2018年高考理科数学专题十:与球体有关的问题 精品

合集下载

高考数学球的有关问题(解析版)

高考数学球的有关问题(解析版)

专题17 球的有关问题(解析版)球是最常见的一种几何体,在近几年高考题中与球有关的问题频繁出现。

在此类问题中,既可以考查球的表面积、体积及距离等基本量的计算,又可以考查球与多面体的相切接,同时也能很好地考查同学们的画图能力、空间想象能力、推理论证能力。

考查形式多以选择题和填空题出现。

本专题对近十年来,全国新课标卷理出现的与球有关的问题进行汇编和简要的分析。

球的有关性质性质1. 球的任意一个截面都是圆.其中过球心的截面叫做球的大圆,其余的截面都叫做球的小圆.性质2. 球的小圆的圆心和球心的连线垂直于小圆所在的平面. 反之,球心在球的小圆所在平面上的射影是小圆的圆心.性质3: 球心到截面的距离d 与球的半径R 及截面的半径r 的关系为:R 2=d 2+r 2. 性质4. 球的两个平行截面的圆心的连线垂直于这两个截面,且经过球心. 性质5. 球的直径等于球的内接长方体的对角线长.性质6. 若直棱柱的所有顶点都在同一个球面上,则该球的球心O 是直棱柱的两个底面的外接圆的圆心的连线的中点. 球有关问题易错点 易错点1:公式记忆错误易错点2:多面体与几何体的结构特征不清楚导致计算错误易错点3:简单的组合体画不出适当的截面图致误题组一:以三视图为背景 1.(2016I )如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是28π3,则它的表面积是A .17πB .18πC .20πD .28π 【解析】由三视图可知该几何体为球去掉一个81球,设球的半径为R ,则37428,833VR R=2, 故其表面积2271431784SR R2.(20131)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6 cm ,如不计容器的厚度,则球的体积为A.3cm 3500π B.3cm 3866π C.3cm 31372π D.3cm 32048π【解析】根据几何意义得出:边长为8的正方形,球的截面圆为正方形的内切圆,∴圆的半径为4,∵球面恰好接触水面时测得水深为6cm ,862d2224,=5R R R 球的半径为:即334500cm 33R 球的体积为:V=故选A. 题组二,以棱(圆)柱为载体3.(2010)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为________.【解析】根据题意可知三棱柱是棱长都是a 的正三棱柱,设上下底面中心连线EF 的中点O ,则O 就是球心,其外切球的半径为OA1,又设D 为A1C1中点,在直角三角形EDA1中,110sin 603A D EA == 122211t ,2712aR OEA OE R OA OE EA a 在中,由勾股定理得∆===+=22774123a S a 球的表面积为ππ=⋅=4.(20173)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为________. 【解析】圆柱的轴截面如图,1AC =,12AB =,所以圆柱底面半径32r BC ==,那么圆柱的体积是2233()14V r h πππ==⨯⨯=,故选B . 题组三:以棱(圆)锥为载体5.(2012)已知三棱锥S-ABC 的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且SC=2;则此棱锥的体积为_________.【解析】根据题意做出图,设球心为O ,过A 、B 、C 三点的小圆的圆心为O 1,则OO 1⊥平面ABC ,延长CO 交球于点D ,则SD ⊥平面ABC ,1123316,133CO OO 12623SD OO 高∵ΔABC 是边长为1的三角形313262,36ABCS ABCSV6.(20191)已知三棱锥P ABC -的四个顶点在球O 的球面上,PA=PB=PC ,ABC ∆是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为________为底面三角形的中心PO BG O =,的中点,所以EF PB . 6.7.(2011)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,AB BC ==则棱锥0-ABCD 的体积为 。

2018年高考数学(理)二轮复习讲练测专题2.7几何体与球切接的问题(测)含解析

2018年高考数学(理)二轮复习讲练测专题2.7几何体与球切接的问题(测)含解析

2018年高考数学(理)二轮复习讲练测热点七 几何体与球切、接的问题总分 _______ 时间 _______ 班级 _______ 学号 _______ 得分_______一、选择题(12*5=60分)1.【2018届福建省福州市高三上学期期末】已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( ) A. 4π B. 163π C. 323π D. 16π 【答案】D【解析】设球半径为,R 该圆柱的两个底面的圆周都在同一个球面上, ∴可得()222134R =+=,球的表面积为2416R ππ=,故选D.2.【2018届安徽省皖西高中教学联盟三上学期期末】已知球面上有A 、B 、C 三点,且AB=AC=2,BC=2,球心到平面ABC 的距离为3,则球的体积为 ( )A.43π B. 323π C. 3223π D. 643π【答案】B3.【2018届福建省福州市高三上学期期末】已知圆锥的高为3,它的底面半径为3,若该圆锥的顶点与底面的圆周都在同一个球面上,则这个球的体积等于( )A. 83πB. 323π C. 16π D. 32π 【答案】B【解析】如图:设球心到底面圆心的距离为x ,则球的半径为3x -,由勾股定理得()2233x x +=- 解得1x =,故半径2r =, 343233V r ππ==球 故选B .4.【2018届安徽省皖西高中教学联盟三上学期期末】正三棱柱的顶点都在同一个球面上,若球的半径为4,则该三棱柱侧面面积最大值为 ( ) A. 483 B. 643 C. 172831 D. 5767【答案】A5.【2018届福建省三明市A 片区高中联盟校高三上学期期末】几何体的三视图如图所示,则该几何体外接球的表面积为( )A.163πB. 4πC. 3D. 以上都不对 【答案】A【解析】由题可知该几何体为轴截面为正三角形的圆锥,底面圆的直径为2,高为3∴外接球半径123cos303r ==︒∴外接球表面积416433ππ⨯⨯= 故选A6.已知球面上的三个点A B C 、、,且2,2,6AB BC AC ===,球的半径为2,则球心到平面ABC 的距离等于( )A. 3B. 2C. 1D. 32【答案】B【解析】由题意,得球心O 在面ABC 的射影为ABC ∆的外心,因为2,2,6AB BC AC ===,所以22246AB B AC +=<=,即ABC ∆是以B 为钝角的等腰三角形,则外心在高BM 的延长线上,设,MH x OH d ==,则222222226,22OB d x OA d x ⎛⎫⎛⎫=++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,解得22x =,即()22222d =-=.故选B.7.【2018届四川省乐山四校第三学期半期联考】如图,在等腰梯形ABCD 中, 22,60AB DC DAB ==∠=, E 为AB 中点.将ADE ∆与BEC ∆分别沿ED 、EC 折起,使A 、B 重合于点P ,则三棱锥P DCE -的外接球的体积为( )A.4327πB. 62πC. 68πD. 624π【答案】C8.已知直角三角形ABC 的三个顶点在半径为13的球面上,两直角边的长分别为6和8,则球心到平面的距离为( ) A. 5 B. 6 C. 10 D. 12 【答案】D【解析】由题意可知,直角三角形的斜边为直角三角形所在小圆的直径,其直径为: 226810+=,在大圆内应用勾股定理可得:球心到平面的距离为221013122⎛⎫-= ⎪⎝⎭.本题选择D 选项.9.已知三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,2AB =, 2SA SB SC ===,则三棱锥的外接球的球心到平面ABC 的距离是( ) A .33B .1C .3D .332【答案】A10.【2018届”超级全能生”高考全国卷26省9月联考】若正四棱锥P ABCD -内接于球O ,且底面ABCD 过球心O ,则球O 的半径与正四棱锥P ABCD -内切球的半径之比为( ) A. 31+ B. 2 C. 3 D. 31- 【答案】A【解析】设外接球半径为R,由题意可知,OA=OB=OC=OD=OP=R,设四棱锥P-ABCD 的内切球半径为r,由等体积法()()2221131r 242,313323V S R R r R R R r ⎛⎫==+⨯==+ ⎪ ⎪⎝⎭表,所以选A.11.【2018届云南民族大学附属中学高三上学期期末】已知一个球的表面上有A 、B 、C 三点,且23AB AC BC ===,若球心到平面ABC 的距离为1,则该球的表面积为()A. 20πB. 15πC. 10πD. 2π 【答案】A【解析】由题意可得平面ABC 截球面所得的截面圆恰为正三角形ABC 的外接圆O′, 设截面圆O′的半径为r ,由正弦定理可得2r=4,解得r=2, 设球O 的半径为R ,∵球心到平面ABC 的距离为1, ∴由勾股定理可得r 2+12=R 2,解得R 2=5, ∴球O 的表面积S=4πR 2=20π。

高考球类型及例题

高考球类型及例题

高考球类型及例题 Prepared on 22 November 2020高考球类型及例题1、球定义2、球面距离经度纬度:此类题主要目的在于明确经度和纬度概念,注意及利用圆的有关性质,弧长公式,球的截面的性质等球截面:涉及到球的截面的问题,总是使用关系式22d R r -=解题,我们可以通过两 个量求第三个量,也可能是抓三个量之间的其它关系,求三个量.3、球内接多面体:解决与球有关的接、切问题时,一般作一个适当的截面,将问题转化为平面问题4、多面体内切球、:解决有关几何体接切的问题,如何选取截面是个关键.5、球与球外切:球心是决定球的位置关键点,本题利用球心到正三棱锥四个面的距离相等且为球半径R 来求出R ,以球心的位置特点来抓球的基本量,这是解决球有关问题常用的方法.比总之:通过此类题目,明确球的有关计算问题需先将立体问题转化为平面问题,进一步熟悉有关圆的基础知识,熟练使用方程思想,合理设元,列式,求解.类型例题一球定义例1 过球面上两点作球的大圆,可能的个数是( ).A .有且只有一个B .一个或无穷多个C .无数个D .以上均不正确分析:对球面上两点及球心这三点的位置关系进行讨论.当三点不共线时,可以作一个大圆;当三点共线时,可作无数个大圆,故选B .答案:B 说明:解此易选出错误判断A .其原因是忽视球心的位置. 类型例题二球面距离经度纬度例1.已知地球的半径为R ,球面上B A ,两点都在北纬45 圈上,它们的球面距离为R 3π,A 点在东经30 上,求B 点的位置及B A ,两点所在其纬线圈上所对应的劣弧的长度.分析:求点B 的位置,如图就是求B AO 1∠的大小,只需求出弦AB 的长度.对于AB 应把它放在OAB ∆中求解,根据球面距离概念计算即可.解:如图,设球心为O ,北纬45 圈的中心为1O ,由B A ,两点的球面距离为R 3π,所以AOB ∠=3π, ∴OAB ∆为等边三角形.于是R AB =.由R R B O A O 2245cos 11=⋅== , 22121AB B O A O =+∴.即B AO 1∠=2π. 又A 点在东经30 上,故B 的位置在东经120 ,北纬45 或者西经60 ,北纬45 .B A ,∴两点在其纬线圈上所对应的劣弧R A O ππ4221=⋅. 说明:此题主要目的在于明确经度和纬度概念,及利用球的截面的性质和圆的有关性质设计计算方案.类型例题三球截面例1 在球心同侧有相距cm 9的两个平行截面,它们的面积分别为249cm π和2400cm π.求球的表面积.分析:可画出球的轴截面,利用球的截面性质,求球的半径.解:如图为球的轴截面,由球的截面性质知,21//BO AO ,且若1O 、2O 分别为两截面圆的圆心,则11AO OO ⊥,22BO OO ⊥.设球的半径为R .∵ππ4922=⋅B O ,∴)(72cm B O =同理ππ40021=⋅A O ,∴)(201cm A O =设xcm OO =1,则cm x OO )9(2+=.在A OO Rt 1∆中,22220+=x R ;在B OO Rt 2∆中,2227)9(++=x R ,∴222)9(720++=+x x ,解得15=x ,∴22222520=+=x R ,∴25=R∴)(2500422cm R S ππ==球.∴球的表面积为22500cm π.例2.用两个平行平面去截半径为R 的球面,两个截面圆的半径为cm r 241=,cm r 152=.两截面间的距离为cm d 27=,求球的表面积.分析:此类题目的求解是首先做出截面图,再根据条件和截面性质做出与球的半径有关的三角形等图形,利用方程思想计算可得.解:设垂直于截面的大圆面交两截面圆于2211,B A B A ,上述大圆的垂直于11B A 的直径交2211,B A B A 于21,O O ,如图2.设2211,d OO d OO ==,则⎪⎩⎪⎨⎧=+=+=+2222222121152427R d R d d d ,解得25=R .)(2500422cm R S ππ==∴圆.说明:通过此类题目,明确球的有关计算问题需先将立体问题转化为平面问题,进一步熟悉有关圆的基础知识,熟练使用方程思想,合理设元,列式,求解.例3 A 、B 是半径为R 的球O 的球面上两点,它们的球面距离为R 2π,求过A 、B 的平面中,与球心的最大距离是多少分析:A 、B 是球面上两点,球面距离为R 2π,转化为球心角2π=∠AOB ,从而R AB 2=,由关系式222d R r -=,r 越小,d 越大,r 是过A 、B 的球的截面圆的半径,所以AB 为圆的直径,r 最小.解:∵球面上A 、B 两点的球面的距离为R 2π. ∴2π=∠AOB ,∴R AB 2=.当AB 成为圆的直径时,r 取最小值,此时R AB r 2221==,d 取最大值, R r R d 2222=-=, 即球心与过A 、B 的截面圆距离最大值为R 22. 说明:利用关系式222d R r -=不仅可以知二求一,而且可以借此分析截面的半径r 与球心到截面的距离d 之间的变化规律.此外本题还涉及到球面距离的使用,球面距离直接与两点的球心角AOB ∠有关,而球心角AOB ∠又直接与AB 长度发生联系,这是使用或者求球面距离的一条基本线索,继续看下面的例子.例4 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过3个点的小圆的周长为π4,那么这个球的半径为( ).A .34B .32C .2D .3 分析:利用球的概念性质和球面距离的知识求解.设球的半径为R ,小圆的半径为r ,则ππ42=r ,∴2=r .如图所示,设三点A 、B 、C ,O 为球心,362ππ==∠=∠=∠COA BOC AOB .又∵OB OA =,∴AOB ∆是等边三角形,同样,BOC ∆、COA ∆都是等边三角形,得ABC ∆为等边三角形,边长等于球半径R .r 为ABC ∆的外接圆半径,R AB r 3333==,3233==r R . 答案:B 说明:本题是近年来球这部分所出的最为综合全面的一道题,除了考查常规的与多面体综合外,还考查了球面距离,几乎涵盖了球这部分所有的主要知识点,是一道不可多得的好题.类型例题四球内接例1.自半径为R 的球面上一点M ,引球的三条两两垂直的弦MC MB MA ,,,求222MC MB MA ++的值.分析:此题欲计算所求值,应首先把它们放在一个封闭的图形内进行计算,所以应引导学生构造熟悉的几何体并与球有密切的关系,便于将球的条件与之相联.解:以MC MB MA ,,为从一个顶点出发的三条棱,将三棱锥ABC M -补成一个长方体,则另外四个顶点必在球面上,故长方体是球的内接长方体,则长方体的对角线长是球的直径.∴222MC MB MA ++=224)2(R R =.说明:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中体积计算.例2 半径为R 的球内接一个各棱长都相等的四棱锥.求该四棱锥的体积.分析:四棱锥的体积由它的底面积和高确定,只需找到底面、高与球半径的关系即可,解决这个问题的关键是如何选取截面,如图所示.解:∵棱锥底面各边相等,∴底面是菱形.∵棱锥侧棱都相等,∴侧棱在底面上射影都相等,即底面有外接圆.∴底面是正方形,且顶点在底面上的射影是底面中心,此棱锥是正棱锥.过该棱锥对角面作截面,设棱长为a ,则底面对角线a AC 2=,故截面SAC 是等腰直角三角形.又因为SAC 是球的大圆的内接三角形,所以R AC 2=,即R a 2=.∴高R SO =,体积33231R SO S V =⋅=底. 说明:在作四棱锥的截面时,容易误认为截面是正三角形,如果作平等于底面一边的对称截面(过棱锥顶点,底面中心,且与底面一边平行),可得一个腰长为斜高、底为底面边长的等腰三角形,但这一等腰三角形并不是外接球大圆的内接三角形.可见,解决有关几何体接切的问题,如何选取截面是个关键.解决此类问题的方法通常是先确定多面体的棱长(或高或某个截面内的元素)与球半径的关系,再进一步求解.例3 在球面上有四个点P 、A 、B 、C ,如果PA 、PB 、PC 两两互相垂直,且a PC PB PA ===.求这个球的表面积.分析:24R S π=球面,因而求球的表面关键在于求出球的半径R .解:设过A 、B 、C 三点的球的截面半径为r ,球心到该圆面的距离为d ,则222d r R +=.由题意知P 、A 、B 、C 四点不共面,因而是以这四个点为顶点的三棱锥ABC P -(如图所示).ABC ∆的外接圆是球的截面圆.由PA 、PB 、PC 互相垂直知,P 在ABC 面上的射影'O 是ABC ∆的垂心,又a PC PB PA ===,所以'O 也是ABC ∆的外心,所以ABC ∆为等边三角形, 且边长为a 2,'O 是其中心,从而也是截面圆的圆心.据球的截面的性质,有'OO 垂直于⊙'O 所在平面,因此P 、'O 、O 共线,三棱锥ABC P -是高为'PO 的球内接正三棱锥,从而'PO R d -=.由已知得a r 36=,a PO 33'=,所以2'2222)(PO R r d r R -+=+=,可求得a R 23=,∴2234a R S ππ==球面. 说明:涉及到球与圆柱、圆锥、圆台切接问题,一般作其轴截面;涉及到球与棱柱、棱锥、棱台的切接问题,一般过球心及多面体中特殊点或线作截面,把空间问题化为平面问题,进而利用平面几何的知识寻找几何体元素间的关系.例4 球面上有三点A 、B 、C 组成这个球的一个截面的内接三角形三个顶点,其中18=AB ,24=BC 、30=AC ,球心到这个截面的距离为球半径的一半,求球的表面积.分析:求球的表面积的关键是求球的半径,本题的条件涉及球的截面,ABC ∆是截面的内接三角形,由此可利用三角形求截面圆的半径,球心到截面的距离为球半径的一半,从而可由关系式222d R r -=求出球半径R .解:∵18=AB ,24=BC ,30=AC ,∴222AC BC AB =+,ABC ∆是以AC 为斜边的直角三角形.∴ABC ∆的外接圆的半径为15,即截面圆的半径15=r , 又球心到截面的距离为R d 21=, ∴22215)21(=-R R ,得310=R . ∴球的表面积为πππ1200)310(4422===R S .说明:涉及到球的截面的问题,总是使用关系式22d R r -=解题,我们可以通过两个量求第三个量,也可能是抓三个量之间的其它关系,求三个量.例如,过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB 的长度.由条件可抓住BCD A -是正四面体,A 、B 、C 、D 为球上四点,则球心在正四面体中心,设a AB =,则截面BCD 与球心的距离R a d -=36,过点B 、C 、D 的截面圆半径a r 33=,所以222)36()33(R a R a --=得R a 362=. 例5 正三棱锥ABC P -的侧棱长为l ,两侧棱的夹角为α2,求它的外接球的体积.分析:求球半径,是解本题的关键.解:如图,作⊥PD 底面ABC 于D ,则D 为正ABC ∆的中心.∵⊥OD 底面ABC ,∴O 、P 、D 三点共线. ∵l PC PB PA ===,α2=∠APB .∴ααsin 22cos 2222l l l AB =-=.∴αsin 33233==AB AD , 设β=∠APD ,作PA OE ⊥于E ,在APD Rt ∆中,∵αβsin 332sin ==PA AD , 又R OA OP ==,∴l PA PE 2121==. 在POE Rt ∆中,∵αβ2sin 3412cos -===lPE PO R , ∴)sin 43(2sin 433sin 34123422332ααπαπ--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=l l V 球. 说明:解决与球有关的接、切问题时,一般作一个适当的截面,将问题转化为平面问题解决,这类截面通常指圆锥的轴截面、球的大圆、多面体的对角面等,在这个截面中应包括每个几何体的主要元素,且这个截面必须能反映出体和体之间的主要位置关系和数量关系.类型例题五球外切例1.如图1所示,在棱长为1的正方体内有两个球相外切且又分别与正方体内切.(1)求两球半径之和;(2)球的半径为多少时,两球体积之和最小.分析:此题的关键在于作截面,一个球在正方体内,学生一般知道作对角面,而两个球的球心连线也应在正方体的体对角线上,故仍需作正方体的对角面 ,得如图2的截面图,在图2中,观察R 与r 和棱长间的关系即可. 解:如图2,球心1O 和2O 在AC 上,过1O ,2O 分别作BC AD ,的垂线交于F E ,. 则由3,1==AC AB 得R CO r AO 3,321==.3)(3=+++∴R r R r ,233133-=+=+∴r R . (1)设两球体积之和为V ,则))((34)(342233r Rr R R r r R V +-+=+=ππ =[]=-+rR r R 3)(233342π⎥⎦⎤⎢⎣⎡--)233(3)233(233342R R π =⎥⎦⎤⎢⎣⎡-+--22)233(2)33(3323334R R π 当433-=R 时,V 有最小值.∴当433-==r R 时,体积之和有最小值. 例2.设正四面体中,第一个球是它的内切球,第二个球是它的外接球,求这两个球的表面积之比及体积之比.分析:此题求解的第一个关键是搞清两个球的半径与正四面体的关系,第二个关键是两个球的半径之间的关系,依靠体积分割的方法来解决的.解:如图,正四面体ABCD 的中心为O ,BCD ∆的中心为1O ,则第一个球半径为正四面体的中心到各面的距离,第二个球的半径为正四面体中心到顶点的距离.设R OA r OO ==,1,正四面体的一个面的面积为S .图2依题意得)(31r R S V BCD A +=-, 又S r V V BCD O BCD A ⋅⨯==--3144 r r R 4=+∴即r R 3=. 所以914422==R r ππ外接球的表面积内切球的表面积.271343433==R r ππ外接球的体积内切球的体积. 说明:正四面体与球的接切问题,可通过线面关系证出,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即定有内切球的半径h r 41=(h 为正四面体的高),且外接球的半径r R 3=.例3 已知棱长为3的正四面体ABCD ,E 、F 是棱AB 、AC 上的点,且FC AF 2=,AE BE 2=.求四面体AEFD 的内切球半径和外接球半径.分析:可用何种法求内切球半径,把AEF D V -分成4个小体积(如图).解:设四面体AEFD 内切球半径为r ,球心N ,外接球半径R ,球心M ,连结NA 、NE 、NF 、ND ,则EFD N ADE N AFD N AEF N AEFD V V V V V ----+++=.四面体AEFD 各面的面积为2392==∆∆ABC AEF S S ,23332==∆∆ABC AFD S S ,43331==∆∆ABC AED S S . DEF ∆各边边长分别为3=EF ,7==DE DF , ∴345=∆DEF S . ∵2292==ABCD ADEF V V , )(31DEF AED AFD AEF AEFD S S S S r V ∆∆∆∆+++=, ∴)43543323323(3122+++=r ,∴86=r . 如图,AEF ∆是直角三角形,其个心是斜边AF 的中点G .设ABC ∆中心为1O ,连结1DO ,过G 作平面AEF 的垂线,M 必在此垂线上, 连结1GO 、MD .∵ABC MG 平面⊥,ABC DO 平面⊥1,∴1//DO MG ,1GO MG ⊥.在直角梯形DM GO 1中,11=GO ,61=DO ,R MD =,1222-=-=R AG AM MG ,又∵22121)(MD GO MG DO =+-,∴2221)16(R R =+--, 解得:210=R . 综上,四面体AEFD 的内切球半径为86,外接球半径为210. 说明:求四面体外接半径的关键是确定其球心.对此多数同学束手无策,而这主要是因本题图形的背景较复杂.若把该四面体单独移出,则不参发现其球心在过各面三角形外心且与该三角形所在平面垂直的直线上,另还须注意其球心不一定在四面体内部.本题在求四面体内切球半径时,将该四面体分割为以球心为顶点,各面为底面的四个三棱锥,通过其体积关系求得半径.这样分割的思想方法应给予重视.例4 一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为r 的铁球,这时水面恰好和球面相切.问将球从圆锥内取出后,圆锥内水平面的高是多少分析:先作出轴截面,弄清楚圆锥和球相切时的位置特征,利用铁球取出后,锥内下降部分(圆台)的体积等于球的体积,列式求解.解:如图,作轴截面,设球未取出时,水面高h PC =,球取出后,水面高x PH =. ∵r AC 3=,r PC 3=,则以AB 为底面直径的圆锥容积为3233)3(31r r r ππ=⋅=, 334r V π=球. 球取出后,水面下降到EF ,水的体积为32291)30tan (3131x PH PH PH EH V πππ=︒=⋅⋅=水. 又球圆锥水V V V -=,则33334391r r x πππ-=, 解得r x 315=. 答:球取出后,圆锥内水平面高为r 315.说明:抓住水的何种不变这个关键,本题迅速获解.例5 正三棱锥的高为1,底面边长为62,正三棱锥内有一个球与其四个面相切.求球的表面积与体积.分析:球与正三棱锥四个面相切,实际上,球是正三棱锥的内切球,球心到正三棱锥的四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,而点面距离常可以用等体积法解决.解:如图,球O 是正三棱锥ABC P -的内切球,O 到正三棱锥四个面的距离都是球的半径R .PH 是正三棱锥的高,即1=PH .E 是BC 边中点,H 在AE 上,ABC ∆的边长为62,∴26263=⨯=HE . ∴3=PE 可以得到2321=⋅===∆∆∆PE BC S S S PBC PAC PAB . 由等体积法,ABC O PBC O PAC O PAB O ABC P V V V V V -----+++= ∴R R ⨯⨯+⨯⨯⨯=⨯⨯363132******** 得:2633232-=+=R , ∴πππ)625(8)26(4422-=-==R S 球. ∴33)26(3434-==ππR V 球. 说明:球心是决定球的位置关键点,本题利用球心到正三棱锥四个面的距离相等且为球半径R 来求出R ,以球心的位置特点来抓球的基本量,这是解决球有关问题常用的方法.比如:四个半径为R 的球两两外切,其中三个放在桌面上,第四个球放在这三个球之上,则第四个球离开桌面的高度为多少这里,四个球的球心这间的距离都是R 2,四个球心构成一个棱长为R 2的正四面体,可以计算正四面体的高为R R 362236=⨯,从而上面球离开桌面的高度为R R 3622+. 例6求球与它的外切圆柱、外切等边圆锥的体积之比.分析:首先画出球及它的外切圆柱、等边圆锥,它们公共的轴截面,然后寻找几何体与几何体之间元素的关系.解:如图,等边SAB ∆为圆锥的轴截面,此截面截圆柱得正方形11CDD C ,截球面得球的大圆圆1O .设球的半径R OO =1,则它的外切圆柱的高为R 2,底面半径为R ; R O O OB 330cot 1=︒⋅=,R R OB SO 33360tan =⋅=︒⋅=, ∴334R V π=球,3222R R R V ππ=⋅=柱,3233)3(31R R R V ππ=⋅⋅=锥,∴964∶∶∶∶锥柱球=V V V .。

2018年高考秘籍-与球有关的切、接问题探析:1“心有所依”模型

2018年高考秘籍-与球有关的切、接问题探析:1“心有所依”模型

“心有所依”模型心有所依模型适用圆锥、侧棱相等的棱锥等几何体,可得球心必在圆锥的高所在的直线上,或者在棱锥一个底面的高所在直线上,由此可把相关信息转嫁到某一个直角三角形内,利用勾股定理求解.【典例1】(2018届四川泸州一中一诊)已知圆锥的高为5的顶点和底面的圆周都在同一个球的球面上,则该球的表面积为( )A .4πB .36πC .48πD .24π【解析】设球的半径为R ,由于圆锥的高为5所以()2225R R =-+,解得3R =,所以该球的表面积为2436R =ππ.故选B .【试题点评】本题是两个旋转体的组合,其中圆锥的轴线所在直线垂直于其底面圆,结合球与圆锥的有关性质,球心必在圆锥的高所在的直线上,应用数学建模的素养,建立“心有所依”模型,将有关信息嫁接到如图所示的1Rt OO A V 中,利用勾股定理求解.【典例2】(2018届山东省实验中学一诊)在三棱锥P ABC -中,PA PB =4PC AC AB ====,且AC AB ⊥,则该三棱锥外接球的表面积为________.【解析】设顶点P 在底面中的射影为1O ,由于PA PB PC ==,所以111O A O B OC ==,即点1O 是底面ABC ∆的外心,又AC AB ⊥,所以1O 为BC 的中点,因为PA PB=4PC AC AB ====,所以114BC AO PO ===,设外接球的球心为O ,半径为R ,则O 必在1PO 上,14O O R =-, 在1Rt OOA ∆中,()(2224R R -+=,解得3R =,所以22436S R ==ππ.【试题点评】此类问题的解决可以灵活地应用“心有所依”模型,顶点在底面内的摄影是底面多边形的外心,如图所示,将有关信息嫁接到如图所示的Rt OHA V 中,利用勾股定理求解.本题直角三角形斜边上的中点到直角三角形各顶点的距离相等,只需在过斜边中点与三角形所在平面的垂线上探求球心解决问题.【典例3】 已知四棱锥的P ABCD -的侧棱长均为( )A. 18πB.323πC.36πD.48π 【解析】因为底面是矩形,所以矩形的对角线AC 为截面圆的直径.由题意知该四棱锥外接球的球心O 在截面ABC 中的射影为AC 的中点H ,此时12AH AC ===在PCH ∆中,由勾股定理得222PH =+,解得5PH =.设该四棱锥外接球的半径为R ,则5,OH R OC R=-=,所以在OCH ∆中,由勾股定理得()2225R R -+=,解得3R =,所以外接球的表面积为2436S R ==ππ.故选C.【试题点评】球心与球的截面圆的圆心的连线垂直于该截面圆,而截面圆的圆心是其内接多边形的外心.球心与球面上任意一点所连的线段都是球的半径,这些性质是解决球的接、切问题过程中化空间为平面的根本所在.APBCDHO【典例4】(2018届云南昆明一中一检)体积为A BCD -的每个顶点都在半径为R 的球O 的球面上,球心O 在此三棱锥内部,且:2:3R BC =,点E 为BD 的中点,过点E 作球O 的截面,则所得截面圆面积的最小值是 .【解析】设()20R t t =>,则3BC t =,因为体积为A BCD -的每个顶点都在半径为R 的球O的球面上,所以()2133t h ⨯=224h t =.由())222R h R =-+,得2t =或t =(舍),所以4R =.由题意知点E 为BD 的中点,在OBD ∆中,4,6OD OB DB ===,解得OE =,所以当截面垂直于OE 时,截面圆的半径3=,故截面圆面积的最小值是9π.【试题点评】过球内一个定点作截面圆可作无数多个,只有球心与定点的连线垂直于截面圆时,截面圆的面积最小.2.汉堡模型【典例5】(2018届湖北襄阳一模)已知直三棱柱111ABC A B C -中,090BAC ∠=,侧面11BCC B 的面积为4,则直三棱柱111ABC A B C -外接球的半径的最小值为 .【解析】由于直三棱柱111ABC A B C -中,090BAC ∠=,所以111,BAC B AC ∆∆的外接圆的圆心分别是11,BC B C 的中点1,D D ,外接球的球心O 就是1DD 的中点,设直三棱柱的高为h ,由于侧面11BCC B 的面积为4,则4BC h =,所以222222h R h ⎛⎫⎛⎫=+≥ ⎪ ⎪⎝⎭⎝⎭,当且仅当2h =1CC1BB1AADO1DABCDEOH时取等号,故直三棱柱111ABC A B C -【试题点评】对于直棱柱,应用数学建模的素养,结合球与直棱柱的有关性质,建立“汉堡”模型,上下底面外接圆的圆心连线的中点即为球心,球心到各个顶点的距离都等于球的半径, 如图所示,将有关信息嫁接到如图所示的Rt OHAV 中,利用勾股定理求解.【典例6】(2018届湖北武汉高三模考)如图,三棱锥S ABC -内接于球O ,SA ⊥平面,2,1ABC SA AB ==,30BCA ∠=o ,则球O 的体积为 .【解析】由SA ⊥平面ABC ,则三棱锥S ABC -为直三棱锥,将其放在直三棱柱中,设三棱柱上下两个底面的外心分别为,M N ,连接MN ,则线段MN 的中点即为球心,设ABC ∆外接圆的半径为r ,直三棱柱的高为h ,由正弦定理得112sin 30r ==o, 2hON =, 设外接球的半径R ==,故球O 的体积为3433V R ==π. 【试题点评】采取割补法,将不规则图形转化为规则图形,将棱锥转化为直棱柱,再应用“汉堡”模型解决问题,本题棱锥的外接球亦即直棱柱的外接球,上下底面外接圆的圆心连线的中点即为球心.3.墙角模型【典例7】已知三棱锥S ABC -,满足,,SA SB SC 两两垂直,且2SA SB SC ===,Q 是三棱锥S ABC -外接球上一动点,则点Q 到平面ABC 的距离的最大值为 .BSCABSCAMN OBSCA【解析】如图,三棱锥S ABC -满足,,SA SB SC 两两垂直,由2SA SB SC ===,则AB BC AC ===体中,则正方体的棱长为2,正方体对角线即为正方体的外接球亦即三棱锥外接球的直径,而2R =所以球的半径为R =因为Q 是三棱锥S ABC -外接球上一动点,所以点Q到平面ABC的距离的最大值为3. 【试题点评】本题具有三条棱两两垂直或三个平面两两垂直的特征,应用数学建模素养,构建“两两垂直垂直”模型,亦即“墙角”模型,如图所示,将三棱锥放入伴随长方体中,将棱锥的外接球转化为长方体的外接球,不用找出球心的具体位置,这是处理此类问题的简捷的途径.【典例8】四面体A BCD -中,10,AB CD AC BD AD BC ======则四面体A BCD -外接球的表面积为 ( )A .50πB .100πC .200πD .300π【解析】如图,将四面体A BCD -放入长方体中,则四面体的外接球亦即长方体的外接球,ADB设长方体的长、宽、高为,,x y z,则((22222222210x y y z x z ⎧+=⎪⎪+=⎨⎪+=⎪⎩,解得1086x y z =⎧⎪=⎨⎪=⎩,因为长方体对角线即为长方体的外接球亦即四面体外接球的直径,而2R =,所以球的半径为R =四面体A BCD -的外接球的表面积为24200S R ==ππ.【试题点评】本题四面体A BCD -的对棱两两相等,也可灵活地应用“墙角”模型,将它放入伴随长方体中,所有的棱都是伴随长方体表面的对角线,易得四面体A BCD -外接球亦即伴随长方体的外接球.如果将正四面体纳入正方体中得到其伴随正方体,正四面体的外接球和其伴随正方体的外接球是同一个球,利用这种伴随关系可以简化求正四面体的有关问题.【典例9】(2018届成都一诊)在三棱锥P ABC -,PA ⊥平面ABC ,120BAC ∠=o,2PA AB AC ===,若该三棱锥的顶点都在同一个球面上,则该球的表面积为A.B .18πC .20πD.【解析】法一 该三棱锥为图中正六棱柱内的三棱锥P ABC -,120BAC ∠=o,2PA AB AC ===,所以该三棱锥的外接球即为该六棱柱的外接球,因为六棱柱的外接球的直径为2R ==R =为2420R =ππ。

高考中的球体问题

高考中的球体问题

高考中的球体问题例1 球面上有三点A 、B 、C 组成这个球的一个截面的内接三角形三个顶点,其中18=AB ,24=BC 、30=AC ,球心到这个截面的距离为球半径的一半,求球的表面积.分析:求球的表面积的关键是求球的半径,本题的条件涉及球的截面,ABC ∆是截面的内接三角形,由此可利用三角形求截面圆的半径,球心到截面的距离为球半径的一半,从而可由关系式222d R r -=求出球半径R .解:∵18=AB ,24=BC ,30=AC ,∴222AC BC AB =+,ABC ∆是以AC 为斜边的直角三角形. ∴ABC ∆的外接圆的半径为15,即截面圆的半径15=r ,又球心到截面的距离为R d21=,∴22215)21(=-R R ,得310=R . ∴球的表面积为πππ1200)310(4422===R S . 说明:涉及到球的截面的问题,总是使用关系式22d R r -=解题,我们可以通过两个量求第三个量,也可能是抓三个量之间的其它关系,求三个量.例2.自半径为R 的球面上一点M ,引球的三条两两垂直的弦MC MB MA ,,,求222MC MB MA ++的值.分析:此题欲计算所求值,应首先把它们放在一个封闭的图形内进行计算,所以应引导学生构造熟悉的几何体并与球有密切的关系,便于将球的条件与之相联.解:以MC MB MA ,,为从一个顶点出发的三条棱,将三棱锥ABC M-补成一个长方体,则另外四个顶点必在球面上,故长方体是球的内接长方体,则长方体的对角线长是球的直径.∴222MC MB MA ++=224)2(R R =.说明:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中体积计算. 例3.试比较等体积的球与正方体的表面积的大小.分析:首先抓好球与正方体的基本量半径和棱长,找出等量关系,再转化为其面积的大小关系. 解:设球的半径为r ,正方体的棱长为a ,它们的体积均为V ,则由ππ43,3433V r V r ==,343πV r =,由,3V a =得3V a =. 322324)43(44V V r S ππππ===球. 32322322166)(66V V V a S ====正方体. ∴<2164π <324V π32216V ,即正方体球S S <.例4 一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为r 的铁球,这时水面恰好和球面相切.问将球从圆锥内取出后,圆锥内水平面的高是多少?分析:先作出轴截面,弄清楚圆锥和球相切时的位置特征,利用铁球取出后,锥内下降部分(圆台)的体积等于球的体积,列式求解.解:如图作轴截面,设球未取出时水面高h PC =,球取出后,水面高x PH =∵r AC 3=,r PC 3=,则以AB 为底面直径的圆锥容积为PC AC V ⋅⋅=231π圆锥3233)3(31r r r ππ=⋅=,球取出后水面下降到EF ,水体积为32291)30tan (3131x PH PH PH EH V πππ=︒=⋅⋅=水.又球圆锥水V V V -=,则33334391r r x πππ-=, 解得r x 315=.例5.设正四面体中,第一个球是它的内切球,第二个球是它的外接球,求这两个球的表面积之比及体积之比. 分析:此题求解的第一个关键是搞清两个球的半径与正四面体的关系,第二个关键是两个球的半径之间的关系,依靠体积分割的方法来解决的.解:如图,正四面体ABCD 的中心为O ,BCD ∆的中心为1O ,则第一个球半径为正四面体的中心到各面的距离,第二个球的半径为正四面体中心到顶点的距离. 设R OA r OO ==,1,正四面体的一个面的面积为S .依题意得)(31r R S V BCDA +=-, 又S r V V BCD O BCD A ⋅⨯==--3144 r r R 4=+∴即r R 3=.所以914422==R r ππ外接球的表面积内切球的表面积.271343433==R rππ外接球的体积内切球的体积.说明:正四面体与球的接切问题,可通过线面关系证出,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即定有内切球的半径h r41=(h 为正四面体的高),且外接球的半径r R 3=. 例6.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离.分析:关键在于能根据要求构造出相应的几何体,由于四个球半径相等,故四个球一定组成正四面体的四个顶点且正四面体的棱长为两球半径之和2.解:四球心组成棱长为2的正四面体的四个顶点,则正四面体的高362)332(222=⋅-=h . 而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为3622+. 例7.如图1所示,在棱长为1的正方体内有两个球相外切且又分别与正方体内切.(1)求两球半径之和; 分析:此题的关键在于作截面,一个球在正方体内,学生一般知道作对角面,而两个球的球心连线也应在正方体的体对角线上,故仍需作正方体的对角面 ,得如图2的截面图,在图2中,观察R 与r 和棱长间的关系即可. 解:如图2,球心1O 和2O 在AC 上,过1O ,2O 分别作BC AD ,的垂线交于F E ,. 则由3,1==AC AB 得R CO r AO 3,321==.图23)(3=+++∴R r R r , 233133-=+=+∴r R . 练习:1、一个四棱柱的底面是正方形,侧棱与底面垂直,其长度为4,棱柱的体积为16,棱柱的各顶点在一个球面上,则这个球的表面积是 ( ) A .16π B .20π C .24πD .32π 答案:C解:由题意知,该棱柱是一个长方体,其长、宽、高分别为2,2,4.所以其外接球的半径R 所以球的表面积是S =4πR 2=24π.2四个顶点在同一个球面上,则此球的表面积为( )A.3πB.4πD.6π 答案:A以四面体的棱长为正方体的面对角线构造正方体,则正方体内接于球,正方体棱长为1,则体对角线长等于球的直径,即2R 所以S 球=4πR 2=3π.3.在半球内有一个内接正方体,试求这个半球的体积与正方体的体积之比.解:将半球补成整个的球(见题中的图),同时把原半球的内接正方体再补接一个同样的正方体,构成的长方体刚好是这个球的内接长方体,那么这个长方体的体对角线便是它的外接球的直径.设原正方体棱长为a ,球的半径为R ,则根据长方体的对角线性质,得(2R )2=a 2+a 2+(2a )2,即4R 2=6a 2.所以R a .从而V 半球=2π3R 3=32π3⎫⎪⎪⎝⎭3, V 正方体=a 3.因此V 半球∶V 正方体3∶a 3π∶2.4.,四个顶点在同一个球面上,则此球的表面积为( )A.3πB.4πD.6π 答案:A解析:以PA ,PB ,PC 为棱作长方体,则该长方体的外接球就是三棱锥P -ABC 的外接球,所以球的半径R ,所以球的表面积是S =4πR 2=16π.5.过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB的长度.解:由条件可抓住BCD A -是正四面体,A 、B 、C 、D 为球上四点,则球心在正四面体中心,设a AB =,则截面B C D 与球心的距离R a d -=36,过点B 、C 、D 的截面圆半径a r 33=,所以222)36()33(R a R a --=得R a 362=. 6.一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( B ) A .433 B .33 C . 43 D .1237. 直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA === ,120BAC ∠=︒,则此球的表面积等于 。

高考中关于“球”的题型分析

高考中关于“球”的题型分析

高考中关于“球”的题型分析常见问题1: 问题:怎样把圆和球的主要性质进行对照?解答:答:与弦垂直的直径过弦的中点,圆半径2=圆+弦长的一半2与截面积垂直的直径过截面圆的圆心,球半径球心到截面圆距离不过圆心的弦小于直径;经过圆心的弦是直不过球心的截得的是球的小圆,于球的大圆的半径和面积;是球的大圆,是最大的截面圆过切点的圆半径垂直于圆的切线过切点的球半径垂直于球的切面=[注] 与球面只有一个公共点的平面叫做球的切面,这个公共点叫做切点。

类似的,与球面只有一个公共点的直线叫做球的切线,这个公共点也叫做切点。

球的切线有以下主要性质:1. 过切点的球半径垂直于球的切线;2. 过球面上一点的切线有无限多条,这些切线都在这一点的球的切面内。

常见问题2: 球问题:地球半径为R,A、B两地都在北纬45°线上,且A、B的球面距离为,求A、B 两地经度的差.解答:分析:如图,O为球心,O1为北纬45°小圆的圆心,知A、B的球面距离,就可求得∠AOB 的弧度数,进而求得线段AB的长,在ΔAO1B中,∠AO1B的大小就是A、B两地的经度差.解设O1是北纬45°圈的中心,∵A、B都在此圈上,∴O1A=O1B=R.∵A、B的球面距离为,∴∠AOB===,ΔAOB为等边三角形.AB=R,在ΔAO1B中,∵O1A2+O1B2=R2+ R2=R2=AB2,∴∠AO1B=90°.∴A、B两地的经度差是90°.评析:注意搞清纬度和经度的问题,球面距离三步骤的运用是非常重要的问题.常见问题3: 球问题:已知圆锥的母亲长为l,母线对圆锥底面的倾角为θ,在这个圆锥内有一内切球,球内又有一个内接的正方体,求这个内接正方体的体积.解答:解设球半径为R,以内接正方体对角面为轴截面,如图.连接OA,∠OAD=,R=OD=AD·tan ,VA=l,AD=lcosθ,∴R=lcosθtan ,又设正方体棱长为x,则3x2=EG2=4R2,x=R.∴V正方体=(lcosθtan )3.常见问题4: 球问题:如图,过半径为R的球面上一点P作三条两两垂直的弦PA、PB、PC,(1)求证:PA2+PB2+PC2为定值;(2)求三棱锥P—ABC的体积的最大值.解答:分析:先选其中两条弦PA、PB,设其确定的平面截球得⊙O1,AB是⊙O1的直径,连PO1并延长交⊙O1于D,PADB是矩形,PD2=AB2=PA2+PB2,然后只要证得PC和PD确定是大圆就可以了.解 (1)设过PA、PB的平面截球得⊙O1,∵PA⊥PB,∴AB是⊙O1的直径,连PO1并延长交⊙O1于D,则PADB是矩形,PD2=PA2+PB2.设O为球心,则OO1⊥平面⊙O1,∵PC⊥⊙O1平面,∴OO1∥PC,因此过PC、PD的平面经过球心O,截球得大圆,又PC⊥PD.∴CD是球的直径.故 PA2+PB2+PC2=PD2+PC2=CD2=4R2定值.(2)设PA、PB、PC的长分别为x、y、z,则三棱锥P—ABC的体积V=xyz,V2=x2y2z2≤ ( )3=· =R6.∴V≤ R3.即 V最大=R3.评析:定值问题可用特殊情况先“探求”,如本题(1)若先考虑PAB是大圆,探求得定值4R2可为(1)的证明指明方向.球面上任一点对球的直径所张的角等于90°,这应记作很重要的性质.常见问题5: 球问题:求棱长为a的正四面体的外接球和内切球的半径.解答:解如图,作AH⊥底面BCD于H,则AH=a,设内切球的球心为O,半径为r,O点与A、B、C、D相连,得四个锥体,设底面为S,则每个侧面积为S,有4· ·Sr=S·AH,∴r=AH=a,设外接球心为O,半径R,过A点作球的半径交底面ΔCD于H,则H为圆BCD的圆心,求得BH=a,AH=a,由相交弦定理得a×(2R- a)=( a)2.解得R= a.常见问题6: 球问题:球面上有3个点,其中任意两点的球面距离都等于大圆周长的,经过3个点的小圆的周长为4π,那么这个球的半径为( )A.4B.2C.2D.解答:解设球半径为R,小圆半径为r,则2πr=4π,∴r=2.如图,设三点A、B、C,O为球心,∠AOB=∠BOC=∠COA=,又∵OA=OB∴ΔAOB是等边三角形同理,ΔBOC、ΔCOA都是等边三角形,得ΔABC为等边三角形.边长等于球半径R,r为ΔABC的外接圆半径.r=AB=RR=r=2∴应选B.常见问题7: 球问题:已知球面上A、B、C三点的截面和球心的距离都是球半径的一半,且AB=BC=CA=2,则球表面积是( )A. πB. πC.4πD. π解答:解如图,过ABC三点的截面圆的圆心是O′,球心是O,连结AO′、OO′,则OO′⊥AO′.ΔABC中,AB=BC=CA=2,故ΔABC为正三角形.∴AO′=×2=设球半径为R,则OA=R,OO′=在RtΔOAO′中,OA2=O′O2+O′A2,即R2=+( )2∴R=∴球面面积为4πR2=π∴应选A.说明因为R=OA>O′A>AB=1,所以球面积S=4πR2>4π.从而选A.常见问题8: 球问题:长方体的一个顶点上的三条棱分别是3、4、5,且它的八个顶点都在同一球面上,这个球的表面积是( )A.20 πB.25 πC.50πD.200π解答:解正方体的对角线为l,球的半径为R,则l=2R.得:l2=4R2=32+42+52=50从而 S球=4πR2=50π∴应选C.常见问题9: 球问题:在球面上有四个点P、A、B、C.如果PA、PB、PC两两互相垂直,且PA=PB=PC=a,那么这个球的表面积是 .解答:解由已知可得PA、PB、PC实际上就是球内接正方体中交于一点的三条棱,正方体的对角线长就是球的直径,连结过点C的一条对角线CD,则CD过球心O,对角线CD= a.∴S球表面积=4π·( a)2=3πa2.常见问题10: 球问题:圆柱形容器的内壁底半径为5cm,两个直径为5cm的玻璃小球都浸没于容器的水中,若取出这两个小球,则容器内的水面将下降 cm.解答:分析:球的体积等于它在容器中排开水的体积.解设取出小球后,容器水平面将下降hcm,两小球体积为V球=2× π×52×h,V1= V球即 25πh=π∴h=cm.∴应填.常见问题11: 球问题:湖结冰时,一个球漂在其上,取出后(未弄破冰),冰面上留下了一个直径为24cm,深为8cm的空穴,求该球的半径.解答:解设球的半径为R,依题意知截面圆的半径r=12,球心与截面的距离为d=R-8,由截面性质得:r2+d2=R2,即122+(R-8)2=R2.得R=13 ∴该球半径为13cm.常见问题12: 球问题:在有阳光时,一根长为3米的旗轩垂直于水平地面,它的影长为米,同时将一个半径为3米的球放在这块水平地面上,如图所示,求球的阴影部分的面积(结果用无理数表示).解答:解:由题意知,光线与地面成60°角,设球的阴影部分面积为S,垂直于光线的大圆面积为S′,则Scos30°=S′,并且S′=9π,所以S=6 π(米2)常见问题13: 球问题:设棱锥M—ABCD的底面是正方形,且MA=MD,MA⊥AB,如果ΔAMD的面积为1,试求能够放入这个棱锥的最大球的半径.解答:解∵AB⊥AD,AB⊥MA,∴AB⊥平面MAD,由此,面MAD⊥面AC.记E是AD的中点,从而ME⊥AD.∴ME⊥平面AC ME⊥EF设球O是与平面MAD、AC、平面MBC都相切的球.不妨设O∈平面MEF,于是O是ΔMEF的内心.设球O的半径为r,则r=设AD=EF=a,∵SΔAMD=1.∴ME=.MF=,r=≤ =-1当且仅当a=,即a=时,等号成立.∴当AD=ME=时,满足条件的球最大半径为-1.。

高考球体知识点总结

高考球体知识点总结

高考球体知识点总结高中阶段,物理学科中的球体知识点在高考中占据了重要的地位。

掌握了这些知识点,不仅可以在物理考试中取得良好的成绩,还能够帮助我们更好地理解物理世界中的现象和规律。

本文将对高考中常见的球体知识点进行总结,并提供相应的解析与示例,帮助考生更好地掌握这一部分内容。

一、球体的定义与性质球体是由一条定长的直线以其中一点为端点而绘制的轨迹形成的几何图形。

球体具有以下基本性质:1. 球体的表面积公式:球体的表面积公式为4πr²,其中r为球体的半径。

2. 球体的体积公式:球体的体积公式为(4/3)πr³,其中r为球体的半径。

二、球体的运动学球体在运动学中常涉及到以下几个重要的知识点:1. 球体的匀速直线运动:当球体在直线上做匀速运动时,可以通过位移、速度和时间之间的关系进行求解。

根据物体匀速直线运动的定义,球体在单位时间内位移的大小是恒定的。

2. 球体的自由落体运动:当球体在自由落体过程中,只受到重力作用,可以利用运动方程进行求解。

根据重力加速度g的定义,球体在自由落体过程中,其速度将以每秒增加9.8米的速度下降。

三、球体的静力学球体在静力学中经常涉及的知识点包括以下几个:1. 球体的支持力:当球体放在水平面上静止时,球体受到的支持力垂直于水平面并与地面接触。

根据牛顿第三定律,此时球体受到地面对球体的支持力,与球体所受的重力大小相等、方向相反。

2. 球体光滑斜面的运动:当球体沿着光滑斜面滚动时,可以利用重力分解成平行和垂直于斜面的分力进行分析。

根据物体在斜面上的运动规律,球体的加速度与斜面的倾角有关。

四、球体的能量转化球体在能量转化中常涉及以下几个重要概念:1. 动能与势能的转化:当球体从高处滚动到低处时,其势能逐渐转化为动能。

根据动能和势能的定义,球体的动能与其质量和速度的平方成正比,而势能与球体的高度和重力加速度的乘积成正比。

2. 球体的滚动摩擦:当球体滚动时,摩擦力会对其产生作用。

2018届高考数学(理)热点题型:解析几何(Word版,含答案解析,全站免费)

2018届高考数学(理)热点题型:解析几何(Word版,含答案解析,全站免费)

解析几何热点一 圆锥曲线的标准方程与几何性质圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、双曲线的渐近线是常考题型.【例1】(1)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为F (2,0),且双曲线的渐近线与圆(x -2)2+y 2=3相切,则双曲线的方程为( ) A.x 29-y 213=1 B.x 213-y 29=1 C.x 23-y 2=1D.x 2-y 23=1(2)若点M (2,1),点C 是椭圆x 216+y 27=1的右焦点,点A 是椭圆的动点,则|AM |+|AC |的最小值为________.(3)已知椭圆x 2a 2+y 2b 2=1(a >b >0)与抛物线y 2=2px (p >0)有相同的焦点F ,P ,Q 是椭圆与抛物线的交点,若直线PQ 经过焦点F ,则椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为________.答案 (1)D (2)8-26 (3)2-1解析 (1)双曲线x 2a 2-y 2b 2=1的一个焦点为F (2,0),则a 2+b 2=4,①双曲线的渐近线方程为y =±ba x , 由题意得2b a 2+b2=3,② 联立①②解得b =3,a =1, 所求双曲线的方程为x 2-y 23=1,选D.(2)设点B 为椭圆的左焦点,点M (2,1)在椭圆内,那么|BM |+|AM |+|AC |≥|AB |+|AC |=2a ,所以|AM |+|AC |≥2a -|BM |,而a =4,|BM |=(2+3)2+1=26,所以(|AM |+|AC |)最小=8-26.(3)因为抛物线y 2=2px (p >0)的焦点F 为⎝ ⎛⎭⎪⎫p 2,0,设椭圆另一焦点为E .如图所示,将x =p 2代入抛物线方程得y =±p ,又因为PQ 经过焦点F ,所以P ⎝ ⎛⎭⎪⎫p 2,p 且PF ⊥OF .所以|PE |=⎝ ⎛⎭⎪⎫p 2+p 22+p 2=2p , |PF |=p ,|EF |=p .故2a =2p +p ,2c =p ,e =2c2a =2-1.【类题通法】(1)在椭圆和双曲线中,椭圆和双曲线的定义把曲线上的点到两个焦点的距离联系在一起,可以把曲线上的点到一个焦点的距离转化为到另一个焦点的距离,也可以结合三角形的知识,求出曲线上的点到两个焦点的距离.在抛物线中,利用定义把曲线上的点到焦点的距离转化为其到相应准线的距离,再利用数形结合的思想去解决有关的最值问题.(2)求解与圆锥曲线的几何性质有关的问题关键是建立圆锥曲线方程中各个系数之间的关系,或者求出圆锥曲线方程中的各个系数,再根据圆锥曲线的几何性质通过代数方法进行计算得出结果.【对点训练】已知椭圆x 24+y 22=1的左、右焦点分别为F 1,F 2,过F 1且倾斜角为45°的直线l 交椭圆于A ,B 两点,以下结论:①△ABF 2的周长为8;②原点到l 的距离为1;③|AB |=83.其中正确结论的个数为( ) A.3B.2C.1D.0答案 A解析 ①由椭圆的定义,得|AF 1|+|AF 2|=4,|BF 1|+|BF 2|=4,又|AF 1|+|BF 1|=|AB |,所以△ABF 2的周长为|AB |+|AF 2|+|BF 2|=8,故①正确;②由条件,得F 1(-2,0),因为过F 1且倾斜角为45°的直线l 的斜率为1,所以直线l 的方程为y =x +2,则原点到l 的距离d =|2|2=1,故②正确;③设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =x +2,x 24+y 22=1,得3x 2+42x =0,解得x 1=0,x 2=-423,所以|AB |=1+1·|x 1-x 2|=83,故③正确.故选A.热点二 圆锥曲线中的定点、定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题.【例2】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上. (1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M ,证明:直线OM 的斜率与直线l 的斜率的乘积为定值. (1)解 由题意有a 2-b 2a =22,4a 2+2b 2=1, 解得a 2=8,b 2=4. 所以C 的方程为x 28+y 24=1.(2)证明 设直线l :y =kx +b (k ≠0,b ≠0), A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入x 28+y 24=1得 (2k 2+1)x 2+4kbx +2b 2-8=0.故x M =x 1+x 22=-2kb 2k 2+1,y M =k ·x M +b =b2k 2+1.于是直线OM 的斜率k OM =y M x M=-12k ,即k OM ·k =-12.所以直线OM 的斜率与直线l 的斜率的乘积为定值.【类题通法】解答圆锥曲线中的定点、定值问题的一般步骤第一步:研究特殊情形,从问题的特殊情形出发,得到目标关系所要探求的定点、定值.第二步:探究一般情况.探究一般情形下的目标结论. 第三步:下结论,综合上面两种情况定结论.【对点训练】已知抛物线C :y 2=2px (p >0)的焦点F (1,0),O 为坐标原点,A ,B 是抛物线C 上异于O 的两点. (1)求抛物线C 的方程;(2)若直线OA ,OB 的斜率之积为-12,求证:直线AB 过x 轴上一定点.(1)解 因为抛物线y 2=2px (p >0)的焦点坐标为(1,0),所以p2=1,所以p =2.所以抛物线C 的方程为y 2=4x .(2)证明 ①当直线AB 的斜率不存在时,设A ⎝ ⎛⎭⎪⎫t 24,t ,B ⎝ ⎛⎭⎪⎫t 24,-t .因为直线OA ,OB 的斜率之积为-12,所以t t 24·-t t 24=-12,化简得t 2=32.所以A (8,t ),B (8,-t ),此时直线AB 的方程为x =8.②当直线AB 的斜率存在时,设其方程为y =kx +b ,A (x A ,y A ),B (x B ,y B ),联立得⎩⎨⎧y 2=4x ,y =kx +b ,化简得ky 2-4y +4b =0. 根据根与系数的关系得y A y B =4b k ,因为直线OA ,OB 的斜率之积为-12,所以y A x A·y BxB=-12,即x A x B +2y A y B =0.即y 2A 4·y 2B4+2y A y B =0,解得y A y B =0(舍去)或y A y B =-32.所以y A y B =4bk =-32,即b =-8k ,所以y =kx -8k ,即y =k (x -8).综上所述,直线AB 过定点(8,0). 热点三 圆锥曲线中的最值、范围问题圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.【例3】平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,抛物线E :x 2=2y 的焦点F 是C 的一个顶点. (1)求椭圆C 的方程;(2)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交于不同的两点A ,B ,线段AB 的中点为D .直线OD 与过P 且垂直于x 轴的直线交于点M . ①求证:点M 在定直线上;②直线l 与y 轴交于点G ,记△PFG 的面积为S 1,△PDM 的面积为S 2,求S 1S 2的最大值及取得最大值时点P 的坐标.(1)解 由题意知a 2-b 2a =32,可得a 2=4b 2, 因为抛物线E 的焦点F ⎝ ⎛⎭⎪⎫0,12,所以b =12,a =1,所以椭圆C 的方程为x 2+4y 2=1.(2)①证明 设P ⎝ ⎛⎭⎪⎫m ,m 22(m >0),由x 2=2y ,可得y ′=x ,所以直线l 的斜率为m ,因此直线l 的方程为y -m 22=m (x -m ). 即y =mx -m 22.设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0).联立方程⎩⎪⎨⎪⎧x 2+4y 2=1,y =mx -m 22,得(4m 2+1)x 2-4m 3x +m 4-1=0.由Δ>0,得0<m <2+5(或0<m 2<2+5).(*)且x 1+x 2=4m 34m 2+1,因此x 0=2m 34m 2+1,将其代入y =mx -m 22,得y 0=-m 22(4m 2+1),因为y 0x 0=-14m .所以直线OD 方程为y =-14m x ,联立方程⎩⎪⎨⎪⎧y =-14m x ,x =m ,得点M 的纵坐标y M =-14, 所以点M 在定直线y =-14上. ②由①知直线l 的方程为y =mx -m 22, 令x =0,得y =-m 22,所以G ⎝ ⎛⎭⎪⎫0,-m 22,又P ⎝ ⎛⎭⎪⎫m ,m 22,F ⎝ ⎛⎭⎪⎫0,12,D ⎝ ⎛⎭⎪⎫2m 34m 2+1,-m 22(4m 2+1), 所以S 1=12·|GF |·m =(m 2+1)m 4,S 2=12·|PM |·|m -x 0|=12×2m 2+14×2m 3+m 4m 2+1=m (2m 2+1)28(4m 2+1).所以S 1S 2=2(4m 2+1)(m 2+1)(2m 2+1)2.设t =2m 2+1,则S 1S 2=(2t -1)(t +1)t 2=2t 2+t -1t 2=-1t 2+1t +2,当1t =12, 即t =2时,S 1S 2取到最大值94,此时m =22,满足(*)式,所以P 点坐标为⎝ ⎛⎭⎪⎫22,14.因此S 1S 2的最大值为94,此时点P 的坐标为⎝ ⎛⎭⎪⎫22,14.【类题通法】圆锥曲线中的最值、范围问题解决方法一般分两种:一是代数法,从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和基本不等式法、换元法、导数法、或利用判别式构造不等关系、利用隐含或已知的不等关系建立不等式等方法求最值、范围;二是几何法,从圆锥曲线的几何性质的角度考虑,根据圆锥曲线几何意义求最值.【对点训练】如图,设抛物线y 2=2px (p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1. (1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M ,求M 的横坐标的取值范围.解 (1)由题意可得,抛物线上点A 到焦点F 的距离等于点A 到直线x =-1的距离,由抛物线的定义得p2=1,即p =2.(2)由(1)得,抛物线方程为y 2=4x ,F (1,0), 可设A (t 2,2t ),t ≠0,t ≠±1.因为AF 不垂直于y 轴,可设直线AF :x =sy +1(s ≠0),由⎩⎨⎧y 2=4x ,x =sy +1消去x 得y 2-4sy -4=0.故y 1y 2=-4,所以B ⎝ ⎛⎭⎪⎫1t 2,-2t .又直线AB 的斜率为2tt 2-1,故直线FN 的斜率为-t 2-12t ,从而得直线FN :y =-t 2-12t (x -1),直线BN :y =-2t .所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t .设M (m ,0),由A ,M ,N 三点共线得2t t 2-m =2t +2tt 2-t 2+3t 2-1,于是m =2t 2t 2-1,所以m <0或m >2.经检验,m <0或m >2满足题意.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞). 热点四 圆锥曲线中的探索性问题圆锥曲线的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题.【例4】已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点⎝ ⎛⎭⎪⎫m 3,m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率;若不能,说明理由. (1)证明 设直线l :y =kx +b (k ≠0,b ≠0), A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入9x 2+y 2=m 2得(k 2+9)x 2+2kbx +b 2-m 2=0,故x M =x 1+x 22=-kb k 2+9,y M =kx M+b =9bk 2+9. 于是直线OM 的斜率k OM =y M x M=-9k ,即k OM ·k =-9.所以直线OM 的斜率与l 的斜率的乘积为定值. (2)解 四边形OAPB 能为平行四边形.因为直线l 过点⎝ ⎛⎭⎪⎫m 3,m ,所以l 不过原点且与C 有两个交点的充要条件是k >0,k ≠3.由(1)得OM 的方程为y =-9k x . 设点P 的横坐标为x P ,由⎩⎪⎨⎪⎧y =-9k x ,9x 2+y 2=m 2得x 2P =k 2m 29k 2+81,即x P =±km 3k 2+9. 将点⎝ ⎛⎭⎪⎫m 3,m 的坐标代入l 的方程得b =m (3-k )3,因此x M=k (k -3)m 3(k 2+9). 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M . 于是±km 3k 2+9=2×k (k -3)m3(k 2+9),解得k 1=4-7,k 2=4+7.因为k i >0,k i ≠3,i =1,2,所以当l 的斜率为4-7或4+7时,四边形OAPB 为平行四边形.【类题通法】(1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.【对点训练】在平面直角坐标系xOy 中,过点C (2,0)的直线与抛物线y 2=4x 相交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2). (1)求证:y 1y 2为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求出该直线方程和弦长;如果不存在,说明理由. (1)证明 法一 当直线AB 垂直于x 轴时, y 1=22,y 2=-2 2. 因此y 1y 2=-8(定值). 当直线AB 不垂直于x 轴时,设直线AB 的方程为y =k (x -2), 由⎩⎨⎧y =k (x -2),y 2=4x ,得ky 2-4y -8k =0. ∴y 1y 2=-8.因此有y 1y 2=-8为定值.法二 设直线AB 的方程为my =x -2, 由⎩⎨⎧my =x -2,y 2=4x ,得y 2-4my -8=0. ∴y 1y 2=-8.因此有y 1y 2=-8为定值. (2)解 设存在直线l :x =a 满足条件, 则AC 的中点E ⎝ ⎛⎭⎪⎫x 1+22,y 12,|AC |=(x 1-2)2+y 21.因此以AC 为直径的圆的半径r =12|AC |=12(x 1-2)2+y 21=12x 21+4, 又点E 到直线x =a 的距离d =⎪⎪⎪⎪⎪⎪x 1+22-a故所截弦长为 2r 2-d 2=214(x 21+4)-⎝ ⎛⎭⎪⎫x 1+22-a 2=x 21+4-(x 1+2-2a )2=-4(1-a )x 1+8a -4a 2.当1-a =0,即a =1时,弦长为定值2,这时直线方程为x =1.。

2018高考数学(理)热点题型:立体几何 全国通用 Word版含解析

2018高考数学(理)热点题型:立体几何 全国通用 Word版含解析

立体几何热点一空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC中,∠ABC=π4,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.(1)求证:平面PBD⊥平面COD;(2)求直线PD与平面BDC所成角的正弦值.(1)证明∵OB=OC,又∵∠ABC=π4,∴∠OCB=π4,∴∠BOC=π2.∴CO⊥AB.又PO⊥平面ABC,OC⊂平面ABC,∴PO⊥OC.又∵PO,AB⊂平面PAB,PO∩AB=O,∴CO⊥平面PAB,即CO⊥平面PDB.又CO⊂平面COD,∴平面PDB⊥平面COD.(2)解以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD→=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1). 设平面BDC 的一个法向量为n =(x ,y ,z ), ∴⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,∴⎩⎨⎧2x -2y =0,-3y +z =0,令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD→·n |PD →||n | =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【对点训练】 如图所示,在多面体A 1B 1D 1­DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C .(2)求二面角E -A 1D ­B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ⊂面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.(2)解 因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝ ⎛⎭⎪⎫12,12,1.设平面A 1DE 的一个法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=⎝ ⎛⎭⎪⎫12,12,0,A 1D →=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →得r 1,s 1,t 1应满足的方程组⎩⎪⎨⎪⎧12r 1+12s 1=0,s 1-t 1=0, (-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设平面A 1B 1CD 的一个法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1). 所以结合图形知二面角E -A 1D ­B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63.热点二 立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式: (1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在. 【例2】如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5. (1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.(1)证明 因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD , 所以AB ⊥平面PAD ,所以AB ⊥PD.又PA ⊥PD ,AB ∩PA =A ,所以PD ⊥平面PAB. (2)解 取AD 的中点O ,连接PO ,CO. 因为PA =PD ,所以PO ⊥AD.因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD.因为CO ⊂平面ABCD ,所以PO ⊥CO. 因为AC =CD ,所以CO ⊥AD.如图,建立空间直角坐标系O -xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0,令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33.所以直线PB 与平面PCD 所成角的正弦值为33.(3)解 设M 是棱P A 上一点,则存在λ∈0,1],使得AM →=λAP →.因此点M (0,1-λ,λ),BM→=(-1,-λ,λ).因为BM ⊄平面PCD ,所以要使BM ∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱P A 上存在点M ,使得BM ∥平面PCD ,此时AM AP =14.【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.【对点训练】如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC =6,AD =8,BC =10,∠P AD =45°,E 为P A 的中点. (1)求证:DE ∥平面BPC ;(2)线段AB 上是否存在一点F ,满足CF ⊥DB ?若存在,试求出二面角F -PC -D 的余弦值;若不存在,请说明理由.(1)证明 取PB 的中点M ,连接EM 和CM ,过点C 作CN ⊥AB ,垂足为点N .∵CN ⊥AB ,DA ⊥AB ,∴CN ∥DA ,又AB ∥CD ,∴四边形CDAN 为平行四边形, ∴CN =AD =8,DC =AN =6, 在Rt △BNC 中,BN =BC 2-CN 2=102-82=6,∴AB =12,而E ,M 分别为P A ,PB 的中点, ∴EM ∥AB 且EM =6,又DC ∥AB ,∴EM ∥CD 且EM =CD ,四边形CDEM 为平行四边形, ∴DE ∥CM.∵CM ⊂平面PBC ,DE ⊄平面PBC , ∴DE ∥平面BPC.(2)解 由题意可得DA ,DC ,DP 两两互相垂直,如图,以D 为原点,DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系D -xyz , 则A (8,0,0),B (8,12,0),C (0,6,0),P (0,0,8). 假设AB 上存在一点F 使CF ⊥BD , 设点F 坐标为(8,t ,0),则CF→=(8,t -6,0),DB →=(8,12,0), 由CF→·DB →=0得t =23. 又平面DPC 的一个法向量为m =(1,0,0), 设平面FPC 的法向量为n =(x ,y ,z ). 又PC→=(0,6,-8),FC →=⎝ ⎛⎭⎪⎫-8,163,0.由⎩⎪⎨⎪⎧n ·PC→=0,n ·FC →=0,得⎩⎪⎨⎪⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y , 不妨令y =12,有n =(8,12,9). 则cos 〈n ,m 〉=n ·m|n ||m |=81×82+122+92=817. 又由图可知,该二面角为锐二面角, 故二面角F -PC -D 的余弦值为817. 热点三 立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10. (1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值.(1)证明 由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CFCD ,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3. 于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H , 所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H-xyz .则H (0,0,0),A (-3,-1,0), B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量, 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎨⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎨⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1). 于是cos 〈m ,n 〉=m ·n |m ||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525.【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【对点训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.(1)证明 在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC , 从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC . (2)解 由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0). 设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎨⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.。

【大师特稿】2018届高考数学(理)热点题型:立体几何(含答案)

【大师特稿】2018届高考数学(理)热点题型:立体几何(含答案)

立体几何热点一 空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC 中,∠ABC =π4,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO⊥平面ABC ,2DA =2AO =PO ,且DA∥PO. (1)求证:平面PBD⊥平面COD ;(2)求直线PD 与平面BDC 所成角的正弦值.(1)证明 ∵OB =OC ,又∵∠ABC =π4, ∴∠OCB =π4,∴∠BOC =π2.∴CO ⊥AB. 又PO ⊥平面ABC , OC ⊂平面ABC ,∴PO ⊥OC.又∵PO ,AB ⊂平面PAB ,PO ∩AB =O , ∴CO ⊥平面PAB ,即CO ⊥平面PDB. 又CO ⊂平面COD , ∴平面PDB ⊥平面COD.(2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD →=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1). 设平面BDC 的一个法向量为n =(x ,y ,z ), ∴⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,∴⎩⎨⎧2x -2y =0,-3y +z =0,令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD →·n |PD →||n | =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【对点训练】 如图所示,在多面体A 1B 1D 1­DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C .(2)求二面角E ­A 1D ­B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ⊂面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.(2)解 因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝ ⎛⎭⎪⎫12,12,1.设平面A 1DE 的一个法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=⎝ ⎛⎭⎪⎫12,12,0,A 1D →=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →得r 1,s 1,t 1应满足的方程组⎩⎨⎧12r 1+12s 1=0,s 1-t 1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设平面A 1B 1CD 的一个法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1). 所以结合图形知二面角E ­A 1D ­B 1的余弦值为 |n 1·n 2||n 1|·|n 2|=23×2=63.热点二 立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式: (1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在. 【例2】如图,在四棱锥P -ABCD 中,平面PAD⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5.(1)求证:PD⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM∥平面PCD ?若存在,求AMAP的值;若不存在,说明理由.(1)证明 因为平面PAD⊥平面ABCD ,平面PAD∩平面ABCD =AD ,AB ⊥AD , 所以AB⊥平面PAD ,所以AB⊥PD.又PA⊥PD,AB ∩PA =A ,所以PD⊥平面PAB. (2)解 取AD 的中点O ,连接PO ,CO. 因为PA =PD ,所以PO ⊥AD.因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD.因为CO ⊂平面ABCD ,所以PO ⊥CO. 因为AC =CD ,所以CO ⊥AD.如图,建立空间直角坐标系O -xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0,令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB→|n ||PB →|=-33.所以直线PB与平面PCD所成角的正弦值为3 3.(3)解设M是棱PA上一点,则存在λ∈[0,1],使得AM→=λAP→. 因此点M(0,1-λ,λ),BM→=(-1,-λ,λ).因为BM⊄平面PCD,所以要使BM∥平面PCD,则BM→·n=0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=1 4 .所以在棱PA上存在点M,使得BM∥平面PCD,此时AMAP=14.【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数. 【对点训练】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD =8,BC=10,∠PAD=45°,E为PA的中点.(1)求证:DE∥平面BPC;(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出二面角F-PC-D的余弦值;若不存在,请说明理由.(1)证明取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N.∵CN⊥AB,DA⊥AB,∴CN∥DA,又AB∥CD,∴四边形CDAN为平行四边形,∴CN=AD=8,DC=AN=6,在Rt △BNC 中,BN =BC 2-CN 2=102-82=6,∴AB =12,而E ,M 分别为PA ,PB 的中点, ∴EM ∥AB 且EM =6,又DC ∥AB ,∴EM ∥CD 且EM =CD ,四边形CDEM 为平行四边形, ∴DE ∥CM.∵CM ⊂平面PBC ,DE ⊄平面PBC , ∴DE ∥平面BPC.(2)解 由题意可得DA ,DC ,DP 两两互相垂直,如图,以D 为原点,DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系D -xyz , 则A (8,0,0),B (8,12,0),C (0,6,0),P (0,0,8). 假设AB 上存在一点F 使CF ⊥BD , 设点F 坐标为(8,t ,0),则CF →=(8,t -6,0),DB →=(8,12,0), 由CF →·DB →=0得t =23.又平面DPC 的一个法向量为m =(1,0,0), 设平面FPC 的法向量为n =(x ,y ,z ). 又PC →=(0,6,-8),FC →=⎝⎛⎭⎪⎫-8,163,0. 由⎩⎪⎨⎪⎧n ·PC →=0,n ·FC →=0,得⎩⎨⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y , 不妨令y =12,有n =(8,12,9).则cos 〈n ,m 〉=n ·m |n ||m |=81×82+122+92=817.又由图可知,该二面角为锐二面角,故二面角F-PC-D的余弦值为8 17 .热点三立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=54,EF交BD于点H.将△DEF沿EF折到△D′EF的位置,OD′=10.(1)证明:D′H⊥平面ABCD;(2)求二面角B-D′A-C的正弦值.(1)证明由已知得AC⊥BD,AD=CD.又由AE=CF得AEAD=CFCD,故AC∥EF.因此EF⊥HD,从而EF⊥D′H.由AB=5,AC=6得DO=BO=AB2-AO2=4.由EF∥AC得OHDO=AEAD=14.所以OH=1,D′H=DH=3.于是D′H2+OH2=32+12=10=D′O2,故D′H⊥OH.又D′H⊥EF,而OH∩EF=H,所以D′H⊥平面ABCD.(2)解如图,以H为坐标原点,HF→的方向为x轴正方向,建立空间直角坐标系H-xyz. 则H(0,0,0),A(-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量, 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎨⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎨⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1). 于是cos 〈m ,n 〉=m ·n |m ||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525.【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化.【对点训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值. (1)证明 在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC , 从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC . (2)解 由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0). 设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎨⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.。

第12讲立体几何中球的综合问题

第12讲立体几何中球的综合问题

第十二讲立体几何中球的综合问题A 组一、选择题1.(2018年高考全国卷Ⅰ)已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A.B .12πC .D .10π【答案】B【解析】∵过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为,底面圆的直径为,所以该圆柱的表面积为2212ππ⨯⨯+⨯=.故选B .2.三棱柱111ABC A B C -的各个顶点都在球O 的球面上,且11,AB AC BC CC ===⊥平面ABC 。

若球O 的表面积为3π,则这个三棱柱的体积是( )A .16B .13 C .12D .1【答案】C 【解析】11,2,,AB AC BC AB AC CC ===∴⊥⊥平面ABC ,三棱柱111ABC A B C -内接球O ,O ∴为距形11BCC B 的中心, 设球O 半径为r ,则243,r r ππ=∴=,即OC r ==,∴三棱柱的高1h ==,∴三棱柱的体积1111122ABC V S h ∆==⨯⨯⨯=,故选C 。

3.球O 的球面上有四点,,,S A B C ,其中,,,O A B C 四点共面,ABC ∆是边长为2的正三角形,面SAB ⊥面ABC ,则棱锥S ABC -的体积的最大值为( )A .3B ..4 【答案】A【解析】设球心和ABC ∆的外心为O ,延长CO 交AB 于点P ,则由球的对称性可知AB PD ⊥,继而由面SAB ⊥面ABC 可得⊥PD ABC ∆所在的平面,所以PD 是三棱锥的高;再由,,,O A B C 四点共面可知O 是ABC ∆的中心,故332,33==R OP ,当三棱锥的体积最大时,其高为1)33()332(22=-=PD ,故三棱锥的体积的最大值为331243312=⨯⨯⨯,应选A 。

4.如图所示,直四棱柱1111D C B A ABCD -内接于半径为3的半球O ,四边形ABCD 为正方形,则该四棱柱的体积最大时,AB 的长为( )A .1B .2C .3D .2 【答案】D【解析】设x AB =,则21213,22x BB x OB -==,所以直四棱柱的体积为22213x x V -=,令t x =-2213,则2226t x -=,则t t t t V 62)26(32+-=-=,故)1)(1(6662/+--=+-=t t t V ,所以当1=t 时,即2=x 时,体积V 最大.故应选D.5.在正三棱锥S ABC -中,M 是SC 的中点,且AM SB ⊥,底面边长AB =,则正三棱锥S ABC -的外接球的表面积为( )A .6πB .12πC .32πD .36π 【答案】B【解析】根据三棱锥为正三棱锥,可证明出AC ⊥SB ,结合SB ⊥AM ,得到SB ⊥平面SAC ,因此可得SA 、SB 、SC 三条侧棱两两互相垂直.最后利用公式求出外接圆的直径,结合球的表面积公式,可得正三棱锥S-ABC 的外接球的表面积.取AC 中点,连接BN 、SN ,∵N 为AC 中点,SA=SC ,∴AC ⊥SN , 同理AC ⊥BN ,∵SN ∩BN=N ,∴AC ⊥平面SBN ,∵SB ⊂平面SBN ,∴AC ⊥SB ,∵SB ⊥AM 且AC ∩AM=A , ∴SB ⊥平面SAC ⇒SB ⊥SA 且SB ⊥AC , ∵三棱锥S-ABC 是正三棱锥,∴SA 、SB 、SC 三条侧棱两两互相垂直.∵底面边长AB =∴侧棱SA=2,∴正三棱锥S-ABC 的外接球的直径为:2R R =∴= ∴正三棱锥S-ABC 的外接球的表面积是2412S R ππ==,故选:B .二、填空题6.(2017年天津卷)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 【答案】9π2【解析】设正方体边长为a ,则226183a a =⇒= ,外接球直径为34427923,πππ3382R V R ====⨯=.7.底面是同一个边长为a 的正三角形的两个三棱锥内接于同一个球,它们顶点的连线为球的直径且垂直于底面,球的半径为R 。

例谈高考命题热点之与球有关的计算问题

例谈高考命题热点之与球有关的计算问题

例谈高考命题热点之与球有关的计算问题作者:杨忠明来源:《新教育时代·教师版》2018年第35期摘要:与球有关的计算问题,特别是有关多面体外接球的问题是近几年高考的一个热点。

此类题的设计一般都源于教材但高于教材,解答时需要学生发挥较强的识图能力和空间想象能力。

本文就近两年的部分高考题进行举例说明。

关键词:高考球计算通过认真研究近几年全国各省市的高考试题就会发现,涉及与球有关的计算问题在高考中频频出现。

可见,与球有关的计算问题,特别是有关多面体外接球的问题,是立体几何的一个重点,也是一个不可小觑的高考热点。

与球有关的高考题往往以小题的形式出现,试题的设计一般都源于教材但高于教材,有一定的难度,解决此类问题时需要学生发挥较强的识图能力和空间想象能力。

下面以近三年高考全国新课标卷中出现的有关球的部分高考题进行分类探讨与解读。

一、考查与球有关的三视图问题例1:2016年新课标全国Ⅰ卷·理6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径。

若该几何体的体积是,则它的表面积是(A)(B)(C)(D)解答:由所给三视图可知,所给几何体与球的关系如图示。

由图可知,所给几何体是一个球切掉了左上角的后所得的部分。

设球的半径为,由题设可得,即,从而所给几何体的表面积为,故选A。

点评:本题在考查基础知识、基本方法的同时,侧重考查识图能力和空间想象能力。

试题还要求考生能根据条件进行正确的推理和运算,将球的体积问题转化为球的表面积问题。

二、考查与球有关的组合体问题球与其他几何体组合在一起的图形称为球的组合体,与球有关的组合体问题有内切和外接两种。

如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球。

球外切多面体是指球面和多面体的各个面都相切,球心到各面的距离都是球的半径,球外切多面体也叫做多面体内切球。

解决球与其他几何体的切、接问题,关键在于仔细观察、分析图形,明确切点和接点的位置,确定有关元素之间的数量关系,并作出合适的截面图(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的。

最新-福建省2018届高考数学一轮经典例题 球 理 精品

最新-福建省2018届高考数学一轮经典例题 球 理 精品

典型例题一例1.已知地球的半径为R ,球面上B A ,两点都在北纬45圈上,它们的球面距离为R 3π,A 点在东经30 上,求B 点的位置及B A ,两点所在其纬线圈上所对应的劣弧的长度.分析:求点B 的位置,如图就是求B AO 1∠的大小,只需求出弦AB 的长度.对于AB 应把它放在OAB ∆中求解,根据球面距离概念计算即可.解:如图,设球心为O ,北纬45圈的中心为1O , 由B A ,两点的球面距离为R 3π,所以AOB ∠=3π, ∴OAB ∆为等边三角形.于是R AB =.由R R B O A O 2245cos 11=⋅==, 22121AB B O A O =+∴.即B AO 1∠=2π. 又A 点在东经30上,故B 的位置在东经120,北纬45或者西经60,北纬45.B A ,∴两点在其纬线圈上所对应的劣弧R A O ππ4221=⋅. 说明:此题主要目的在于明确经度和纬度概念,及利用球的截面的性质和圆的有关性质设计计算方案.典型例题二例2.用两个平行平面去截半径为R 的球面,两个截面圆的半径为cm r 241=,cm r 152=.两截面间的距离为cm d 27=,求球的表面积.分析:此类题目的求解是首先做出截面图,再根据条件和截面性质做出与球的半径有关的三角形等图形,利用方程思想计算可得.解:设垂直于截面的大圆面交两截面圆于2211,B A B A ,上述大圆的垂直于11B A 的直径交2211,B A B A 于21,O O ,如图2.设2211,d OO d OO ==,则⎪⎩⎪⎨⎧=+=+=+2222222121152427R d R d d d ,解得25=R .)(2500422cm R S ππ==∴圆.说明:通过此类题目,明确球的有关计算问题需先将立体问题转化为平面问题,进一步熟悉有关圆的基础知识,熟练使用方程思想,合理设元,列式,求解.典型例题三例3.自半径为R 的球面上一点M ,引球的三条两两垂直的弦MC MB MA ,,,求222MC MB MA ++的值.分析:此题欲计算所求值,应首先把它们放在一个封闭的图形内进行计算,所以应引导学生构造熟悉的几何体并与球有密切的关系,便于将球的条件与之相联.解:以MC MB MA ,,为从一个顶点出发的三条棱,将三棱锥ABC M -补成一个长方体,则另外四个顶点必在球面上,故长方体是球的内接长方体,则长方体的对角线长是球的直径.∴222MC MB MA ++=224)2(R R =.说明:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中体积计算.典型例题四例4.试比较等体积的球与正方体的表面积的大小.分析:首先抓好球与正方体的基本量半径和棱长,找出等量关系,再转化为其面积的大小关系.解:设球的半径为r ,正方体的棱长为a ,它们的体积均为V ,则由ππ43,3433V r V r ==,343πV r =,由,3V a =得3V a =. 322324)43(44V V r S ππππ===球. 32322322166)(66V V V a S ====正方体. ∴<2164π <324V π32216V ,即正方体球S S <.说明:突出相关的面积与体积公式的准确使用,注意比较大小时运算上的设计.典型例题五例5.如图1所示,在棱长为1的正方体内有两个球相外切且又分别与正方体内切.(1)求两球半径之和;(2)球的半径为多少时,两球体积之和最小.分析:此题的关键在于作截面,一个球在正方体内,学生一般知道作对角面,而两个球的球心连线也应在正方体的体对角线上,故仍需作正方体的对角面 ,得如图2的截面图,在图2中,观察R 与r 和棱长间的关系即可.解:如图2,球心1O 和2O 在AC 上,过1O ,2O 分别作BC AD ,的垂线交于F E ,.则由3,1==AC AB 得R CO r AO 3,321==.3)(3=+++∴R r R r , 233133-=+=+∴r R . (1)设两球体积之和为V , 则))((34)(342233r Rr R R r r R V +-+=+=ππ =[]=-+rR r R 3)(233342π⎥⎦⎤⎢⎣⎡--)233(3)233(233342R R π =⎥⎦⎤⎢⎣⎡-+--22)233(2)33(3323334R R π当433-=R 时,V 有最小值.∴当433-==r R 时,体积之和有最小值.典型例题六例6.设正四面体中,第一个球是它的内切球,第二个球是它的外接球,求这两个球的表面积之比及体积之比.分析:此题求解的第一个关键是搞清两个球的半径与正四面体的关系,第二个关键是两个球的半径之间的关系,依靠体积分割的方法来解决的.解:如图,正四面体ABCD 的中心为O ,BCD ∆的中心为1O ,则第一个球半径为正四面体的中心到各面的距离,第二个球的半径为正四面体中心到顶点的距离.图 1图2设R OA r OO ==,1,正四面体的一个面的面积为S .依题意得)(31r R S V BCD A +=-, 又S r V V BCD O BCD A ⋅⨯==--3144r r R 4=+∴即r R 3=.所以914422==R r ππ外接球的表面积内切球的表面积.271343433==R rππ外接球的体积内切球的体积. 说明:正四面体与球的接切问题,可通过线面关系证出,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即定有内切球的半径h r 41=(h 为正四面体的高),且外接球的半径r R 3=.典型例题七例7.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离.分析:关键在于能根据要求构造出相应的几何体,由于四个球半径相等,故四个球一定组成正四面体的四个顶点且正四面体的棱长为两球半径之和2.解:由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高362)332(222=⋅-=h . 而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为3622+. 说明:此类型题目对培养学生空间想象能力,并根据题意构造熟悉几何体都非常有帮助,且还可以适当增加一点实际背景,加强应用意识.典型例题八例8 过球面上两点作球的大圆,可能的个数是( ). A .有且只有一个 B .一个或无穷多个 C .无数个 D .以上均不正确分析:对球面上两点及球心这三点的位置关系进行讨论.当三点不共线时,可以作一个大圆;当三点共线时,可作无数个大圆,故选B .答案:B说明:解此易选出错误判断A .其原因是忽视球心的位置.典型例题九例9 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过3个点的小圆的周长为π4,那么这个球的半径为( ).A .34B .32C .2D .3分析:利用球的概念性质和球面距离的知识求解.设球的半径为R ,小圆的半径为r ,则ππ42=r ,∴2=r .如图所示,设三点A 、B 、C ,O 为球心,362ππ==∠=∠=∠COA BOC AOB .又∵OB OA =,∴AOB ∆是等边三角形,同样,BOC ∆、COA ∆都是等边三角形,得ABC ∆为等边三角形,边长等于球半径R .r 为ABC∆的外接圆半径,R AB r 3333==,3233==r R .答案:B说明:本题是近年来球这部分所出的最为综合全面的一道题,除了考查常规的与多面体综合外,还考查了球面距离,几乎涵盖了球这部分所有的主要知识点,是一道不可多得的好题.典型例题十例10 半径为R 的球内接一个各棱长都相等的四棱锥.求该四棱锥的体积.分析:四棱锥的体积由它的底面积和高确定,只需找到底面、高与球半径的关系即可,解决这个问题的关键是如何选取截面,如图所示.解:∵棱锥底面各边相等, ∴底面是菱形. ∵棱锥侧棱都相等,∴侧棱在底面上射影都相等,即底面有外接圆.∴底面是正方形,且顶点在底面上的射影是底面中心,此棱锥是正棱锥. 过该棱锥对角面作截面,设棱长为a ,则底面对角线a AC 2=,故截面SAC 是等腰直角三角形.又因为SAC 是球的大圆的内接三角形,所以R AC 2=,即R a 2=.∴高R SO =,体积33231R SO S V =⋅=底. 说明:在作四棱锥的截面时,容易误认为截面是正三角形,如果作平等于底面一边的对称截面(过棱锥顶点,底面中心,且与底面一边平行),可得一个腰长为斜高、底为底面边长的等腰三角形,但这一等腰三角形并不是外接球大圆的内接三角形.可见,解决有关几何体接切的问题,如何选取截面是个关键.解决此类问题的方法通常是先确定多面体的棱长(或高或某个截面内的元素)与球半径的关系,再进一步求解.典型例题十一例11 在球面上有四个点P 、A 、B 、C ,如果PA 、PB 、PC 两两互相垂直,且a PC PB PA ===.求这个球的表面积.分析:24R S π=球面,因而求球的表面关键在于求出球的半径R . 解:设过A 、B 、C 三点的球的截面半径为r , 球心到该圆面的距离为d , 则222d r R +=.由题意知P 、A 、B 、C 四点不共面,因而是以这四个点为顶点的三棱锥ABC P -(如图所示).ABC ∆的外接圆是球的截面圆.由PA 、PB 、PC 互相垂直知,P 在ABC 面上的射影'O 是ABC ∆的垂心,又a PC PB PA ===,所以'O 也是ABC ∆的外心,所以ABC ∆为等边三角形, 且边长为a 2,'O 是其中心, 从而也是截面圆的圆心.据球的截面的性质,有'OO 垂直于⊙'O 所在平面,因此P 、'O 、O 共线,三棱锥ABC P -是高为'PO 的球内接正三棱锥,从而'PO R d -=.由已知得a r 36=,a PO 33'=,所以2'2222)(PO R r d r R -+=+=,可求得a R 23=,∴2234a R S ππ==球面. 说明:涉及到球与圆柱、圆锥、圆台切接问题,一般作其轴截面;涉及到球与棱柱、棱锥、棱台的切接问题,一般过球心及多面体中特殊点或线作截面,把空间问题化为平面问题,进而利用平面几何的知识寻找几何体元素间的关系.典型例题十二例12 已知棱长为3的正四面体ABCD ,E 、F 是棱AB 、AC 上的点,且FC AF 2=,AE BE 2=.求四面体AEFD 的内切球半径和外接球半径.分析:可用何种法求内切球半径,把AEF D V -分成4个小体积(如图).解:设四面体AEFD 内切球半径为r ,球心N ,外接球半径R ,球心M ,连结NA 、NE 、NF 、ND ,则EFD N AD E N AFD N AEF N AEFD V V V V V ----+++=.四面体AEFD 各面的面积为2392==∆∆ABC AEF S S ,23332==∆∆ABC AFD S S ,43331==∆∆ABC AED S S . DEF ∆各边边长分别为3=EF ,7==DE DF ,∴345=∆DEF S . ∵2292==ABCD ADEF V V , )(31DEF AED AFD AEF AEFD S S S S r V ∆∆∆∆+++=,∴)43543323323(3122+++=r , ∴86=r . 如图,AEF ∆是直角三角形,其个心是斜边AF 的中点G .设ABC ∆中心为1O ,连结1DO ,过G 作平面AEF 的垂线,M 必在此垂线上, 连结1GO 、MD .∵ABC MG 平面⊥,ABC DO 平面⊥1,∴1//DO MG ,1GO MG ⊥.在直角梯形DM GO 1中,11=GO ,61=DO ,R MD =,1222-=-=R AG AM MG ,又∵22121)(MD GO MG DO =+-,∴2221)16(R R =+--,解得:210=R . 综上,四面体AEFD 的内切球半径为86,外接球半径为210.说明:求四面体外接半径的关键是确定其球心.对此多数同学束手无策,而这主要是因本题图形的背景较复杂.若把该四面体单独移出,则不参发现其球心在过各面三角形外心且与该三角形所在平面垂直的直线上,另还须注意其球心不一定在四面体内部.本题在求四面体内切球半径时,将该四面体分割为以球心为顶点,各面为底面的四个三棱锥,通过其体积关系求得半径.这样分割的思想方法应给予重视.典型例题十三例13 一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为r 的铁球,这时水面恰好和球面相切.问将球从圆锥内取出后,圆锥内水平面的高是多少?分析:先作出轴截面,弄清楚圆锥和球相切时的位置特征,利用铁球取出后,锥内下降部分(圆台)的体积等于球的体积,列式求解.解:如图,作轴截面,设球未取出时,水面高h PC =,球取出后,水面高x PH =. ∵r AC 3=,r PC 3=, 则以AB 为底面直径的圆锥容积为PC AC V ⋅⋅=231π圆锥3233)3(31r r r ππ=⋅=,334r V π=球.球取出后,水面下降到EF ,水的体积为32291)30tan (3131x PH PH PH EH V πππ=︒=⋅⋅=水.又球圆锥水V V V -=,则33334391r r x πππ-=,解得r x 315=.答:球取出后,圆锥内水平面高为r 315.说明:抓住水的何种不变这个关键,本题迅速获解.典型例题十四例14 球面上有三点A 、B 、C 组成这个球的一个截面的内接三角形三个顶点,其中18=AB ,24=BC 、30=AC ,球心到这个截面的距离为球半径的一半,求球的表面积.分析:求球的表面积的关键是求球的半径,本题的条件涉及球的截面,ABC ∆是截面的内接三角形,由此可利用三角形求截面圆的半径,球心到截面的距离为球半径的一半,从而可由关系式222d R r -=求出球半径R .解:∵18=AB ,24=BC ,30=AC ,∴222AC BC AB =+,ABC ∆是以AC 为斜边的直角三角形. ∴ABC ∆的外接圆的半径为15,即截面圆的半径15=r , 又球心到截面的距离为R d 21=, ∴22215)21(=-R R ,得310=R .∴球的表面积为πππ1200)310(4422===R S . 说明:涉及到球的截面的问题,总是使用关系式22d R r -=解题,我们可以通过两个量求第三个量,也可能是抓三个量之间的其它关系,求三个量.例如,过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB 的长度.由条件可抓住BCD A -是正四面体,A 、B 、C 、D 为球上四点,则球心在正四面体中心,设a AB =,则截面BCD 与球心的距离R a d -=36,过点B 、C 、D 的截面圆半径a r 33=,所以222)36()33(R a R a --=得R a 362=. 典型例题十五例15 A 、B 是半径为R 的球O 的球面上两点,它们的球面距离为R 2π,求过A 、B 的平面中,与球心的最大距离是多少?分析:A 、B 是球面上两点,球面距离为R 2π,转化为球心角2π=∠AOB ,从而R AB 2=,由关系式222d R r -=,r 越小,d 越大,r 是过A 、B 的球的截面圆的半径,所以AB 为圆的直径,r 最小.解:∵球面上A 、B 两点的球面的距离为R 2π.∴2π=∠AOB ,∴R AB 2=.当AB 成为圆的直径时,r 取最小值,此时R AB r 2221==,d 取最大值, R r R d 2222=-=, 即球心与过A 、B 的截面圆距离最大值为R 22. 说明:利用关系式222d R r -=不仅可以知二求一,而且可以借此分析截面的半径r 与球心到截面的距离d 之间的变化规律.此外本题还涉及到球面距离的使用,球面距离直接与两点的球心角AOB ∠有关,而球心角AOB ∠又直接与AB 长度发生联系,这是使用或者求球面距离的一条基本线索,继续看下面的例子.典型例题十六例16 正三棱锥的高为1,底面边长为62,正三棱锥内有一个球与其四个面相切.求球的表面积与体积.分析:球与正三棱锥四个面相切,实际上,球是正三棱锥的内切球,球心到正三棱锥的四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,而点面距离常可以用等体积法解决.解:如图,球O 是正三棱锥ABC P -的内切球,O 到正三棱锥四个面的距离都是球的半径R .PH 是正三棱锥的高,即1=PH . E 是BC 边中点,H 在AE 上,ABC ∆的边长为62,∴26263=⨯=HE . ∴3=PE可以得到2321=⋅===∆∆∆PE BC S S S PBC PAC PAB . 36)62(432==∆ABC S 由等体积法,ABC O PBC O PAC O PAB O ABC P V V V V V -----+++= ∴R R ⨯⨯+⨯⨯⨯=⨯⨯36313233113631 得:2633232-=+=R ,∴πππ)625(8)26(4422-=-==R S 球.∴33)26(3434-==ππR V 球. 说明:球心是决定球的位置关键点,本题利用球心到正三棱锥四个面的距离相等且为球半径R 来求出R ,以球心的位置特点来抓球的基本量,这是解决球有关问题常用的方法.比如:四个半径为R 的球两两外切,其中三个放在桌面上,第四个球放在这三个球之上,则第四个球离开桌面的高度为多少?这里,四个球的球心这间的距离都是R 2,四个球心构成一个棱长为R 2的正四面体,可以计算正四面体的高为R R 362236=⨯,从而上面球离开桌面的高度为R R 3622+. 典型例题十七例17 求球与它的外切圆柱、外切等边圆锥的体积之比.分析:首先画出球及它的外切圆柱、等边圆锥,它们公共的轴截面,然后寻找几何体与几何体之间元素的关系.解:如图,等边SAB ∆为圆锥的轴截面,此截面截圆柱得正方形11CDD C ,截球面得球的大圆圆1O .设球的半径R OO =1,则它的外切圆柱的高为R 2,底面半径为R ;R O O OB 330cot 1=︒⋅=, R R OB SO 33360tan =⋅=︒⋅=,∴334R V π=球,3222R R R V ππ=⋅=柱, 3233)3(31R R R V ππ=⋅⋅=锥,∴964∶∶∶∶锥柱球=V V V .典型例题十八例18 正三棱锥ABC P -的侧棱长为l ,两侧棱的夹角为α2,求它的外接球的体积. 分析:求球半径,是解本题的关键.解:如图,作⊥PD 底面ABC 于D ,则D 为正ABC ∆的中心. ∵⊥OD 底面ABC ,∴O 、P 、D 三点共线. ∵l PC PB PA ===,α2=∠APB . ∴ααsin 22cos 2222l l l AB =-=. ∴αsin 33233==AB AD ,设β=∠APD ,作PA OE ⊥于E ,在APD Rt ∆中,∵αβsin 332sin ==PA AD , 又R OA OP ==,∴l PA PE 2121==. 在POE Rt ∆中,∵αβ2sin 3412cos -===l PE PO R , ∴)sin 43(2sin 433sin 34123422332ααπαπ--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=l lV 球. 说明:解决与球有关的接、切问题时,一般作一个适当的截面,将问题转化为平面问题解决,这类截面通常指圆锥的轴截面、球的大圆、多面体的对角面等,在这个截面中应包括每个几何体的主要元素,且这个截面必须能反映出体和体之间的主要位置关系和数量关系.典型例题十九例19 在球心同侧有相距cm 9的两个平行截面,它们的面积分别为249cm π和2400cm π.求球的表面积.分析:可画出球的轴截面,利用球的截面性质,求球的半径.解:如图为球的轴截面,由球的截面性质知,21//BO AO ,且若1O 、2O 分别为两截面圆的圆心,则11AO OO ⊥,22BO OO ⊥.设球的半径为R .∵ππ4922=⋅B O ,∴)(72cm B O = 同理ππ40021=⋅A O ,∴)(201cm A O = 设xcm OO =1,则cm x OO )9(2+=.在A OO Rt 1∆中,22220+=x R ;在B OO Rt 2∆中,2227)9(++=x R , ∴222)9(720++=+x x ,解得15=x ,∴22222520=+=x R ,∴25=R∴)(2500422cm R S ππ==球. ∴球的表面积为22500cm π.。

与球有关的高考试题

与球有关的高考试题

《立体几何》之《球》的分类复习立体几何章节在传统的高考中分值占22分左右,以两小一大的形式出现较多。

与球相关的问 题也时有考题出现,现针对近年高考考题形式总结如下,供复习参考之用:考试核心:性质的应用22212r R OO d -==,构造直角三角形建立三者之间的关系。

类型一:有公共底边的等腰三角形,借助余弦定理求球心角。

(两题互换条件形成不同的题)1.15.如图球O 的半径为2,圆1O 是一小圆,1OO =A 、B 是圆1O 上两点,若A ,B 两点间的球面距离为23π,则1AO B ∠= . (2009年理科)2.15.如图球O 的半径为2,圆1O 是一小圆,1OO =A 、B 是圆1O 上两点,若1AO B ∠=2π,则A,B 两点间的球面距离为 (2009年文科) 类型二:球内接多面体,利用圆内接多边形的性质求出小圆半径,通常用到余弦定理求余弦值,通过余弦值再利用正弦定理得到小圆半径r Cc 2sin =,从而解决问题。

3.15. 直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 。

(2009年理科) 析:欲求球的表面积,归根结底求球半径R ,与R 相关的是重要性质222d r R +=。

∵AA 1=2, ∴121121====AA OO OO d 。

现将问题转化到⊙O 2的半径之上。

因为△ABC 是⊙O 2的内接三角形,又知AB=AC=2,∠BAC=120°,三角形可解。

由余弦定理有32444cos 222=++=∠⋅⋅-+=BAC AC AB AC AB BC , 由正弦定理有2sin 22sin =∠=⇒=∠BAC BC r r BAC BC ∴.514222=+=+=d r R ∴ππ2042==R S 。

4.14.正三棱柱111ABC A B C -内接于半径为2的球,若,A B 两点的球面距离为π,则正三棱柱的体积为 8 .(2009年理科)5.12.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,ο30=∠=∠BSC ASC ,则棱锥S —ABC 的体积为 C (2011年理科)A .33B .32C .3D .16.(11)已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,2BC =,则球O 表面积等于 A (2010年文科) (A )4π (B )3π (C )2π (D )π类型三:通过线线角、线面角、面面角之间的平面的转化,构造勾股定理处理问题。

2018年高考数学(理)二轮复习讲练测专题2.7几何体与球切接的问题(讲)含解析

2018年高考数学(理)二轮复习讲练测专题2.7几何体与球切接的问题(讲)含解析

2018年高考数学(理)二轮复习讲练测热点七 几何体与球切、接的问题纵观近几年高考对于组合体的考查,与球相关的外接与内切问题是高考命题的热点之一.高考命题小题综合化倾向尤为明显,要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识学生掌握较为薄弱、认识较为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理. 下面结合近几年高考题对球与几何体的切接问题作深入的探究,以便更好地把握高考命题的趋势和高考的命题思路,力争在这部分内容不失分.从近几年全国高考命题来看,这部分内容以选择题、填空题为主,大题很少见.首先明确定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。

定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.1 球与柱体的切接规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题.1.1 球与正方体如图所示,正方体1111ABCD A B C D -,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH 和其内切圆,则2aOJ r ==;二是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,则22GO R a ==;三是球为正方体的外接球,截面图为长方形11ACA C 和其外接圆,则13A O R '==.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.(1)正方体的内切球,如图1. 位置关系:正方体的六个面都与一个球都相切,正方体中心与球心重合; 数据关系:设正方体的棱长为a ,球的半径为r ,这时有2r a =.(2)正方体的外接球,如图2. 位置关系:正方体的八个顶点在同一个球面上;正方体中心与球心重合; 数据关系:设正方体的棱长为a ,球的半径为r ,这时有23r a =.(3)正方体的棱切球,如图3. 位置关系:正方体的十二条棱与球面相切,正方体中心与球心重合; 数据关系:设正方体的棱长为a ,球的半径为r ,这时有2r =.例 1【2018届福建省三明市A 片区高中联盟校高三上学期期末】某几何体的三视图如图所示,则该几何体的外接球的表面积为( )A. 4πB. 8πC. 10πD. 12π 【答案】D1.2 球与长方体例 2 自半径为R 的球面上一点M ,引球的三条两两垂直的弦MC MB MA ,,,求222MC MB MA ++的值.【答案】24R .【解析】以MC MB MA ,,为从一个顶点出发的三条棱,将三棱锥ABC M -补成一个长方体,则另外四个顶点必在球面上,故长方体是球的内接长方体,则长方体的对角线长是球的直径.∴222MC MB MA ++=224)2(R R =.例 3【2018届二轮复习专题】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P­A BC 为鳖臑,PA ⊥平面ABC ,PA =AB =2,AC =4,三棱锥P­ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( ) A. 8π B. 12π C. 20π D. 24π 【答案】C2 球与锥体的切接规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题. 2.1正四面体与球的切接问题(1) 正四面体的内切球,如图4. 位置关系:正四面体的四个面都与一个球相切,正四面体的中心与球心重合;数据关系:设正四面体的棱长为a ,高为h ;球的半径为R ,这时有643R h ==;(可以利用体积桥证明)(2) 正四面体的外接球,如图5. 位置关系:正四面体的四个顶点都在一个球面上,正四面体的中心与球心重合;数据关系:设正四面体的棱长为a ,高为h ;球的半径为R ,这时有436R h a ==;(可用正四面体高h 减去内切球的半径得到)(3) 正四面体的棱切球,如图6. 位置关系:正四面体的六条棱与球面相切,正四面体的中心与球心重合; 数据关系:设正四面体的棱长为a ,高为h ;球的半径为R ,这时有6432,.3R h a h ===例 4【2018届广西防城港市高三1月模拟】各面均为等边三角形的四面体ABCD 的外接球的表面积为3π,过棱AB 作球的截面,则截面面积的最小值为__________. 【答案】2π【解析】将四面体放回一个正方体中,使正四面体的棱都是正方体的面对角线,那么正四面体和正方体的外接球是同一个球,当AB 是截面圆的直径时,截面面积最小.因外接球的表面积为3π,3,3棱长为1,2,截面圆面积最小值为2222ππ⎛⨯= ⎝⎭.点评:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图. 2.2其它棱锥与球的切接问题球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积.球与一些特殊的棱锥进行组合,一定要抓住棱锥的几何性质,可综合利用截面法、补形法等进行求解.例如,四个面都是直角三角形的三棱锥,可利用直角三角形斜边中点几何特征,巧定球心位置.例5【湖南省长沙市长郡中学2017届高三摸底】已知边长为3ABCD 中,60BAD ∠=,沿对角线BD 折成二面角A BD C --为120的四面体ABCD ,则四面体的外接球的表面积为( ) A .25π B .26π C .27π D .28π 【答案】D图2图1GOEACEDCBA例6【江西省新余市第一中学2017届高三上学期调研考试(一)】某几何体的正视图和侧视图如图(1)所示, 它的府视图的直观图是'''A B C ,如图(2)所示, 其中0''''2,''3A O B O C ===,则该几何体的外接球的表面积为 .【答案】1123π【解析】由斜二测画法易知,该几何体的俯视图是一个边长为4的等边三角形,再结合正视图和侧视图可知,该几何体是如下图所示的高为4的三棱锥D -ABC ,将其补形为三棱柱ABC-EDF,设球心为O ,EDF ∆的中心为1O ,则1243sin 6033OE DE ==,所以该几何体的外接球的半径R OE ====其表面积为211243S R ππ==.EDBA例7【2018届山西省太原十二中高三上学期1月】在四棱锥P ABCD -中, PC ⊥底面ABCD ,底面为正方形,//QA PC , PBC AQB ∠=∠= 60,记四棱锥P ABCD -的外接球与三棱锥B ACQ -的外接球的表面积分别为12,S S ,则21S S =___. 【答案】157【解析】设正方形的边长为a ,设2O 为CQ 的中点,因为PC ⊥平面ABCD ,而,CD CB ⊂平面ABCD ,所以,PC CD PC CB ⊥⊥,又//AQ PC ,故,A Q C D A Q C B ⊥⊥,又C D C B C ⋂=,故AQ ⊥平面ABCD , AC ⊂平面ABCD ,所以AQ AC ⊥,故QAC ∆为直角三角形, CQ 为斜边,所以222QO CQ AQ ==.同理QAC ∆也为直角三角形,结合60AQB ∠=︒ ,所以33AQ a =,又CB BA ⊥, AQ AB A ⋂=,所以CB ⊥平面AQB , QB ⊂平面AQB ,所以CB QB ⊥, QBC ∆为直角三角形,所以22BO QO =, 2O 为三棱锥B AQC - 外接球的球心,且半径2221112122236R QC a a a ==+=.同理设1O 为AP 的中点,则1O 为四棱锥P ABCD -外接球的球心,且半径2211152322R AP a a ==+=,所以1252115::4367S S ==.填157.点睛:球的半径的计算,关键在球心位置的确定,三棱锥B AQC -中,QAC QBC ∆∆均为直角三角形,因此外接球的球心就是QC 的中点,因为它到四个顶点的距离是相等的.同理四棱锥P ABCD -外接球的球心就是AP 的中点.3 球与球相切问题对于球与球的相切组合成复杂的几何体问题,要根据丰富的空间想象力,通过准确确定各个小球的球心的位置,或者巧借截面图等方法,将空间问题转化平面问题求解.例8 已知有半径分别为2、3的球各两个,且这四个球彼此相外切,现有一个球与此四个球都相外切,则此球 的半径为 . 【答案】611【解析】如图:设四个球的球心分别为A 、B 、C 、D ,则AD=AC=BD=BC=5,AB=6,CD=4.设AB 中点为E 、 CD 中点为F ,连结EF.在△ABF 中求得21,在△EBF中求得EF=3由于对称性可得第五个球的球心O 在EF 上,连结OA 、OD.设第五个球的半径为r ,则OA=r+3,OD=r+2, 于是2=+6r r ,()222+22=+4r r r -2++4=23r r ⇒22+6=23+4r r r r211+6036=0r r -解得6=11r 或6-(舍掉),故答案为611.C例9 把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与 前三个都相切,求第四个球的最高点与桌面的距离. 【答案】3622+.4 球与几何体的各条棱相切问题球与几何体的各条棱相切问题,关键要抓住棱与球相切的几何性质,达到明确球心的位置为目的,然后通过构造直角三角形进行转换和求解.如与正四面体各棱都相切的球的半径为相对棱的一半:24r a '=. 例10 把一个皮球放入如图10所示的由8根长均为20 cm 的铁丝接成的四棱锥形骨架内,使皮球的表面与 8根铁丝都有接触点,则皮球的半径为( ) A .B .10 cmC .2cmD .30cm【答案】【解析】如图所示,由题意球心在AP 上,球心为O ,过O 作BP 的垂线ON 垂足为N ,ON=R ,OM=R ,因为各个棱都为20,所以AM=10,BP=20,BM=10,AB=,设BPA α∠=,在Rt ∆BPM 中,222BP BM PM =+,所以3PM =.在Rt ∆PAM 中, 222PM AM AP =+,所以PA =在Rt ∆ABP 中, 22sin 202AB BP α===,在Rt ∆O NP 中, sin ON R OP OPα==,所以R OP =2OP R =.在Rt ∆OAM 中, 222OM AO AM =+,所以,222)100R R =+,解得,10R =或30(舍),所以,10,R cm =故选B.5 球与旋转体切接问题首先画出球及其它旋转体的公共轴截面,然后寻找几何体与几何体几何元素之间的关系.例11 求球与它的外切圆柱、外切等边圆锥的体积之比.【答案】964∶∶∶∶锥柱球=V V V 【解析】如图,等边SAB ∆为圆锥的轴截面,此截面截圆柱得正方形11CDD C ,截球面得球的大圆圆1O . 设球的半径R OO =1,则它的外切圆柱的高为R 2,底面半径为R ;R O O OB 330cot 1=︒⋅=, R R OB SO 33360tan =⋅=︒⋅=, ∴334R V π=球,3222R R R V ππ=⋅=柱, 3233)3(31R R R V ππ=⋅⋅=锥, ∴964∶∶∶∶锥柱球=V V V .例12在棱长为1的正方体内有两个球相外切且又分别与正方体内切.(1)求两球半径之和;(2)球的半径 为多少时,两球体积之和最小.【答案】【解析】如图,球心1O 和2O 在AC 上,过1O ,2O 分别作BC AD ,的垂线交于F E ,. 则由3,1==AC AB 得R CO r AO 3,321==.3)(3=+++∴R r R r , 233133-=+=+∴r R .【反思提升】综合上面的五种类型,解决与球的外切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,将问题转化成平面几何问题,应用三角形中的边角关系,建立与球半径,r R 的联系,将球的体积之和用r 或R 表示.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作;把一个多面体的几个顶点放在球面上即为球的内接问题.解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.发挥好空间想象力,借助于数形结合进行转化,问题即可得解.如果是一些特殊的几何体,如正方体、正四面体等可以借助结论直接求解,此时结论的记忆必须准确.高考题往往与三视图相结合,题目的难易不一,在复习中切忌好高骛远,应重视各种题型的备考演练,重视高考信息的搜集,不断充实题目的类型,升华解题的境界.。

山东省胶州市2018届高考数学一轮复习 专题 球的体积与表面积练习(无答案)文

山东省胶州市2018届高考数学一轮复习 专题 球的体积与表面积练习(无答案)文

球的体积与表面积一、选择题题文1、某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的的值是()A. B. C. D.2、一个几何体的三视图如图所示,其中俯视图与侧视图均为半径是1的圆,则这个几何体的体积是()A. B. C. D.3、一个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.4、某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是()(锥体体积公式:,其中为底面面积,为高)A. B. C. D.5、一个正方体被一个平面截去一部分后,剩余部分的三部分三视图如图,则截去部分体积与剩余部分体积的比值为( )A. B. C. D.6、右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A. B. C. D.7、某几何体的三视图如图所示,则该几何体的表面积为()A.C. D.B.8、某四面体的三视图如图所示,正视图、俯视图都是腰长为的等腰直角三角形,左视图是边长为的正方形,则此四面体的四个面中面积最大的为()A. B. C. D.9、一个四面体的三视图如图(图中小正方形的边长为),则这个四面体的外接球的表面积是()A. B. C. D.10、如图是某几何体的三视图,正视图是等边三角形,侧视图和俯视图为直角三角形,则该几何体外接球的表面积为()A. B. C. D.11、平面四边形中,,,,将其沿对角线折成四面体,使平面平面,若四面体的顶点在同一个球面上,则该球的体积为()A. B. C. D.12、某工件的三视图如图所示.现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积/原工件的体积)()A. B.C. D.二、填空题题文13、《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的表面积为__________.14、一个棱锥的三视图如图,则该棱锥的表面积(单位:)为__________.15、某几何体的三视图如图所示,则该几何体的体积为__________.16、在三棱柱中,,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是棱AB,BC,的中点,则三棱锥的体积是__________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高考数学专题十:与球体有关的问题一、高考趋势分析:立体几何章节在传统的高考中分值占22分左右,以两小一大的形式出现较多。

与球相关的问题也有考题出现,现针对近年高考考题形式总结如下 ,也是每年高考热点,每年高考中主要考查选择、填空题目、解答题。

二、基础知识点拨:1.长方体、正方体的外接球其体对角线长为该球的直径.2.正方体的内切球其棱长为球的直径.3.正三棱锥的外接球中要注意正三棱锥的顶点、球心及底面正三角形中心共线. 4.正四面体的外接球与内切球的半径之比为3∶1. 方法主要是“补体”和“找球心”考试核心:性质的应用22212r R OO d -==,构造直角三角形建立三者之间的关系。

三、高考试题精练1.(2015高考新课标2,理9)已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B.64π C.144π D.256π 【答案】C【考点】外接球表面积和椎体的体积.BOAC2.(2015·辽宁高考)已知直三棱柱ABC ­A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172B .210C.132D .310解析:选C 如图,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝ ⎛⎭⎪⎫522+62=132.3.(2018·长春模拟)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________. 解析:设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a 2=63π.答案:63π4.四棱锥P ­ABCD 的五个顶点都在一个球面上,该四棱锥的三视图如图所示,E ,F 分别是棱AB ,CD 的中点,直线EF 被球面所截得的线段长为22,则该球的表面积为( )A .9πB .3πC .22πD .12π解析:选D 该几何体的直观图如图所示,该几何体可看作由正方体截得,则正方体外接球的直径即为PC .由直线EF 被球面所截得的线段长为22,可知正方形ABCD 对角线AC 的长为22,可得a =2,在△PAC 中PC = 22+222=23,球的半径R = 3,∴S 表=4πR 2=4π×(3)2=12π.四、典型例题精析类型一:有公共底边的等腰三角形,借助余弦定理求球心角。

(两题互换条件形成不同的题)1.15.如图球O 的半径为2,圆1O 是一小圆,1OO =A 、B 是圆1O 上两点,若A ,B 两点间的球面距离为23π,则1AO B ∠= . (2015年理科)2.15.如图球O 的半径为2,圆1O 是一小圆,1OO =A 、B 是圆1O 上两点,若1AO B ∠=2π,则A,B 两点间的球面距离为 (2014年文科)类型二:球内接多面体,利用圆内接多边形的性质求出小圆半径,通常用到余弦定理求余弦值,通过余弦值再利用正弦定理得到小圆半径r Cc2sin =,从而解决问题。

3.15. 直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 。

(2014年理科) 析:欲求球的表面积,归根结底求球半径R ,与R 相关的是重要性质222d r R +=。

∵AA 1=2, ∴121121====AA OO OO d 。

现将问题转化到⊙O 2的半径之上。

因为△ABC 是⊙O 2的内接三角形,又知AB=AC=2,∠BAC=120°,三角形可解。

由余弦定理有32444cos 222=++=∠⋅⋅-+=BAC AC AB AC AB BC ,由正弦定理有2sin 22sin =∠=⇒=∠BACBCr r BAC BC∴.514222=+=+=d r R ∴ππ2042==R S 。

4.14.正三棱柱111ABC A B C -内接于半径为2的球,若,A B 两点的球面距离为π,则正三棱柱的体积为 8 .(2013年理科)5.12.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3, 30=∠=∠BSC ASC ,则棱锥S—ABC 的体积为 C (2014年理科)A .33B .32C .3D .16.(11)已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,BC =则球O 表面积等于 A (2015年文科)(A )4π (B )3π (C )2π (D )π类型三:通过线线角、线面角、面面角之间的平面的转化,构造勾股定理处理问题。

7.15.设OA 是球O 的半径,M 是OA 的中点,过M 且与OA 成45°角的平面截球O 的表面得到圆C 。

若圆C 的面积等于74π,则球O 的表面积等于 .(2015年文科) 析:问题的解决根本——求球半径OB R =。

与R 相关的重要性质222d r R +=中,2r 可求(∵472ππ=r ∴472=r )问题转化到求OC d =上充分运用题目中未用的条件,2R OM =,∠OMC=45°,∴22R d = 于是84722R R +=求得22=R ,∴ππ842==R S8.(11)已知平面α截一球面得圆M ,过圆心M 且与α成二面角的平面β截该球面得圆N.若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为 D (2014年理科) (A)7π (B)9π (C)11π (D)13π9.(5)如果把地球看成一个球体,则地球上的北纬060纬线长和赤道长的比值为C (2015文科)(A )0.8 (B )0.75 (C )0.5 (D )0.25类型四:球内接多面体的相关元素之间的联系。

10.13.圆柱形容器内部盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是 4 cm .(2010年理科) 11.16.长方体1111ABCD A B C D -的顶点均在同一个球面上,11AB AA ==,2BC =,则A ,B两点间的球面距离为3π.(2015年文科) 12.14.体积为8的一个正方体,其全面积与球O 的表面积相等,则球O 的体积等于π34 .(2009年文科)13.16.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为___1/3____.(2015年文科) 14.15.如图,半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大是,求的表面积与改圆柱的侧面积之差是 22R π .类型五:平面几何性质在球中的综合应用。

15.(16)已知球O 的半径为4,圆M 与圆N 为该球的两个小圆,AB 为圆M 与圆N 的公共弦,4AB =.若3OM ON ==,则两圆圆心的距离MN = .(2015年理科)BCDANM Oα析:由OM=ON 知,⊙M 与⊙No 为等圆,根据球中的重要性质∴7916222=-=-=d R r又MH ⊥AB 得H 为AB 中点,∴BH=AH=2 ∴322=-==BH r NH MH ∵∠OMH=∠ONH=90°∴∠MON=π-∠MHN 由余弦定理有MN 2=OM 2+ON 2-2OM ·ON ·cos ∠MON MN 2=MH 2+NH 2-2MH ·NH ·cos(π-∠MON) 解得cos ∠MON=21,即∠MON=3π ∴三角形OMN 为等边三角形, ∴MN=3. 类型六:性质的简单应用。

16.(15)已知OA 为球O 的半径,过OA 的中点M 且垂直于OA 的平面截球面得到圆M ,若圆M 的面积为3π,则球O 的表面积等于______16π_______.(2009年文科)17.(15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为 24 。

(2011年理科)18.(9)高为24的四棱锥S-ABCD 的底面是边长为1的正方形,点S 、A 、B 、C 、D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为 C (2011年理科)(A )24(B )22(C)1 (D)2五、模拟试题精练1.(2015高考新课标2,理9)已知A,B 是球O 的球面上两点,∠AOB=90,C 为该球面上的动点,若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( ) A .36π B.64π C.144π D.256π 【答案】C2.(2015·辽宁高考)已知直三棱柱ABC ­A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172B .210 C.132 D .310答案:选C3.(2018·长春模拟)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S1S2=________.答案:63π4.四棱锥P­ABCD的五个顶点都在一个球面上,该四棱锥的三视图如图所示,E,F分别是棱AB,CD的中点,直线EF被球面所截得的线段长为22,则该球的表面积为( )A.9πB.3πC.22πD.12π答案:选D .5.如图所示,已知E,F分别是棱长为a的正方体ABCD-A1B1C1D1的棱A1A,CC1的中点,则四棱锥C1-B1EDF的体积为________.答案(1)1 6 a36.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为( )A.26B.36C.23D.22答案 A7.一个多面体的三视图如图所示,则该多面体的体积为( )A.233B.476C.6D.7答案 A8.已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的体积为( ) A.133π8B.133π6C.133π4D.133π2答案:B。

相关文档
最新文档