合情推理与演绎证明-课件

合集下载

合情推理和演绎推理 [配套课件].ppt

合情推理和演绎推理 [配套课件].ppt
第十一页,编辑于星期六:七点 二十七分。
【互动探究】 1.对大于或等于 2 的自然数 m 的 n 次方幂有如下分解方式: 22=1+3;32=1+3+5;42=1+3+5+7;…. 23=3+5;33=7+9+11;43=13+15+17+19;…. 根据上述分解规律,则 52=1+3+5+7+9,若 m3(m∈N*) 的分解中最小的数是 73,则 m 的值为__9.
2.直接证明与间接证明 (1)了解直接证明的两种基本方法——分析法和综合法;了
解分析法和综合法的思考过程、特点.
(2)了解间接证明的一种基本方法——反证法;了解反证法 的思考过程、特点.
利用归纳和类比的方法进行简单推理的选择题或填空题在
高考中有所体现,是容易题.
推理是思维的基本形式之一,它由前提和结论两部分组成;
=0 ,
球心在(x0,y0,z0)的球的一般方程为___(x_-__x_0)_2+__(_y_-__y_0)_2+__ _(_z_-_z_0_)2_=__r2__.
2.在平面内,三角形的面积为 s,周长为 c,则它的内切 圆的半径 r=2cs.在空间中,三棱锥的体积为 V,表面积为 S,利
第七页,编辑于星期六:七点 二十七分。
该类事物的全部对象具有这些特征的推理,或者由个别事实概
第五页,编辑于星期六:七点 二十七分。
括出一般结论的推理.简言之,归纳推理是由___部_到分____整、体由 个___别_到_一__般_的推理.
②类比推理:由两类对象具有某些类似特征和其中一类对 象具有的某些已知特征,推出另一类对象也具有这些特征的推 理,简言之,类比推理是由____特到殊____特的殊推理.
第十章 推理与证明
1.合情推理与演绎推理 (1)了解合情推理的含义,能利用归纳和类比等进行简单的 推理,了解合情推理在数学发现中的作用.

选修2-2--2.1合情推理与演绎推理课件

选修2-2--2.1合情推理与演绎推理课件

(1) (2) (3)
(4)
(5)
练习:(2009年广东)设平面内有n条直线(n≥3),其中有
且仅有两条直线互相平行,任意三条直线不过同一点.若
5 用f(n)表示这n条直线交点的个数, f(4)=
时,f(n)= 1 (n 2)(n 1) .(用n表示) 2
,当n>4
f(4)f(3)3
f(5)f(4)4
简言之,归纳推理是由部分到整体、由个 别到一般的推理。
例如: 金受热后体积膨胀, 银受热后体积膨胀, 铜受热后体积膨胀, 铁受热后体积膨胀, 金、银、铜、铁是金属的部分小类对象,它们受 热后分子的凝聚力减弱,分子运动加速,分子彼 此距离加大,从而导致体积膨胀
所以,所有的金属受热后都体积膨胀。
例如: 磨擦双手(S1 )能产生热(P), 敲击石头(S2 )能产生热(P) , 锤击铁块(S3 )能产生热(P) , 磨擦双手、敲击石头、锤击铁块都是物质运动;
简言之,类比推理是由特殊到特殊的推理.
发明行星三大运动定律的开普勒曾说类比 推理数是学「家自波然利奧亚妙曾的指参出与“者类」比和是自一己个「伟最大好的 引的路老人师,求」解立体几何往往有赖于平面几何的类 比问题.”
【例1】如图,利用类比推测球的有关性质
球心与截面圆(不经过球 心的截面圆)圆心的连线 垂直于截面圆。
不是质数,从而推翻了费马的猜想。
据说春秋时代鲁国的公输班(后人称鲁班, 被认为是木匠业的祖师)一次去林中砍树 时被一株齿形的茅草割破了手,这桩倒霉 事却使他发明了锯子.
鲁班的思路是这样的:
茅草是齿形的;
茅草能割破手.
我需要一种能割断木头的工具;
它也可以是齿形的.
这个推理过程是归纳推理吗?

合情推理与演绎推理PPT优秀课件(全套4个) 3

合情推理与演绎推理PPT优秀课件(全套4个) 3

案例:
完成下列推理, 它们是合情推理吗? 它们有什么特点?
1.所有的金属都能导电, 因为铜是金属, 所以铜能够导电. 一般性的原理 特殊情况 结论
2.一切奇数都不能被2整除, 一般性的原理 因为2007是奇数, 所以2007不能被2整除. 特殊情况 结论
案例分析2:
从一般性的原理出发,推出某个特殊情况 下的结论,这种推理称为演绎推理.
作业:
1.课本37页A组7,B组3; 2.在数列{an}中,
2 a * n a 1 , a , n N 1 n 1 2 a n
试猜想这个数列的通项公式;
并用演绎推理证明你的猜想.
谢谢大家!
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰· B· 塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔· 卡内基] 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯· 瑞斯] 88.每个意念都是一场祈祷。――[詹姆士· 雷德非] 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰] 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿· 休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯· 奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰· 纳森· 爱德瓦兹] 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰· 拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉· 班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳] 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔· 普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉· 彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔· 卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰· 罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳· 厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝· C· 科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔· 卡内基] 110.每天安静地坐十五分钟· 倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克· 佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根· 皮沙尔· 史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。 ――[阿萨· 赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉· 海兹利特] 116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯· 里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可· 汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰· 夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯· 米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子] 126.在寒冷中颤抖过的人倍觉太阳的温暖,经历过各种人生烦恼的人,才懂得生命的珍贵。――[怀特曼] 127.一般的伟人总是让身边的人感到渺小;但真正的伟人却能让身边的人认为自己很伟大。――[G.K.Chesteron] 128.医生知道的事如此的少,他们的收费却是如此的高。――[马克吐温] 129.问题不在于:一个人能够轻蔑、藐视或批评什么,而是在于:他能够喜爱、看重以及欣赏什么。――[约翰· 鲁斯金]

合情推理演绎推理ppt课件

合情推理演绎推理ppt课件



数学
第35页
返回导航
(2)等差数列与等比数列的类比
等差数列 等比数列
两项之和 两项之积
两项之差 两项之比
前 n 项之和 前 n 项之积


数学
第36页
返回导航
数学
1.(2017·陕西西安模拟)若等差数列{an}的首项为 a1,公差为 d, 前 n 项的和为 Sn,则数列Snn为等差数列,且通项为Snn=a1+(n- 1)·d2.类似地,请完成下列命题:若各项均为正数的等比数列{bn} 的首项为 b1,公比为 q,前 n 项的积为 Tn,则数列__________为 等比数列,通项为________.
第27页
返回导航
数学
解:如图所示,四面体 P-ABC 中,设 S1,S2,S3,S 分别表示△ PAB,△PBC,△PCA,△ABC 的面积,α,β,γ 依次表示面 PAB, 面 PBC,面 PCA 与底面 ABC 所成二面角的大小,类比得:S=S1cos α+S2cos β+S3cos γ.
第28页
返回导航
数学
(3)在计算“1×2+2×3+…+n(n+1)”时,某同学学到了如下一
种方法:先改写第 k 项:k(k+1)=13[k(k+1)(k+2)-(k-1)k(k+1)], 由此得
1×2=13(1×2×3-0×1×2),
2×3=13(2×3×4-1×2×3),
…,
n(n+1)=13[n(n+1)(n+2)-(n-1)n(n+1)].
第3页
返回导航
数学
(2)类比推理 ①定义:由两类对象具有某些类似特征和其中一类对象的某些 已知特征,推出另一类对象也具有 这些特征 的推理. ②特点:是由 特殊到 特殊的推理.

高中数学选修2《合情推理与演绎推理》课件

高中数学选修2《合情推理与演绎推理》课件

【推理】
推理是根据一个或几个已知的判断来确定一个新 的判断的思维过程. 合情推理具有猜测和发现新结论、探索和提供解 决问题的思路和方向的作用; 演绎推理则具有证明结 论, 整理和建构知识体系的作用.
合情推理又分归纳推理与类比推理.
问题1. 观察以下几个一元二次方程的根与常数 项, 你有什么发现? 5x2+2x+3=0, 5x2+2x-3=0, x2+x+1=0, x2+x-1=0, 2x2-3x+4=0, 2x2-3x-4=0. 问题2. 观察下面几个偶数的分解, 你有什么发现? 6=3+3, 8=3+5, 10=5+5, 12=5+7, 14=7+7, 16=5+11. 方程 5x2+2x+3=0, x2+x+1=0, 2x2-3x+4=0 无实根; 方程 5x2+2x-3=0, x2+x-1=0, 2x2-3x-4=0 有二不 等实根. 由问题 1 猜测: 一元二次方程中, 常数项为正时, 方程无实根; 常数项为负时, 方程有两不等实根.
归纳推理可以发现新事实, 获得新结论.
【课时小结】
2. 归纳推理的基本思路
(1) 在部分对象中寻找相同点. 如问题 1, 2. (2) 在部分对象中分析运行结果的相同点. 如例1, 例4. (3) 在部分对象中寻找相关关系. 如练习第2题.
习题 2.1 A组 第 1、2、3 题.
习题 2.1 A 组 2an 1. 在数列{an}中, a1=1, an+1 = (nN*), 试 2 + an 猜想这个数列的通项公式. 解: a1=1. 2a1 21 2 = = . a2 = 2 + a1 2 + 1 3 2 2 2a2 1 3 = . = a3 = ∴猜想: 2 2 2 + a2 2 + 3 an = 2 . n+1 1 2 2a3 2 2 = . = a4 = 2 + a3 2 + 1 5 2 2 2 1 2 2 观察前 4 项: a1 = 1 = , a2 = , a3 = = , a4 = . 2 3 2 4 5

高中数学 2.1.1《合情推理与演绎推理》课件 新人教选修2-2

高中数学 2.1.1《合情推理与演绎推理》课件 新人教选修2-2
A
B c2=a2+b2
a
c
s1 o s2
s3
Cb

B
C
猜想: S2△ABC =S2△AOB+S2△AOC+S2△BOC
第十二页,共20页。
例3:(2001年上海)已知两个圆①x2+y2=1:与② x2+(y-3)2=1,则由①式减去②式可得上述两圆 的对称轴方程.将上述命题在曲线仍然为圆 的情况下加以推广,即要求得到一个更一般 的命题,而已知命题应成为所推广命题的一 个特例,推广的命题为----设--圆---的---方--程---为---①-------(b-x≠---a-d-)-)2-+,-(则-y---由-b-)①-2-=-r式-2-与减---②去--(②-x---式-c-)可-2-+-得(--y上---d述-)-2-两=-r-圆-2-(-的-a-≠对---称c-或-轴-----
第十九页,共20页。
谢谢大家
2023/5/16
生产计划部
第二十页,共20页。
统称为合情推理。
合情推理常常能为我们提供证明的思路和方向
第十四页,共20页。
例:如图有三根针和套在一根针上的若干金属片. 按下
列规则,把金属片从一根针上全部移到另一根针上.
1.每次只能移动1个金属片;
2.较
大的金属片不能放在较小的金属片上面.试推测;把n个金属
片从1号针移到3号针,最少需要移动多少次?
归纳是立足于观察、经验、实验和对有限资料分析
的基础上.提出带有规律性的结论.
需证明
第三页,共20页。
练:数一数图中的凸多面体的面数F、顶点数V
和棱数E,然后用归纳法推理得出它们之间 的关系.

(vip免费)2.1《合情推理与演绎证明》课件1

(vip免费)2.1《合情推理与演绎证明》课件1

表 21
圆的概念和性质
球的类似概念和性质
圆的周长
圆的面积
圆心与弦非直径中
点的连线垂直于弦.
与圆心距离相等的两弦相等; 与圆心距离不等的两弦不等, 距圆心较近的弦较长.
以点x0,y0 为圆心,r为半 径的圆的方程为x x0 2 y y0 2 r2.
开普勒(Ke pler ,1571 1630 ) 说 : " 我珍惜类 比胜过任何 别 的 东 西,它 是我最可信 赖 的 老 师,它 能揭示自然 界 的 秘 密."
法中的1与加法中的0类似,即任意实数与1的积都
等于原来的数,即
a0 a
a1 a
数学中还有许多集合具有这4条运算性质.法国天才的
数学家伽罗瓦Galois提出了" 群的概念,用来表示具有
这种运算性质的集合.
运用类比推理常常先要寻找合适的类 比对象 ,例如 ,在立体几何中,为了研究 四面体的性质,我们可在平面几何中寻 找一个研究过的对象,通过类比这个对 象的性质,获得四面体性质的猜想以及 证明这些猜想的思路.
例2 类比实数的加法和乘法,列出它们相似的
运算性质.
分析 实数的加法和乘法都是由两个数参与运算,
都 满 足 一 定 的 运 算 律, 都 存 在 逆 运 算,而 且"0" "1" 分
别在加法和乘法中占有特殊的地位.因此我们可以
从上述4个方面来类比这两种运算.
解 1两个实数经过加法运算或乘法运算后,所
1827)曾经说过:"即 联 想,再 进 行 归 纳 类 比,然
使在数学里,发现真 后 提 出 猜 想 的 推 理,我 们
理的主要工具也是 把 他 们 统 称 为合情推理

高中数学 合情推理与演绎证明课件十一 新人教A选修12

高中数学 合情推理与演绎证明课件十一 新人教A选修12
1.请同学们阅读课本P30-32 2.类比推理:由两种对象具有某些类 似特征,推出另一类对象也有这些 特征的推理称为类比推理(类比)。 三、应用举例
圆的概念和性质
球的类似概念和性质
圆的周长
球的表面积
圆的面积
球的体积
圆心与弦中点的连线垂 球心与小圆圆心的连线垂
直于弦
直于球的小圆
与圆心距离相等的两弦 与球心距离相等的两圆相
例2.类比实数的加法和乘法,列出它 们相似的运算性质。
解:⑴两个实数的两种运算结果仍然
是一个实数。
⑵两种运算都满足交换律、结合
律,即:
a+b=b+a (a+b)+c=a+(b+c)
a×b=b×a (a×b)×c=a×(b×c)
⑶两种运算都有逆运算:
x=-a
x=1/a(a≠0)
⑷两种运算都有运算的恒等性(不变
归纳、类比
提出猜想
五、课堂练习 课本P38 练习:3。
三角形
四面体
三角形的两遍之和大于 四面体任意三个面之和大于
第三边
第四个面
三角形的中位线等于第 四面体的中位面的面积等于第四 三边的一半而且平行于 面面积的1/4,且平行于第四面 第三边
三角形的三条内角平分 四面体的六个二面角的平分面 线交于一点,且这个点 交于一点,且这个点是四面体 是三角形内切圆的圆心 内且球的球心
三角形的面积为 s=1/2(a+b+c)r(r为三 角形内切圆的半径)
四面体的体积为
V=1/3(S1+S2+S3+S4)r (S1,S2,S3,S4为四个面的面积,
r为内切球的半径)
六、课外作业
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三棱锥
4
4
6
四棱锥
5
58Βιβλιοθήκη 三棱柱56
9
五棱锥
立方体
正八面体
五棱柱
截角正方体
尖顶塔
多面体 面数(F) 顶点数(V) 棱数(E)
三棱锥
4
4
6
四棱锥
5
5
8
三棱柱
5
6
9
五棱锥
6
6
10
立方体
6
8
12
正八面体
8
6
12
五棱柱
截角正方体
尖顶塔
猜想 F+V-E=2 欧拉公式
多面体 面数(F) 顶点数(V) 棱数(E)
2
1
3
解;设an表示移动n块金属片时的移动次数. 当n=1时,a1=1
当当nn==23时时,,aa23==
3 7
当n=4时,a4= 15
猜想 an= 2n -1
2
1
3
作业:P64 1. 3. 4

9、有时候读书是一种巧妙地避开思考 的方法 。2021/2/282021/2/28Sunday, February 28, 2021
18 =7+11, …,
1000=29+971, 1002=139+863,

这种由某类事物的部分对象具有某些特征,
推出该类事物的全部对象都具有这些特征
的推理,或者由个别事实概栝出一般结论
的推理,称为归纳推理.(简称;归纳)
归纳推理的几个特点;
1.归纳是依据特殊现象推断一般现象,因而,由归纳
所得的结论超越了前提所包容的范围.
歌德巴赫猜想: 即:偶数=奇质数+奇质数
“任何一个不小于6的偶数都等于两个奇奇 数之和”
歌德巴赫猜想的提出过程:
3+7=10,3+17=20,13+17=30,
改写为:10=3+7,20=3+17,30=13+17.
6=3+3, 8=3+5,
10=5+5, 12=5+7, 14=7+7, 16=5+11,
例:如图有三根针和套在一根针上的若干金属片. 按下列规则,把金属片从一根针上全部移到另一根针上. 1.每次只能移动1个金属片; 2.较大的金属片不能放在较小的金属片上面.试推测; 把n个金属片从1号针移到3号针,最少需要移动多少次?
解;设an表示移动n块金属片时的移动次数. 当n=1时,a1=1 当n=2时,a2= 3
⑵ 提出带有规律性的结论,即猜想; ⑶ 检验猜想。
例1:已知数列{an}的第1项a1=1且an+1
=
an 1 + an
(n=1,2,3 …),试归纳出这个数列的通项公式.
例2:数一数图中的凸多面体的面数F、顶
点数V和棱数E,然后用归纳法推理得出它们 之间的关系.
多面体 面数(F) 顶点数(V) 棱数(E)
歌德巴赫猜想: “任何一个不小于6的偶数都等于两个奇奇 数之和”
即:偶数=奇质数+奇质数
哥德巴赫猜想(Goldbach Conjecture)
世界近代三大数学难题之一。哥德巴赫是德国一位 中学教师,也是一位著名的数学家,生于1690年, 1725年当选为俄国彼得堡科学院院士。1742年,哥 德巴赫在教学中发现,每个不小于6的偶数都是两 个素数(只能被和它本身整除的数)之和。如6=3 +3,12=5+7等等。 公元1742年6月7日哥德巴赫(Goldbach)写信给当时 的大数学家欧拉(Euler),提出了以下的猜想: (a) 任何一个>=6之偶数,都可以表示成两个奇质 数之和。 (b) 任何一个>=9之奇数,都可以表示成三个奇质 数之和。
哥德巴赫猜想(Goldbach Conjecture)
目前最佳的结果是中国数学家陈景润於1966 年证明的,称为陈氏定理(Chen‘s Theorem) ? “任何充份大的偶数都是一个质数与一个 自然数之和,而後者仅仅是两个质数的乘积 。” 通常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式。

13、知人者智,自知者明。胜人者有 力,自 胜者强 。2021/2/282021/2/282021/2/282021/2/282/28/2021

14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021年2月28日星期 日2021/2/282021/2/282021/2/28

15、最具挑战性的挑战莫过于提升自 我。。2021年2月2021/2/282021/2/282021/2/282/28/2021
哥德巴赫猜想(Goldbach Conjecture)
在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和( 简称“s + t ”问题)之进展情况如下: 1920年,挪威的布朗(Brun)证明了 “9 + 9 ”。 1924年,德国的拉特马赫(Rademacher)证明了“7 + 7 ”。 1932年,英国的埃斯特曼(Estermann)证明了 “6 + 6 ”。 1937年,意大利的蕾西(Ricei)先後证明了“5 + 7 ”, “4 + 9 ”, “3 + 15 ”和“2 + 366 ”。 1938年,苏联的布赫 夕太勃(Byxwrao)证明了“5 + 5 ”。 1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4 + 4 ”。 1948年,匈牙利的瑞尼(Renyi)证明了“1 + c ”,其中c是一很大的自然 数。 1956年,中国的王元证明了 “3 + 4 ”。 1957年,中国的王元先後证明了 “3 + 3 ”和 “2 + 3 ”。 1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1 + 5 ”, 中 国的王元证明了“1 + 4 ”。 1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了“1 + 3 ”。 1966年,中国的陈景润证明了 “1 + 2 ”。 最终会由谁攻克 “1 + 1 ”这个难题呢?现在还没法预测。
2.归纳是依据若干已知的、没有穷尽的现象推断尚
属未知的现象,因而结论具有猜测性.
3.归纳的前提是特殊的情况,因而归纳是立足于观
察、经验和实验的基础之上.
归纳是立足于观察、经验、实验和对有限资料分
析的基础上.提出带有规律性的结论.
需证明
归纳推理的一般步骤:
⑴ 对有限的资料进行观察、分析、归纳 整理;
这就是著的哥德巴赫猜想。欧拉在6月30日给他的回信中说, 他相信这个猜想是正确的,但他不能证明。叙述如此简单的问 题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引 起了许多数学家的注意。从提出这个猜想至今,许多数学家都 不断努力想攻克它,但都没有成功。当然曾经有人作了些具体 的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, . . . . 等等。有人对33×108以内且大过6之偶数一 一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚 待数学家的努力。从此,这道著名的数学难题引起了世界上成 千上万数学家的注意。200年过去了,没有人证明它。哥德巴 赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了 20世纪20年代,才有人开始向它靠近。

10、阅读一切好书如同和过去最杰出 的人谈 话。2021/2/282021/2/282021/2/282/28/2021 11:39:05 AM

11、越是没有本领的就越加自命不凡 。2021/2/282021/2/282021/2/28Feb-2128-Feb-21

12、越是无能的人,越喜欢挑剔别人 的错儿 。2021/2/282021/2/282021/2/28Sunday, February 28, 2021
三棱锥
4
4
6
四棱锥
5
5
8
三棱柱
5
6
9
五棱锥
6
6
10
立方体
6
8
12
正八面体
8
6
12
五棱柱
7
10
15
截角正方体 7
10
15
尖顶塔
9
9
16
练习:f(n)=1+1+1+ + 1(n N*)计算得
23
n
f(2)=32,f(4)>2,f(8)>25,f(16)>3,f(32)
7 2
,推测当n 2时,有-----------------.
新课标人教版课件系列
《高中数学》
选修1-2
2.1《合情推理与 演绎证明-合情推理》
教学目标
• 1. 了解演绎推理 的含义。 2. 能正确地运用演绎推理 进行简单的推理。 3. 了解合情推理与演绎推理之间的联系与差 别。
• 教学重点:正确地运用演绎推理 进行简单 的推理
• 教学难点:了解合情推理与演绎推理之间的 联系与差别。

16、业余生活要有意义,不要越轨。2021/2/282021/2/28Februar y 28, 2021

17、一个人即使已登上顶峰,也仍要 自强不 息。2021/2/282021/2/282021/2/282021/2/28
谢谢观赏
You made my day!
我们,还在路上……
相关文档
最新文档