无理数PPT课件

合集下载

《认识无理数》课件

《认识无理数》课件

无理数的特征
无理数的小数部分是无限不循环的, 无法精确表示。
无理数是实数的一种,具有实数的所 有性质和运算规则。
无理数与有理数的区别
有理数是可以表示为 两个整数之比的数, 包括整数、分数和十 进制小数。
有理数和无理数在实 数域中是互斥的,即 它们不能相互转化。
无理数则无法表示为 分数形式,其小数部 分无限不循环。
古希腊数学家阿基米德首次使用圆内接多边形的方法近似计 算出圆周率的值。
根号2的发现
根号2是一个无限不循环小数,表示2的平方根。
古希腊数学家欧几里德在《几何原本》中首次证明了根号2的存在性,并对其进 行了近似计算。
03 无理数的应用
在几何学中的应用
勾股定理
无理数在几何学中最为著名的应 用是勾股定理,它说明了直角三 角形的两条直角边的平方和等于 斜边的平方,其中斜边长度是一
无理数在未来的发展前景
01
推动数学与其他学科的进一步融合
随着科学技术的不断发展,无理数将在更多领域发挥重要作用,推动数
学与其他学科的进一步融合。
02
深化实数理论的研究
随着数学的发展,实数理论的研究将不断深入,无理数作为实数理论的
基础之一,其研究也将得到进一步深化。
03
促进数学教育的发展
无理数是数学教育中的重要内容之一,随着教育的不断改革和完善,无
02 无理数的产生
无法精确表示的数
无法用分数精确表示的数
例如,0.333...虽然可以无限接近于1/3,但无法精确等于1/3。
无法用有限小数或循环小数精确表示的数
例如,0.1010010001...是一个无限不循环小数,无法用有限小数或循环小数来 表示。
圆周率π的发现

认识无理数-(第二课时)PPT课件

认识无理数-(第二课时)PPT课件

2020年9月28日
13
拓展
学习目标 预习
2、下列语句正确的是( D )
展 示 A、3.78788788887888是无理数
互 动 B、无理数分正无理数、零、负
生成
达 标 无理数
拓 展 C、无限小数不能化成分数
谈谈收获 D、无限不循环小数是无理数
2020年9月28日
14
拓展
学习目标
预 习 3、面积为6的长方形,长是宽
0 .351 , -5.232 332…, 3.14159, π . 4 . 96 ,
3
2, 3
123.345 678 910 11…(由相继的正整数组成)
0 .351 ,
.
4 .96 ,
2, 3
3.141 59,
-5.232332…
π, 3 0.123 345 678 910 11…
有理数
2020年9月28日
互动 生成
其中无理数的个数为x, 整数的个
达 标 数为y, 非负数的个数为z, 则
拓展
谈谈收获 x+y+z= ___6__.
2020年9月28日
12
拓展
学习目标
预 习 1、下列说法中正确的是( D) 展 示 A、不循坏小数是无理数
互动
生 成 B、分数不是有理数 达 标 C、有理数都是有限小数
拓展
谈谈收获 D、3.1415926是有理数
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!

七年级数学无理数课件

七年级数学无理数课件
理数。
波动频率与波长
在物理学中,波动频率与波长的 关系常涉及到无理数的计算,如
声波、光波等。
化学计算中无理数处理方法
01
02
03
摩尔质量与分子量
在计算摩尔质量时,有时 会遇到无理数的情况,需 要采用近似值或保留一定 位数的小数进行处理。
溶液浓度计算
在配制溶液或计算溶液浓 度时,可能会涉及到无理 数的计算,需要根据实际 情况进行取舍。
七年级数学无理数课件
目录
• 引言 • 无理数概念及性质 • 无理数运算规则与技巧 • 无理数在几何中应用 • 无理数在实际问题中应用 • 常见问题解答与误区提示 • 总结回顾与拓展延伸
01 引言
课件背景与目的
背景
无理数是数学中的一个重要概念 ,对于理解实数的性质和运算具 有重要意义。
目的
通过本课件的学习,使学生掌握 无理数的基本概念、性质和运算 方法,为进一步学习数学知识打 下基础。
加减运算规则及实例分析
规则
无理数的加减运算需要先将它们转化为有理数的形式,再按照有理数的加减法则 进行计算。对于不能转化为有理数的无理数,需要保留其根号形式进行运算。
实例分析
例如,计算$sqrt{2} + sqrt{3}$,由于$sqrt{2}$和$sqrt{3}$不是同类二次根式,不 能直接相加,需要保留其根号形式。而计算$sqrt{2} + sqrt{2}$时,可以将它们合 并为$2sqrt{2}$。
乘除运算规则及实例分析
规则
无理数的乘除运算也需要先将它们转化为有理数的形式,再按照有理数的乘除法则进行计算。对于不 能转化为有理数的无理数,需要利用根号的性质进行化简。
实例分析
例如,计算$sqrt{2} times sqrt{3}$,根据根号的乘法性质,可以将它们合并为$sqrt{6}$。而计算 $frac{sqrt{2}}{sqrt{3}}$时,需要利用有理化分母的方法,将其化简为$frac{sqrt{6}}{3}$。

《无理数》教学课件

《无理数》教学课件

即99x=492.
∴x= 164
33
课堂小结
1.本节课你学习了什么? 2.本节课你有哪些收获? 3.通过今天的学习,你想进一步探究的问题是什么?
课堂小结
1.无理数的定义. 2.理解无理数定义时要注意的问题:
再见
D.无理数
3.设面积为3的正方形的边长为x,那么关于x的说法正确的 是( D )
A.x是有理数
B.x取0和1之间的实数
C.x不存在
D.x取1和2之间的实数
随堂练习
4.把下列各数填入相应集合.
0.351
-
2 3
••
4.96
3.14159
-5.232332…, π
3
1.2334567891011…(由相继的正整数组成).
A.0
B. 1.010010001
C.π
22
D. 7
典型例题
例2.如图所示的是面积分别为1、2、3、4、5、6、7、8、 9的正方形,边长是有理数的正方形有 3 个,边长是无理
数的正方形有 6 个.
典型例题
例3.下列各数中,哪些是有理数?哪些是无理数?
1
0.4583 3.7 ,-π,- 7
,18,
认识无理数
无理数常见的形式主要有三种: ①一般的无限不循环小数,如1.414 213 56…是无理数. 看似循环而实质不循环的小数,如0.101 001 000 1…(相邻两个1之 间0的个数逐次增加1)是无理数. ②圆周率π以及含π的数,如π,2π,π+5,都是无理数. ③开方开不尽的数(下一节学到).
认识无理数
有理数与无理数的主要区别: ①无理数是无限不循环小数,有理数是有限小数或无限循环小数. ②任何一个有理数都可以化为分数的形式,而无理数不能.

认识无理数.PPT课件(北师大版)

认识无理数.PPT课件(北师大版)
A、面积为3的正方形的边长 B、体积是8的正方体的棱长 C、两直角边分别为2和3的直角三角形的斜边长 2.面积为3的正方形的边长_不__是___有理数;面积为4 的正方形的边长__是___有理数.(填“是”或“不是”)
级:快乐提升 ——练能力: 3.加固一个高2米、宽1米的大门,需 要在对角线位置加固一条木板,设木板 长为a米,则 a的值大约是多少?这个值 可能是分数吗?
必做题:如图,在△ABC中,
CD⊥AB,垂足为D,AC=6,AD=5,
问:CD可能是整数吗?可能是分
数吗?可能是有理数吗?
选做题: B,C是一个生活小区的两个路口,
BC长为2千米,A处是一个花园,从A到B,C两路口 的距离都是2千米,现要从花园到生活小区修一条 最短的路,这条路的长可能是整数吗?可能是分 数吗?说明理由.
视察下图后回答下面问题, (1)如图:以直角三角形的斜边为边的正 方形的面积是多少?
(2)设该正方形的边长为b,b满足什么条 件?
(3)b是有理数吗?
活动五:了解数学史,体会数学文化
请阅读下面材料,并说出自己的感受:
公元前500年,古希腊的毕达哥拉斯( Pythagoras) 学派认为“宇宙间的一切现象都能归结为整数或整 数之比,即都可用有理数来描述。
(一)知识上的总结:
教师提问:本节课你学到了什么知识? (二)数学方法上的总结
教师提问:在讨论大正方形的边长是否为有理数 时,我们是怎样讨论的 ?
总结: “分类讨论”的数学说理方法 教师提问:在研究大正方形的边长是否为分数时,
我们从哪里开始研究的?
总结: “特殊到一般”的研究方法
级:轻松过关 ——打基础: 1.下列各数中,是有理数的是( B )
义务教育教科书(北师大版)数学 八年级上册

北师大版八年级数学上册2.1 认识无理数(第1课时)课件(共23张PPT)

北师大版八年级数学上册2.1 认识无理数(第1课时)课件(共23张PPT)

探究新知 素养考点 1 利用勾股定理识别非有理数
例 如图,在△ABC中,CD⊥AB,垂足为D,AC=6,AD=5,问:CD可能是整数吗?可能是分数吗? 可能是有理数吗?
解:在Rt△ACD中,AC为斜边,AC=6,AD=5,所以CD2= AC2-AD2=11.因为11是质数,大于1的整数的平方都是合数, 所以11不能写成一个整数的平方,所以CD不可能是整数. 因为最简分数的平方仍是分数,所以CD不可能是分数.所以 CD不可能是有理数.
解:b2=5.①因为22=4,32=9,4<5<9,
所以b不可能是整数. ②没有两个相同的分数相乘得5,故b不可能是分数. ③因为没有一个整数或分数的平方为5,所以b不是有理数.
探究新知
归纳总结
用生命换来的新数
像上面讨论的数a,b都不是有理数,而是另一类数—无理数.
早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙 间的一切现象都能归结为整数或整数之比”.但是这个学派中的一个叫希 伯索斯的成员却发现边长为1的正方形的对角线的长不能用整数或整数之 比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯 被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的, 后来古希腊人终于正视了希伯索斯的发现.也就是a2=2中的a不是有理数.
课堂检测
解:(1)如图1所示. (2)如图2所示.
能力提升题
图1
图2
课堂检测
拓广探索题
在下列4×4的网格中,每个小正方形的边长都为1,请在每一个图中分别画出一条线段,且它们 的长度均表示不等的非有理数.
课堂检测
解:答案不唯一.如图所示:
拓广探索题
AB2=2,2不能写成一个整数或分数的平方,所以AB表示的数是非有理数. CD2=8,8不能写成一个整数或分数的平方,所以CD表示的数是非有理数. EF2=18,18不能写成一个整数或分数的平方,所以EF表示的数是非有理数.

无理数课件1

无理数课件1

• 希帕索斯是大约公元前500年的一位古希 腊哲学家、自然科学家,生於小亚绅亚西 南海岸米粒都,早年是商人,曾游历过巴 比伦、埃及等地,泰勒斯是希腊最早的哲 学学派-伊奥尼亚学派的创始人,他几乎 涉猎了当时人类的全部思想和活动领域, 其被尊为"希腊七贤"乊首,而他更是以数 学上的发现而出名的第一人,他认为处处 有生命和运动,幵以水为万物的本源。作 为毕达哥拉斯的门徒,他发现平斱根具有 一些很有趣的性质。
无理数在中国的发现
• 中国古代在处理开斱问题时,丌可避克地 碰到了无理根数。中国早期的开斱术见亍 刘徽的《九章算术》少广、勾股两章,起 源亍长度的测度。已知面积求正斱形边长 ;已知体积求立斱体棱长;已知圆面积求 圆的直径;已知球体积求球的直径戒直角 三角形勾、股、弦互求。《九章算术》“ 少广”章的开(平)斱术有“若开乊丌尽者 ,为丌可开,当以面命乊”,“令丌加借 算而命分,则常微少;其加借算而命分, 则又微多。
• 第一次数学危机对古希腊的数学观点有 极大冲击。这表明,几何学的某些真理不 算术无关,几何量丌能完全由整数及其比 来表示,反乊即可以由几何量来表示出来 ,整数的权威地位开始动摇,而几何学的 身份升高了。危机也表明,直觉和经验丌 一定靠得住,推理证明才是可靠的,仍此 希腊人开始重规演译推理,幵由此建立了 几何公理体系,这丌能丌说是数学思想上 的一次巨大革命。
随堂练习
• 哪些是有理数?哪些是无理数?0ຫໍສະໝຸດ 3512 3..
4 . 96
3.14159…
-5.232323…
π 3
0.1234567891011…(由相继的正整数组成)
• 判断对错
• (1)有限小数是有理数;
• (2)无限小数都是无理数; • (3)无理数都是无限小数; • (4)有理数是有限小数.

北师大版八年级数学上册课件 第2章 第1节 认识无理数(共32张PPT)

北师大版八年级数学上册课件 第2章 第1节 认识无理数(共32张PPT)

算一算
1
x
x2 ?
2
问:x是整数(或分数)吗?
剪一剪
把两个边长为1的小正方形通过剪、 拼,设法得到一个大正方形,你会吗?
1 1
1 1
拼一拼
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/82021/9/8Wednesday, September 08, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/82021/9/82021/9/89/8/2021 11:00:52 AM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/82021/9/82021/9/8Sep-218-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/82021/9/82021/9/8Wednesday, September 08, 2021
(2)无限小数都是无理数; ( ╳ )
(3)无理数都是无限小数; ( √ )
(4)有理数是有限小数. ( ╳ )
强调
无理数是无限不循环小数, 有理数是有限小数或无限循环小数.
c 例3 以下各正方形的边长是无理数的是( )
A.面积为25的正方形;
B.面积为 4 的正方形; 25
C.面积为8的正方形;
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/82021/9/82021/9/82021/9/89/8/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月8日星期三2021/9/82021/9/82021/9/8 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/82021/9/82021/9/89/8/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/82021/9/8September 8, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/82021/9/82021/9/82021/9/8

无理数集合PPT课件

无理数集合PPT课件

把下列各数填入相应的集合内:
9 3 5 64
(1)有理数集合:
9

0.6 •
64 0.6
3
4
3 4
0
3
3 9 3 0.13
0.13
(2)无理数集合: 3 5
3 9
(3)整数集合: (4)负数集合: (5)分数集合:
9
3 4

0.6
(6)实数集合: 9 3 5
64 3
3 9
3 0.13
5, 0.3737737773
有理数集合
无理数集合
有理数和无理数统称 实数
有理数 有理数
正有理数 0
负有理数
Байду номын сангаас正整数
正分数 负整数
负分数
整数 分数
正整数 0
负整数 正分数
负分数
你没忘吧?
实数
实数
有理数
无理数 正实数
0 负实数
正有理数 0
负有理数 正无理数
负无理数 正有理数
正无理数
你学会了吗?
负有理数 负无理数
无限不循环的小数 ----------叫做无理数
你能举出一些无理数吗?
把下列各数分别填入相应的集合内:
1
3 2, 4 ,
4 , 0,
9
7, , 5 ,
2
2,
20 3
,
5, 3 8,
(相邻两个3之间
0.3737737773 的7的个数逐次加1)
1 , 5 , 42
4, 9
0,
3 8,
3 2, 7, , 2, 20 , 3
使用计算器计算,把下列有 理数写成小数的形式,你有什么 发现?

《认识无理数》PPT课件 (公开课)2022年北师大版 (8)

《认识无理数》PPT课件 (公开课)2022年北师大版 (8)

① 3x2 5x3
② (5a2b)(2a2)
③ (5an1b)(2a.) ④ (2x)3(2x2y)
⑤ (x2 yz3)2(x2y)3
收获感悟:
本节课你学到了什么? 发现了什么? 有什么收获? 还存在什么没有解决的问题?
课后作业:
1. 习题 2. 拓展探究:
, 若 (am1bn2)(a2n1b)a5b3 求 mn的值 。
2.客观世界中,的确存在不是有理 数的数,你能列举几个吗?
3.除了本课所认识的非有理数的数 以外,你还能找到吗?
读一读
无理数的发现(教材第23页)
作业布置 习题2.2 1,3
赛一赛
下图是由五个单位正方形组成的纸片, 请你把它剪成三块,然后拼成一个正 方形,你会吗?试试看!
第一章 整式的乘除
4 整式的乘法(第1课时)
3、在你探索单项式乘法运算法则的过 程中,运用了哪些运算律和运算法则?
探索规律:
单项式乘法的法则: 单项式与单项式相乘,把它们的系
数、相同字母的幂分别相乘,其余字母 连同它的指数不变,作为积的因式。
例题解析:
例1 计算:
(1)2 xy 2 ( 1 xy ) 3
(2) 2a2b3 (3a)
(3)7xy2z(2xyz)2
(4)单项式乘以单项式,结果仍为单项式。
完成课本15页:随堂练习
延伸拓展:
一家住房的结构如图
y
2y
示,房子的主人打算把 卧室以外的部分全都铺
卫生间
卧室
上地砖,至少需要多少
x
厨房
4x
平方米的地砖?如果某
种地砖的价格是a元/平 2x
客厅
方米,那么购买所需地

《有理数与无理数》PPT课件 (公开课获奖)2022年苏科版 (8)

《有理数与无理数》PPT课件 (公开课获奖)2022年苏科版 (8)
们都是 有理数
• 面积为2的正方形 ,边长a究竟是多少 ? • 即a2 =2时 ,a是多少 ?
❖ 3个正方形的边长之间有怎样的大小关系?
❖ 边长a的整数局部是几? 十分位是几?百分 位呢?千分位呢?......借助计算器进行探索
小明根据他的探索过程整理出如下的表格
边长 a 1<a<2 1.4<a<1.5 1.41<a<1.42 1.414<a<1.415
你发现了什么 ?
证明(1)
【数学实验二】如图 ,〔1〕画∠AOB=90° ,并画
∠AOB的角平分线OC.
〔2〕将三角尺的直角顶点落在OC的任意一点P
上 ,使三角尺的两条直角边与∠AOB的两边分别交于
点E、F ,并比较PE、PF的长度;
A
〔3〕把三角尺绕点
P
你能得到什么结论 ?你的
亭阁、集市、庙宇等虚幻景象出现在远方的空 中……
自然界中看到的景象是真实存在的吗?
证明(1)
【探究活动一】先猜一猜图中的两条线段AB与CD哪一条 长一些 ?
A
C
B
D
请再量一量证实你的猜测.
证明(1)
【探究活动二 】图〔1〕中有曲线吗 ?请把图 〔2〕中编号相同的点用线段连接起来.
(图1)
1 2 3 4 5 6 7 8
证明(1)
【小结】 通过今天的学习 ,你学会了什么 ?
你会正确运用吗 ?通过这节课的学 习 ,你有什么感受呢 ,说出来告诉大 家.
证明(1)
【课后作业】
1. 课本P149练一练第1、2、3题. 2.〔选做题〕一位老农有一块地 ,形状是平行四 边形 ,地里有一口水井 ,他将水井与地的4角分别相 连 ,把地分成4块 ,然后对他的儿子说: "地分给你 们了 ,每人各取相对的两块;水井不分 ,两家共 用.〞精明的弟弟要求先选 ,在看到土地后果断地 选择了①、③两地 ,同学们 ,老实的哥哥吃亏了吗 ?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结论:无限不循环小数叫做无理数
例题:下列各数中,哪些是有理数?哪些是无理数?
(1)5.101010101…(相邻两个1之间都有一个0)
(2)1.0203040506…(从小到大排列的相邻两个正 整数间都有一个0 (3) 3 (4) a+b(a,b都是无理数) (5) 解:有理数有:5.101010101… 无理数有:1.0203040506… , 3 , .
那么a到底是一个怎么样的数呢?
面积为2的正方形边长a究竟是多少呢? 请同学们借助计算器进行探索
边长a 1<a<2 1.4<a<1.5 面积s 1<s<4 1.96<s<2.25
1.41<a<1.42
1.414<a<1.415
1.9881<s<2.0164
1.999396<s<2.002225
1.4142<a<1.4143 1.99996164<s<2.00024449
归纳:a是一个无限不循环小数
1、做一做: 26页(1)做一做 小结:正方形的边长b不是有理数,是一个无限 不循环小数 2、27页随堂练习 小结:正三角形的高h也不是有理数,是一个 无限不循环小数。 3、27页习题3.1 小结:长方形的对角线的长也不是有理数,是 一个无限不循环小数 4、27页,试一试
有理数又可以分为:整数(正整数、 零、负整数)和分数(正分数、负分 数)
有两个边长为1的正方形,剪一剪,拼一拼,设 法得到一个大的正方形。(请同学们展示自己的 作品)
(1)设大正方形的边长为a,a满足什么
条件? (2)同伴交流。 归纳:在等式a2 =2中,a既不是整数, 也不是分数,所以a不是有理数。
数学是锻炼思维的体操,体操能 使你身体健康,动作敏捷;数学能使 你的思想正确敏捷,有了正确的思想, 你才有可能爬上科学的大山。 同学们,让我们一起走进美妙的数 学世界——
3.1无理数
议一议:把下列各数表示成小数, 你发现了什么?
答:有理数总可以用有限小数或无限 循环小数表示。反过来,任何有限小 数或无限循环小数也都是有理数。
相关文档
最新文档