相似三角形之比例线段
相似三角形知识点总结
相似三角形知识点总结1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。
把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。
2. 比例性质: ①基本性质:a b cdad bc =⇔= ②合比性质:±±a b c d a b b c d d =⇒= ③等比性质:……≠……a b c d m n b d n a c m b d n ab===+++⇒++++++=()03. 平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。
则,,,…AB BC DE EF AB AC DE DF BC AC EFDF=== ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
4. 相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似 ③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似5. 相似三角形的性质①相似三角形的对应角相等 ②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 ④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方有疑问的题目请发在“51加速度学习网”上,让我们来为你解答()51加速度学习网 整理相似三角形知识点与经典题型知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。
三角形的相似比与比例线段
三角形的相似比与比例线段在几何学中,三角形的相似比和比例线段是重要的概念,它们在解决三角形的相似性问题和计算边长比例时起到关键作用。
本文将介绍三角形的相似比和比例线段的概念、性质以及应用。
一、相似三角形的定义和相似比相似三角形指的是具有相同形状但不同大小的三角形。
当两个三角形的对应角度相等时,它们被称为相似三角形。
三角形的相似性可以用相似比来描述,相似比是指两个相似三角形对应边长的比值。
设有两个相似三角形ABC和DEF,对应边长的比值可以表示为:AB/DE = BC/EF = AC/DF,其中AB、BC、AC分别表示三角形ABC的三条边长,DE、EF、DF分别表示三角形DEF的三条边长。
相似比可以简记为k(常为正数),即k=AB/DE=BC/EF=AC/DF。
二、相似比的性质1. 相似比的传递性:如果两个三角形ABC和DEF相似,且三角形DEF与另一个三角形XYZ相似,则三角形ABC与三角形XYZ也相似,且它们的相似比相等。
2. 相似比与边长比例关系:若两个三角形相似,对应边的相似比等于对应边长的比例。
3. 相似比与角度比例关系:若两个三角形相似,对应角的角平分线所分割的角度比等于对应边的相似比。
三、比例线段的定义和性质比例线段是指在相似三角形中,各边所对应的线段按相应的比例划分出来的线段。
比例线段在三角形的边上起到了关键作用,它们的比例关系可以帮助我们计算相似三角形的边长。
设有两个相似三角形ABC和DEF,相似比为k,若线段AD和EF 相交于点G,则线段AG和EG、线段GD和FG也满足比例关系:AG/EG = GD/FG = k。
四、应用举例1. 已知两个三角形相似,已知其中一个三角形的两个边长分别为3cm和5cm,求另一个三角形相应边的长度。
解析:如果两个三角形相似,且已知一个三角形的两个边长为3cm 和5cm,设相似比为k,则另一个三角形相应边的长度为3cm*k和5cm*k。
2. 在相似三角形ABC和DEF中,已知AD=6cm,DE=9cm,且AG:GE = 2:3,求GD的长度。
线段的比例和相似三角形
线段的比例和相似三角形在几何学中,线段的比例和相似三角形是基础知识,它们对于解决几何问题和解释世界中的各种现象都起着重要的作用。
本文将深入探讨线段的比例和相似三角形的概念及其应用。
1. 线段的比例在平面几何中,线段的比例是指两个线段之间的长度比。
设有线段AB和线段CD,它们的比例可以表示为AB:CD。
当且仅当两线段的比例相等时,它们才具有相似的长度关系。
2. 相似三角形的定义相似三角形指的是具有相同的形状,但是尺寸不同的三角形。
若两个三角形的对应角度相等,则它们为相似三角形。
相似三角形的边长比例与角度比例成正比。
3. 线段的相似性质线段具有一些重要的相似性质,如比例段定理和点分段定理。
比例段定理指出,如果在两条平行线上有两个相交线段,则它们所形成的相交线段之间的长度比等于两条平行线上相应线段的长度比。
4. 相似三角形的性质相似三角形具有一些用于求解问题的重要性质。
常见的性质包括相似三角形的边长比例、高的比例、面积比例和周长比例等。
这些性质在解决实际问题时起着重要的作用,如测量高塔的高度、计算远处物体的尺寸等。
5. 应用举例a. 解决测量问题:通过计算相似三角形的边长比例,可以利用已知线段的长度求解未知线段的长度。
例如,当我们知道一栋楼的高度和影子的长度时,我们可以通过相似三角形的性质计算出楼与影子的比例,从而推算出其他未知线段的长度。
b. 设计制图:在地图或建筑设计中,相似三角形的性质可以用于将真实世界的比例缩小到纸上,从而实现精确的绘制和测量。
c. 解决角度问题:通过相似三角形的角度比例,可以计算未知角度的大小。
例如,在航空导航中,利用相似三角形的性质可以准确测算航线和飞机之间的角度。
总结:线段的比例和相似三角形是几何学中重要的概念和工具,它们在解决几何问题和实际应用中发挥着重要的作用。
通过理解线段的比例和相似三角形的性质,我们可以更好地理解和解释世界中的各种现象,同时也可以应用于实际问题的求解和设计制图等领域。
线段比例和相似三角形的性质
线段比例和相似三角形的性质线段比例和相似三角形是几何学中常见的概念,它们在解决图形问题和推导数学关系时具有重要作用。
本文将详细探讨线段比例和相似三角形的性质,旨在帮助读者更好地理解和应用这些概念。
一、线段比例的概念及性质线段比例用于比较两条线段之间的长度关系。
设有两条线段AB和CD,它们的长度分别为a和b,则线段AB与CD的比值为a:b。
根据线段比例的性质,可以得出以下重要结论:1. 分割比例定理:若一条直线段分割为两段,其中一段的长度与此直线段的长度的比等于另一段的长度与这条直线段的长度的比,则这两段线段成比例。
换句话说,若有线段AC和BD,且满足AD/AB =CD/CB,则可以得出AD与CD、AB与CB成比例。
2. 相似三角形的线段比例性质:若两个三角形相似,则对应两三角形的边的比例相等。
设三角形ABC与三角形DEF相似,则有AB/DE= AC/DF = BC/EF。
这个性质可用于解决各种与相似三角形有关的问题。
二、相似三角形的概念及性质相似三角形指的是具有相同内角的三角形,它们的形状相似但大小不同。
设有两个相似三角形ABC和DEF,它们的对应边分别为AB、AC、BC和DE、DF、EF,则相似三角形具有以下重要性质:1. 对应角相等:相似三角形的对应角互相相等,即∠A = ∠D,∠B = ∠E,∠C = ∠F。
这是相似三角形的定义之一。
2. 边比例相等:相似三角形的对应边成比例,即AB/DE = AC/DF = BC/EF。
这个性质是相似三角形的重要特征,可以用于解决各类与线段比例有关的问题。
3. 高度比例相等:相似三角形的对应高度之比等于对应边之比。
设h1和h2分别为三角形ABC和DEF相应的高度,则有h1/h2 = AB/DE = AC/DF = BC/EF。
这个性质可用于确定相似三角形的高度比例。
4. 面积比例平方相等:相似三角形的面积比例的平方等于对应边之比的平方。
设S1和S2分别为三角形ABC和DEF的面积,则有S1/S2 = (AB/DE)² = (AC/DF)² = (BC/EF)²。
初中数学相似三角形基础知识精讲--比例线段
A
E
F
B
D
C
作业
姓名: 作业等级: . 1.美是一种感觉,当人体下半身长与身高的比值越接近 0.618 时,越给人一种美感.如图,某女士 身高 165cm,下半身长 x 与身高 l 的比值是 0.60,为尽可能达到好的效果,她应穿 的高跟鞋的高度大约为( ) A.4cm B.6cm C.8cm D.10cm
3.在△ABC 中,AB=12,AC=10,BC=9,AD 是 BC 边上的高.将△ABC 按如图所示的方式折叠, 使点 A 与点 D 重合,折痕为 EF,则△DEF 的周长为( ) A.9.5 B.10.5 C.11 D.15.5
10.在△ABC 中,D 是 BC 上一点,若 AB=15 cm,AC=10 cm,且 BD∶DC=AB∶AC, BD-DC=2cm,求 BC.
◆----平行线分线段成比例定理 质定理(推论):平行于三角形一边的直线截其他两边(或两边的 延长线) ,所得的对应线段成比例。 2、三角形一边的平行线的判定定理 1:如果一条直线截三角形的两边(或两边的延长线)所 得的对应线段成比例,那么这条直线平行于三角形的第三边。 3、三角形一边的平行线的性质定理 2:平行于三角形的一边,并且和其他两边(或两边的延 长线)相交的直线,所截得的三角形的三边与原三角形三边对应成比例。 例 、 如 图 5, 在 △ABC 中 , D 是 BC 上 的 点 , E 是 AC 上 的 点 , AD 与 BE 交 于 点 F, 若 AE:EC=3:4, BD:DC=2:3,求 BF:EF 的值。
1 2
a b c ,则 x 的值一定是( bc ac ab 1 3 B、-1 C、 或-1 D、 2 2
)
2.已知一次函数 y kx 1 中,比例系数 k 满足 k 试求直线 y kx 1 与 x 轴的交点坐标.
《4.1比例线段》说课稿
《4.1比例线段》说课稿尊敬的各位评委、老师:大家好!今天我要和大家说说浙教版(2012)九年级上册第4章相似三角形中的4.1比例线段这一课。
下面我就从说教材、说学情、说教法、说学法、说教学过程以及板书设计这几个方面来详细说说。
一、说教材1. 教材的地位和作用比例线段这一内容在整个相似三角形的章节中那可是相当重要的基础部分。
就好比盖房子,比例线段就是那稳固的地基。
相似三角形在生活中的应用可不少,像是工程绘图、测量物体高度啥的,而要学好相似三角形,比例线段这关必须得先过。
它能让学生对线段之间的数量关系有更深刻的认识,为后续学习相似三角形的判定和性质等知识做好铺垫。
2. 教材内容分析这部分内容主要是讲比例线段的概念、比例的基本性质等。
概念方面,它通过一些实际的例子,比如不同长度的线段之间的比例关系,让学生直观地感受比例线段是怎么回事。
而比例的基本性质,那可就像一把万能钥匙,能帮助学生在解决很多关于比例线段的问题时打开思路。
教材里的例题和习题也是由浅入深,循序渐进地引导学生掌握这些知识。
我曾经有一次帮朋友做一个手工小制作,是一个缩小版的房屋模型。
在制作过程中,我就发现,要想让模型各个部分看起来和真房子相似,就得精确地计算每个部分的长度比例。
这就和咱们要学的比例线段一个道理,不同的线段就像房屋模型的各个部件,只有比例合适了,整体才和谐美观。
这也让我深刻地认识到比例线段在实际生活中的重要性,学生学了这个知识,也能在生活中找到类似的例子,更好地理解和应用。
二、说学情1. 知识基础九年级的学生已经学过了一些代数知识,像一元一次方程、二元一次方程组等,对于数与数之间的运算关系有了一定的基础。
而且在之前的几何学习中,也对线段的长度、图形的形状和大小等概念有了初步的认识。
但是,比例线段这个概念相对来说比较抽象,对于他们来说,要从数的比例关系过渡到线段的比例关系,还需要一个适应的过程。
2. 学习能力和特点这个阶段的学生已经具备了一定的逻辑思维能力和自主学习能力。
线段的比例分点与相似三角形
线段的比例分点与相似三角形线段的比例分点与相似三角形是数学中重要的概念和定理。
在几何学中,线段的比例分点是指将线段按照一定比例分为两段的点,而相似三角形是指具有相同形状但大小可能不同的三角形。
本文将详细介绍线段的比例分点和相似三角形的相关内容。
一、线段的比例分点线段的比例分点是指在一条线段上,将其按照一定的比例分为两段的点。
设有一条线段AB,将其分为两段的点P和Q,当点P将线段AB分为AP和PB两段时,点Q将线段AB分为AQ和QB两段,且满足AP:PB = AQ:QB时,称点P和Q分别为线段AB的比例分点。
线段的比例分点具有以下性质:1. 比例分点唯一性:线段AB的比例分点是唯一的,即在一条线段上,只有一个点能够将其按照一定的比例分为两段。
2. 分点与线段的长度关系:设线段AB的比例分点为P和Q,线段AP的长度为x,线段PB的长度为y,线段AQ的长度为m,线段QB 的长度为n,则有x:y = m:n。
3. 全长内外分点:当m+n=1时,称P和Q是线段AB的全长内分点;当m+n>1时,称P和Q是线段AB的全长外分点;当m+n<1时,称P和Q是线段AB的全长外分点。
二、相似三角形相似三角形是指具有相同形状但大小可能不同的三角形。
设有两个三角形ABC和DEF,若它们的对应角度相等,即∠A = ∠D,∠B =∠E,∠C = ∠F,则称三角形ABC与DEF相似。
相似三角形的性质:1. 对应边的比例关系:相似三角形的对应边之间有一定的比例关系。
若三角形ABC与DEF相似,并且AB:DE = BC:EF = AC:DF = k,则称k为相似比。
2. 高线的比例关系:相似三角形的高线之间也有一定的比例关系。
若三角形ABC与DEF相似,并且AD:DG = BE:EH = CF:FI = k,则称k为相似比。
3. 面积的比例关系:相似三角形的面积之间具有一定的比例关系。
若三角形ABC与DEF相似,并且面积(ABC):面积(DEF) = k²,则称k 为相似比。
4.7.1相似三角形中的对应线段之比(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相似三角形对应线段之比的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
此外,我也意识到,仅仅依靠课堂上的讲解和练习是远远不够的,我应该在课后鼓励学生们自主探索和学习,通过更多的实际问题来巩固他们的知识。同时,我也应该加强与学生的沟通,了解他们在学习中的困惑和需求,以便更好地调整我的教学策略。
最后,今天的课程也提醒我,教学是一个不断学习和成长的过程。我需要不断地更新自己的教学理念和方法,以适应新时代教育的需求,帮助学生们更好地理解和应用数学知识,激发他们对几何学的兴趣。通过这样的教学反思,我相信我可以不断改进教学,为学生们提供更高质量的学习体验。
-利用多媒体和实物模型,进行直观演示,增强学生的几何直观。
-通过小组讨论和合作,让学生在实际操作中探索和发现对应线段之比的应用。
-设计梯度练习题,从简单到复杂,逐步引导学生掌握难点的应用。
-及时给予反馈,针对学生的错误和疑惑进行个别辅导,确保学生能够透彻理解。
四、教学流程
(一)导入新课(用时5分钟)
4.培养学生的团队合作意识,通过小组讨论和合作完成课堂练习,提高沟通能力和协作能力。
三、教学难点与重点
1.教学重点
-理解并掌握相似三角形中对应线段之比的概念,即相似比。
-学会运用对应线段之比解决实际问题,如计算未知长度。
-掌握相似三角形中对应角平分线、对应高、中线等比例关系。
线段的比例分割与相似三角形
线段的比例分割与相似三角形线段的比例分割与相似三角形在数学中属于几何学的分支。
当两个线段分割另外一条线段时,这两个线段的比例关系可以用来推导相似三角形的性质。
本文将详细讲解线段的比例分割与相似三角形之间的关系,并探讨在实际问题中的应用。
一、线段的比例分割原理线段的比例分割是指将一条线段按照一定的比例分为两部分。
设有一条线段AB,C点是该线段上的一个点,将线段AB分为AC和CB两部分,根据线段的比例分割原理,有以下的比例关系:AC/CB = AD/DB其中AD和DB分别表示从点A和点B到点C所划分出的两个线段。
这个比例关系可以推广到更复杂的情况,即当线段AB被多个点分割时,依然成立。
二、相似三角形的性质与线段的比例分割相似三角形是指具有相似形状但大小不同的三角形。
当两个三角形相似时,它们的对应边长成比例。
而线段的比例分割正是相似三角形性质的一种特殊情况。
以线段AB为边的三角形ABC与以线段AC为边的三角形ADE相似,根据相似三角形的性质,有以下的比例关系:AB/AC = BC/CE = CA/AD其中CE和AD分别表示从点C和点A到点E所构成的线段。
这个关系表明,线段的比例分割可以推导出相似三角形的对应边长比例关系。
三、线段的比例分割与相似三角形的应用线段的比例分割与相似三角形在几何学中有广泛的应用。
它们可以用于解决各种问题,例如测量无法直接获得的长度、计算图形的面积以及解决实际生活中的几何问题等。
1.测量无法直接获得的长度在实际情况中,有时候我们无法直接测量一个线段的长度,但我们可以利用已知线段的比例分割关系来计算。
例如,我们知道一根棍子被两个点分割成三段,其中两段的比例为2:3,而总长度为60厘米。
那么我们可以利用线段的比例分割来计算每段的长度,进一步解决问题。
2.计算图形的面积通过线段的比例分割与相似三角形,可以推导出各种图形的面积比例关系。
例如,在两个相似三角形中,它们的面积的比例等于边长的比例的平方。
线段比例与相似三角形
线段比例与相似三角形线段比例与相似三角形是几何学中重要的概念。
在这篇文章中,我们将探讨线段比例与相似三角形之间的关系,并解释它们在几何学中的应用。
一、线段比例的定义与性质线段比例是指两个线段之间的长度关系。
假设有两个线段AB和CD,它们的长度分别为a和b。
如果这两个线段之间存在比例关系,即a:b为一个确定的数值k,那么我们可以记作AB:CD = a:b = k。
线段比例具有以下性质:1. 如果线段AB与CD之间存在比例关系,那么它们与其他平行线段的任意两个对应部分也满足比例关系。
2. 如果线段AB与CD之间存在比例关系,那么它们与其他平行线段的任意两个相似三角形的对应边也满足比例关系。
3. 如果线段AB与CD之间的比例关系为a:b = k,且线段BC与DE之间的比例关系为b:c = k,那么线段AC与DE之间的比例关系为a:c = k。
二、相似三角形的定义与性质相似三角形是指具有相似形状但不一定相等的三角形。
两个三角形相似的条件为它们对应角相等,并且对应边成比例。
如果有两个相似三角形ABC和DEF,我们可以记作ΔABC ∽ ΔDEF。
相似三角形具有以下性质:1. 相似三角形的对应边成比例,即AB:DE = BC:EF = AC:DF。
2. 相似三角形的对应角相等,即∠A = ∠D,∠B = ∠E,∠C = ∠F。
3. 如果两个三角形的两个角相等,并且一对对应边成比例,那么它们是相似三角形。
4. 相似三角形的比例因子等于两个相似三角形任意两对成比例边的比值。
三、线段比例与相似三角形的关系线段比例与相似三角形之间存在紧密的联系。
当两个线段之间满足比例关系时,它们所在的三角形也是相似的。
具体而言,如果两条平行线段AB和CD之间的线段比例为a:b = k,那么通过连接这两个线段与CD的两个端点,我们可以构成两个相似三角形ABC和CDE,其中∠A = ∠C,∠B = ∠D。
这个性质也被称为对应角的性质。
根据相似三角形的性质,在相似三角形ABC和CDE中,对应边也成比例,即AB:CD = BC:DE = AC:CE = a:b = k。
相似三角形——比例线段
相似三角形一一比例线段教学过程-、课堂导入1举例说明生活中存在形状相同,但大小不同的图形。
如:照片、放电影中的底片中的图与银幕的象、不同大小的国旗、两把不同大小都含有30角的三角尺等。
2、美丽的蝴蝶身长与双翅展开后的长度之比约为0.618.一些长方形的画框,宽与长之比也设计成0.618,许多美丽的形状都与0.618 这个比值有关。
你知道0.618 这个比值的来历吗?二、复习预习1、什么是两个数的比?2与一3的比;一4与6的比,如何表示?其比值相等吗?用小学学过的方法可说成为什么?可写成什么形式?2、比与比例有什么区别?3、用字母a,b,c,d表示数,上述四个数成比例可写成怎样的形式?你知道内项、外项的概念吗?2 4 2 2 —4答案:1、2:(—3)=—3 ;—4:6= —6 =—3 ; 3 = 6 ,2,—3,—4,6 四个数成比例。
注意四个数字的书写顺序。
2、比是一个值;比例是一个等式。
a c3、a:b=c:d即b =d ,a,d叫做比例外项,b,c叫做比例内项。
三、知识讲解考点1比例线段a c一般地,四条线段a、b、c、d中,如果a与b的比等于c与d比,即b =d,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段。
a _ c注意:线段的比有顺序性,四条线段成比例也有顺序性•如d是线段a、b、c、d成比例,而不是线段a、c、b、d成比例。
考点2比例的性质1、 比例的基本性质: 比例式化积、积化比例式a c ad =bcb d2、 合比性质:分子加(减)分母,分母不变。
c a kb c kd匚厂— 心、2 3…)3、等比性质:分子分母分别相加,比值不变a b 4、比例中项:若一二-即b 2 =a G 则b 是a,c 的比例中项。
b c= m (b d f 一一 七n =0)则 n若—-b d考点3AC _ BC在线段AB上,点C把线段分成两条线段AC和BC,如果AB「AC,那么称线段AB 被点C分割,点C叫做线段AB的黄金分割点,AC与AB的比叫黄金分割比。
线段比例定理与相似三角形
线段比例定理与相似三角形线段比例定理和相似三角形是数学中重要的概念和定理。
它们在几何学和实际问题中有着广泛的应用。
本文将详细介绍线段比例定理和相似三角形的定义、性质和应用。
一、线段比例定理线段比例定理,也称为“点分线段定理”,是指在一个线段上,如果有两个点将这个线段分成两个部分,那么这两个点所在线段的比例等于被他们分割的两部分的比例。
具体来说,如果在线段AB上有一点C,将线段AB分成两部分,形成长度为AC和CB的两个线段,则有下列等式成立:AC/CB = AB为了更好地理解线段比例定理,我们可以通过一个几何图形来解释。
考虑一个三角形ABC,从A点引一条平行于BC的直线,交BC于点D。
根据线段比例定理,可以得出下列等式:AD/DB = AB/BC这个定理在几何学中具有重要意义,可以用来解决求长度比例的问题。
二、相似三角形相似三角形是指两个三角形具有相同的形状,但是对应边的长度不一定相等。
具体来说,如果两个三角形的对应角度相等,则它们是相似三角形。
符号表示为∆ABC ∼ ∆DEF。
相似三角形可以通过比较对应边的长度比例来判断。
在相似三角形中,比较两个对应边的长度,可以使用下列比例:AB/DE = BC/EF = AC/DF这里AB, BC和AC是三角形ABC的边长,DE, EF和DF是三角形DEF的边长。
这个比例关系又称为“对应边比例定理”。
相似三角形有一些重要的性质:1. 相似三角形的对应角度相等,对应边比例相等;2. 相似三角形的对应边比例相等,对应角度相等;3. 如果两个三角形相似,则它们的相似比例为正的常数;4. 如果两个三角形的任意两边长的比例相等,则它们是相似三角形。
三、线段比例定理与相似三角形的应用线段比例定理和相似三角形在几何学和实际问题中有广泛应用。
以下是一些常见的应用场景:1. 测量高度:利用相似三角形的性质,可以通过测量某一物体的阴影和影子长度来计算物体的高度。
2. 树木的投影:根据相似三角形的对应边比例,可以通过树木在地面上的投影长度和树木的实际高度,计算出树木的实际宽度。
九年级数学:第22章《相似三角形》知识点整理
初中数学新课程标准教材数学教案( 2019 — 2020学年度第二学期 )学校:年级:任课教师:数学教案 / 初中数学 / 九年级数学教案编订:XX文讯教育机构第22章《相似三角形》知识点整理教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于初中九年级数学科目, 学习后学生能得到全面的发展和提高。
本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。
本章有以下几个主要内容:一、比例线段1、线段比,2、成比例线段,3、比例中项----黄金分割,4、比例的性质:基本性质;合比性质;等比性质(1)线段比:用同一长度单位度量两条线段a,b,把他们长度的比叫做这两条线段的比。
(2)比例线段:在四条线段a,b,c,d中,如果线段a,b的比等于线段c,d的比,那么,这四条线段叫做成比例线段。
简称比例线段。
(3)比例中项:如果a:b=b:c,那么b叫做a,c的比例中项(4)黄金分割:把一条线段分成两条线段,如果较长线段是全线段和较短线段的比例中项,那么这种分割叫做黄金分割。
这个点叫做黄金分割点。
顶角是36度的等腰三角形叫做黄金三角形宽和长的比等于黄金数的矩形叫做黄金矩形。
(5)比例的性质基本性质:内项积等于外项积。
(比例=====等积)。
主要作用:计算。
合比性质,主要作用:比例的互相转化。
等比性质,在使用时注意成立的条件。
二、相似三角形的判定平行线等分线段------平行线分线段成比例--------平行于三角形一边的直线截其他两边(或两边延长线),所截线段对应成比例------(预备定理)平行于三角形一边的直线和其他两边(或两边延长线)相交,所截三角形与原三角形相似------相似三角形的判定:类比于全等三角形的判定。
三、相似三角形的性质1、定义:相似三角形对应角相等对应边成比例。
2、相似三角形对应线段(对应角平分线、对应中线、对应高等)的比等于相似比3、相似三角形周长的比等于相似比4、相似三角形面积的比等于相似比的平方四、图形的位似变换1、几何变换:平移,旋转,轴对称,相似变换----2、相似变换:把一个图形变成另一个图形,并保持形状不变的几何变换叫做相似变换。
相似三角形的判定和性质
相似三角形的判定和性质知识讲解1. 比例线段:对于四条线段a ,b ,c ,d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即a cb d =(或a:b=c:d )那么这四条线段叫做成比例线段,简称比例线段.在两条线段的比a :b 中,a 叫做比的前项,b 叫做比的后项. 如果作为比例内项的是两条相同的线段,即或a :b=b :c ,那么线段b 叫做线段a ,c 的比例中项. 比例的性质(1)基本性质①a :b=c :d ad=bc②a :b=b :c(2)更比性质(交换比例的内项或外项) (交换内项) (交换外项) (同时交换内项和外项) (3)反比性质(交换比的前项、后项):(4)合比性质:(5)等比性质:ba n f db m ec a n fd b n m fe d c b a =++++++++⇒≠++++==== )0( 黄金分割把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=AB 0.618AB cb b a =⇔ac b =⇔2db c a =⇒=d c b a ac bd =ab c d =cd a b d c b a =⇒=dd c b b a d c b a ±=±⇒=215-≈如图,若AB PB PA ⋅=2,则点P 为线段AB 的黄金分割点.2. 平行线分线段成比例定理: ① 定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3.AB BC =DE EF ;AB AC =DE DF ;BC AC =EF DF. ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例.③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.3. 相似多边形的性质:相似多边形的对应角相等,对应边的比相等.4. 相似三角形的概念:对应角相等,对应边之比相等的三角形叫做相似三角形.5. 相似三角形的性质(1)对应角相等,对应边的比相等;(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.6. 相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似.7. 相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法.8.相似三角形的判定方法(1)三角形相似的判定方法①定义法:对应角相等,对应边成比例的两个三角形相似②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似③判定定理1(AA):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似.④判定定理2(SAS):如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似.⑤判定定理3(SSS):如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似(2)直角三角形相似的判定方法①以上各种判定方法均适用②定理(HL):如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似①垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.9. 相似三角形中的基本图形:(1) 平行型:(2)交错型:(3)旋转型:(4)子母型:(5)其他:10. 双垂直条件下的计算与证明问题:“双垂直”指:“Rt △ABC 中,∠BCA=90°,CD ⊥AB 于D”(如图),结论有:(1)△ADC ∽△CDB ∽△ACB(2)由△ADC ∽△CDB 得CD2=AD·BD(3)由△ADC ∽△ACB 得AC2=AD·AB(4)由△CDB ∽△ACB 得BC2=BD·AB(5)由面积得AC·BC=AB·CD(6)勾股定理AB C D EA B C D A B C D E DAB C ED A BC第一部分:比例线段例题精讲【例1】 下列各组线段(单位:㎝)中,成比例线段的是( )A .1、2、3、4B .1、2、2、4C .3、5、9、13D .1、2、2、3【例2】 若b m m a 2,3==,则_____:=b a .【例3】 已知c b a ,,是△ABC 的三条边,对应高分别为,,a b c h h h ,且6:5:4::=c b a ,那么,,a b c h h h 等于( )A .4:5:6B .6:5:4C .15:12:10D .10:12:15【例4】 已知754z y x ==,则下列等式成立的是( ) A .91=+-y x y x B .167=++z z y x C .38=-+++z y x z y x D .x z y 3=+【例5】 如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( )A .AD AE AB AC = B .CE EA CF FB =C .DE AD BC BD = D .EF CF AB CB =【例6】 已知:如图,F 是四边形ABCD 对角线AC 上一点,EF ∥BC ,FG ∥AD .求证:AB AE +CDCG =1.课堂练习1. 若a , x , b , y 是比例线段,则比例式为_________;若a=1,x= -2, b=-2.5, 则y=_______.2. 若ab=cd ,则有a ∶d=_______;若m ∶x=n ∶y , 则x ∶y=_______.3. 已知△ABC 中三边长分别为a ,b ,c ,对应边上的高分别为4,5,3ab c h h h ===.则a :b :c=____________. 4. 若0234x y z ==≠,则23______x y z+=. 5. 如图,△ABC 中,,且DE=12,BC=15,GH=4,求AH .6. 已知a 、b 、c 是△ABC 的三边,():():()(2):7:1,24a c a b c b a b c -+-=-++= .① 求a 、b 、c 的值.②判断△ABC 的形状.第二部分:相似三角形判定类型一(平行法、‘AA’)例题精讲【例7】 如图,已知△ADE ∽△ABC ,且∠ADE=∠B ,则对应角为______________________________________________,AG DE AH BC=对应边为________________________________________________.【例8】已知:如图,D、E是△ABC的边AC、AB上的点,且∠ADE=∠B.(1)求证:△ADE∽△ABC(2)求证:AD·AC=AE·AB【例9】已知:如图,在△ABC中,AD是△ABC的中线,E是AD上一点,且CE=CD,∠DAC=∠B.求证:△AEC∽△BDA【例10】已知:如图,ΔABC中,AD=DB,∠1=∠2.求证:ΔABC∽ΔEAD.【例11】如图,□ABCD中,E是CD的延长线上一点,BE与AD交于点F,12DE CD.(1)求证:△ABF∽△EDF (2)求证:△EFD∽△EBC;(3)若DF=4,求BC的长课堂练习7. 图,若∠ACD=∠B,则△_______∽△______,对应边的比例式为_____________,∠ADC=________8. 如图,在△ABC中,∠ABC=2∠C,BD平分∠ABC,试说明:2.AB AD AC9. 如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=33,AE=3,求AF的长.10. 已知,如图,D为△ABC内一点连结ED、AD,以BC为边在△ABC外作∠CBE=∠ABD,∠BCE=∠BAD,求证:△DBE∽△ABC.11. 如图,平行四边形ABCD中,E是DC的中点,连接BE交对角线AC于F.(1)求证:△ABF∽△CEF;(2)若AC=9,求AF的长.第三部分:相似三角形判定类型二(‘SAS’、‘SSS’)例题精讲【例12】如图,在大小为4×4的正方形网格中,是相似三角形的是()A.①和②B.②和③C.①和③D.②和④【例13】已知:如图,在正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.求证:△ADQ∽△QCP.【例14】已知:如图,ΔABC中,CE⊥AB,BF⊥AC.求证:ΔAEF∽ΔACB.课堂练习12. 如图,在大小为4×4的正方形网格中,△ABC的顶点在格点上,请在图中画出一个与△ACB相似且相的三角形.13. 如图,O是△ABC内任一点,D、E、F分别是OA、OB、OC的中点,求证:△DEF∽△ABC.14. 如图,AD是△ABC的角平分线,BE⊥AD于E,CF⊥AD于F.求证:DFDEAC AB.第四部分:相似三角形判定类型三(直角三角形) 例题精讲【例15】 如图所示,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D 点,则图中相似三角形有( )A .1对B .2对C .3对D .4对 【例16】 已知:如图,在Rt △ABC 中,CD 是斜边上的高.求证:△ABC ∽△CBD ∽△ACD .课堂练习15. 如图,锐角△ABC的高BD,CE交于O点,则图中与△BOE相似的三角形的个数是( )A.1 B.2 C.3 D.416. 如图,已知Rt△ABC中,∠ACB=90°,CD⊥AB于D,根据下列各条件分别求出未知所有线段的长:(1)AC=3,BC=4;(2)AC=52,AD=2;(3)AD=5,DB=1445;(4)BD=4,AB=29.第五部分:相似三角形判定类型四(特殊三角形)例题精讲【例17】下列说法正确的个数是( )①有一个角相等的两个等腰三角形相似②有一个底角相等的两个等腰三角形相似③所有的等腰三角形相似④顶角相等的两个等腰三角形相似A.1 B.2 C.3 D.4【例18】已知△ABC中,AB=AC,∠A=36°,BD是角平分线,求证:△ABC∽△BCD.ADB C【例19】如图,△ABC和△DEF均为正三角形,D,E分别在AB,BC上,请找出一个与△DBE相似的三角形并证明.课堂练习17. 下列说法正确的个数是( )①所有的等腰三角形都相似②所有等边三角形都相似③所有直角三角形都相似④所有等腰直角三角形都相似A.1 B.2 C.3 D.418. 如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,DE=DF,∠EDF=∠A.(1)找出图中相似的三角形,并证明;(2)求证:BD AB CE BC.19. 如图,等腰直角三角形ABC中,顶点为C,∠MCN=45°,试说明△BCM∽△ANC.第六部分:解决实际问题例题精讲【例20】2012黔南州)如图,夏季的一天,身高为1.6m的小玲想测量一下屋前大树的高度,她沿着树影BA由B到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,于是得出树的高度为()A.8m B.6.4m C.4.8m D.10m【例21】 如图,丁轩同学在晚上由路灯AC 走向路灯BD ,当他走到点P 时,发现身后他影子的顶部刚好接触到路灯AC 的底部,当他向前再步行20m 到达Q 点时,发现身前他影子的顶部刚好接触到路灯BD 的底部,已知丁轩同学的身高是1.5m ,两个路灯的高度都是9m ,则两路灯之间的距离是( )A .24mB .25mC .28mD .30m【例22】 如图,A ﹑B 两点分别位于一个池塘的两端,小明想用绳子测量A ﹑B 间的距离,但绳子不够,于是他想了一个办法:在地上取一点C ,使它可以直接到达A ﹑B 两点,在AC 的延长线上取一点D ,使CD=21CA ,在BC 的延长线上取一点E ,使CE=21CB ,测得DE 的长为5米,则AB 两点间的距离为( )A .6米B .8米C .10米D .12米【例23】 如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m 的竹竿的影长是0.8m ,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m ,又测得地面的影长为2.6m ,请你帮她算一下,树高是( )A .3.25mB .4.25mC .4.45mD .4.75m【例24】 如图,有一所正方形的学校,北门(点A )和西门(点B )各开在北、西面围墙的正中间.在北门的正北方30米处(点C )有一颗大榕树.如果一个学生从西门出来,朝正西方走750米(点D ),恰好见到学校北面的大榕树,那么这所学校占地平方米.课堂练习20. 如图所示,一架投影机插入胶片后图象可投到屏幕上.已知胶片与屏幕平行,A点为光源,与胶片BC 的距离为0.1米,胶片的高BC为0.038米,若需要投影后的图象DE高1.9米,则投影机光源离屏幕大约为()A.6米B.5米C.4米D.3米21. 如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E 处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A.4.5米B.6米C.7.2米D.8米22. 如图是小孔成像原理的示意图,根据图中所标注的尺寸,这支蜡烛在暗盒中所成的像CD的长是()A .61cmB .31cmC .21cmD .1cm23. 一个油桶高0.8m ,桶内有油,一根长1m 的木棒从桶盖小口插入桶内,一端到达桶底,另一端恰好在小口处,抽出木棒量得浸油部分长0.8m ,则油桶内的油的高度是( )A .0.8mB .0.64mC .1mD .0.7m24. 汪老师要装修自己带阁楼的新居(下图为新居剖面图),在建造客厅到阁楼的楼梯AC 时,为避免上楼时墙角F 碰头,设计墙角F 到楼梯的竖直距离FG 为1.75m .他量得客厅高AB=2.8m ,楼梯洞口宽AF=2m .阁楼阳台宽EF=3m .请你帮助汪老师解决下列问题:(1)要使墙角F 到楼梯的竖直距离FG 为1.75m ,楼梯底端C 到墙角D 的距离CD 是多少米? (2)在(1)的条件下,为保证上楼时的舒适感,楼梯的每个台阶高小于20cm ,每个台阶宽要大于20cm ,问汪老师应该将楼梯建几个台阶?为什么?课堂练习诊断结果课后作业1.下列各组中的四条线段成比列的是( ) A .1cm 、2cm 、20cm 、30cm B .1cm 、2cm 、3cm 、4cm C .4cm 、2cm 、1cm 、3cmD .5cm 、10cm 、10cm 、20cm2.已知:32+a =4b =65+c ,且2a-b+3c=21,a 、b 、c 的值分别为________,________,_________.3. 如图,△ADE ∽△ACB ,其中∠1=∠B ,则AB BC AD)()()(==.4. 如图,画一个三角形,使它与已知△ABC 相似,且原三角形与所画三角形的相似比为2∶1.5. △ABC ∽△A 1B 1C 1,相似比为32,△A 1B 1C 1∽△A 2B 2C 2,相似比为45,则△ABC ∽△A 2B 2C 2,其相似比为____________.6. 分别根据下列已知条件,写出各组相似三角形的对应比例式.图1 图2 图3(1)如图1,△ABC ∽△ADE ,其中DE ∥BC ,则_________=_________=_________.(2)如图2,△AOB ∽△DOE ,其中DE ∥AB ,则_________=_________=_________.(3)如图3,△ABC ∽△ADE ,其中∠ADE=∠B ,则_________=_________=_________.7. 如图.从下面这些三角形中,选出相似的三角形____________________.8.画符合要求的相似三角形在大小为4×4的正方形方格中,△ABC的顶点A、B、C在单位正方形的顶点上,请在图中画出一个△A1B1C1,使得△A1B1C1∽△ABC(相似比不为1),且点A1、B1、C1都在单位正方形的顶点上.(1)(2)9.如图,已知⊿ABC中,AB=AC,AD⊥AB于点A,交BC边于点E,DC⊥BC于点C,与AD交于点D,(1)求证:⊿ACE ∽⊿ADC;(2)如果CE=1,CD=2,求AC的长.10.如图,△ABC中,∠BAC=90°,AD⊥BC于D,DE为AC的中线,延长线交AB的延长于F,求证:AB·AF=AC·DF.11.如图;已知梯形ABCD中,AD//BC,∠BAD=90°,对角线BD⊥DC.(1)△ABD 和△DCB 相似吗?说明理由.(2)BD2和AD·BC相等吗?说明理由.12.如图,小李打网球时,球恰好打过网,且落在离网4m的位置上,则球拍击球的高度h为()A.0.6m B.1.2m C.1.3m D.1.4m13.三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得OA=20cm,OA′=50cm,这个三角尺的周长与它在墙上形成的影子的周长的比是_________.14.如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是_______mm.15.如图,△ABC是一张直角三角形彩色纸,AC=30cm,BC=40cm.问题1:将斜边上的高CD五等分,然后裁出4张宽度相等的长方形纸条.则这4张纸条的面积和是________cm2.问题2:若将斜边上的高CD n等分,然后裁出(n-1)张宽度相等的长方形纸条.则这(n-1)张纸条的面积和是____________cm2.16.如图,点D、E分别是等边三角形ABC的BC、AC边上的点,且BD=CE,AD与BE相交于点F.(1)试说明△ABD≌△BCE;(2)BD2=AD•DF吗?为什么?17.如图,四边形ABCD、DEFG都是正方形,连接AE、CG,AE与CG相交于点M,CG与AD相交于点N.求证:(1)AE=CG;(2)AN•DN=CN•MN.课后作业诊断结果学习札记。
第一讲相似三角形——比例线段
第一讲 相似三角形——相似与比例线段第一课时一.放缩与相似 1. 相似形的概念一般地,把一个图形放大或缩小,得到的图形和原来的图形,形状一定相同。
我们把形状相同的两个图形叫做相似形。
2. 相似形的特征 (1) 相似三角形的特征∠A' =∠A ; ∠B'=∠B; ∠C' =∠CBCC B AC C A AB B A 111111===K (2) 相似多边形的特征推论:如果两个多边形相似,他们必定同为n 边形,而且各角对应相等,各边对应成比例。
【典型例题】1. 如果一张地图的比例尺为1:3000000,在地图上量得大连到长春的距离为25cm ,那么长春到大连的实际距离为 千米。
【同类变式】2. 在地图上,都标有比例尺。
现在一张比例尺为1:5000的图纸上,量得∆ABC 的三边:AC=3cm,BC=4cm,AB=5cm,求这个图纸所反映的实际∆A'B'C'的周长是多少米?3. 某两地在比例尺为1:5000000的地图上的距离是30cm ,两地的实际距离是多少?如果在该地图上A 地(正方形场地)面积是3cm 2,问该地实际面积是_________ 4. 下列说法正确的有( )个(1)有一个角是100o的等腰三角形相似 (2)有一个角是80o的等腰三角形相似 (3)所有的等腰直角三角形相似 (4)所有的正六边形都相似 (5)所有的矩形都相似 (6)所有的正方形都相似 A .2个 B. 3个 C. 4个 D. 5个5. 一张长方形纸片对折后所得的长方形与原长方形是相似形,求原长方形的长与宽之比。
【同类变式】6. E 、F 分别为矩形ABCD 的边AD 、BC 的中点,若矩形ABCD 与矩形EABF 相似,AB=1。
求矩形ABCD 的面积。
7. 在相同时刻的物高和影长成正比例,如果在某时,旗杆在地面上的影长为10m 此时身高是1.8米,小明的影长是1.5米,求旗杆的高度。
线段比例定理与三角形的相似性应用解析
线段比例定理与三角形的相似性应用解析线段比例定理是解决几何问题中常用的原理之一,它在求解线段的长度比例时起到了重要作用。
三角形的相似性应用则是在解决三角形问题时的关键概念,它可以帮助我们简化计算过程,得到更加准确的结果。
本文将详细介绍线段比例定理与三角形相似性应用的概念和具体解析方法。
一、线段比例定理线段比例定理是指在一个平面内,若点D在线段AB上,AD与DB 的比等于点C在线段AB上AC与CB的比,则有AD/DB = AC/CB。
这个定理通过比例的概念,帮助我们计算线段的长度比例,进而解决实际问题。
例题1:已知线段AB与线段CD的比为3:5,线段DE与线段BC 的比为4:9,求线段AE与线段AC的比。
解析:根据线段比例定理,我们可以得到AB/CD = 3/5,DE/BC = 4/9。
将两个等式相乘,得到(AB/CD)*(DE/BC) = (3/5)*(4/9),即(AB*DE)/(CD*BC) = 12/45。
移项后可得到(AB*DE)/(AE*CD) = 12/45。
同理可以得到(AE*AC)/(CD*AC) = 3/5。
由此可得(AE*AC)/(AE*CD) = 3/5,即AC/CD = 3/5。
最终我们得到线段AE与线段AC的比为3:5。
二、三角形的相似性应用三角形的相似性应用是指在两个或更多个三角形之间存在一定的比例关系,从而可以通过已知条件求解未知量。
三角形相似性应用在实际问题中有很多应用,比如求解高空物体的高度、测量难以到达的距离等。
例题2:如图所示,∠A = ∠D,∠B = ∠E,AB/DE = 3/5,AC = 12cm,求线段DF的长度。
(图示:三角形ABC和三角形DEF重合在角A和角D上,AC为线段AB的割线)解析:根据已知条件,我们可以得到三角形ABC与三角形DEF相似,且AB/DE = 3/5。
由线段比例定理可得AC/DF = AB/DE,即12/DF = 3/5。
通过交叉相乘避免分数相除,我们可以得到3DF = 5*12。
利用相似三角形求解线段比例
利用相似三角形求解线段比例线段比例是相似三角形的应用之一。
相似三角形具有对应角相等的特点,根据三角形的性质可以推导出线段比例关系。
在几何学中,利用相似三角形求解线段比例是一种常见的解题方法。
本文将介绍相似三角形的基本概念,并以实际题目为例,详细解答如何利用相似三角形求解线段比例。
相似三角形是指具有对应角相等的两个三角形。
两个相似三角形的对应边之间存在比例关系。
设有两个相似三角形ABC和DEF,记作∆ABC∼∆DEF。
根据相似三角形的定义,我们可以得出以下结论:1. 对应角相等:∠A = ∠D,∠B = ∠E,∠C = ∠F。
2. 对应边成比例:AB/DE = BC/EF = AC/DF。
利用相似三角形求解线段比例的基本思路是通过观察已知条件和待求比例之间的关系,建立相似三角形,并应用上述比例关系求解。
接下来,我们通过实际题目来演示相似三角形求解线段比例的具体过程。
【示例题目】在△ABC中,点D、E分别是AB、AC的内部点,且满足AD/DB = 2, AE/EC = 3。
若线段DE与BC平行,求线段DE与BC 的比例。
解析:根据题目已知条件可以得出AD/DB = 2, AE/EC = 3,而根据线段平行的性质可知线段DE与线段BC平行。
我们可以通过构造相似三角形来求解。
首先,连接点D、E与点B、C,分别得到线段BD和CE。
根据相似三角形的性质,我们可以得出△ADE∼△ABC。
根据对应边成比例的关系,可得AD/BD = AE/EC = DE/BC。
由于已知AD/DB = 2,AE/EC = 3,我们可以将它们带入上述比例关系式中,得到2 = DE/BC= 3。
因此,线段DE与BC的比例为2:3。
通过这个例子,我们可以总结出利用相似三角形求解线段比例的一般步骤:1. 根据已知条件,确定相似三角形的构造方式。
2. 建立相似三角形的比例关系。
3. 将已知条件和待求比例带入比例关系,求解未知量。
在实际应用中,利用相似三角形求解线段比例经常出现在建筑设计、地图测量、光学模型等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课后作业
一、选择题
1.已知一矩形的长a =1.35m ,宽b =60cm ,则a ∶b 的值为( )
(A)9∶400 (B)9∶40 (C)9∶4 (D)90∶4
2.下列线段能成比例线段的是( ) (A)1cm,2cm,3cm,4cm (B)1cm,2cm,22cm,2cm (C)2cm,5cm,3cm,1cm (D)2cm,5cm,3cm,4cm
3.如果线段a =4,b =16,c =8,那么a 、b 、c 的第四比例项d 为( )
(A)8 (B)16 (C)24 (D)32
4.已知32=b a ,则b
b a +的值为( ) (A)23 (B)34 (C)35 (D)5
3
5.已知x ∶y ∶z =1∶2∶3,且2x+y -3z = -15,则x 的值为( )
(A)-2 (B)2 (C)3 (D)-3
6.在比例尺为1∶38000的南京交通游览图上,玄武湖隧道长约为7cm ,它的实际长度约为( )
(A)0.226km (B)2.66km (C)26.6km (D)266km
7.某班同学要测量学校升国旗的旗杆高度,在同一时刻,量得某一同学的身高是1.5米,影长是1米,旗杆的影长是8米,则旗杆的高度是( )
(A)12米 (B)11米 (C)10米 (D)9米
8.已知点C 是AB 的黄金分割点(AC >BC),若AB=4cm ,则AC 的长为( ) (A)(2 5 –2)cm (B)(6-2 5 )cm (C)( 5 –1)cm (D)(3- 5 )cm
9.若D 、E 分别是ΔABC 的边AB 、AC 上的点,且AD AB =AE AC
,那么下列各式中正确的是( )
(A)AD DB =DE BC (B)AB AD =AE AC (C)DB EC =AB AC (D)AD DB =AE AC
10.若b
a c a c
b
c b a k 222-=-=-=,且a +b +c ≠0,则k 的值为( ) (A)-1 (B)2
1 (C)1 (D)- 12
二、填空题
1.若4x=5y,则x ∶y = .
2.若
3x =4y =5z ,则y z y x +-∶x
x z y -+= .
3.已知13y x -=7y ,则y y x +的值为 .
4.已知b a =43,那么b b a += .
5.若b a =d c =f
e =3,且b+d+
f =4,则a+c+e = .
6.若(x+y)∶y =8∶3,则x ∶y = .
7.若b a b +=53,那么b
a = .
8.等腰直角三角形中,一直角边与斜边的比是 .
9.已知△ABC 和△A ′B ′C ′,''B A AB =''C B BC =''A C CA =2
3,且A ′B ′+B ′C ′+C ′A ′=16cm.
则AB+BC+AC = .
10.若a =8cm ,b =6cm ,c =4cm ,则a 、b 、c 的第四比例项d = cm ; a 、c 的比例中项x = cm.
11.已知3∶x =8∶y ,求y x
=
12. 已知b b a 23+=27,求b
a =
13. 若2x =3y ,求y
y x += 14. 如果x ∶y ∶z =1∶3∶5,那么z
y x z y x +--+33=
15. 正方形对角线的长与它的边长的比是
16.在1∶5000000的福建省地图上,量得福州到厦门的距离约为60cm ,那么福州到厦门的实际距离约为 km.
17、在一张地图上,甲、乙两地的图上距离是3 cm,而两地的实际距离为1500 m ,那么这张地图的比例尺为_______.
18.已知b a =d
c =52 (b+
d ≠0),则d b c a ++= 19、若43x x
=,则x 等于
20.已知3
5=y x ,则=-+)(:)(y x y x 21、若9810z y x ==, 则 ______=+++z
y z y x
22.已知a b a 3)(7=-,则=b
a
23.如果2===c z b y a x ,那么=+-+-c b a z
y x 3232
24.在x ∶6= (5 +x )∶2 中的x = ;2∶3 = ( 5-x )∶x 中的x = .
25.若a ∶3 =b ∶4 =c ∶5 , 且a +b -c =6, 则a = ,b = ,c = .
26.已知x ∶y ∶z = 3∶4∶5 , 且x +y +z =12, 那么x = ,y = ,z = .
27.若43===f e d c b a , 则______=++++f d b e c a . 28、若322=-y y x , 则_____=y x
.
29.已知x ∶4 =y ∶5 = z ∶6 , 则 ①x ∶y ∶z = , ② (x+y )∶(y+z )= .
30.图纸上画出的某个零件的长是32 mm ,如果比例尺是 1∶20,这个零件的实际长是 .
31.如图,已知 AB ∶DB = AC ∶EC ,AD = 15 cm , AB = 40 cm , AC = 28 cm , 则 AE = ;
三、解答题
1、已知:5y-4x =0,求(x+y)∶(x-y)
2、已知c b
a +=a c
b +=b a
c +=x ,求x
A C
D B E
3、已知线段x 、y ,如果(x+y)∶(x-y)=a ∶b ,求x ∶y.
4、已知:b a =d c =f e =3(且有b+d+f =0),求证:d b c a ++=f d e c ++=3.
5、如图,D 、E 分别在△ABC 的边AB 、AC 上,AB AD =AC AE =BC DE =32
,且△ABC 与△ADE
的周长之差为15cm ,求△ABC 与△ADE 的周长.。