函数与映射的概念及其表示方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数与映射的概念

★知识梳理

1.函数的概念 (1)函数的定义:

设B A 、是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的每一个数x ,在集合B 中都有唯一确定的数和它对应,那么这样的对应叫做从A 到B 的一个函数,通常记为A x x f y ∈=),( (2)函数的定义域、值域

在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做)(x f y =的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}

A x x f ∈)(称为函数)(x f y =的值域。

(2)函数的三要素:定义域、值域和对应法则 2.映射的概念

设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任意元素,在集合B 中都有唯一确定的元素与之对应,那么这样的单值对应叫做从A 到B 的映射,通常记为

B A f →:

★重、难点突破

重点:掌握映射的概念、函数的概念,会求函数的定义域、值域 难点:求函数的值域和求抽象函数的定义域 重难点:1.关于抽象函数的定义域

求抽象函数的定义域,如果没有弄清所给函数之间的关系,求解容易出错误 问题1:已知函数)(x f y =的定义域为][b a ,,求)2(+=x f y 的定义域

[误解]因为函数)(x f y =的定义域为][b a ,,所以b x a ≤≤,从而222+≤+≤+b x a 故)2(+=x f y 的定义域是]2,2[++b a

[正解]因为)(x f y =的定义域为][b a ,,所以在函数)2(+=x f y 中,b x a ≤+≤2, 从而22-≤≤-b x a ,故)2(+=x f y 的定义域是]2,2[--b a 即本题的实质是求b x a ≤+≤2中x 的范围

问题2:已知)2(+=x f y 的定义域是][b a ,,求函数)(x f y =的定义域 [误解]因为函数)2(+=x f y 的定义域是][b a ,,所以得到b x a ≤+≤2,从而

22-≤≤-b x a ,所以函数)(x f y =的定义域是]2,2[--b a

[正解]因为函数)2(+=x f y 的定义域是][b a ,,则b x a ≤≤,从而222+≤+≤+b x a 所以函数)(x f y =的定义域是]2,2[++b a 即本题的实质是由b x a ≤≤求2+x 的范围 即)(x f 与)2(+x f 中x 含义不同

1. 求值域的几种常用方法

(1)配方法:对于(可化为)“二次函数型”的函数常用配方法,如求函数

4cos 2sin 2+--=x x y ,可变为2)1(cos 4cos 2sin 22+-=+--=x x x y 解决

(2)基本函数法:一些由基本函数复合而成的函数可以利用基本函数的值域来求,如函数

)32(log 22

1++-=x x y 就是利用函数u y 2

1log =和322++-=x x u 的值域来求。

(3)判别式法:通过对二次方程的实根的判别求值域。如求函数2

21

22

+-+=

x x x y 的值域 由2

2122+-+=x x x y 得012)1(22

=-++-y x y yx ,若0=y ,则得21-=x ,所以0

=y 是函数值域中的一个值;若0≠y ,则由0)12(4)]1(2[2

≥--+-=∆y y y 得

021332133≠+≤≤-y y 且,故所求值域是]2

13

3,2133[+- (4)分离常数法:常用来求“分式型”函数的值域。如求函数1

cos 3

cos 2+-=x x y 的值域,因为

1cos 521cos 3cos 2+-=+-=x x x y ,而]2,0(1cos ∈+x ,所以]2

5

,(1cos 5--∞∈+-x ,故

]2

1

,(--∞∈y

(5)利用基本不等式求值域:如求函数4

32+=x x

y 的值域

当0=x 时,0=y ;当0≠x 时,x

x y 43+

=

,若0>x ,则44

24=⋅≥+

x

x x x 若0

x x x x x x ,从而得所求值域是]4

3

,43[- (6)利用函数的单调性求求值域:如求函数])2,1[(222

4

-∈+-=x x x y 的值域 因)14(2282

3

-=-=x x x x y ,故函数])2,1[(222

4

-∈+-=x x x y 在)2

1

,1(--上递减、

在)0,21(-

上递增、在)21,0(上递减、在)2,21(上递增,从而可得所求值域为]30,8

15

[ (7)图象法:如果函数的图象比较容易作出,则可根据图象直观地得出函数的值域(求某些分段函数的值域常用此法)。

★热点考点题型探析

考点一:判断两函数是否为同一个函数

[例1] 试判断以下各组函数是否表示同一函数?

(1)2)(x x f =,33)(x x g =;

(2)x

x x f =

)(,⎩⎨

⎧<-≥=;

01

,01)(x x x g

(3)1212)(++=n n x x f ,1

212)()(--=n n x x g (n ∈N *);

(4)x

x f =

)(1+x ,x x x g +=

2)(;

(5)12)(2

--=x x x f ,12)(2

--=t t t g

[解题思路]要判断两个函数是否表示同一个函数,就要考查函数的三要素。 [解析] (1)由于x x x f ==2)(,x x x g ==33)(,故它们的值域及对应法则都不相同,

所以它们不是同一函数.

(2)由于函数x

x x f =

)(的定义域为),0()0,(+∞-∞ ,而⎩⎨

⎧<-≥=;

01

,01

)(x x x g 的定

义域为R ,所以它们不是同一函数.

(3)由于当n ∈N *时,2n ±1为奇数,∴x x x f n n ==++1212)(,x x x g n n ==--1

212)()(,

它们的定义域、值域及对应法则都相同,所以它们是同一函数.

(4)由于函数x

x f =

)(1+x 的定义域为{}

0≥x x ,而x x x g +=

2)(的定义域

为{}

10-≤≥x x x 或,它们的定义域不同,所以它们不是同一函数.

(5)函数的定义域、值域和对应法则都相同,所以它们是同一函数. [答案](1)、(2)、(4)不是;(3)、(5)是同一函数

【名师指引】构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系确定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数为同一函数。第(5)小题易错判断成它们是不同的函数。原因是对函数的概念理解不透,在函数的定义域及对应法则f 不变的条件下,自变量变换字母对于函数本身并无影响,比如1)(2

+=x x f ,

1)(2+=t t f ,1)1()1(2++=+u u f 都可视为同一函数.

[新题导练]

相关文档
最新文档