初三数学教案
初中数学教案设计(共12篇)
初中数学教案设计〔共12篇〕篇1:初中数学教案设计一、教学目的:1、知道一次函数与正比例函数的定义。
2、理解掌握一次函数的图象的特征和相关的性质。
3、弄清一次函数与正比例函数的区别与联络。
4、掌握直线的平移法那么简单应用。
5、能应用本章的根底知识纯熟地解决数学问题。
二、教学重、难点:重点:初步构建比拟系统的函数知识体系。
难点:对直线的平移法那么的理解,体会数形结合思想。
三、教学过程:1、一次函数与正比例函数的定义:一次函数:一般地,假设y=kx+b(其中k,b为常数且k≠0),那么y是一次函数。
正比例函数:对于 y=kx+b,当b=0,k≠0时,有y=kx,此时称y是x的正比例函数,k为正比例系数。
2、一次函数与正比例函数的区别与联络:(1)从解析式看:y=kx+b(k≠0,b是常数)是一次函数;而y=kx(k≠0,b=0)是正比例函数,显然正比例函数是一次函数的特例,一次函数是正比例函数的推广。
(2)从图象看:正比例函数y=kx(k≠0)的图象是过原点(0,0)的一条直线;而一次函数y=kx+b(k≠0)的图象是过点(0,b)且与y=kx平行的一条直线。
根底训练:1、写出一个图象经过点(1,— 3)的函数解析式为:2、直线y=—2X—2不经过第象限,y随x的增大而。
3、假如P(2,k)在直线y=2x+2上,那么点P到x轴的间隔是:4、正比例函数 y =(3k—1)x,,假设y随x的增大而增大,那么k是:5、过点(0,2)且与直线y=3x平行的直线是:6、假设正比例函数y =(1—2m)x 的图像过点A(x1,y1)和点B(x2,y2)当x1y2,那么m的取值范围是:7、假设y—2与x—2成正比例,当x=—2时,y=4,那么x= 时,y = —4。
8、直线y=— 5x+b与直线y=x—3都交y轴上同一点,那么b的值为。
9、圆O的半径为1,过点A(2,0)的直线切圆O于点B,交y轴于点C。
(1)求线段AB的长。
初中数学优秀教案4篇
初中数学优秀教案4篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!初中数学优秀教案4篇数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。
初三数学《平均数》教案(优秀5篇)
初三数学《平均数》教案(优秀5篇)《平均数》教案篇一一、教学目标(一)教学知识点1、会求加权平均数,并体会权的差异对结果的影响、2、理解算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题、(二)能力训练要求1、通过利用平均数解决实际问题,发展学生的数学应用能力、2、通过探索算术平均数和加权平均数的联系和区别,发展学生的求同和求异思维、(三)情感与价值观要求通过解决实际问题,体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心、二、教学重点1、会求加权平均数,并体会权的差异对结果的影响,认识到权的重要性、2、探索算术平均数和加权平均数的联系和区别、三、教学难点探索算术平均数和加权平均数的联系和区别、四、教学方法探讨式教学、五、教具准备投影片三张:第一张:补充练习(记作8、1、2 A);第二张:补充练习(记作8、1、2 B);第三张:补充练习(记作8、1、2 C)、六、教学过程Ⅰ、创设问题情境,导入新课在上节课我们学习了什么叫算术平均数和加权平均数,以及如何求一组数据的算术平均数和加权平均数、本节课我们继续研究生活中的加权平均数,以及算术平均数和加权平均数的联系与区别、Ⅱ、讲授新课1、例题讲解某学校对各个班级的教室卫生情况的考查包括以下几项:黑板、门窗、桌椅、地面、归纳总结篇二1、通过今天的分一分,算一算,同学们有什么收获?2、现在谁来说一说四(1)班和四(2)的“平均分”是怎么回事?板书设计:平均数男生女生6+9+7+6=28(个) 10+4+7+5+4=30(个)28÷4=7(个)30÷5=6(个)平均数: 7 平均数: 6《平均数》数学教案篇三一、说教材1、教学内容:北师大版五年级数学下册第八单元《平均数的再认识》2、教材分析:随着科学技术和数学本身的发展,统计学已成为现代数学方法的一个重要部分和应用数学的重要领域。
大到科学研究,小到学生的日常生活,统计无处不在。
初三数学教学教案七篇
初三数学教学教案七篇初三数学教学教案七篇初三数学教学教案都有哪些?教案要成为一篇独具特色“课堂教学散文”或者是课本剧。
所以,开头、经过、结尾要层层递进,扣人心弦,达到立体教学效果。
下面是小编为大家带来的初三数学教学教案七篇,希望大家能够喜欢!初三数学教学教案教学内容一元二次方程概念及一元二次方程一般式及有关概念. 教学目标2了解一元二次方程的概念;一般式ax+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目.1.通过设臵问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情. 重难点关键1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念. 教学过程一、复习引入学生活动:列方程. 问题(1)古算趣题:“执竿进屋”笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。
有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。
借问竿长多少数,谁人算出我佩服。
如果假设门的高为x尺,那么,这个门的宽为_______尺,长为_______尺,根据题意,得________. 整理、化简,得:__________. 二、探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有几个未知数(2)按照整式中的多项式的规定,它们次数是几次 (3)有等号吗还是与多项式一样只有式子老师点评:(1)都只含一个未知数x;(2)它们的次数都是2次的;(3)都有等号,是方程. 因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的次数是2(二次)的方程,叫做一元二次方程.2一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.2一个一元二次方程经过整理化成ax+bx+c=0(a≠0)后,其中ax是二次项,a 是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.2分析:一元二次方程的一般形式是ax+bx+c=0(a≠0).因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.解:略注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.2例2.(学生活动:请二至三位同学上台演练) 将方程(x+1)+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.22分析:通过完全平方公式和平方差公式把(x+1)+(x-2)(x+2)=1化成ax+bx+c=0(a≠0)的形式. 解:略三、巩固练习教材练习1、2补充练习:判断下列方程是否为一元二次方程(1)3x+2=5y-3 (2) x=4 (3) 3x-222252 2 2=0 (4) x-4=(x+2) (5) ax+bx+c=0 x四、应用拓展22例3.求证:关于x的方程(m-8m+17)x+2mx+1=0,不论m取何值,该方程都是一元二次方程.2分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m-8m+17≠0即可.22证明:m-8m+17=(m-4)+12∵(m-4)≥022∴(m-4)+1 0,即(m-4)+1≠0∴不论m取何值,该方程都是一元二次方程.2练习: 1.方程(2a—4)x—2bx+a=0, 在什么条件下此方程为一元二次方程在什么条件下此方程为一元一次方程/4m/-42.当m为何值时,方程(m+1)x+27mx+5=0是关于的一元二次方程五、归纳小结(学生总结,老师点评) 本节课要掌握:2(1)一元二次方程的概念;(2)一元二次方程的一般形式ax+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.初三数学教学教案【篇7】1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解. 重点通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题. 难点一元二次方程及其二次项系数、一次项系数和常数项的识别.活动1 复习旧知1.什么是方程你能举一个方程的例子吗2.下列哪些方程是一元一次方程并给出一元一次方程的概念和一般形式.(1)2x-1 (2)mx+n=0 (3)1x+1=0 (4)x2=13.下列哪个实数是方程2x-1=3的解并给出方程的解的概念.A.0B.1C.2D.3活动2 探究新知根据题意列方程.1.教材第2页问题1.提出问题:(1)正方形的大小由什么量决定本题应该设哪个量为未知数(2)本题中有什么数量关系能利用这个数量关系列方程吗怎么列方程(3)这个方程能整理为比较简单的形式吗请说出整理之后的方程.2.教材第2页问题2.提出问题:(1)本题中有哪些量由这些量可以得到什么(2)比赛队伍的数量与比赛的场次有什么关系如果有5个队参赛,每个队比赛几场一共有20场比赛吗如果不是20场比赛,那么究竟比赛多少场(3)如果有x个队参赛,一共比赛多少场呢3.一个数比另一个数大3,且两个数之积为0,求这两个数.提出问题:本题需要设两个未知数吗如果可以设一个未知数,那么方程应该怎么列4.一个正方形的面积的2倍等于25,这个正方形的边长是多少活动3 归纳概念提出问题:(1)上述方程与一元一次方程有什么相同点和不同点(2)类比一元一次方程,我们可以给这一类方程取一个什么名字(3)归纳一元二次方程的概念.1.一元二次方程:只含有________个未知数,并且未知数的次数是________,这样的________方程,叫做一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.提出问题:(1)一元二次方程的一般形式有什么特点等号的左、右分别是什么(2)为什么要限制a≠0,b,c可以为0吗(3)2x2-x+1=0的一次项系数是1吗为什么3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).活动4 例题与练习例1 在下列方程中,属于一元二次方程的是________.(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;(4)2x2-2x(x+7)=0.总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.例2 教材第3页例题.例3 以-2为根的一元二次方程是( )A.x2+2x-1=0B.x2-x-2=0C.x2+x+2=0D.x2+x-2=0总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.练习:1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.(1)4x2=81;(2)(3x-2)(x+1)=8x-3.3.教材第4页练习第2题.4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.答案:1.a≠1;2.略;3.略;4.k=4.活动5 课堂小结与作业布置课堂小结我们学习了一元二次方程的哪些知识一元二次方程的一般形式是什么一般形式中有什么限制你能解一元二次方程吗作业布置教材第4页习题21.1第1~7题.。
初三数学《平均数》教案(4篇)
初三数学《平均数》教案(4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!初三数学《平均数》教案(4篇)作为一位杰出的教职工,时常会需要准备好说课稿,借助说课稿可以有效提升自己的教学能力。
初中数学教学教案(20篇)
初中数学教学教案(20篇)初中数学教学教案篇1一、教学目标1、知识与技能目标掌握有理数的乘法法则,并利用乘法法则正确进行有理数乘法运算。
2、能力与过程目标经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、情感与态度目标通过学生自己探索出法则,让学生获得成功的喜悦。
二、教学重点、难点要点:用有理数乘法法则正确计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
三、教学过程1.创设问题情境,激发学生求知欲望,引入新课。
教师:由于长期干旱,水库放水抗旱。
每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?学生:26米。
教师:能写出算式吗?学生:……教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题2、小组探索、归纳法则(1)教师展示以下问题,学生分组探究。
以原点为起点,规定向东的方向为正方向,向西的方向为负方向。
① 2 ×32看作向东运动2米,×3看作向原方向运动3次。
结果:向运动米2 ×3=② -2 ×3-2看作向西运动2米,×3看作向原方向运动3次。
结果:向运动米-2 ×3=③ 2 ×(-3)2看作向东运动2米,×(-3)看作向反方向运动3次。
结果:向运动米2 ×(-3)=④ (-2)×(-3)-2看作向西运动2米,×(-3)看作向反方向运动3次。
结果:向运动米(-2)×(-3)=(2)学生归纳法则①符号:在上述4个式子中,我们只看符号,有什么规律?(+)×(+)=()同号得(-)×(+)=()异号得(+)×(-)=()异号得(-)×(-)=()同号得②积的绝对值等于。
③任何数与零相乘,积仍为。
(3)师生共同用文字叙述有理数乘法法则。
3、运用法则计算,巩固法则。
(1)教师按课本P75 例1板书,要求学生述说每一步理由。
初中数学《全等三角形》教案优秀6篇
教学过程
一、创设情境,导入新课
1.复习:(1)三角形中已知三个元素,包括哪几种情况?
三个角、三个边、两边一角、两角一边。
(2)到目前为止,可
2.两角和其中一角的对边。
做一做:
三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?
2、把下列各式化成最简二次根式:
六、作业
教材P、187习题11、4;A组1;B组1、
七、板书设计
数学全等三角形教案篇四
教材内容分析:
本节课内容是全章学习的开篇课,也是本章学习的主线,主要介绍全等三角形的概念和性质。通过对生活中的全等图形和抽象的几何图形的观察,使学生对全等有一个感性的认识,建立对应的概念,掌握寻找全等三角形中对应元素的方法,理解全等三角形的性质,为学习判定两个三角形全等以及第十六章轴对称图形提供了必要的理论基础。
1、被开方数的因数是整数,因式是整式、
2、被开方数中不含能开得尽方的'因数或因式、
例1?指出下列根式中的最简二次根式,并说明为什么、
分析:
说明:这里可以向学生说明,前面两小节化简二次根式,就是要求化成最简二次根式、前面二次根式的运算结果也都是最简二次根式、
例2?把下列各式化成最简二次根式:
说明:引导学生观察例2题中二次根式的特点,即被开方数是整式或整数,再启发学生总结这类题化简的方法,先将被开方数或被开方式分解因数或分解因式,然后把开得尽方的因数或因式开出来,从而将式子化简、
(二)新课
由以上例子可以看出,遇到一个二次根式将它化简,为解决问题创
这两个二次根式化简前后有什么不同,这里要引导学生从两个方面考虑,一方面是被开方数的因数化简后是否是整数了,另一方面被开方数中还有没有开得尽方的因数、
最新九年级上册数学教案优秀5篇
最新九年级上册数学教案优秀5篇目标和目标解析篇一(一)教学目标1、体会一元二次方程是刻画实际问题的重要数学模型,初步理解一元二次方程的概念;2、了解一元二次方程的一般形式,会将一元二次方程化成一般形式。
(二)目标解析1、通过建立一元方程解决相关的实际问题,让学生体会到未知数相乘导致方程的次数升高,继而产生一元二次方程。
学生能举例说明一元二次方程存在的实际背景,感受一元二次方程是重要的数学模型,体会到学习的必要性;2、将不同形式的一元二次方程统一为一般形式,学生从数学符号的角度,体会概括出数学模型的简洁和必要,针对“二次”规定a≠0的条件,完善一元二次方程的概念。
学生能够将一元二次方程整理成一般形式,准确的说出方程的各项系数,并能确定简单的字母系数方程为一元二次方程的条件。
数学九年级上册优秀教案篇二教学目标知识与技能目标:理解生活中的百分率,掌握求百分率的方法,能正确求出百分率。
过程与方法目标:通过自主探究、合作交流,理解常用百分率的含义及计算方法。
情感、态度与价值观目标:体会求百分率的用处和必要性,感受百分率源于生活,渗透数学来源于生活并服务于生活的数学思想。
教学重难点教学重点:理解生活中常见的百分率的含义。
教学难点:正确计算常见的百分率。
教学过程一、创设情境,探究导入1、课件出示看图,回答下面的问题。
(1)图中阴影部分占整个图形的几分之几?用百分数怎样表示?(2)图中空白部分占阴影部分的几分之几?用百分数怎样表示?2、百分数的意义我们班有36%的学生参加了美术兴趣小组。
世界总人口中大约有50%的人口年龄低于25岁。
一瓶农夫果园饮料中果汁含量大约是10%。
我们班学生的近视率是45%。
3、小刚做了10道题,错了2道做对的题数占总题数的几分之几?做错的题数占总题数的几分之几?做对的题数占总题数的百分之几?做错的题数占总题数的百分之几?求a是b的百分之几和求a是b的几分之几方法是相同的,都是:a÷b4、六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的几分之几?六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的百分之几?学生独立思考、同桌交流:尝试计算,得出结论。
九年级数学优秀教学设计范本5篇
九年级数学优秀教学设计范本5篇作为一名专为他人授业解惑的人民教师,时常需要准备好教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。
下面是小编为大家整理的关于九年级数学优秀教学设计范本,希望对您有所帮助!九年级数学优秀教学设计范本1【教学目标】:知识与能力:A组:计算折扣后的物品价格,运用规律快速比较选择价格相同,折扣不同的商品,并解决实际问题。
B组:计算折扣后的物品价格,利用辅助工具比较选择价格相同,折扣不同的商品,并解决实际问题。
过程与方法:通过运算,进行比较,找到规律,渗透类比的教学思想,收集数学信息,养成比较的意识。
情感态度价值观:感受折扣在生活中的应用价值,增进学好数学的信心和乐趣。
【教学重点】:计算折扣后的物品价格。
【教学难点】:提取数学信息,总结规律,会运用规律,快速选择低价商品。
【重难点确立依据】:在我们生活中常见到物品打折出售,计算折扣后的物品价格是学生所需要具有的生活技能之一,所以计算折扣后的物品价格是本节的重点。
而总结规律、运用规律解决实际问题对于学生学习起来比较困难,所以是本节的难点。
【教学准备】:课件【教学过程】:一、复习导入【设计意图:通过练习,帮助学生复习折扣与小数的换算,为学习计算打折的.物品价格做铺垫。
】3折=0.3 5折=0.5 8折=0.8 6折=0.62.5折=0.253.8折=0.38 7.2折=0.72AB组学生进行折扣与小数的转换。
二、折扣的计算【设计意图:通过设置购物的情境,帮助学生学习计算打折物品的价格,为学生学习比较选择价格相同、折扣不同的物品做铺垫。
】1、计算折扣棉鞋原价:650元,现4折出售,需要多少元钱?1折扣换算为小数:4折 = 0.42列算式:650×0.4=260 (元)2、练一练:《百科全书》原价150元,现7折出售,需要多少元钱?老师引导学生做练习。
预设生成:学生列算式时,容易直接列成150×7=1050 (元)解决措施:提示学生计算折扣的步骤:第一步折扣换算为小数。
人教版九年级上数学教案(6篇)
人教版九年级上数学教案(优秀6篇)人教版九年级上数学教案篇一一、教学思想:教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。
会用归纳演绎、类比进行简单的推理。
使学生懂得数学来源与实践又反过来作用于实践。
提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。
顽强的学习毅力和独立思考、探索的新思想。
培养学生应用数学知识解决问题的能力。
二、抓常规课堂管理入手,严格规范课前准备,立足提高课堂效率,重视课后反思,定位规律探究。
做到:1.备好课:争取每节课前,与同组同仁们讨论、研究确定教学的重点、难点、教学目标、教法、学法,甚至例题的选用,作业的布置等等,做到五备,让每一节课上出实效,让每位学生愉悦的获得新知。
认真研究教材及考纲,明确教学目标,抓住重点、难点,精心设计教学过程,重视每一章节内容与前后知识的联系及其地位,重视课后反思,设计好每一节课的师生互动的细节。
2.上好课:在备好课的基础上,上好每一个45分钟,提高45分钟的效率,让每一位同学都听的懂,对部分基础较差者要循序渐进,以选用的例题的难易程度不同,使每个学生能“吃”饱、“吃”好。
抓住课堂45分钟,严格按照教学计划,备课组统一进度,统一练习,进行教学,精心设计每一节课的每一个环节,争取每节课达到教学目标,突出重点,分散难点,增大课堂容量组织学生人人参与课堂活动,使每个学生积极主动参与课堂活动,使每个学生动手、动口、动脑,及时反馈信息提高课堂效益。
3.注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。
精选适当的练习题、测试卷,及时批改作业,发现问题及时给学生面对面的指出并指导学生搞懂弄通,不留一个疑难点,让学生学有所获。
4.批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。
人教版九年级数学上册教案5篇
人教版九年级数学上册教案5篇人教版九年级数学上册教案1一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点:理解分式的基本性质.2.难点:灵活应用分式的基本性质将分式变形.3.认知难点与突破方法教学难点是灵活应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑:与相等吗?与相等吗?为什么?2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.人教版九年级数学上册教案2一、创设情境导入新课1、介绍七巧板师:你们玩过七巧板吗?你知道七巧板是由哪些不同的图形组成的吗?一千多年前,中国人发明了七巧板。
初三数学一元二次方程教案优秀5篇
初三数学一元二次方程教案优秀5篇数学《一元二次方程》教案设计篇一教学目标1、了解整式方程和一元二次方程的概念;2、知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
教学重点和难点:重点:一元二次方程的概念和它的一般形式。
难点:对一元二次方程的一般形式的正确理解及其各项系数的确定。
教学建议:1、教材分析:1)知识结构:本小节首先通过实例引出一元二次方程的概念,介绍了一元二次方程的一般形式以及一元二次方程中各项的名称。
2)重点、难点分析理解一元二次方程的定义:是一元二次方程的重要组成部分。
方程,只有当时,才叫做一元二次方程。
如果且,它就是一元二次方程了。
解题时遇到字母系数的方程可能出现以下情况:(1)一元二次方程的条件是确定的,如方程( ),把它化成一般形式为,由于,所以,符合一元二次方程的定义。
(2)条件是用“关于的一元二次方程”这样的语句表述的,那么它就隐含了二次项系数不为零的条件。
如“关于的一元二次方程”,这时题中隐含了的条件,这在解题中是不能忽略的。
(3)方程中含有字母系数的项,且出现“关于的方程”这样的语句,就要对方程中的字母系数进行讨论。
如:“关于的方程”,这就有两种可能,当时,它是一元一次方程;当时,它是一元二次方程,解题时就会有不同的结果。
元二次方程的应用篇二12.6 一元二次方程的应用(三)一、素质教育目标(一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题。
(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识。
二、教学重点、难点1.教学重点:学会用列方程的方法解决有关增长率问题。
2.教学难点:有关增长率之间的数量关系。
下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了。
三、教学步骤(一)明确目标。
初中数学教学设计(优秀8篇)
初中数学教学设计(优秀8篇)初中数学教案篇一1.初中数学教案模板1.课题填写课题名称(初中代数类课题)2.教学目标(1)知识与技能:通过本节课的学习,掌握。
知识,提高学生解决实际问题的能力;(2)过程与方法:通过。
(讨论、发现、探究)的过程,提高。
(分析、归纳、比较和概括)的能力;(3)情感态度与价值观:通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。
3.教学重难点(1)教学重点:本节课的知识重点(2)教学难点:易错点、难以理解的知识点4.教学方法(一般从中选择3个就可以了)(1)讨论法(2)情景教学法(3)问答法(4)发现法(5)讲授法5.教学过程(1)导入简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)(2)新授课程(一般分为三个小步骤)①简单讲解本节课基础知识点(例:类比一元一次方程的解法,讲解一元一次不等式的。
解法和步骤)。
②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。
可以设计分组讨论环节(例:分组讨论一元一次不等式的解法,归纳总结一元一次不等式的方法步骤,设置系数化为一,负号要变号的易错点)。
③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题(例:设置一元一次不等式的应用题,学生再次体会一元一次不等式解决实际问题,并且再次巩固不等式的解法)。
(3)课堂小结教师提问,学生回答本节课的收获。
(4)作业提高布置作业(尽量与实际生活相联系,有所创新)。
6.教学板书2.初中数学教案格式课程编码:______________________________________总学时/ 周学时:/开课时间:年月日第周至第周授课年级、专业、班级:___________________________使用教材:_______________________________________授课教师:_______________________________________1.章节名称2.教学目的3.课时安排4.教学重点、难点5.教学过程(包括教学内容、教师活动、学生活动、教学方法等)6.复习巩固与作业要求7.教学环境及教具准备8.教学参考资料9.教学后记3.初中数学教案范文教学目的1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
初三数学名师课堂教学教案5篇
初三数学名师课堂教学教案5篇初三数学名师课堂教学教案1教学目标(1)了解算法的含义,体会算法思想.(2)会用自然语言和数学语言描述简单具体问题的算法;(3)学习有条理地、清晰地表达解决问题的步骤,培养逻辑思维能力与表达能力教学重难点重点:算法的含义、解二元一次方程组的算法设计.难点:把自然语言转化为算法语言.情境导入电影《神枪手》中描述的凌靖是一个天生的狙击手,他百发百中,最难打的位置对他来说也是轻而易举,是香港警察狙击手队伍的第一神枪手.作为一名狙击手,要想成功地完成一次狙击任务,一般要按步骤完成以下几步:第一步:观察、等待目标出现(用望远镜或瞄准镜);第二步:瞄准目标;第三步:计算(或估测)风速、距离、空气湿度、空气密度;第四步:根据第三步的结果修正弹着点;第五步:开枪;第六步:迅速转移(或隐蔽).以上这种完成狙击任务的方法、步骤在数学上我们叫算法.●课堂探究预习提升1.定义:算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题.2.描述方式自然语言、数学语言、形式语言(算法语言)、框图.3.算法的要求(1)写出的算法,必须能解决一类问题,且能重复使用;(2)算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果.4.算法的特征(1)有限性:一个算法应包括有限的操作步骤,能在执行有穷的操作步骤之后结束.(2)确定性:算法的计算规则及相应的计算步骤必须是确定的.(3)可行性:算法中的每一个步骤都是可以在有限的时间内完成的基本操作,并能得到确定的结果.(4)顺序性:算法从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,后一步是前一步的后续,且除了最后一步外,每一个步骤只有一个确定的后续.(5)不性:解决同一问题的算法可以是不的.初三数学名师课堂教学教案2教学目标1.使学生掌握的概念,图象和性质.(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象.2.通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.3.通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.教学建议教材分析(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.(2)本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数在和时,函数值变化情况的区分.(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.教法建议(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是.(2)对底数的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.初三数学名师课堂教学教案3一、教材分析及处理函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,《函数》教学设计。
初中数学教案设计5篇
初中数学教案设计5篇初中数学教案设计篇1一、素质教育目标(一)知识教学点使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系.(二)能力训练点逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力.(三)德育渗透点培养学生独立思考、勇于创新的精神.二、教学重点、难点1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用.2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用.三、教学步骤(一)明确目标1.复习提问(1)、什么是∠A的正弦、什么是∠A的余弦,结合图形请学生回答.因为正弦、余弦的概念是研究本课内容的知识基础,请中下学生回答,从中可以了解教学班还有多少人不清楚的,可以采取适当的补救措施.(2)请同学们回忆30°、45°、60°角的正、余弦值(教师板书).(3)请同学们观察,从中发现什么特征学生一定会回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,这三个角的正弦值等于它们余角的余弦值”.2.导入新课根据这一特征,学生们可能会猜想“一个锐角的正弦(余弦)值等于它的余角的余弦(正弦)值.”这是否是真命题呢引出课题.(二)、整体感知关于锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,是通过30°、45°、60°角的正弦、余弦值之间的关系引入的,然后加以证明.引入这两个关系式是为了便于查“正弦和余弦表”,关系式虽然用黑体字并加以文字语言的证明,但不标明是定理,其证明也不要求学生理解,更不应要求学生利用这两个关系式去推证其他三角恒等式.在本章,这两个关系式的用处仅仅限于查表和计算,而不是证明.(三)重点、难点的学习和目标完成过程1.通过复习特殊角的三角函数值,引导学生观察,并猜想“任一锐角的正弦(余弦)值等于它的余角的余弦(正弦)值吗”提出问题,激发学生的学习热情,使学生的思维积极活跃.2.这时少数反应快的学生可能头脑中已经“画”出了图形,并有了思路,但对部分学生来说仍思路凌乱.因此教师应进一步引导:sinA=cos(90°-A),cosA=sin(90°-A)(A是锐角)成立吗这时,学生结合正、余弦的概念,完全可以自己解决,教师要给学生足够的研究解决问题的时间,以培养学生逻辑思维能力及独立思考、勇于创新的精神.3.教师板书:任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值.sinA=cos(90°-A),cosA=sin(90°-A).4.在学习了正、余弦概念的基础上,学生了解以上内容并不困难,但是,由于学生初次接触三角函数,还不熟练,而定理又涉及余角、余函数,使学生极易混淆.因此,定理的应用对学生来说是难点、在给出定理后,需加以巩固. 已知∠A和∠B都是锐角,(1)把cos(90°-A)写成∠A的正弦.(2)把sin(90°-A)写成∠A的余弦.这一练习只能起到巩固定理的作用.为了运用定理,教材安排了例3.(2)已知sin35°=0.5736,求cos55°;(3)已知cos47°6′=0.6807,求sin42°54′.(1)问比较简单,对照定理,学生立即可以回答.(2)、(3)比(1)则更深一步,因为(1)明确指出∠B与∠A互余,(2)、(3)让学生自己发现35°与55°的角,47°6′分42°54′的角互余,从而根据定理得出答案,因此(2)、(3)问在课堂上应该请基础好一些的同学讲清思维过程,便于全体学生掌握,在三个问题处理完之后,将题目变形:(2)已知sin35°=0.5736,则cos______=0.5736.(3)cos47°6′=0.6807,则sin______=0.6807,以培养学生思维能力.为了配合例3的教学,教材中配备了练习题2.(2)已知sin67°18′=0.9225,求cos22°42′;(3)已知cos4°24′=0.9971,求sin85°36′.学生独立完成练习2,就说明定理的教学较成功,学生基本会运用.教材中3的设置,实际上是对前二节课内容的综合运用,既考察学生正、余弦概念的掌握程度,同时又对本课知识加以巩固练习,因此例3的安排恰到好处.同时,做例3也为下一节查正余弦表做了准备.(四)小结与扩展1.请学生做知识小结,使学生对所学内容进行归纳总结,将所学内容变成自己知识的组成部分.2.本节课我们由特殊角的正弦(余弦)和它的余角的余弦(正弦)值间关系,以及正弦、余弦的概念得出的结论:任意一个锐角的正弦值等于它的余角的余弦值,任意一个锐角的余弦值等于它的余角的正弦值.四、布置作业初中数学教案设计篇2理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.重点求根公式的推导和公式法的应用.难点一元二次方程求根公式的推导.一、复习引入1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程(1)x2=4 (2)(x-2)2=7提问1 这种解法的(理论)依据是什么提问2 这种解法的局限性是什么(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)2.面对这种局限性,怎么办(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)(学生活动)用配方法解方程 2x2+3=7x(老师点评)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q 0,方程无实根.二、探索新知用配方法解方程:(1)ax2-7x+3=0 (2)ax2+bx+3=0如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(这个方程一定有解吗什么情况下有解)分析:因为前面具体数字已做得很多,我们现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax2+bx=-c二次项系数化为1,得x2+bax=-ca配方,得:x2+bax+(b2a)2=-ca+(b2a)2即(x+b2a)2=b2-4ac4a2∵4a2 0,当b2-4ac≥0时,b2-4ac4a2≥0∴(x+b2a)2=(b2-4ac2a)2直接开平方,得:x+b2a=±b2-4ac2a即x=-b±b2-4ac2a∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根.例1 用公式法解下列方程:(1)2x2-x-1=0 (2)x2+1.5=-3x(3)x2-2x+12=0 (4)4x2-3x+2=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.补:(5)(x-2)(3x-5)=0三、巩固练习教材第12页练习1.(1)(3)(5)或(2)(4)(6).四、课堂小结本节课应掌握:(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a 2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.(4)初步了解一元二次方程根的情况.五、作业布置教材第17页习题4初中数学教案设计篇3掌握用因式分解法解一元二次方程.通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.重点用因式分解法解一元二次方程.难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.一、复习引入(学生活动)解下列方程:(1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.二、探索新知(学生活动)请同学们口答下面各题.(老师提问)(1)上面两个方程中有没有常数项(2)等式左边的各项有没有共同因式(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解. 因此,上面两个方程都可以写成:(1)x(2x+1)=0 (2)3x(x+2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的)因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.例1 解方程:(1)10x-4.9x2=0 (2)x(x-2)+x-2=0 (3)5x2-2x-14=x2-2x+34 (4)(x-1)2=(3-2x)2思考:使用因式分解法解一元二次方程的条件是什么解:略 (方程一边为0,另一边可分解为两个一次因式乘积.)练习:下面一元二次方程解法中,正确的是( )A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35C.(x+2)2+4x=0,∴x1=2,x2=-2D.x2=x,两边同除以x,得x=1三、巩固练习教材第14页练习1,2.四、课堂小结本节课要掌握:(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.五、作业布置教材第17页习题6,8,10,11初中数学教案设计篇4一、素质教育目标(一)知识教学点使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.(二)能力训练点逐步培养学生会观察、比较、分析、概括等逻辑思维能力.(三)德育渗透点引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.二、教学重点、难点1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.三、教学步骤(一)明确目标1.如图6-1,长5米的梯子架在高为3米的墙上,则A、B间距离为多少米2.长5米的梯子以倾斜角∠CAB为30°靠在墙上,则A、B间的距离为多少3.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少4.若长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角∠CAB为多少度前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含30°角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.通过四个例子引出课题.(二)整体感知1.请每一位同学拿出自己的三角板,分别测量并计算30°、45°、60°角的对边、邻边与斜边的比值.学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.2.请同学画一个含40°角的直角三角形,并测量、计算40°角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻边与斜边的比值也是固定的吗这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.(三)重点、难点的学习与目标完成过程1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:若一组直角三角形有一个锐角相等,可以把其顶点A1,A2,A3重合在一起,记作A,并使直角边AC1,AC2,AC3……落在同一条直线上,则斜边AB1,AB2,AB3……落在另一条直线上.这样同学们能解决这个问题吗引导学生独立证明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴形中,∠A的对边、邻边与斜边的比值,是一个固定值.通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.练习题为作了孕伏同时使学生知道任意锐角的对边与斜边的比值都能求出来.(四)总结与扩展1.引导学生作知识总结:本节课在复习勾股定理及含30°角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.2.扩展:当锐角为30°时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.四、布置作业本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.五、板书设计初中数学教案设计篇5(一)创设情境导入新课不利用工具,请你将一张用纸片做的角分成两个相等的角。
初三数学教案(精选3篇)
初三数学教案(精选3篇)初三数学教案篇一一、教学目标:1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。
2、经历“探索-发现-猜想-证明”的过程。
能够用综合法证明等腰三角形的关性质定理和判定定理。
3、结合实例体会反证法的含义。
二、教学重点:了解作为证明基础的几条公理的内容,通过等腰三角形性质证明,掌握证明的基本步骤和书写格式。
教学难点:能够用综合法证明等腰三角形的关性质定理和判定定理(特别是证明等腰三角形性质时辅助线做法)。
三、教学方法:观察法。
四、教学过程:复习:1、什么是等腰三角形?2、你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。
3、试用折纸的办法回忆等腰三角形有哪些性质?新课讲解:在《证明(一)》一章中,我们已经证明了有关平行线的一些结论,运用下面的公理和已经证明的定理,我们还可以证明有关三角形的一些结论。
同学们和我一起来回忆上学期学过的公理本套教材选用如下命题作为公理:1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;2.两条平行线被第三条直线所截,同位角相等;3.两边夹角对应相等的两个三角形全等;(SAS)4.两角及其夹边对应相等的两个三角形全等;(ASA)5.三边对应相等的两个三角形全等;(SSS)6.全等三角形的对应边相等,对应角相等。
由公理5、3、4、6可容易证明下面的推论:推论两角及其中一角的对边对应相等的两个三角形全等。
(AAS)证明过程:已知:∠A=∠D,∠B=∠E,BC=EF求证:∠ABC∠∠DEF证明:∠∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°)∠∠C=180°-(∠A+∠B)∠F=180°-(∠D+∠E)又∠∠A=∠D,∠B=∠E(已知)∠∠C=∠F又∠BC=EF(已知)∠∠ABC∠∠DEF(ASA)定理:等腰三角形的两个底角相等。
这一定理可以简单叙述为:等边对等角。
一等奖九年级人教版上册数学教案5篇
一等奖九年级人教版上册数学教案5篇一等奖九年级人教版上册数学教案5篇数学是一座思维的巨塔,它培养了我们的逻辑思维、推理能力和问题解决的技巧,让我们成为深思熟虑的决策者。
这里给大家分享一些关于一等奖九年级人教版上册数学教案,供大家参考学习。
一等奖九年级人教版上册数学教案【篇1】教学目标:1、通过动手操作、实例观察,了解一个简单的图形经过旋转制作复杂图形的过程。
2、通过操作、观察,进一步培养学生的空间思维观念。
教学重点:了解一个简单的图形经过旋转制作复杂图形的过程教学难点:让学生清楚的表述图形的旋转过程。
教学准备:学生准备基本图形卡片、带有小方格的纸,教师准备多媒体演示文稿、纸做小风车。
教学时间:20分钟教学过程:一、在游戏中导入新知教师手拿风车走向讲台。
问:同学们,认识它吗?玩过吗?在今天这个舞台上你敢玩吗?找一名学生上台展示玩法。
问:在你玩的过程中,这个风车的风叶是怎样运动的?它又是怎样旋转的呢?2、看了刚才这位同学的精彩表演,大家是不是也想玩一玩呀?那么就请同学们想办法让手中的东西、桌子上的东西、包中的东西旋转起来,我们来比一比,看谁最会玩?学生活动,教师巡视。
1、刚才,老师看了一下这位同学的玩法,这位同学的玩法很独特,我们就请到前面来展示一下他的玩法。
你能用语言具体描述一下它的旋转过程吗?(说清绕哪一点、按什么方向旋转,旋转的角度)1、刚才大家都让自己手中的东西旋转了起来,玩的开心吗?下面我们换一个玩法。
大家猜想一下,如果我们让一个基本图形旋转起来,会形成什么样的图案呢?2、大屏幕呈现一些美丽的图案。
这些图案美不美?这里的每一个图案都是经过一个图形的旋转而得到的,今天我们就走进图形旋转的天地。
板书课题:图形的旋转二、在实践中探索图形的旋转过程1、请大家继续欣赏这些美丽的图案,他们分别是由哪些基本图形经过旋转得到的呢?下面我们就这两幅图为例来探讨一下。
为了方便大家清楚表述旋转的过程,我们可以先明确一下他们的位置。
人教版初三数学优秀教案5篇
人教版初三数学优秀教案5篇在教学工作者实际的教学活动中,可能需要进行教案编写工作,教案是教学活动的依据,有着重要的地位。
我们该怎么去写教案呢?这里给大家分享一些关于人教版初三数学优秀教案,方便大家学习。
人教版初三数学优秀教案篇1理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.重点求根公式的推导和公式法的应用.难点一元二次方程求根公式的推导.一、复习引入1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程(1)x2=4 (2)(x-2)2=7提问1 这种解法的(理论)依据是什么?提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)(学生活动)用配方法解方程2x2+3=7x(老师点评)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根.二、探索新知用配方法解方程:(1)ax2-7x+3=0 (2)ax2+bx+3=0如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(这个方程一定有解吗?什么情况下有解?) 分析:因为前面具体数字已做得很多,我们现在不妨把a,b,c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax2+bx=-c二次项系数化为1,得x2+bax=-ca配方,得:x2+bax+(b2a)2=-ca+(b2a)2即(x+b2a)2=b2-4ac4a2∵4a2>0,当b2-4ac≥0时,b2-4ac4a2≥0∴(x+b2a)2=(b2-4ac2a)2直接开平方,得:x+b2a=±b2-4ac2a即x=-b±b2-4ac2a∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根.例1 用公式法解下列方程:(1)2x2-x-1=0 (2)x2+1.5=-3x(3)x2-2x+12=0 (4)4x2-3x+2=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.补:(5)(x-2)(3x-5)=0三、巩固练习教材第12页练习1.(1)(3)(5)或(2)(4)(6).四、课堂小结本节课应掌握:(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.(4)初步了解一元二次方程根的情况.五、作业布置教材第17页习题4人教版初三数学优秀教案篇2一、内容简介本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(-b/2a,0);
Δ<0,图象与x轴无交点;
②y=a(x-h)^2+k[配方式]
此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;
二次函数的性质
特别地,二次函数(以下称函数)y=ax^2+bx+c(a≠0),
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0(a≠0)
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax^2,y=ax^2 +k,y=a(x-h)^2,y=a(x-h)^2 +k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:[1]
解析式y=ax^2+k y=ax^2y=a(x-h)^2 y=a(x-h)^2+k y=ax^2+bx+c
顶点坐标(0,k)
(0,0) ( h,0)(h,k)
(-b/2a,
sqrt[4ac-b^2]/4a)
对称? 轴x=0/y轴
x=0?x=h x=h x=-b/2a
当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,当h<0时,则向左平行移动|h|个单位得到.
当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;
当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;
因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为
y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).
3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x 的增大而增大;当x ≥ -b/2a时,y随x的增大而减小.
4.抛物线y=ax^2+bx+c(a≠0)的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac>0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的两根.这两点间的距离AB=|x2-x1| 另外,抛物线上任何一对对称点的距离可以由2x|A+b/2a|(A为其中一点的横坐标)
当△=0.图象与x轴只有一个交点;
当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.5.抛物线y=ax^2+bx+c的最值(也就是极值):如果a>0(a<0),则当x= -b/2a 时,y最小(大)值=(4ac-b^2)/4a.
顶点的横坐标,是取得极值时的自变量值,顶点的纵坐标,是极值的取值.6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a≠0).
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:
y=a(x-h)^2+k(a≠0).
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:
y=a(x-x1)(x-x2)(a≠0).
7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。
因此,以二次函数知识为主的综合性题目是中高考的热点考题,往往以大题形式出现。