.7.炒股员小李上星期日买进某公司股票1000股,每股28元,下表为本周内该股票的涨跌情况(单位:元)星期一二三四五六每股涨跌+4-6-1-2.5+4.5+2(2)本周内最高价和最低价各是多少钱?(3)已知小李买进股票时付了1.5‰的手续费(a‰表示千分之a),卖出时需付成交额1.5‰的手续费和1‰的交易税,如果他在周六收盘前将全部股票卖出,他的收益情况如何?【答案】(1)解:由上表可得:28+4-6-1-2.5=22.5元∴星期四收盘时,每股是22.5元(2)解:由题意得:星期一股价最高,为28+4=32元星期四股价最低,由(1)知22.5元∴本周内股价最高为32元,最低为22.5元(3)解:由题意得:买入时交易额为 28×1000=28000元买入手续费为 28000×1.5‰=42元卖出时交易额为29×1000=29000元卖出手续费和交易税共29000×(1.5‰+1‰)=72.5元总收益=29000-28000-(42+72.5)=885.5元因此,如果小李在周六收盘前将全部股票卖出,他将收益885.5元【解析】【分析】(1)由表格可知星期四收盘价格=28+4-6-1-2.5,计算可求得;(2)分别算出这几天的股市价格,比较可得答案;(3)分别算出买入时交易额、买入手续费、卖出时交易额、卖出手续费和交易税,则总收益=卖出时交易额-买入时交易额-买入手续费-卖出手续费和交易税,代入计算可得.8.甲、乙、丙三人做一件工作,原计划按甲、乙、丙的顺序每人一天轮流去做,恰好整数天做完,若按乙、丙、甲的顺序轮流去做,则比计划多用半天;若按丙、甲、乙的顺序轮流去做,则也比原计划多用半天.已知甲单独做完这件工作要天,且三个人的工作效率各不相同,那么这项工作由甲、乙、丙三人一起做,要用多少天才能完成?【答案】解:===(天)答:要用天才能完成。

六年级数学培优补差计划和措施优秀3篇

六年级数学培优补差计划和措施优秀3篇

六年级数学培优补差计划和措施优秀3篇六年级数学培优补差计划和措施篇一一、思想方面的培优补差。

1、做好学生的思想工作,经常和学生谈心,关心他们,关爱他们,让学生觉得老师是重视他们的,激发他们学习的积极性。

了解学生们的学习态度、学习习惯、学习方法等。

从而根据学生的思想心态进行相应的辅导。

2、定期与学生家长、科任老师联系,进一步了解学生的家庭、生活、思想、课堂等各方面的情况。

二、采取有效培优补差措施。

采用各种措施,做好抓两头促中间的工作,取得较好的效果。

1、课上多给差生展示的机会,多创造机会让他们品尝跳一跳摘果子的乐趣。

2、安排座位时坚持“好差同桌”结为学习对子。

即“兵教兵”。

3、课堂练习分成三个层次:第一层“必做题”—基础题,第二层:“选做题”—中等题,第三层“思考题”——拓广题。

满足不同层次学生的需要。

4、着力提高四十分钟的教学质量。

在备好学生、备好教材、备好练习,上好课的基础上,精编习题。

习题设计(或选编习题)紧扣重点、难点、疑点和热点,面向大多数学生,符合学生的认知规律,有利于巩固“双基”,有利于启发学生思维;习题讲评注意增加信息程度,围绕重点,增加强度,引到学生高度注意,有利于学生学会解答;解答习题注意多角度,一题多解,一题多变,多题一解,扩展思路,培养学生思维的灵活性,培养学生思维的广阔性和变通性;解题满分作文网训练注意“精”,精选构思巧妙,新颖灵活的典型题,有代表性和针对性的题,练不在数量而在质量,训练多样化。

因此各种不同程度的学生都能获得不同的发展。

三、培优补差的具体做法:1、在培优补差的过程中能做到不歧视学习有困难的学生,不纵容优秀的学生,一视同仁。

首先我做到真诚,做到言出必行;其次做到宽容,即能从差生的角度去分析他们的行为对不对2、根据优差生的实际情况制定学习方案,多给优秀生一些有一定难度的题目让他们进行练习,学困生则根据他们的程度给与相应的题目进行练习和讲解,以达到循序渐进的目的。

六年级数学下册培优补差计划及培优补差记载记录表

六年级数学下册培优补差计划及培优补差记载记录表

六年级数学下册培优补差计划及培优补差记载记录表教师姓名:XXX工作记录2021年春季,我将担任六年级1班数学下学期的“培优补差”工作。

为了提高教学质量,我将根据学生的实际情况和学校工作目标,采取课内外培优措施,制定培优计划,并投入到紧张的教学及培优补差工作中。

在上学期测试中,我进一步了解到班上学生的情况。

根据测试结果,我确定了班上的培优对象和补差对象。

为了实现教学目标,我制定了以下六年级的培优补差计划:一、思想方面的培优补差1.与学生建立良好的师生关系,关心他们,激发他们研究的积极性,并根据学生的思想心态进行相应的辅导。

2.定期与学生家长、班主任联系,进一步了解学生的家庭、生活、思想、课堂等各方面的情况。

二、有效培优补差措施利用课余时间,对不同情况的学生进行个性化辅导,提高“因材施教、对症下药”的效果。

具体方法如下:1.课上差生板演,中等生订正,优等生解决难题。

2.安排座位时坚持“好差同桌”结为研究对子,即“兵教兵”。

3.课堂练分成三个层次:第一层“必做题”——基础题,第二层:“选做题”——中等题,第三层“思考题”——XXX题,以满足不同层次学生的需要。

4.培优补差过程必须优化备课,功在课前,效在课上,成果巩固在课后培优。

备好学生、备好教材、备好练,才能上好课,才能保证培优补差的效果。

题设计要有梯度,紧扣重点、难点、疑点和热点,面向大多数学生,符合学生的认知规律,有利于巩固“双基”,有利于启发学生思维。

三、在培优补差中注意几点:1.要根据学生的实际情况和研究进度,制定个性化的培优补差计划。

2.要注重培养学生的研究兴趣和自主研究能力,让他们在研究中感受到成功的喜悦。

3.要及时跟进学生的研究情况,发现问题及时解决,避免问题积累。

通过以上的培优补差计划,我相信我们班上的学生将会在研究中有更大的进步,达到更高的成绩。

1.不歧视研究有困难的学生,也不纵容优秀的学生,一视同仁。

我首先做到真诚,言出必行;其次做到宽容,能够从差生的角度去分析他们的行为是否正确。

小学六年级数学培优专题训练含答案

小学六年级数学培优专题训练含答案

小学六年级数学培优专题训练含答案一、培优题易错题1.列方程解应用题:(1)一个箱子,如果装橙子可以装18个,如果装梨可以装16个,现共有橙子、梨400个,而且装梨的箱子是装橙子箱子的2倍.请算一下,装橙子和装梨的箱子各多少个?(2)一群小孩分一堆苹果,每人3个多7个,每人4个少3个,求有几个小孩?几个苹果?(3)一架飞机在两城之间飞行,风速为24千米/时.顺风飞行需要2小时50分,逆风飞行需要3小时,求无风时飞机的速度和两城之间的航程.【答案】(1)解:设装橙子的箱子x个,则装梨的箱子2x个,依题意有18x+16×2x=400,解得x=8,2x=2×8=16.答:装橙子的箱子8个,则装梨的箱子16个(2)解:设有x个小孩,依题意得:3x+7=4x﹣3,解得x=10,则3x+7=37.答:有10个小孩,37个苹果(3)解:设无风时飞机的航速为x千米/小时.根据题意,列出方程得:(x+24)× =(x﹣24)×3,解这个方程,得x=840.航程为(x﹣24)×3=2448(千米).答:无风时飞机的航速为840千米/小时,两城之间的航程2448千米【解析】【分析】(1)根据梨和橙子与各自箱数分别相乘,相加为两者的总数,求出装梨和橙子的箱子数。

(2)利用两种分法的苹果数是相同的,列出方程求解出小孩数和苹果数。

(3)利用逆风和顺风的路程是相同的,列出方程求出速度,再利用速度和时间求出航程。

2.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。

(单位:km)(1)求收工时距A地多远?(2)在第________次纪录时距A地最远。

(3)若每千米耗油0.3升,问共耗油多少升?【答案】(1)解:根据题意列式-4+7-9+8+6-5-2=1km.答:收工时距A地1km,在A的东面(2)五(3)解:根据题意得检修小组走的路程为:|-4|+|+7|+|-9|+8|+|+6|+|-5|+|-2|=41(km)41×0.3=12.3升.答:检修小组工作一天需汽油12.3升【解析】【解答】解:(2)由题意得,第一次距A地|-4|=4千米;第二次距A地-4+7=3千米;第三次距A地|-4+7-9|=6千米;第四次距A地|-4+7-9+8|=2千米;第五次距A地|-4+7-9+8+6|=8千米;第六次距A地|-4+7-9+8+6-5|=3千米;第五次距A地|-4+7-9+8+6-5-2|=1千米;所以在第五次纪录时距A地最远.故答案为:五.【分析】(1)根据题意得到收工时距A地(-4+7-9+8+6-5-2),正数在东,负数在西;(2)根据题意得到五次距A地最远;(3)根据题意和距离的定义,得到共走了的距离,再求出耗油量.3.十字交叉法的证明过程:设甲、乙两瓶溶液的质量分别为和,浓度分别为和(),将两瓶溶液混合后所得的溶液浓度为,求证:.【答案】证明:甲溶液中溶质的质量为,乙溶液中的溶质质量为,则混和溶液中的溶质质量为,所以混合溶液的浓度为,所以,即,,可见。

六年级上册数学培优材料含详细答案

六年级上册数学培优材料含详细答案

六年级上册数学培优材料含详细答案一、培优题易错题1.用火柴棒按下图中的方式搭图形.(1)按图示规律填空:图形符号①②③④⑤火柴棒根数________________________________________【答案】(1)4;6;8;10;12(2)2n+2【解析】【解答】解:(1)填表如下:图形符号①②③④⑤火柴棒根数4681012【分析】(1)由已知的图形中的火柴的根数可知,相邻的图形依次增加两根火柴,所以①火柴根数为4;②火柴根数为6;③火柴根数为8;④火柴根数为10;⑤火柴根数为12;(2)由(1)可得规律:2+2n.2.在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,规定向东为正方向.当天航行路程记录如下:(单位:千米)14,﹣9,-18,﹣7,13,﹣6,10,﹣5问:(1)B地在A地的何位置;(2)若冲锋舟每千米耗油0.5升,油箱容量为29升,求途中需补充多少升油?【答案】(1)解:∵14-9-18-7+13-6+10-5=-8,∴B在A正西方向,离A有8千米(2)解:∵|14|+|-9|+|-18|+|-7|+|13|+|-6|+|10|+|-5|=82千米,∴82×0.5-29=12升.∴途中要补油12升【解析】【分析】(1)根据题意得到B地在A地14-9-18-7+13-6+10-5=-8处,即正西方向,离A有8千米;(2)根据距离的意义得到各个数的绝对值的和,再求出耗油量,得到途中需补充的油量.3.有两种溶液,甲溶液的酒精浓度为,盐浓度为,乙溶液中的酒精浓度为,盐浓度为.现在有甲溶液千克,那么需要多少千克乙溶液,将它与甲溶液混和后所得的溶液的酒精浓度和盐浓度相等?【答案】解:甲中酒精:1×10%=0.1(千克),盐:1×30%=0.3(千克);1千克乙中酒精:1×50%=0.5(千克),盐:1×10%=0.1(千克);0.5÷2=0.25(千克),0.1÷2=0.05(千克),0.1+0.25=0.35(千克),0.3+0.05=0.35(千克)答:需要0.5千克乙溶液,将它与甲溶液混和后所得的溶液的酒精浓度和盐浓度相等。

数学六年级培优题

数学六年级培优题

数学六年级培优题一、分数运算类。

1. 计算:(1)/(1×2)+(1)/(2×3)+(1)/(3×4)+·s+(1)/(99×100)- 解析:- 我们可以发现每一项都可以拆分成两个分数的差,如(1)/(n(n + 1))=(1)/(n)-(1)/(n + 1)。

- 所以原式=(1-(1)/(2))+((1)/(2)-(1)/(3))+((1)/(3)-(1)/(4))+·s+((1)/(99)-(1)/(100))。

- 去括号后可以发现中间项都相互抵消,只剩下首项1和末项-(1)/(100),结果为1-(1)/(100)=(99)/(100)。

2. 计算:(3)/(2)-(5)/(6)+(7)/(12)-(9)/(20)+(11)/(30)-(13)/(42)+(15)/(56)- 解析:- 先将各项进行拆分,(3)/(2)=1+(1)/(2),(5)/(6)=(1)/(2)+(1)/(3),(7)/(12)=(1)/(3)+(1)/(4),(9)/(20)=(1)/(4)+(1)/(5),(11)/(30)=(1)/(5)+(1)/(6),(13)/(42)=(1)/(6)+(1)/(7),(15)/(56)=(1)/(7)+(1)/(8)。

- 原式=(1+(1)/(2))-((1)/(2)+(1)/(3))+((1)/(3)+(1)/(4))-((1)/(4)+(1)/(5))+((1)/(5)+(1)/(6))-((1)/(6)+(1)/(7))+((1)/(7)+(1)/(8))。

- 去括号后得到1+(1)/(2)-(1)/(2)-(1)/(3)+(1)/(3)+(1)/(4)-(1)/(4)-(1)/(5)+(1)/(5)+(1)/(6)-(1)/(6)-(1)/(7)+(1)/(7)+(1)/(8)=1+(1)/(8)=(9)/(8)。

苏教版小学数学六年级(上)培优专题全册

苏教版小学数学六年级(上)培优专题全册

【常见题型】※ 选择题1.用5个大小相同的正方体搭成下面三个立体图形。

从()看这三个立体图形,所看到的形状是相同的。

A.上面B.左面C.正面D.右面2.图()是左下方这个正方体图形的展开图。

A.B.C.D.3.一个正方体的棱长为a,如果这个正方体的底面不变,高增加h,那增加后的长方体的表面积是()。

A.()242a h a++B.()2a a h+C.254a ah+D.264a ah+4.一个棱长总和是84厘米的正方体,它的表面积是()平方厘米。

A.(84÷8)×(84÷8)×6 B.(84÷4)×(84÷4)×6C.(84÷12)×(84÷12)×6 D.84×84×84※ 填空题1.一个正方体的棱长为A,棱长之和是(),当A=5厘米时,这个正方体的棱长总和是()厘米。

2.一个长方体最多可以有()个面是正方形,则其余()个面是()。

3.用铁丝焊接成一个长12厘米,宽10厘米,高5厘米的长方体的框架,至少需要铁丝()厘米。

4.一个长方体的金鱼缸,长是8分米,宽是5分米,高是6分米,不小心前面的玻璃被打坏了,修理时配上的玻璃的面积是()平方分米。

5.一个正方体的棱长总和是72厘米,它的棱长是()厘米,它的表面积是()平方厘米,它的体积是()立方厘米。

※ 应用题长方体与正方体总结专题(基础讲义)专题一第一讲DI YI JIANG1.一个游泳池,长50米,宽12米,深1.8米,在游泳池的四周和池底砌瓷砖,那么至少需要砌瓷砖多少平方米?2.一个通风管的横截面是边长是0.5米的正方形,长2.5米.如果用铁皮做这样的通风管50只,需要多少平方米的铁皮?3.一种牛奶盒长6厘米,宽5厘米,高10厘米。

这种牛奶盒的容积是多少毫升?4.一块棱长8厘米的正方体铁块,如果用这根铁块熔成一个长10厘米、宽8厘米的长方体,它的高应该是多少厘米?5.一个长方体罐头盒,长1分米,宽8厘米,高6厘米。

小学六年级数学培优专题训练含详细答案

小学六年级数学培优专题训练含详细答案

小学六年级数学培优专题训练含详细答案一、培优题易错题1.有、、三种盐水,按与数量之比为混合,得到浓度为的盐水;按与数量之比为混合,得到浓度为的盐水.如果、、数量之比为,混合成的盐水浓度为,问盐水的浓度是多少?【答案】解:B盐水浓度:(14%×6-13%×3)÷(4-1)=(0.84-0.39)÷3=0.45÷3=15%A盐水浓度:14%×3-15×2=12%C盐水浓度:[10.2%×(1+1+3)-12%×1-15×1]÷3=(0.51-0.27)÷3=0.24÷3=8%答:盐水C的浓度为8%。

【解析】【分析】与按数量之比为2:4混合时,浓度仍为14%,而这样的混合溶液也相当于A与B按数量之比为2:1混合后再混入(4-1)份B盐水,这样就能求出B盐水的浓度。

然后求出A盐水的浓度,再根据混合盐水的浓度计算C盐水的浓度即可。

2.在甲、乙、丙三缸酒精溶液中,纯酒精的含量分别占、和,已知三缸酒精溶液总量是千克,其中甲缸酒精溶液的量等于乙、丙两缸酒精溶液的总量.三缸溶液混合后,所含纯酒精的百分数将达.那么,丙缸中纯酒精的量是多少千克?【答案】解:设丙缸酒精溶液的重量为千克,则乙缸为千克。

根据纯酒精的量可列方程:所以丙缸中纯酒精的量是:(千克)。

答:丙缸中纯酒精的量是12千克。

【解析】【分析】根据三缸酒精溶液的容量和与倍数关系可知,甲缸共有50千克,乙和丙共有50千克。

等量关系:甲缸纯酒精量+乙缸纯酒精量+丙缸纯酒精量=混合后纯酒精量,先设出未知数,再根据等量关系列出方程,解方程求出丙缸酒精溶液的量,进而求出丙缸中纯酒精的量。

3.有甲、乙、丙三个容器,容量为毫升.甲容器有浓度为的盐水毫升;乙容器中有清水毫升;丙容器中有浓度为的盐水毫升.先把甲、丙两容器中的盐水各一半倒入乙容器搅匀后,再把乙容器中的盐水毫升倒入甲容器,毫升倒入丙容器.这时甲、乙、丙容器中盐水的浓度各是多少?【答案】解:列表如下:甲乙浓度溶液浓度溶液开始第一次第二次丙浓度溶液开始第一次第二次答:这时甲容器盐水浓度是27.5%,乙容器中浓度为15%,丙容器中浓度为17.5%。

小学六年级数学培优专题训练

小学六年级数学培优专题训练

小学六年级数学培优专题训练一、夯实基础1.数的意义 (4)百分数百分数后面不带计量单位。

二、典型例题数的认识课堂过关卷一、细心填空1.用3个0和3个6组成一个六位数,只读一个零的最大六位数是( );读两个零的六位数是( );一个零也不读的最小六位数是( )。

2.一个三位小数,四舍五入后得4.80,这个三位小数最大是( ),最小是( )。

3.若被减数、减数与差这三个数的和为36,那么被减数为( )。

4.把0.35,38,13,34%,411从大到小排序( )。

5.某班男生人数是女生的32,女生人数占全班人数的( )%6.甲数比乙数多25%,则乙数比甲数少( )%。

7.一个分数的分子比分母少20,约分后是73,这个分数是( )。

8.写出三个比32小,而比31大的最简分数是( )、( )、( )。

9.95+m 中有( )个91。

10.有一个最简真分数,分子和分母的积是36,这个分数最大是( )。

11.A+B=60,A÷B=32,A=( ),B=( )。

12.( )+( )=1112 (填两个分母小于12的分数) 1( ) +1( ) = 15(填两个不同的整数)。

13.一个最简分数,若分子加上1,可以约简为32,若分子减去一,可化简成21,这个分数是( )。

14.修一段600米长的路,甲队单独修8天完成,乙队单独修10天完成。

两队合修( )天完成它的109。

15.一种商品,先提价20%,又降价20%后售价为96元,原价为( )元。

16.甲、乙两个数的差是35.4,甲、乙两个数的比是5:2,这两个数的和是( )。

17.有甲、乙、丙三种,甲种盐水含盐量为4%,乙种盐水含盐量为5%,丙种盐水含盐量为6%。

现在要用这三种盐水中的一种来加水稀释,得到含盐量为2%的盐水60千克。

如果这项工作由你来做,你打算用( )种盐水,取( )千克,加水( )千克。

18.[x]表示取数x 的整数部分,比如[13.58]=13。

六年级上册数学培优材料含答案

六年级上册数学培优材料含答案

六年级上册数学培优材料含答案一、培优题易错题1.小李到某城市行政中心大楼办事,假定乘电梯向上一楼记为+1,向下一楼记为–1.小李从1楼出发,电梯上下楼层依次记录如下(单位:层):+5,–3,+10,–8,+12,–6,–10.(1)请你通过计算说明小李最后是否回到出发点1楼;(2)该中心大楼每层高2.8m,电梯每上或下1m需要耗电0.1度.根据小李现在所处的位置,请你算一算,当他办事时电梯需要耗电多少度?【答案】(1)解:(+5)+(–3)+(+10)+(–8)+(+12)+(–6)+(–10)=0所以小李最后回到出发点1楼.(2)解:54×2.8×0.1=15.12(度)所以小李办事时电梯需要耗电15.12度.【解析】【分析】(1)根据有理数的加法列出算式并进行计算即可得出结果;(2)利用所给数据的绝对值的和计算总的层数,然后根据每层高2.8m,电梯每上或下1m 需要耗电0.1度利用乘法可得结果.2.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数是多少?(3)应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【答案】(1)解:由题意得前4个台阶上数的和是-5-2+1+9=3(2)解:由题意得-2+1+9+x=3,解得:x=-5,则第5个台阶上的数x是-5(3)解:应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1-2-5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k-1【解析】【分析】(1)由台阶上的数求出台阶上数的和即可;(2)根据题意和(1)的值,求出第5个台阶上的数x的值;(3)根据题意知台阶上的数字是每4个一循环,得到从下到上前31个台阶上数的和,得到数“1”所在的台阶数为4k-1.3.规定两数a,b之间的一种运算,记作(a,b):如果,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(3,27)=________,(5,1)=________,(2,)=________.(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4)小明给出了如下的证明:设(3n, 4n)=x,则(3n)x=4n,即(3x)n=4n,所以3x=4,即(3,4)=x,所以(3n, 4n)=(3,4).请你尝试运用这种方法证明下面这个等式:(3,4)+(3,5)=(3,20)【答案】(1)3;0;-2(2)解:设(3,4)=x,(3,5)=y,则, =5,∴,∴(3,20)=x+y ,∴(3,4)+(3,5)=(3,20)【解析】(1)∵33=27,50=1,2-2= ,∴(3,27)=3,(5,1)=0,(2,)=-2.故答案依次为:3,0,-2【分析】根据新定义的运算得到幂的运算规律,由幂的运算规律得到相等的等式.4.如果,那么我们规定 .例如:因为,所以 .(1)根据上述规定,填空:________, ________, ________.(2)若记,, .求证: .【答案】(1)3;0;-2(2)解:依题意则∵∴【解析】【解答】解:(1)(3,27)=3,(4,1)=0,(2,0.25)=-2,故答案为:3;0;-2【分析】根据新定义的算法计算出根指数即可;由新定义的算法,得到同底数幂的乘法,底数不变,指数相加;证明出结论.5.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒。

小学数学六年级培优题库 - 培优题库含详细答案

小学数学六年级培优题库 - 培优题库含详细答案

小学数学六年级培优题库 - 培优题库含详细答案一、培优题易错题1.某儿童服装店老板以32元的价格买进30件连衣裙,针对不同的顾客,30件连衣裙的售价不完全相同,若以45元为标准,将超过的钱数记为正,不足的钱数记为负,记录结果如下表:售出件数763545售价(元)+2+2+10﹣1﹣2【答案】解:由题意可得,该服装店在售完这30件连衣裙后,赚的钱数为:(45-32)×30+[7×2+6×2+3×1+5×0+4×(-1)+5×(-2)]=13×30+[14+12+3+(-4)+(-10)]=390+15=405(元),即该服装店在售完这30件连衣裙后,赚了405元【解析】【分析】根据表格计算售出件数与售价积的和,再以45元为标准32元的价格买进30件,求出差价,计算即可.2.服装厂买来一批布料,如果全部用来做上衣,刚好可以做60件。

如果全部用来做裤子,刚好可以做90条。

现要用这批布料来做一件上衣和一条裤子组成的套装,可以做多少套?【答案】解:1÷(+)=1÷=36(套)答:可以做36套。

【解析】【分析】把这批布料看作单位“1”,然后用分数表示出做一件上衣用布占总数的几分之几,再表示出做一条裤子用布占总数的几分之几,然后用1除以一件上衣和一条裤子共用几分之几即可求出共做的套数。

3.有,两个桶,分别盛着水和某含量的酒精溶液.先把桶液体倒入桶,使桶中的液体翻番;再将桶液体倒入桶,使桶中的液体翻番.此时,,两桶的液体体积相等,并且桶的酒精含量比桶的酒精含量高.问:最后桶中的酒精含量是多少?【答案】解:因为最后桶的酒精含量高于桶,所以一开始桶盛的是酒精溶液.设一开始桶中有液体,桶中有.第一次从桶倒入桶后,桶有,桶剩;第二次从桶倒入桶,桶有,桶剩.由,得.再设开始桶中有纯酒精,则有水.将酒精稀释过程列成表(如图):由题意知,,解得.所以最后桶中的酒精含量是.桶桶纯酒精:水纯酒精:水初始状态第一次桶倒入桶第二次桶倒入桶液,B桶中是水。

六年级数学同步奥数培优

六年级数学同步奥数培优

第一讲方程(解方程)例1①14x-12=7x+23②3x+4x-6=36-5x ③7*(x-8)=31+4x同步精练①15x-10=8x+11②5x+6x-6=36-3x ③9*(x-4)=45+6x例 2 ①21.5+8*4x=28.7 ②37x=7.5+12x ③23x-21=49+3x同步精练①26-3.5*4=2.5x② 3.4x-9.8=1.4x+9 ③0.72*3+4x=3.06+3x例3第二讲方程(列方程解应用题)例1光明小学买2张桌子和5把椅子共付220元,每张桌子的价钱是每把椅子价钱的3倍,每张桌子和每把椅子各多少钱?1.幼儿园买来花毛巾和白毛巾各40条,共用640元,已知花毛巾单价是白毛巾单价的3倍,一条花毛巾和一条白毛巾共多少元?2.买30于克精粉和70千克小米共付人民币312元,l千克精粉的价格是1千克小米价格的2倍,买精粉和小米各用去多少元?3.买10个排球和4个篮球共付510元,每个篮球比每个排球贵5元,篮球和排球的单价各是多少元?例2有一群鸭,在河里的只数是岸上的3倍,如有26只鸭上岸,那么岸上的鸭子就与河里的鸭一样多。

这群鸭一共有多少只?1.甲筐有梨400个,乙筐有梨240个,现在从两筐取出相等数目的梨,剩下的梨数,甲筐恰好是乙筐的5倍,求两筐所剩的梨数各是多少?2.六(1)班与六(2)班原有图书一样多,后来六(1)班又买来新书38本,六(2)班从本班原有图书中取出72本送给一年级同学,这时六(1)班的图书是六(2)班的3倍,两班原有图书各多少本?3.有甲、乙两个班,如果从甲班调8个同学到乙班,则两个班人数相等。

如果从乙班调8个同学到甲班,则甲班的人数就是乙班的2倍,甲乙两班各多少人?例3生产一批零件,原计划10天完成,实际每天比原计划多生产42个零件,结果提前3天完成任务。

这批零件有多少个?1.一辆汽车从甲地到乙地,原计划每小时行30千米,实际每小时比原计划多行10千米,结果比原计划提前2小时到达。

小学六年级数学计算能力培优

小学六年级数学计算能力培优

数学计算能力是小学六年级学生必须具备的基本能力之一、一个有良好数学计算能力的学生通常能够快速准确地进行各种数学计算,并能灵活运用数学知识解决问题。

下面将从数学计算能力培养的重要性、培养方法和应注意的问题三个方面进行论述。

一、数学计算能力培养的重要性数学计算是数学学习的基础,也是数学解题的必备能力。

小学六年级是数学学科中的一个重要阶段,数学计算能力的培养对学生未来的学习和发展具有重要影响。

良好的数学计算能力可以培养学生的逻辑思维和分析能力,提高他们的学习兴趣和自信心。

同时,优秀的数学计算能力也是进一步学习高级数学知识和解题技巧的基础,为学生未来学习数学和应用数学打下坚实基础。

二、数学计算能力培养的方法1.掌握基本运算:学生需要熟练掌握加减乘除四则运算。

可以通过多做题、多练习来提高计算速度和准确性,结合解题策略,培养学生对问题的分析和整理能力。

2.拓宽计算范围:学生应逐步拓宽计算的范围,包括整数、分数、小数的计算,以及加减乘除混合运算等。

可以通过讲解、习题和练习等方式,帮助学生逐步认识和掌握不同计算规则,并进行反复训练。

3.灵活运用计算方法:学生需要学会灵活运用不同的计算方法。

例如,学会运用乘法分配律、加法交换律等,减少计算步骤,提高计算效率。

同时,也要培养学生运算思维,引导他们探索和发现不同的计算方法。

4.进行心算训练:适当进行心算训练有助于培养学生的计算速度和准确性。

可以通过脑筋急转弯、心算游戏等方式,激发学生的思维灵活性和计算能力。

同时,要注意心算训练的时间和强度,不宜过度,以免影响学生对计算过程的理解。

三、应注意的问题1.巩固基础知识:数学计算能力的培养需要基础知识的巩固。

学生应充分理解和掌握基本运算规则和计算方法,避免“死记硬背”或在不理解的情况下滥用公式和算法。

2.培养解题能力:数学计算能力培优不仅仅要求学生掌握计算方法,还要能够运用所学知识解决实际问题。

学生应注重培养解题能力,多进行实际问题的练习和应用,通过解决问题来提高数学计算能力。

人教版六年级下册数学培优试题讲义

人教版六年级下册数学培优试题讲义

人教版六年级下册数学培优试题讲义1、圆柱的表面积复1:1)10cm做一个圆柱形纸盒,至少要多大面积的纸板?底面积:30cm侧面积:表面积:2)把一根长2米,底面直径是6分米的圆柱形木料平均锯成4段后,增加了()面,表面积增加了()平方分米,每段木料的表面积()平方分米。

例题1如图,一个零件是由高是1米,底面直径分别是4厘米和8厘米,高分别是5厘米和6厘米的2个圆柱体组成的,求该零件的表面积。

练:1、右图是一顶帽子。

帽顶部分是圆柱形,用黑布做;帽沿部分是一个圆环,用白布做。

如果帽顶的半径、高与帽沿的宽都是a(a=10厘米),那么哪种颜色的布用得多?2、如图:求该零件的表面积。

人教版六年级下册数学培优试题讲义复2:下面是两位同学对同一个圆柱的两种不同的切分。

平均分成两块)甲切分后,表面积比原来增加乙切分后,外表积比原来增加甲hoy乙hoyo例题2把一个圆柱形木材锯开(以以下图:单位cm),求以下图的外表积。

练:1、把一个底面半径6分米,高1米的圆柱切成3个小圆柱,表面积增加了()2、一段长1米,半径是10厘米的圆木,若沿着它的直径剧成两半,表面积增加了()3、把一段长20分米的圆柱形木头沿着底面直径劈开,表面积增加80平方分米,原来这段圆柱形木头的表面积是多少?例题3、求下面图形的侧面积。

(单位:cm)人教版六年级下册数学培优试题讲义小竞赛一、填空题1、一个圆柱的底面半径是2cm,高是10cm,它的侧面积是(。

),外表积是(。

)。

2、把一张长方形的纸的一条边固定贴在一根木棒上,然后快速转动,得到一个()。

3、一个圆柱的侧面展开后得到一个长方形,长是12.56厘米,宽是3厘米。

这个圆柱的底面周长是()厘米,高是()厘米。

4、已知圆柱的底面周长是12.56m,高是3m,圆柱的表面积是5、圆柱形烟囱的直径为8分米,每节长1.5米,做2节这样的烟囱至少要()分米2铁皮。

6、一个圆柱体的侧面积是12.56平方厘米,底面半径是2分米,它的高是()厘米。

六年级下册数学培优讲义- 数论.余数问题(ABC级)(解析版)全国通用

六年级下册数学培优讲义- 数论.余数问题(ABC级)(解析版)全国通用

一、带余除法的定义及性质1、 定义:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b =q ……r ,也就是a =b ×q +r ,0≤r <b ;我们称上面的除法算式为一个带余除法算式.这里:(1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商(2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数.这个图能够让学生清晰的明白带余除法算式中4个量的关系.并且可以看出余数一定要比除数小. 2、 余数的性质⑴ 被除数=除数⨯商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数; ⑵ 余数小于除数.二、三大余数定理:1. 余数的加法定理a 与b 的和除以c 的余数,等于a ,b 分别除以c 的余数之和,或这个和除以c 的余数.例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c 的余数.例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为2 2. 余数的加法定理a 与b 的差除以c 的余数,等于a ,b 分别除以c 的余数之差.例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3 -1知识框架余数问题=2.当余数的差不够减时时,补上除数再减.例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=43.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数.例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3.当余数的和比除数大时,所求的余数等于余数之积再除以c的余数.例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.乘方:如果a与b除以m的余数相同,那么n a与n b除以m的余数也相同.三、弃九法原理在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234189818922678967178902889923++++=1234除以9的余数为11898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的.上述检验方法恰好用到的就是我们前面所讲的余数的加法定理,即如果这个等式是正确的,那么左边几个加数除以9的余数的和再除以9的余数一定与等式右边和除以9的余数相同.而我们在求一个自然数除以9所得的余数时,常常不用去列除法竖式进行计算,只要计算这个自然数的各个位数字之和除以9的余数就可以了,在算的时候往往就是一个9一个9的找并且划去,所以这种方法被称作“弃九法”.所以我们总结出弃九法原理:任何一个整数模9同余于它的各数位上数字之和.以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可.利用十进制的这个特性,不仅可以检验几个数相加,对于检验相乘、相除和乘方的结果对不对同样适用注意:弃九法只能知道原题一定是错的或有可能正确,但不能保证一定正确.例如:检验算式9+9=9时,等式两边的除以9的余数都是0,但是显然算式是错误的.但是反过来,如果一个算式一定是正确的,那么它的等式2两端一定满足弃九法的规律.这个思想往往可以帮助我们解决一些较复杂的算式谜问题.四、同余定理1、定义:若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a≡b ( mod m ),左边的式子叫做同余式.同余式读作:a同余于b,模m.2、重要性质及推论:(1)若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除例如:17与11除以3的余数都是2,所以1711()能被3整除.(2)用式子表示为:如果有a≡b ( mod m ),那么一定有a-b=mk,k是整数,即m|(a-b)3、余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的.建立余数判别法的基本思想是:为了求出“N被m除的余数”,我们希望找到一个较简单的数R,使得:N与R对于除数m同余.由于R是一个较简单的数,所以可以通过计算R被m除的余数来求得N被m除的余数.1)整数N被2或5除的余数等于N的个位数被2或5除的余数;2)整数N被4或25除的余数等于N的末两位数被4或25除的余数;3)整数N被8或125除的余数等于N的末三位数被8或125除的余数;4)整数N被3或9除的余数等于其各位数字之和被3或9除的余数;5)整数N被11除的余数等于N的奇数位数之和与偶数位数之和的差被11除的余数;(不够减的话先适当加11的倍数再减);6)整数N被7,11或13除的余数等于先将整数N从个位起从右往左每三位分一节,奇数节的数之和与偶数节的数之和的差被7,11或13除的余数就是原数被7,11或13除的余数.重难点理解余数性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了例题精讲【例 1】1013除以一个两位数,余数是12.求出符合条件的所有的两位数.【巩固】一个两位数除310,余数是37,求这样的两位数.【例 2】有一个三位数,其中个位上的数是百位上的数的3倍.且这个三位数除以5余4,除以11余3.这个三位数是_【巩固】一个自然数,除以11时所得到的商和余数是相等的,除以9时所得到的商是余数的3倍,这个自然数是_________.【例 3】甲、乙两数的和是1088,甲数除以乙数商11余32,求甲、乙两数.【巩固】当1991和1769除以某个自然数n,余数分别为2和1.那么,n最小是多少?【例 1】 2000"2"2222个除以13所得余数是_____.【巩固】1996777777 个除以41的余数是多少?【例 4】 著名的斐波那契数列是这样的:1、1、2、3、5、8、13、21……这串数列当中第2008个数除以3所得的余数为多少?【巩固】 有一列数:1,3,9,25,69,189,517,…其中第一个数是1,第二个数是3,从第三个数起,每个数恰好是前面两个数之和的2倍再加上1,那么这列数中的第2008个数除以6,得到的余数是 .【例 5】 将从1开始的到103的连续奇数依次写成一个多位数:A =13579111315171921……9799101103.则数a 共有_____位,数a 除以9的余数是___.【巩固】将12345678910111213......依次写到第1997个数字,组成一个1997位数,那么此数除以9的余数是________.【例 6】有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______.【巩固】用自然数n去除63,91,129得到的三个余数之和为25,那么n=________.【例 7】在图表的第二行中,恰好填上8998~这十个数,使得每一竖列上下两个因数的乘积除以11所得的余数都是3.【巩固】求478296351⨯⨯除以17的余数.【例 8】求1~2008的所有自然数中,有多少个整数a使2a与2a被7除余数相同?【巩固】今天是星期四,100010天之后将是星期几?【例 9】 2008222008+除以7的余数是多少?【巩固】 ()30313130+被13除所得的余数是多少?【例 10】 3个三位数乘积的算式234235286abc bca cab ⨯⨯= (其中a b c >>), 在校对时,发现右边的积的数字顺序出现错误,但是知道最后一位6是正确的,问原式中的abc 是多少?【巩固】有2个三位数相乘的积是一个五位数,积的后四位是1031,第一个数各个位的数字之和是10,第二个数的各个位数字之和是8,求两个三位数的和.【例 11】某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______.【巩固】有一个自然数,除345和543所得的余数相同,且商相差33.求这个数是多少?【例 12】有一个大于1的整数,除45,59,101所得的余数相同,求这个数.【巩固】有一个整数,除300、262、205得到相同的余数.问这个整数是几?【例 13】一个自然数除429、791、500所得的余数分别是5a 、2a、a,求这个自然数和a的值.【巩固】有3个吉利数888,518,666,用它们分别除以同一个自然数,所得的余数依次为a,a+7,a+10,则这个自然数是_____.【例 14】一个大于10的自然数,除以5余3,除以7余1,除以9余8,那么满足条件的自然数最小为多少?【巩固】 一个大于10的数,除以3余1,除以5余2,除以11余7,问满足条件的最小自然数是多少?【随练1】 3782除以某个整数后所得的商恰好是余数的21倍,那么除数最小可能是 .【随练2】199566666667 个的余数是多少?课堂检测【随练3】有一列数排成一行,其中第一个数是3,第二个数是10,从第三个数开始,每个数恰好是前两个数的和,那么第1997个数被3除所得的余数是多少?【随练4】商店里有六箱货物,分别重15,16,18,19,20,31千克,两个顾客买走了其中的五箱.已知一个顾客买的货物重量是另一个顾客的2倍,那么商店剩下的一箱货物重量是________千克.【随练5】求19973的最后两位数.家庭作业【作业1】在大于2009的自然数中,被57除后,商与余数相等的数共有______个.【作业2】 有三个自然数a ,b ,c ,已知b 除以a ,得商3余3;c 除以a ,得商9余11.则c 除以b ,得到的余数是 .【作业3】 有两个自然数相除,商是17,余数是13,已知被除数、除数、商与余数之和为2113,则被除数是多少?【作业4】 已知20082008200820082008a 个,问:a 除以13所得的余数是多少?【作业5】有48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够.如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够.问:第二组有多少人?【作业6】六张卡片上分别标上1193、1258、1842、1866、1912、2494六个数,甲取3张,乙取2张,丙取1张,结果发现甲、乙各自手中卡片上的数之和一个人是另—个人的2倍,则丙手中卡片上的数是________.(第五届小数报数学竞赛初赛)【作业7】求2461135604711⨯⨯÷的余数.【作业8】12342005+++++除以10所得的余数为多少?12342005【作业9】设20092009的各位数字之和为A,A的各位数字之和为B,B的各位数字之和为C,C的各位数字之和为D,那么D【作业10】在除13511,13903及14589时能剩下相同余数的最大整数是_________.。

小学六年级数学培优

小学六年级数学培优

第一讲:等差数列求和【知识点拨】1.数列的第一项叫首项,最后一项叫末项,如果一个数列从第二项起,每一项与前一项的差是一个不变的数,这样的数列叫做等差数列,这个不变的数则称为这个数列的公差。

2.计算等差数列的和,可以用以下关系式:等差数列的和=(首项+末项)*项数除以2第n项=首项+公差*(n-1)项数=(末项-首项)除以公差+1例一、等差数列7、10、13、16…97、100各数的和是多少?练习1.想一想,该怎样计算方便?21+24+27+30+……+992.求所有被6除余数是1的三位数的和。

3,.有一列数:29、36、43、50…这列数共有25个数,这个数列所有的数的和是多少?4.有一堆木材叠堆在一起,一共是20层,第一层有12根,第二层有13根,……下面每层比上层多一根,这堆木材共有多少根?5.有一个仲,一点钟敲一下,两点钟敲两下,……十二点钟敲12下,分针指向6敲1下,这个钟一昼夜敲多少下?6.下面的算式按一定的规律排列,这些算式中第二十个算式的得数是多少?3+8、4+11、5+14、6+17…7.试求200—300之间所有7的倍数的和。

8.试求100—200之间能被9整除的所有自然数的和。

9.200—500之间能被8整除的所有自然数之和是10.自然数1、2、3、…排成一组,规定第n组含有n个自然数,即(1)、(2,3)、(4,5,6)、(7、8、9、10)、(11,12…)(1)试问第十组的第一个数是几?(2)试求第十组中所有自然数的和。

(3)试问100这个数位于哪一组中?是第几个数?第二讲:方程与解方程【知识点拨】1、等式的性质(1)等式两边同时加(减)去同一个数或式,结果仍相等。

(2)等式两边同时乘(除)以同一个不为零的数或式,结果仍相等:2,方程的解:使方程左右两边相等的未知数的值。

例题1:解方程 6X+2X+17X—X= 48练习:解方程1. 5x +3x -4x +7x =22 2. 7x +11 x -9 x=453. 12 x=10 x +64. 5 x +3 x =4 x +125. 10 x = 6 x + 166 . 2(x – 2)+3(4 x -1)=9(x -1)+77. 5 (x +2)=2(x+ 3)+10 8. 3 x÷15 =19. 3(x -3)+8= 6(x +1)- 1610. 5 x ÷8 =10 11. 7 x ÷12= 14 12. 7x÷12=1413.7+x÷2+2x=42*3 14.5x+3-x÷3+3x=8 15.2x-3-3x÷2+5x=816.(x-23)*4÷5=12 17.(x+45) ÷3=x÷2 18.(x÷24) ÷2+3+30=50当堂测试解方程1. 6x-3x+19x-8x=282. 8x=5x+123. 2(x+2)=3(x-3)+104. 5x÷13=255. 6x+3-x÷2-3x=86. (x+1) ÷2=(2x-3) ÷3计算1. 176+ 177+ 178+ 179+1802. 83+88+93+…+2081.体育馆的东区共有30排座位,层梯形,第一排有10个座位,第二排有11个座位,……这个体育馆东区共有多少个座位?2.有一串数,第一个数是10,以后每个数比前一个数大5,最后一个数是90,这串数连加的和是多少?3.有一个电影院有18排座位,第1排的座位有24个,从第2排起,每排座位都比前1排多1个,这个电影院共有多少个座位?4.仓库里堆放一批粗细均匀的圆木,最下一层放10根,每向上一层就减少1根,最上面一层放了5根,这批圆木有多少棵?第三讲列方程列解应用题【知识点拨】列方程解应用题步骤:审题(关键是找出题目中等量关系式)-----恰当设未知数-----列方程-----解方程----作答列方程解应用题关键:用未知数把等量关系式表示出来;列方程解应用题难点:找出题目中暗含的等量关系式。

小学六年级数学培优题

小学六年级数学培优题

一、分数乘法:1、六楼的王大爷病了,小明帮王大爷送早餐,从一楼走到二楼用了53分钟,用同样的速度从一楼到六楼王大爷家要用多少分钟2、一位市场营销员从甲城坐火车到乙城。

火车行了全程的一半时,营销员睡着了。

他醒来时看了看路标,发现剩下的路程是他睡着前火车所行路程的31。

想一想,这时火车行了全程的几分之几3、观察左边的两个等式,找出规律,然后在右边等式的( )里填上合适的分数。

29+79=29×79 ( )+47=( )×47 38+58=38×58 511+( )=511×( ) 4、一袋食盐重,第一次用去了,第二次用去了余下的73。

哪次用的盐多为什么 5、有两袋大米,第一袋大米重20kg ,如果从第二袋中取出52kg 大米放入第一袋中,两袋大米就同样重。

这两袋大米一共重多少千克(用两种不同方法解答)6下面的( )里可以填的最大整数是多少(1)157×85<)(7 (2)54×8)(<85 (3)98×6)(<32 (4)74×3)(<1 7、一本书有120页,小敏第一天看了全书的83,第二天看的页数是第一天的32。

两天一共看了多少页8、买电脑。

原价是5000元,先降价101后,再涨价101,现价是多少元 9、六(1)班有学生54人,将六(1)班学生的91调到六(2)班,那么两班人数相等。

原来两个班共有学生多少人10、用简便方法计算。

(1)54×4+52×2+51×16 (2)20132012×2012三、分数除法1、如果x ×145=y ×1514=1,那么5x-2y=( )。

2五个连续奇数和的倒数是451,这五个奇数中最大的奇数是多少 3、把一段长85米的钢管锯成若干相等的小段,一共锯了4次,平均每段钢管长多少米 4、小马虎在计算一个数除以83时,看成了乘83,结果得到109,小马虎计算的那一道算式的正确结果应该是多少 5、喝牛奶。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级数学培优资料
一、数学基础知识
1.四则运算:加、减、乘、除。

2.数学符号的含义:加号、减号、乘号、除号、等号、大于号、小于号等。

3.数字间的大小比较:正数、负数、零及其大小顺序。

4.小数的概念和大小比较:小数点的位置代表了小数的大小。

5.分数的概念和大小比较:分子和分母的大小决定了分数的大小。

二、数字的认识与进位
1.数位的认识:个位、十位、百位、千位等。

2.0~9999的数字识别、认读和写法。

3.进位原理的理解:十进位、百进位、千进位等。

4.进位运算的实现方法:列式计算法和口诀计算法。

三、数字的加减法
1.加法原理的掌握:加数、被加数、和的概念。

2.加法的背诵要点:进位原则、竖式加法口诀(竖式加法、横式加法)。

3.减法的概念和掌握:被减数、减数、差等。

4.竖式减法和口诀计算法:不退位减法和退位减法。

四、数字的乘除法
1.乘法的概念:乘数、被乘数、积等。

2.乘法口诀的记忆和应用:2~9口诀、竖式乘法口诀、小数乘法口诀。

3.长除法的掌握:被除数、除数、商等。

4.除法口诀的记忆和应用:整除法、小数除法口诀。

五、应用题训练
1.问题解决的方法:分解问题、构造模型、试错、逻辑推理等。

2.应用题的类型:魔术数字、等价数字、变幻数字、逻辑推理等。

3.综合应用题的训练:小学数学综合应用题训练册。

六、数学思维和学习方法
1.数学思维方法:逻辑思维、空间思维、想象力、分析思考等。

2.学习方法的总结与归纳:记忆技巧、复习方法、总复习等。

3.思维能力训练的方法:游戏、解决问题、比赛等。

四则运算相关例题:
例1:计算70 ÷ 5
解:因为70 ÷ 5 =14,所以70 ÷ 5 =14.
例2:计算8 × 17
解:因为8 × 17 = 136,所以8 × 17 = 136.
例3:计算59 - 18
解:因为59 - 18 = 41 ,所以59 - 18 = 41.
例4:计算86 + 14
解:因为86 + 14 = 100 ,所以86 + 14 = 100.
例5:计算6.5 - 3.25
解:因为6.5 - 3.25 = 3.25 ,所以6.5 - 3.25 = 3.25.
例6:如果一份工只有60元,那么6小时工作的总工资是多少?
解:因为6 × 60 =360,所以6小时工作的总工资是360元。

例7:已经付了156元,一件衣服还需要44元,请问还要付多少?
解:因为156 + 44 =200 ,所以还需付200 - 156 = 44元。

例8:数轴上标出-2、0、2,求两点之间的距离。

解:因为0到-2的距离是2,0到2的距离是2,两点之间的距离是4。

以上是六年级数学的培优内容,希望对您有所帮助。

相关文档
最新文档