九年级数学上册第四章相似三角形4.1比例线段第2课时比例线段随堂练习含解析新版浙教版
九年级数学 第四章 图形的相似 4.1 成比例线段 第2课时 等比性质

12/10/2021
第十页,共十七页。
第2课时(kèshí) 等比性质
解:设 c-b=k.
由(a-c)∶(a+b)∶(c-b)=(-2)∶7∶1,
a-c=-2k, a=3k,
得 a+b=7k, 解得 b=4k,
c-b=k,
c=5k,
而(3k)2+(4k)2=(5k)2,即 a2+b2=c2,
所以△ABC 为直角三角形.
∴DE+EF+DF=34×18=227(cm),
即△DEF 的周长为227 cm.
12/10/2021
第五页,共十七页。
2 第 课时(kèshí) 等比性质
例 2 (1)[教材补充例题]若a5=b7=8c,且 3a-2b+c=3, 求 2a+4b-3c 的值;
12/10/2021
第六页,共十七页。
总结反思
小结(xiǎojié)
知识点 比例的性质
如果a = c =…=m (b +d +…+n ≠0),
bd
n
那么ab++cd++……++mn =ba.
我们把比例的这个性质称为比例的等比性质.
12/10/2021
第十三页,共十七页。
第2课时(kèshí) 等比性质
[拓展] 如果ab=cd,那么a±b b=c±d d.
第2课时(kèshí) 等比性质
解:(1)设a5=b7=c8=x,则 a=5x,b=7x,c=8x. ∵3a-2b+c=3,∴15x-14x+8x=3,解得 x=1,
3 ∴a=5x=53,b=7x=73,c=8x=83. ∴2a+4b-3c=2×53+4×73-3×83=134.
12/10/2021
第2课时(kèshí) 等比性质
解:∵AB=BC=AC=4,∴AB+BC+AC=4, DE EF DF 3 DE+EF+DF 3
(常考题)北师大版初中数学九年级数学上册第四单元《图形相似》测试题(含答案解析)(2)

一、选择题1.如图,A B C '''是ABC 以点O 为位似中心经过位似变换得到的,若A B C '''与ABC 的周长比是2:3,则它们的面积比为( )A .2:3B .4:5C .2:3D .4:92.如图,ABC 中,AD BC ⊥于点D ,下列条件中不.能判定ABC 是直角三角形的是( )A .B DAC ∠=∠ B .90B DAC ∠+∠=︒ C .2AB BD BC =⋅D .2AC CD BC =⋅3.如图,小颖身高为160cm ,在阳光下影长240AB cm =,当她走到距离墙角(点D )120cm 的C 处时,她的部分影子投射到墙上,则投射在墙上的影子DE 的长度为( )A .120cmB .80cmC .60cmD .40cm4.如图,在平面直角坐标系中,矩形ABCD 的对角线//BD x 轴,若(1,0),(0,2)A D ,则点C 的坐标为( )A .(4,3)B .(4,4)C .(3,4)D .(2.5,4)5.如图,4AB=,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,12BE DB=,作EF DE⊥并截取EF DE=,连结AF并延长交射线BM于点C.设BE x=,BC y=,则y关于x的函数解析式是()A.124xyx=--B.21xyx=--C.31xyx=--D.84xyx=--6.古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN分为两线段MG、GN,使得其中较长的一段MG是全长MN与较短的一段GN的比例中项,即满足512MG GNMN MG-==,后人把512-这个数称为“黄金分割数”,把点G称为线段MN的“黄金分割点”.如图,在△ABC中,已知AB=AC=3,BC=4,若点D是边BC边上的一个“黄金分割点”,则△ADC的面积为()A.55-B.355-C.2085-D.1045-7.如图,乐器上的一根弦AB=80cm,两个端点A,B固定在乐器板面上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,则C,D之间的距离为()A.(540)cm B.(540)cmC.(120﹣5cm D.(5160)cm8.如图,在△ABC中,中线AE、BD相交于点F,连接DE,则下列结论:①12DEAB=;②14CD CE DEAC BC AB++=++;③CD EFCA FA=;④13FDECDESS=△△.其中正确结论的个数是()A .1个B .2个C .3个D .4个9.《九章算术》是中国古代的数学专著,它奠定了中国古代数学的基本框架,以计算为中心,密切联系实际,以解决人们生产、生活中的数学问题为目的.书中记载了这样一个问题:“今有勾五步,股十二步,问勾中容方几何.”其大意是:如图,Rt ABC △的两条直角边的长分别为5和12,则它的内接正方形CDEF 的边长为( )A .2517B .6017C .10017D .1441710.如图,在平面直角坐标系xOy 中,已知△ABO 的两个顶点分别为A (﹣8,4),B (﹣2,﹣2),以原点O 为位似中心画△A B O '',使它与△ABO 位似,且相似比为12,则点A 的对应点A '的坐标为( )A .(4,2)B .(1,1)C .(﹣4,2)D .(4,﹣2)11.如图,线段1AB =,点1P 是线段AB 的黄金分割点(且11AP BP <),点2P 是线段1AP 的黄金分割点(212AP PP <),点3P 是线段3AP 的黄金分割点()323,,AP P P <依此类推,则线段2020AP 的长度是( )A .202051-⎝⎭B .202151-⎝⎭C .202035-⎝⎭D .202135-⎝⎭12.如图,在四边形ABCD 中,如果ADC BAC ∠=∠,那么下列条件中不能判定ADC 和BAC 相似的是( )A .DAC ABC ∠=∠B .CA 是BCD ∠的平分线C .AD DCAB AC= D .2AC BC CD =⋅二、填空题13.边长为4的正方形ABCD ,在BC 边上取一动点E ,连接AE ,作EF ⊥AE ,交CD 边于点F ,若CF 的长为34,则CE 的长为 _____ .14.如图,正方形ABCD 的边长为4,点E 为CD 中点,点F 为BC 边上一点,且CF=1,连接AF ,EG ⊥AF 交BC 于点G ,则BG=________.15.如图,在ABC 中,D 在AC 边上,:1:2AD DC =,O 是BD 的中点,连接AO 并延长交BC 于点E ,若3BE =,则EC 的长为____.16.如图,在菱形ABCD 中,AB =1,∠ADC =120°,以AC 为边作菱形ACC 1D 1,且∠AD 1C 1=120°;再以AC 1为边作菱形AC 1C 2D 2,且∠AD 2C 2=120°…;按此规律,菱形AC 2020C 2021D 2021的面积为_____.17.已知点D ,E 分别在△ABC 的边AB ,AC 上,△ADE ,△DEC ,△BCD 的面积之比为4:2:3,∠ACD=∠ADE ,CD=6,则BC 的长为_______.18.如图所示,在ABC 中,E 、F 分别是AC 、AB 的中点,已知FC 长是6,则线段OC 的长为______.19.在平面直角坐标系中,ABC 与DEF 是以坐标原点O 为位似中心的位似图形,相似比为1:2;若B 点的坐标为(2,1),则B 的对应点E 的坐标为________. 20.如图,在ABC 中,AB AC >,将ABC 以点A 为中心顺时针旋转,得到AED ,点D 在BC 上,DE 交AB 于点F .如下结论中:①DA 平分EDC ∠;②AEF DBF △∽△;③BDF CAD ∠=∠;④EF BD =.所有正确结论的序号是_____.三、解答题21.在矩形ABCD 的CD 边上取一点E ,将BCE ∆沿BE 翻折,使点C 恰好落在AD 边上点F 处.(1)如图1,若2BC BA =,求CBE ∠的度数; (2)如图2,当5AB =,且10AF FD =时,求BC 的长;22.已知ABC ∆中,90C =∠.你能画一条直线把它分割成两个相似三角形吗?如果可以,请用尺规作出这条分割线,保留作图痕迹,并说明两个三角形相似的理由.23.如图,已知O 为坐标原点,B ,C 两点坐标为(3,1)-,(2,1).(1)在y 轴的左侧以O 点为位似中心将OBC 放大到原来的2倍,画出放大后111O B C ;(2)写出11B C ,的坐标;(3)在(1)条件下,若OBC 内部有一点M 的坐标为(,)x y ,请直接写出M 的对应点1M 的坐标.24.如果两个相似三角形的对应边存在2倍关系,则称这两个相似三角形互为母子三角形.(1)如果DEF 与ABC 互为母子三角形,则DEAB的值可能为( )A.2 B.12C.2或12(2)已知:如图1,ABC中,AD是BAC∠的角平分线,2,AB AD ADE B=∠=∠.求证:ABD△与ADE互为母子三角形.(3)如图2,ABC中,AD是中线,过射线CA上点E作//EG BC,交射线DA于点G,连结BE,射线BE与射线DA交于点F,若AGE与ADC互为母子三角形.求AGGF的值.25.如图,在四边形ABCD中,AD∥BC,AC,BD交于点E,过点E作MN∥AD,分别交AB,CD于点M,N.(1)求证:△AME~△ABC;(2)求证:111 ME AD BC=+;(3)若AD=5,BC=7,求MN的长.26.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点、顶点都是格点的三角形称为格点三角形.如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC相似的格点三角形中.求面积最大的三角形的斜边长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】直接利用位似是相似的特殊形式,利用相似的性质可知对应边A′B′与AB之比等于△A′B′C′的周长与△ABC 的周长之比为2:3,再根据面积比等于相似比的平方求解即可. 【详解】解:∵△A'B'C'是△ABC 以点O 为位似中心经过位似变换得到的,△A'B'C'的周长与△ABC 的周长比是2:3, ∴A B C '''∽ABC ,23A B AB ''=, ∴222439A B C ABC A S B S B A '''⎛''⎛⎫== ⎪⎝⎫= ⎪⎝⎭⎭. 故选:D . 【点睛】本题考查的是位似变换的概念、相似三角形的性质,掌握位似图形的对应边平行、相似三角形的面积比等于相似比的平方是解题的关键.2.B解析:B 【分析】根据已知对各个条件进行分析,从而得到答案. 【详解】 解:A.能, ∵AD ⊥BC , ∴∠B+∠BAD=90°, ∵∠B=∠DAC ,∴∠BAC=∠BAD+∠DAC=∠BAD+∠B=90°; ∴△ABC 是直角三角形; B.不能, ∵AD ⊥BC , ∴∠B+∠BAD=90°, ∵∠B+∠DAC=90°, ∴∠BAD=∠DAC , ∴△ABD ≌△ACD (ASA ), ∴AB=AC ,∴△ABC 是等腰三角形, ∴无法证明△ABC 是直角三角形; C.能,∵2AB BD BC =⋅ ∴AB BCBD AB= ∵∠B=∠B ∴△CBA ∽△ABD , ∴∠ADB=∠BAC ,∵AD⊥BC,∴∠ADB=∠ADC=90°,∴∠BAC=90°∴△ABC是直角三角形;D.能,∵2AC CD BC=⋅,∴AC BC=CD AC∵∠C=∠C∴△CBA∽△CAD,∴∠ADC=∠BAC=90°∴△ABC是直角三角形.故选:B【点睛】此题考查了相似三角形的判定与性质、直角三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用,注意相似三角形的判定与性质的应用.3.B解析:B【分析】过E作EF⊥CG于F,利用相似三角形列出比例式求出投射在墙上的影子DE长度即可.【详解】解:如图,过E作EF⊥CG于F,设投射在墙上的影子DE长度为x,由题意得:△GFE∽△HAB,∴AB:FE=AH:(GC−x),则240:120=160:(160−x),解得:x=80.答:投射在墙上的影子DE长度为80cm.故选:B.【点睛】本题考查了相似三角形的应用,解题的关键是正确地构造直角三角形.4.B解析:B【分析】过点B 作BF ⊥x 轴,垂足为F ,证明△ADO ∽△BAF ,确定点B 的坐标,利用中点坐标公式确定点E 的坐标,二次运用中点中点坐标公式即可确定点C 的坐标. 【详解】如图,过点B 作BF ⊥x 轴,垂足为F , ∵四边形ABCD 是矩形, ∴∠DAB=90°, ∴∠DAO+∠BAF=90°, ∵∠DAO+∠ADO=90°, ∴∠ADO=∠BAF , ∴△ADO ∽△BAF , ∴OA :BF=OD :FA ,∵//BD x 轴,若(1,0),(0,2)A D , ∴OA=1,OD=2,BF=2, ∴1:2=2:FA , ∴FA=4, ∴点B (5,2), ∵四边形ABCD 是矩形, ∴点E 是BD 的,AC 的中点, ∴点E (52,2), 设点C 的坐标为(m ,n ),∴150,2,222m n ++== ∴m=4,n=4,∴点C 的坐标为(4,4), 故选C .【点睛】本题考查了矩形的性质,三角形相似的判定与性质,中点坐标公式,平行x 轴直线上点的坐标特点,构造辅助线证明三角形的相似,灵活运用中点坐标公式是解题的关键.5.A解析:A【分析】作FG ⊥BC 于G ,依据已知条件求得△DBE ≌△EGF ,得出FG =BE =x ,EG =DB =2x ,然后根据平行线的性质即可求得.【详解】解:作FG ⊥BC 于G ,∵∠DEB +∠FEC =90°,∠DEB +∠BDE =90°;∴∠BDE =∠FEG ,在△DBE 与△EGF 中,B FGE BDE FEG DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△EGF ,∴EG =DB ,FG =BE =x ,∴EG =DB =2BE =2x ,∴GC =y -3x ,∵FG ⊥BC ,AB ⊥BC ,∴FG ∥AB ,CG :BC =FG :AB , 即34x y x y-=, ∴124x y x =--, 故选:A .【点睛】本题考查了三角形全等的判定和性质,以及平行线分线段成比例,辅助线的做法是解题的关键.6.A解析:A【分析】作AF ⊥BC ,根据等腰三角形ABC 的性质求出AF 的长,再根据黄金分割点的定义求出CD 的长度,利用三角形面积公式即可解题.【详解】解:过点A 作AF ⊥BC ,∵AB=AC ,∴BF=12BC=2, 在Rt ABF ,AF=2222325AB BF -=-=,∵D 是边BC 的两个“黄金分割”点,∴512CD BC -=即5142CD -=, 解得CD=252-,∴12ADC C AF S D ⨯⨯==()125252⨯-⨯=55-, 故选:A .【点睛】本题考查了“黄金分割比”的定义、等腰三角形的性质、勾股定理的应用以及三角形的面积公式,求出DC 和AF 的长是解题的关键.7.D解析:D【分析】根据黄金分割的概念和黄金比值求出AC =BD =540,进而得出答案.【详解】解:∵点C 是靠近点B 的黄金分割点,点D 是靠近点A 的黄金分割点,∴AC =BD =8051-=540, ∴CD =BD ﹣(AB ﹣BD )=2BD ﹣AB =5160,故选:D .【点睛】此题考查了黄金分割点的概念:把一条线段分成两部分,使其中较长的线段为全线段与较51-叫做黄金比. 8.C解析:C【分析】根据题意和相似三角形的判定与性质,可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】解:在△ABC 中,中线AE 、BD 相交于点F ,∴DE 是△ABC 的中位线,∴DE ∥AB ,DE AB =12,故①正确; ∴△CDE ∽△CAB , ∴12CD DE CA AB ==,12CD CE DE DE AC BC AB AB ++==++,故②错误; ∵DE ∥AB ,∴△DEF ∽△BAF , ∴12EF DE AF BA ==, ∴CD EF CA FA=,故③正确; ∵CD =DA ,12EF AF =, ∴S △CDE =S △ADE ,13DEF ADE S S ∆∆=, ∴FDE CDE S S ∆∆=13,故④正确; 故选:C .【点睛】本题考查了相似三角形的判定与性质、三角形的中位线,解答本题的关键是明确题意,利用数形结合的思想解答.9.B解析:B【分析】根据正方形的性质得:DE ∥BC ,则△ADE ∽△ACB ,列比例式可得结论.【详解】解:∵四边形CDEF 是正方形,∴CD=ED ,DE ∥CF ,设ED=x ,则CD=x ,AD=5-x ,∵DE ∥CF ,∴∠ADE=∠C ,∠AED=∠B ,∴△ADE ∽△ACB , ∴DE AD BC AC=,∴5125x x -=, ∴x=6017, ∴正方形CDEF 的边长为6017. 故选:B .【点睛】此题考查了相似三角形的判定和性质、正方形的性质,设未知数,构建方程是解题的关键.10.D解析:D【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k ,即可求得答案.【详解】解:∵△ABO 与A B O ''△的相似比为12,且A '在第四象限, ∴点A 的对应点A '的坐标为118,422⎛⎫⎛⎫⎛⎫-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即(4,-2), 故选:D .【点睛】此题主要考查了位似变换,正确掌握位似图形的性质是解题关键.11.C解析:C【分析】根据把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,它们的比值12叫做黄金比进行解答即可. 【详解】解:根据黄金比的比值,1BP =则113122AP -=-=, 2323,,AP AP ==⎝⎭⎝⎭…依此类推,则线段20202020AP =⎝⎭,故选C .【点睛】 本题考查的是黄金分割的知识,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.12.D解析:D【分析】已知∠ADC =∠BAC ,则A 、B 选项可根据有两组角对应相等的两个三角形相似来判定;C 选项可以根据两组对应边的比相等且相应的夹角相等的两个三角形相似来判定;D 选项虽然也是对应边成比例但无法得到其夹角相等,所以不能推出两三角形相似.【详解】在△ADC 和△BAC 中,∠ADC =∠BAC ,如果△ADC ∽△BAC ,需满足的条件有:①∠DAC =∠ABC 或AC 是∠BCD 的平分线; ②AD DC AB AC=; 故选:D .【点睛】 此题主要考查了相似三角形的判定方法;熟记三角形相似的判定方法是解决问题的关键.二、填空题13.1或3【分析】由正方形的性质结合三角形内角和定理可得出结合可得出由可证出再利用相似三角形的性质可求出的长【详解】解:四边形为正方形即或故答案为:1或3【点睛】本题考查了相似三角形的判定与性质正方形的 解析:1或3.【分析】由正方形的性质结合三角形内角和定理可得出90BAE AEB ∠+∠=︒,结合90AEB CEF ∠+∠=︒可得出BAE CEF ∠=∠,由B C ∠=∠,BAE CEF ∠=∠可证出ABE ECF ∆∆∽,再利用相似三角形的性质可求出CE 的长.【详解】 解:四边形ABCD 为正方形,90B C ∴∠=∠=︒,90BAE AEB ∴∠+∠=︒.EF AE ⊥,90AEF ∴∠=︒,90AEB CEF ∴∠+∠=︒,BAE CEF ∴∠=∠,ABE ECF ∽, ∴CE CF BA BE ,即4344CE CE, 1CE ∴=或3CE =.故答案为:1或3.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形内角和定理,利用“两角对应相等的三角形相似”找出ABE ECF ∆∆∽是解题的关键.14.【分析】证明△ECG △FBA 利用相似三角形的性质求解即可【详解】设EG 交AF 于点Q ∵EG ⊥AF ∴∠FQG=90∴∠QFG+∠QGF=90在正方形ABCD 中∠B=∠C=90∴∠QAB+∠AFB=90∴ 解析:43【分析】证明△ECG ~△FBA ,利用相似三角形的性质求解即可.【详解】设EG 交AF 于点Q ,∵EG ⊥AF ,∴∠FQG=90︒,∴∠QFG+∠QGF =90︒,在正方形ABCD 中,∠B=∠C =90︒,∴∠QAB+∠AFB =90︒,∴∠QGF =∠FAB ,在△ECG 和△FBA 中,∠B=∠C =90︒,∠QGF =∠FAB ,∴△ECG ~△FBA(两组对应角相等的三角形是相似三角形),∴EC CG BF AB =, ∴EC CF FG BF AB+=, ∵E 是CD 的中点,∴122CE CD ==, ∵CF=1,∴BF=3, ∴2134FG +=, 解得:FG=53, ∴43BG BF FG =-=, 故答案为:43. 【点睛】 本题考查了正方形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形,利用相似三角形的性质解决问题.15.9【分析】过D 点作DF ∥CE 交AE 于F 如图先由DF ∥BE 根据平行线分线段成比例得到DF=BE=3再由DF ∥CE 得到然后利用比例的性质求CE 的长【详解】解:过D 点作DF ∥CE 交AE 于F 如图∵DF ∥BE解析:9【分析】过D 点作DF ∥CE 交AE 于F ,如图,先由DF ∥BE ,根据平行线分线段成比例得到DF=BE=3,再由DF ∥CE 得到DF AD CE AC=,然后利用比例的性质求CE 的长. 【详解】解:过D 点作DF ∥CE 交AE 于F ,如图,∵DF ∥BE ,∴DF DO BE BO=, ∵O 是BD 的中点,∴OB=OD ,∴DF=BE=3,∵DF ∥CE ,∴DF AD CE AC=,∵AD :DC=1:2,∴AD :AC=1:3, ∴13DF CE =, ∴CE=3DF=3×3=9.故答案为9.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.16.【分析】根据题意可以求得菱形ABCD 的面积再根据题意可以知所有的菱形都相似即可得到菱形AC2020C2021D2021的面积【详解】解:作CE ⊥AB 交AB 的延长线于点E 如右图所示由已知可得∠ABC =解析:40412【分析】根据题意,可以求得菱形ABCD 的面积,再根据题意,可以知所有的菱形都相似,即可得到菱形AC 2020C 2021D 2021的面积.【详解】解:作CE ⊥AB 交AB 的延长线于点E ,如右图所示,由已知可得,∠ABC =120°,BC =1,∠CAB =30°,∴∠CBE =60°,∴∠BCE =30°,∴CE ∴AC∴菱形ABCD 的面积是1×2=2,∵AC AB =1,图中的菱形都是相似的,∴菱形AC2020C 2021D 2021的面积为:2×[(1)2]2020=2×4040=40412,【点睛】本题考查了图形的相似、菱形的性质、图形的变化类,解题的关键是明确题意,发现图形的变化特点,利用数形结合的思想解答.17.3【分析】根据△ADE△DEC△BCD的面积之比为4:2:3可得出AE:EC=2:1AD:BD=2:1则可证明DE∥BC利用平行线的性质与相似三角形的判定可得△ACD∽△ABC与△ACD∽△ADE根解析:3【分析】根据△ADE,△DEC,△BCD的面积之比为4:2:3,可得出AE:EC=2:1,AD:BD=2:1,则可证明DE∥BC,利用平行线的性质与相似三角形的判定可得△ACD∽△ABC与△ACD∽△ADE,根据相似三角形的判定可推出BC CDCD DE=,计算后即可得出结论.【详解】解:如图,∵S△ADE:S△DEC=4:2,∴AE:EC=2:1,∵S△ADE:S△DEC:S△BCD =4:2:3,∴S△ACD:S△BCD=6:3,∴AD:BD=2:1,∵AE ADEC BD=,∴DE ∥BC ,∴∠B=∠ADE ,∵∠ACD=∠ADE ,∴∠ACD=∠B ,∵∠A=∠A ,∴△ACD ∽△ABC , ∴BC AB AC CD AC AD==, 同理可证:△ACD ∽△ADE , ∴CD AC AD DE AD AE ==, ∴BC CD CD DE=, ∵DE ∥BC ,∴△ABC ∽△ADE ,, ∴DE AD BC AB=, ∵AD :BD=2:1, ∴23AD AB =, ∴23DE BC =, ∴23DE BC =, ∴223BC BC CD ⋅=, ∵,∴3BC =.故答案为:3.【点睛】此题主要考查了相似三角形的判定与性质,掌握平行线的判定与相似三角形的判定与性质是解题的关键.18.4【分析】根据已知利用相似三角形的判定可得到△EFO ∽△BCO 根据相似比可求得CO 的长即可【详解】解:∵点EF 分别是△ABC 中ACAB 边的中点∴EF 是△ABC 的中位线∴EF=BCEF ∥BC ∴△EFO解析:4【分析】根据已知利用相似三角形的判定可得到△EFO ∽△BCO ,根据相似比可求得CO 的长即可.【详解】解:∵点E、F分别是△ABC中AC、AB边的中点.∴EF是△ABC的中位线.∴EF=1BC,EF∥BC.2∴△EFO∽△BCO,且相似比为1:2.∴CO=2FO.∵FC=6.∴OC=2FO=4.故答案为4.【点睛】此题主要考查三角形的中位线的定理和相似三角形的判定方法的掌握.19.或【分析】根据位似图形的有两个在原点同侧或异侧分类讨论根据坐标变化规律求解即可【详解】解:与是以坐标原点为位似中心的位似图形分两种情况当与在原点同侧时E点坐标为:当与在原点异侧时E点坐标为:故答案为--解析:(4,2)或(4,2)【分析】根据位似图形的有两个,在原点同侧或异侧分类讨论,根据坐标变化规律求解即可.【详解】解:ABC与DEF是以坐标原点O为位似中心的位似图形,分两种情况,当ABC与DEF在原点同侧时,E点坐标为:(4,2),--,当ABC与DEF在原点异侧时,E点坐标为:(4,2)--.故答案为:(4,2)或(4,2)【点睛】本题考查了平面直角坐标系中位似图形的坐标变化规律,解题关键是注意分类讨论,熟记位似坐标变化规律.20.①②③【分析】由旋转性质得AD=AC∠ADE=∠C利用AD=AC得到∠ADC=∠C即可推出∠ADC=∠ADE判断①正确;根据∠E=∠B∠AFE=∠BFD即可证明△AEF∽△DBF判断②正确;利用三角解析:①②③【分析】由旋转性质得AD=AC,∠ADE=∠C,利用AD=AC得到∠ADC=∠C,即可推出∠ADC=∠ADE,判断①正确;根据∠E=∠B,∠AFE=∠BFD,即可证明△AEF∽△DBF,判断②正确;利用三角形的外角性质判断③正确;由∠FAD不一定等于∠CAD,不能证明△ADF全等于△ADC,故CD不一定等于DF,由此判断④错误.【详解】由旋转得:AD=AC,∠ADE=∠C,∵AD=AC,∴∠ADC=∠C,∴∠ADC=∠ADE ,即DA 平分∠EDC ,故①正确;∵∠E=∠B ,∠AFE=∠BFD ,∴△AEF ∽△DBF ,故②正确;∵∠ADB=∠ADE+∠BDF=∠C+∠CAD ,∠ADE=∠C ,∴BDF CAD ∠=∠,故③正确;∵∠FAD 不一定等于∠CAD ,AD=AD ,∠ADC=∠ADE ,∴不能证明△ADF 全等于△ADC ,故CD 不一定等于DF ,∴DE-DF 不一定等于BC-CD ,即无法证明EF=BD ,故④错误;故答案为:①②③.【点睛】此题考查旋转的性质,等腰三角形的性质,相似三角形的判定及性质,三角形的外角性质,是一道三角形的综合题.三、解答题21.(1)15°;(2)【分析】(1)由翻折易得BC BF =,FBE EBC ∠=∠,由2BF AB =及直角三角形的性质易得30AFB ∠=︒,再由矩形的对边平行即可得结论;(2)根据翻折易得FAB EDF ∆∆∽,从而有对应边成比例,由此可得DE 的长,从而可得EC 的长,即EF 的长,由勾股定理得DF ,最后可得AD 的长.【详解】(1)将BCE ∆沿BE 翻折,使点C 恰好落在AD 边上点F 处,BC BF ∴=,FBE EBC ∠=∠,2BC AB =,2BF AB ∴=,四边形ABCD 是矩形,∴∠A =90º,//AD BC ,30AFB ∴∠=︒,30AFB CBF ∴∠=∠=︒,1152CBE FBC ∴∠=∠=︒; (2)将BCE ∆沿BE 翻折,使点C 恰好落在AD 边上点F 处, 90BFE C ∴∠=∠=︒,CE EF =, 又矩形ABCD 中,90A D ∠=∠=︒,90AFB DFE ∴∠+∠=︒,90DEF DFE ∠+∠=︒,AFB DEF ∴∠=∠,FAB EDF ∴∆∆∽,∴AF AB DE DF =, AF DF AB DE ∴=,10AF DF =,5AB =, 2DE ∴=,523CE DC DE ∴=-=-=,3EF ∴=,2222325DF EF DE ∴=-=-=,255AF ∴==, 25535BC AD AF DF ∴==+=+=.【点睛】本题主要考查了矩形的性质、直角三角形的性质、相似三角形的判定与性质、图形的翻折,关键是图形的翻折这个条件,由它可得出对应线段相等、对应角相等,充分用好用足它们.22.图见解析;理由见解析【分析】作AB 的垂线即可;利用两个角对应相等的两个三角形相似即可判定.【详解】解:如图,作AB 的垂线,垂足为P ,直线CP 就是所求直线;证明:∵CP ⊥AB ,∴∠CPA=∠BPC=90°,∵90C =∠,∴∠A+∠B=90°,∠A+∠ACP=90°,∴∠ACP =∠B ,∴△CPA ∽△BPC .【点睛】本题考查了尺规作图和相似三角形的判定,解题关键是熟悉尺规作图的方法,根据相似确定如何作图.23.(1)见解析;(2)1(6,2)B -,1(4,2)C --;(3)1(2,2)M x y --.【分析】(1)先确定B ,C 的位置,再确定它们各自关于原点的对称点,最后把对称点的坐标各自扩大2倍即可;(2)点B 关于原点的对称点为(-3,1),扩大2倍,得到1B ;点C 关于原点的对称点为(-2,-1),扩大2倍,得到1C ;(3)利用原点对称原理计算,加上倍数即可.【详解】解:(1)如图,△111O B C 即为所求作.(2)∵点B (3,1)-,∴点B 关于原点的对称点为(-3,1),∴扩大2倍,得到1(6,2)B -;∵点C (2,1),∴点C 关于原点的对称点为(-2,-1),∴扩大2倍,得到1(4,2)C --.(3)∵点M (,)x y ,∴点M 关于原点的对称点为(,)x y --,∴扩大2倍,得到1(2,2)M x y --.【点睛】本题考查了位似的作图与计算问题,熟练将位似与原点的对称密切联系起来是解题的关键.24.(1)C ;(2)见解析;(3)13AG GF =或3. 【分析】(1)根据互为母子三角形的定义即可得出结论;(2)根据两角对应相等两三角形相似得出ABD ADE ∽△△,再根据2AB AD =从而得出结论;(3)根据题意画出图形,分当,G E 分别在线段,AD AC 上时和当,G E 分别在射线,DA CA 上时两种情况加以讨论;【详解】(1)∵DEF 与ABC 互为母子三角形, ∴1=2DE AB 或2 故选:C (2)AD 是BAC ∠的角平分线,BAD CAD ∴∠=∠,ADE B ∠=∠,ABD ADE ∴∽.又2AB AD =,ABD ∴与ADE 互为母子三角形.(3)如图,当,G E 分别在线段,AD AC 上时,AGE 与ADC 互为母子三角形,2CD AD GE AG∴==, AG DG ∴=, AD 是中线,BD CD ∴=,又//GE BC ,GEF DBF ∴∽△△.2DF DB CD GF GE GE∴===, 3DG GF ∴=,3AG GF∴=. 如图,当,G E 分别在射线,DA CA 上时,AGE 与ADC 互为母子三角形,2CD AD GE AG∴==, 1123AG AD DG ∴==,AD 是中线,BD CD ∴=,又//GE BC ,GEF DBF ∴∽△△.2DF DB CD GF GE GE ∴===, DG GF ∴=, 13AG GF ∴=. 综上所述,13AG GF =或3【点睛】本题主要考查了相似三角形的判定与性质、分类讨论的数学思想以及接受与理解新生事物的能力.准确理解题设条件中互为母子三角形的定义是正确解题的先决条件,在分析与解决问题的过程中,要考虑全面,进行分类讨论,避免漏解.25.(1)见详解;(2)见详解;(3)356 【分析】(1)利用相似三角形的判定定理直接证明即可(2)利用平行线分线段成比例定理,再证明,ABC DBC △AME ∽△△DEN ∽△,CEN AME ABC △∽CAD,△∽△,根据三角形相似的性质即可解答.(3)结合(2)的结论将AD=5,BC=7,代入即可求得MN 的长【详解】(1)//MN BCAME ABC ∴△∽△,(2)//AD MN ,//AD BCDE AE BD AC ∴= //MN BC,ABC DBC ∴△AME ∽△△DEN ∽△,AE ME DE NE AC BC BD CB ∴== ME NE BC BC∴= ME NE ∴=∴E 是MN 的中点,ME=NE=12MN //BC//AD MNCEN AME ABC ∴△∽CAD,△∽△,NE CE ME AE AD AC BC AC ∴== 1NE ME CE AE AC AD BC AC AC AC ∴+=+== 1NE ME AD BC∴+= 111ME AD BC∴=+ (3)结合(2)的结论,5,7AD BC == 11157MN ∴=+ 3512ME ∴=ME NE =7035126MN ME NE ∴=+== 【点睛】本题考查了相似三角形的判定和性质,平行线分线段成比例定理,解题关键是熟练掌握相似三角形的判定定理,利用比例的等量关系解题.26.【分析】根据相似三角形的性质确定两直角边的比值为1:2,以及6×6网格图形中,最长线段为【详解】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=5,AC:BC=1∶2,∴与Rt△ABC相似的格点三角形的两直角边的比值为1∶2,若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为2,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE10,EF=10,DF=2的三角形,∵102105210,5∴△ACB∽△DEF,∴∠DEF=∠C=90°,∴此时△DEF1010÷2=10,△DEF为面积最大的三角形,其斜边长为2.【点睛】本题考查了作图-应用与设计、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题.。
(常考题)北师大版初中数学九年级数学上册第四单元《图形相似》测试题(答案解析)(2)

一、选择题1.如图,在Rt ABC 中,90ACB D ∠=︒,是AB 边的中点,AF CD ⊥于点E ,交BC 边于点F ,连接DF ,则图中与ACE △相似的三角形共有( )A .2个B .3个C .4个D .5个2.如图,在ABC 中,D ,E 分别是AB,AC 上的点,且DE// BC ,若AE : EC=1: 4,那么:ADE BEC S S △△的值为( )A .1∶16B .1∶18C .1∶20D .1∶24 3.如图,ABC 中,AD BC ⊥于点D ,下列条件中不.能判定ABC 是直角三角形的是( )A .B DAC ∠=∠B .90B DAC ∠+∠=︒ C .2AB BD BC =⋅D .2AC CD BC =⋅ 4.如图,在▱ABCD 中,E 是BC 的中点,DE ,AC 相交于点F ,S △CEF =1,则S △ADC =( )A .3B .4C .5D .6 5.如图,在平面直角坐标系中,矩形ABCD 的对角线//BD x 轴,若(1,0),(0,2)A D ,则点C 的坐标为( )A .(4,3)B .(4,4)C .(3,4)D .(2.5,4) 6.如图,4AB =,射线BM 和AB 互相垂直,点D 是AB 上的一个动点,点E 在射线BM 上,12BE DB =,作EF DE ⊥并截取EF DE =,连结AF 并延长交射线BM 于点C .设BE x =,BC y =,则y 关于x 的函数解析式是( )A .124x y x =--B .21x y x =--C .31x y x =--D .84x y x =-- 7.点B 是线段AC 的黄金分割点,且AB <BC .若AC=4,则BC 的长为( ) A .252+ B .252- C .51- D .51- 8.如图,ABC 中,90ABC ∠=︒,点E 在CB 的延长线上,13BE AB =,过点E 作ED AC ⊥于D .若AD ED =,6AC =,则CD 的长为( )A .1.5B .2C .2.5D .4 9.若275x y z ==,则2x y z x z +-+的值是( ) A .67 B .13 C .49 D .410.如图,点D 、E 、F 分别是ABC 的边AB 、AC 、BC 上的点,若//DE BC ,//EF AB ,则下列比例式一定成立的是( )A .EF FC AD BF =B .AD DE DB BC = C .BF EF BC AD = D .EF DE AB BC = 11.若ad=bc ,则下列不成立的是( )A .a c b d =B .a c a b d b -=-C .a b c d b d ++=D . 1 111a c b d ++=++ 12.如图,直线123////l l l ,直线a 、b 与1l 、2l 、3l 分别交于点A 、B 、C 和点D 、E 、F ,若:1:2AB BC =,6DF =,则EF 的长为( )A .2B .3C .4D .5二、填空题13.如图,点P 是ABC 的重心,过P 作AB 的平行线DE ,分别交AC 于点D 、交BC 于点E ;作//DF BC ,交AB 于点F ,若ABC 的面积为36,则四边形BEDF 的面积为________.14.如图,在ABC 中,90ACB ∠=︒,30A ∠=︒,3BC =.点D 是AB 上一动点,以DC 为斜边向右侧作等腰直角三角形CDE ,使90CED ∠=︒,连接BE . (1)若点E 恰好落在AB 上,则AD 的值为______;(2)线段BE 的最小值为______.15.如图所示是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的半径为0.8m ,桌面距离地面1m ,若灯泡距离地面3m ,则地面上阴影部分的面积为_________m 2(结果保留)π.16.如图,已知在Rt ABC 中,C 90∠=︒,AC 3=,BC 4=,分别将Rt ABC 的三边向外平移2个单位并适当延长,得到111A B C △,则111A B C △的面积为______.17.如图,正方形ABCD 和正方形EFOG 是位似图形,其中点A 与点E 对应,点A 的坐标为()4,2-,点E 的坐标为()1,1-,则这两个正方形位似中心的坐标为______.18.在Rt △ABC 中,AB =6,AC =5,点D 在边AB 上,且AD =2,点E 在边AC 上,当△ADE ∽△ABC 时,AE =____.19.如图,有一个池塘,要测量池塘两端A 、B 的距离,可先在平地上取一点O ,从O 点不经过池塘可以直接到达点A 和点B ,连接AO 并延长到点C ,连接BO 并延长到点D ,使3AO BO CO DO==,测得36CD m =,则池塘两端AB 的距离为________m .20.如图,若ABC 与DEF 都是正方形网格中的格点三角形(顶点在格点上),则DEF 与ABC 的周长比为_________.三、解答题21.我国古代数学著作《九章算术》中有“井深几何”问题:“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深儿何?”它的大意是:如图,已知四边形BCDE 是矩形,5CD =尺,5AB =尺,0.4BF =尺,求井深BC 为多少尺?22.如图,在正方形ABCD 中,E 为边AD 上的点,点F 在边CD 上,∠BEF =90°且CF =3FD .(1)求证:△ABE ∽△DEF ;(2)若AB =4,延长EF 交BC 的延长线于点G ,求 CG 的长.23.如图,点C ,B ,E 在同一条直线上,AC ⊥BC ,BD ⊥DE ,BC =ED =6,BE =10,∠BAC =∠DBE .(1)求证:△ABC ≌△BED ;(2)求△ABD 的面积.24.如图,在△ABC 中,∠C =∠ADE ,AB =3,AD =2,CE =5,求证:(1)△ADE ∽△ACB ;(2)求AE 的长.25.如图1,在等边ABC 中,点D 是BC 边上的动点(不与点B 、C 重合),点E 、F 分别在AB 和AC 边上,且EDF=60.(1)求证:BDE CFD △∽△;(2)若点D 移至BC 的中点,如图2,求证:FD 平分EFC ∠.26.已知::2:3:4a b c =,且2316a b c -+=,求232a b c +-的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用直角三角形斜边上的高线模型,可判断有2个三角形与ACE △相似,利用直角三角形斜边上的中线等于斜边的一半,传递一组等角,得到第3个三角形.【详解】∵∠EAC=∠CAF ,∠AEC=∠ACF ,∴△ACE ∽△AFC ;∵∠EAC+∠AFC=90°,∠ECF+∠AFC=90°,∴∠EAC=∠ECF ,∵∠AEC=∠CEF ,∴△ACE ∽△CFE ;∵90ACB D ∠=︒,是AB 边的中点,∴DC=DB ,∴∠ECF=∠EAC=∠B ,∵∠AEC=∠BCA ,∴△ACE ∽△BAC ;共有3个,故选B.【点睛】本题考查了直角三角形的相似,熟练运用三角形相似的判定定理是解题的关键. 2.C解析:C【分析】 由已知条件可求得ABE EBC S S ∆∆,又由平行线分线段成比例可求得ADE BDES S ∆∆,结合S △BDE =S △ABE -S △ADE 可求得答案.【详解】解:∵AE 1EC 4=, ∴14ABE EBC S S ∆∆=, ∴14ABE EBC S S ∆∆=, ∵DE ∥BC ,∴14AD AE DB EC ==, ∴14ADE BDE S S ∆∆=, ∴S △BDE =4S △ADE ,又∵S △BDE =S △ABE -S △ADE ,∴4S △ADE =14S △EBC -S △ADE , ∴120ADE EBC S S ∆∆=, 故选:C .【点睛】本题主要考查了平行线分线段成比例的性质及三角形的面积,掌握同高三角形的面积比即为底的比是解题的关键.3.B解析:B【分析】根据已知对各个条件进行分析,从而得到答案.【详解】解:A.能,∵AD ⊥BC ,∴∠B+∠BAD=90°,∵∠B=∠DAC ,∴∠BAC=∠BAD+∠DAC=∠BAD+∠B=90°;∴△ABC 是直角三角形;B.不能,∵AD ⊥BC ,∴∠B+∠BAD=90°,∵∠B+∠DAC=90°,∴∠BAD=∠DAC ,∴△ABD ≌△ACD (ASA ),∴AB=AC ,∴△ABC 是等腰三角形,∴无法证明△ABC 是直角三角形;C.能,∵2AB BD BC =⋅ ∴AB BC BD AB= ∵∠B=∠B∴△CBA ∽△ABD ,∴∠ADB=∠BAC ,∵AD ⊥BC ,∴∠ADB=∠ADC=90°,∴∠BAC=90°∴△ABC 是直角三角形;D.能,∵2AC CD BC =⋅, ∴AC BC CD AC= ∵∠C=∠C ∴△CBA ∽△CAD ,∴∠ADC=∠BAC=90°∴△ABC 是直角三角形.故选:B【点睛】此题考查了相似三角形的判定与性质、直角三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用,注意相似三角形的判定与性质的应用.4.D解析:D【分析】根据已知可得△CEF ∽△ADF ,及EF 和DF 的关系,从而根据相似三角形的性质和三角形的面积得到答案.【详解】解:∵四边形ABCD 是平行四边形∴AD=BC ,△CEF ∽△ADF , ∴EC EF AD DF= ∵E 是BC 的中点,∴EC=1122BC AD = ∴12EC EF AD DF == ∴2211()()24CEF ADF S EF S DF ∆∆=== ∵S △CEF =1,∴S △ADF =4, ∵12EF DF = ∴DF=2EF∴S △D CF =2 S △CEF =2,∴S △ADC =S △ADF + S △D CF =4+2=6故选:D .【点睛】本题主要考查了相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方是解答此题的关键.5.B解析:B【分析】过点B 作BF ⊥x 轴,垂足为F ,证明△ADO ∽△BAF ,确定点B 的坐标,利用中点坐标公式确定点E 的坐标,二次运用中点中点坐标公式即可确定点C 的坐标.【详解】如图,过点B 作BF ⊥x 轴,垂足为F ,∵四边形ABCD 是矩形,∴∠DAB=90°,∴∠DAO+∠BAF=90°,∵∠DAO+∠ADO=90°,∴∠ADO=∠BAF ,∴△ADO ∽△BAF ,∴OA :BF=OD :FA ,∵//BD x 轴,若(1,0),(0,2)A D ,∴OA=1,OD=2,BF=2,∴1:2=2:FA ,∴FA=4,∴点B (5,2),∵四边形ABCD 是矩形,∴点E 是BD 的,AC 的中点,∴点E (52,2), 设点C 的坐标为(m ,n ), ∴150,2,222m n ++== ∴m=4,n=4, ∴点C 的坐标为(4,4),故选C .【点睛】本题考查了矩形的性质,三角形相似的判定与性质,中点坐标公式,平行x 轴直线上点的坐标特点,构造辅助线证明三角形的相似,灵活运用中点坐标公式是解题的关键. 6.A解析:A【分析】作FG ⊥BC 于G ,依据已知条件求得△DBE ≌△EGF ,得出FG =BE =x ,EG =DB =2x ,然后根据平行线的性质即可求得.【详解】解:作FG ⊥BC 于G ,∵∠DEB +∠FEC =90°,∠DEB +∠BDE =90°;∴∠BDE =∠FEG ,在△DBE 与△EGF 中,B FGE BDE FEG DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DBE ≌△EGF ,∴EG =DB ,FG =BE =x ,∴EG =DB =2BE =2x ,∴GC =y -3x ,∵FG ⊥BC ,AB ⊥BC ,∴FG ∥AB ,CG :BC =FG :AB , 即34x y x y-=, ∴124x y x =--, 故选:A .【点睛】本题考查了三角形全等的判定和性质,以及平行线分线段成比例,辅助线的做法是解题的关键.7.B解析:B【分析】根据黄金分割的定义可得出较长的线段BC=512AC,将AC=4代入即可得出BC的长度.【详解】解:∵点B是线段AC的黄金分割点,且AB<BC,∴BC=512AC,∵AC=4,∴BC=252.故选:B.【点睛】本题考查了黄金分割的定义:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中51-AB≈0.618AB,并且线段AB的黄金分割点有两个.8.B解析:B【分析】证明△ADF≌△EDC,得到DC=DF,设DC=x,再证明△EBF∽△ABC,求出x即可.【详解】解:∵∠ABC=90°,ED⊥AC,∴∠EBA=∠ADE=90°,又∠1=∠2,∴∠E=∠A,∵AD=ED,∴△ADF≌△EDC,∴DC=DF,设DC=x,∴DF=x,∴AD=ED=6-x ,∴EF=6-2x ,∵∠E=∠A ,∠FBE=∠ABC ,∴△EBF ∽△ABC , ∴BE EF AB AC =, ∵AC=6,BE=13AB , ∴163EF =, ∴EF=6-2x=2,∴x=2,∴CD=2,故选B .【点睛】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,解题的关键是掌握相应的判定方法,利用性质定理求出结果.9.C解析:C 【分析】 根据275x y z k ===,则x =2k ,y =7k ,z =5k ,代入2x y z x z+-+进行计算即可. 【详解】 解:275x y z k ===(k≠0), 则x =2k ,y =7k ,z =5k , ∴2x y z x z+-+=2754495k k k k k +-+=, 故选:C .【点睛】 本题考查了比例的性质,解题的关键是掌握比例的性质进行解题.10.A解析:A 【分析】根据平行可得EC FCAE BF=,EC BDAE DA=,再根据平行四边形的性质得EF=BD即可.【详解】解:∵//EF AB,∴EC FCAE BF=∵//DE BC,∴EC BDAE DA=,∴FC BDBF DA=∵//DE BC,//EF AB,∴四边形BFED是平行四边形,∴EF=BD,∴EF FCAD BF=,故选:A.【点睛】本题考查了平行线分线段成比例定理,解题关键是根据平行线列出恰当的比例式,再结合平行四边形性质进行推理.11.D解析:D【分析】根据比例和分式的基本性质,进行各种演变即可得到结论.【详解】A 由a cb d=可以得到ad=bc,故本选项正确,不符合题意;B、由a c ab d b-=-可得:(a-c)b=(b-d)a,即ad=bc,故本选项正确,不符合题意;C、由a b c db d++=可得(a+b)d=(c+d)b,即ad=bc,故本选项正确,不符合题意;D、由1?111a cb d++=++,可得(a+1)(d+1)=(b+1)(c+1),即ad+a+d=bc+c,不能得到ad=bc,故本选项错误,符合题意;故选:D.【点睛】本题考查了比例线段,根据比例的性质能够灵活对一个比例式进行变形.12.C解析:C【分析】连接AF 交2l 于点G ,根据平行线分线段成比例,得出12AB AG BC GF ==和21FG FE GA ED ==,则23EF DF =,即可求出结果. 【详解】 解:如图,连接AF 交2l 于点G ,∵23//l l , ∴12AB AG BC GF ==, ∵12l l //, ∴21FG FE GA ED ==, ∵6DF =,∴243EF DF ==. 故选:C .【点睛】 本题考查平行线分线段成比例,解题的关键是熟练掌握平行线分线段成比例的性质.二、填空题13.16【分析】延长CP 交AB 于G 由CP :PG=2:1推出CE :BC=2:3AD :AC=1:3由△CED ∽△CBA △AFD ∽△ABC 推出S △CED=×S △ABC=16S △AFD=×S △ABC=4由此即可解析:16【分析】延长CP 交AB 于G .由CP :PG =2:1,推出CE :BC =2:3,AD :AC =1:3,由△CED ∽△CBA ,△AFD ∽△ABC ,推出S △CED =49×S △ABC =16,S △AFD =19×S △ABC =4,由此即可解决问题.【详解】解:如图,延长CP 交AB 于G .∵点P 是△ABC 的重心,∴CP :PG =2:1,∵DE ∥AB ,∴CE :BE =2:1,AD :CD =1:2,∴CE :CB =2:3,AD :AC =1:3,∵ED ∥AB ,DF ∥BC ,∴△CED ∽△CBA ,△AFD ∽△ABC ,∴S △CED =49×S △ABC =16,S △AFD =19×S △ABC =4, ∴S 平行四边形BEDF =S △ABC -S △CED -S △AFD =36-16-4=16,故答案为:16. 【点睛】本题考查了三角形重心的性质,平行线分线段成比例定理,相似三角形的判定与性质,难度适中.准确作出辅助线是解题的关键.14.【分析】(1)根据含30°的直角三角形的性质可得AB=6BE=CE=再根据等腰直角三角形的性质得出CE=DE=最后依据AD=AB-BE-ED 得出结果;(2)以BC 为直角边向左构造以∠CBH 为直角的等 933-324 【分析】(1)根据含30°的直角三角形的性质可得AB=6,BE=32,33,再根据等腰直角三角形的性质得出CE=DE=332,最后依据AD=AB-BE-ED 得出结果; (2)以BC 为直角边向左构造以∠CBH 为直角的等腰直角三角形BCH ,先证明△CDH ∽△CEB ,得出2DH BE=DH 取最小值时,BE 边为最小值,当DH ⊥AB 时,DH最小,即图中的D H ',根据含30°的直角三角形的性质可得出结论.【详解】(1)如图所示:∵∠ACB=90°,∠A=30°,BC=3,∴AB=6,BE=32,CE=332, ∵△CDE 为等腰直角三角形,∴CE=DE=332, ∴AD=6-32-332=933- (2)以BC 为直角边向左构造以∠CBH 为直角的等腰直角三角形BCH ,∵△CDE 为等腰直角三角形,∴∠DCE=∠HCB=45°,∠DCH=∠HCB , ∵2CD CH CE CB== ∴△CDH ∽△CEB , ∴2DH BE= ∴当DH 取最小值时,BE 边为最小值,当DH ⊥AB 时,DH 最小,即图中的D H ',∵∠A=30°,∠ACB=90°∴∠ABC=60°∵∠CBH=90°∴D BH '∠=30°∵BH=BC=3 ∴32D H '= ∴3242BE '=最小值,故答案为933-,324.【点睛】本题考查了相似三角形的判定和性质,含30°的直角三角形的性质,等腰三角形的性质,解题的关键是证明△CDH ∽△CEB .15.44π【分析】证明△OBQ ∽△OAP 根据相似三角形的性质求出AP 根据圆的面积公式计算得到答案【详解】解:如图由题意得OB=08mOQ=OP-PQ=3-1=2(m )BQ ∥AP ∴△OBQ ∽△OAP ∴即解解析:44π【分析】证明△OBQ ∽△OAP ,根据相似三角形的性质求出AP ,根据圆的面积公式计算,得到答案.【详解】解:如图,由题意得,OB=0.8m ,OQ=OP-PQ=3-1=2(m ),BQ ∥AP , ∴△OBQ ∽△OAP ,∴BQ OQ AP OP =,即0.823AP =, 解得,AP=1.2(m ), 则地面上阴影部分的面积=π×1.22=1.44π(m 2),故答案为:1.44π.【点睛】本题考查的是相似三角形的应用,掌握相似三角形的判定定理和性质定理是解题的关键. 16.54【分析】作于点D 作于点E 作于点F 分别证明△和△求出和再根据三角形面积公式求解即可【详解】解:作于点D 作于点E 作于点F ∵三边向外平移个单位∴∵∴∠且∠∴△∴又∵∠且∠∴△∴∴∴又∵△∴∴∴【点睛】 解析:54【分析】作11CD B C ⊥于点D ,作11BE B C ⊥于点E ,作11BF A B ⊥于点F ,分别证明△ACB BFG ∆∽和△1GHB ACB ∆∽,求出11A C 和11B C ,再根据三角形面积公式求解即可.【详解】解:作11CD B C ⊥于点D ,作11BE B C ⊥于点E ,作11BF A B ⊥于点F ,∵Rt ABC ∆三边向外平移个单位,∴1=22,2,C D CD BE GH BF ====,∵11//AB A B∴∠ABC AGC =∠且∠90ACB BFG =∠=︒∴△ACB BFG ∆∽ ∴103BG = 又∵∠11B A GC ABC =∠=∠,且∠190GHB ACB =∠=︒∴△1GHB ACB ∆∽ ∴1AC GH BC B H= ∴183B H = ∴1111C B CD DE EH HB =+++ 1082433=+++ 12=又∵△111ABC A B C ∆∽ ∴1111AC B C AC BC= ∴119A C = ∴111111112A B C S AC B C ∆=⨯⨯ 11292=⨯⨯ 54=【点睛】此题主要考查了相似三角形的性质与判定,能正确作出辅助线证明三角形是解答此题的关键.17.【分析】连接AE 并延长交x 轴于H 求AE 解析式即可【详解】解:∵点与点对应∴点B 与点F 对应BF 都在x 轴上连接AE 并延长交x 轴于H 则点H 为位似中心∵点A 的坐标为(﹣42)点E 的坐标为(﹣11)设AE 的解解析:()2,0【分析】连接AE 并延长交x 轴于H ,求AE 解析式即可.【详解】解:∵点A 与点E 对应,∴点B 与点F 对应,B 、F 都在x 轴上,连接AE 并延长交x 轴于H ,则点H 为位似中心,∵点A 的坐标为(﹣4,2)点E 的坐标为(﹣1,1),设AE 的解析式为y=kx+b ,把(﹣4,2),(﹣1,1)代入得,421k b k b -+=⎧⎨-+=⎩, 解得,1323k b ⎧=-⎪⎪⎨⎪=⎪⎩AE 的解析式为1233y x =-+, 当y=0时,x=2,H 点坐标为(2,0),故答案为:(2,0)【点睛】本题考查的是位似变换的概念和性质、待定系数法求一次函数解析式,掌握位似图形的对应点连线的交点是位似中心是解题的关键.18.【分析】根据相似三角形的对应边成比例求解即可求得答案【详解】解:∵△ADE ∽△ABC ∴即解得:AE =;故答案为:【点睛】此题考查了相似三角形的性质掌握相似三角形的性质是解题的关键 解析:53【分析】根据相似三角形的对应边成比例求解,即可求得答案.【详解】解: ∵△ADE ∽△ABC , ∴AD AE AB AC =, 即265AE =, 解得:AE =53; 故答案为:53. 【点睛】此题考查了相似三角形的性质.掌握相似三角形的性质是解题的关键.19.108【分析】先证明△AOB ∽△COD 然后根据相似三角形的性质求解即可【详解】解:∵∠AOB=∠COD ∴△AOB ∽△COD ∴∵∴AB=36×3=108m 故答案为:108【点睛】本题考查了相似三角形的解析:108【分析】先证明△AOB ∽△COD ,然后根据相似三角形的性质求解即可.【详解】解:∵3AO BO CO DO==,∠AOB=∠COD , ∴△AOB ∽△COD ,∴3AO BO AB CO DO CD===, ∵36CD m =,∴AB=36×3=108m .故答案为:108.【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形. 20.【分析】设正方形网格的边长为1根据勾股定理求出△EFD △ABC 的边长运用三边对应成比例则两个三角形相似这一判定定理证明△EDF ∽△BAC 即可解决问题【详解】解:设正方形网格的边长为1由勾股定理得:D【分析】设正方形网格的边长为1,根据勾股定理求出△EFD 、△ABC 的边长,运用三边对应成比例,则两个三角形相似这一判定定理证明△EDF ∽△BAC ,即可解决问题.【详解】解:设正方形网格的边长为1,由勾股定理得:DE 2=22+22,EF 2=22+42,∴DE =EF =同理可求:AC ,BC∵DF =2,AB =2,∴1EF DE DF BC AB AC === ∴△EDF ∽△BAC ,∴DEF 与ABC,.【点睛】本题主要考查了勾股定理和相似三角形的判定及其性质,熟练掌握相似三角形的判定与性质是解题的关键.三、解答题21.井深BC 为57.5尺【分析】方法一:根据已知条件证明∽ABF ACD ,得到=AB BF AC CD,代入计算即可;方法二:根据已知条件证明ABF DEF ∽△△,得到AB BF DE EF =,代入计算即可 【详解】 解:方法一:四边形BCDE 是矩形,//BF CD ∴, ABF ACD ∴∽,AB BF AC CD∴=, 即5562.50.4AB CD AC BF ⋅⨯===. BC AC AB ∴=-62.55=-57.5=(尺).答:井深BC 为57.5尺.方法二:四边形BCDE 是矩形,//BF CD ∴,ABF DEF ∴∽,AB BF DE EF∴=, 即AB EF DE BF⋅= 5(50.4)57.50.4⨯-==. 57.5BC DE ∴==(尺). 答:井深BC 为57.5尺.【点睛】本题主要考查相似三角形的应用,准确计算是解题的关键.22.(1)见解析;(2)CG =6.【分析】(1)由正方形的性质得出∠A =∠D =90°,证出∠ABE =∠DEF ,即可得出△ABE ∽△DEF ; (2)求出DF =1,CF =3,由相似三角形的性质得出AE AB DF DE =,解得DE =2,证明△EDF ∽△GCF ,得出DE DF CG CF=,求出CG =6,即可得出答案. 【详解】(1)证明:∵四边形ABCD 为正方形,∴∠A =∠D =90°,∴∠ABE +∠AEB =90°,∵∠BEF =90°,∴∠DEF +∠AEB =90°,∴∠ABE =∠DEF ,∴△ABE ∽△DEF ;(2)解:∵AB =BC =CD =AD =4,CF =3FD ,∴DF =1,CF =3,∵△ABE ∽△DEF , ∴AE AB DF DE =,即441DE DE-=, 解得:DE =2,∵AD ∥BC ,∴△EDF ∽△GCF , ∴DE DF CG CF =,即213CG =, ∴CG =6.【点睛】 本题考查了相似三角形的判定与性质、正方形的性质、直角三角形的性质等知识;熟练掌握正方形的性质,证明三角形相似是解题的关键.23.(1)见解析,(2)ABD S40= 【分析】(1)由AC ⊥BC ,BD ⊥DE ,可得∠ACB=∠BDE=90°,可证△ACB ≌△BDE (AAS ); (2)由△ACB ≌△BDE ,可得AB=BE=10,,在Rt △BDE 中,由勾股定理8=,由∠CAB+∠ABC=90°可求∠ABD=180°-∠ABC-∠EBD=90°,可求S △ABD =1AB BD 2⋅即可. 【详解】解:(1)∵AC ⊥BC ,BD ⊥DE ,∴∠ACB=∠BDE=90°,在△ACB 和△BDE 中,ACB=BDE BAC=DBE BC=ED ∠∠⎧⎪∠∠⎨⎪⎩,∴△ACB ≌△BDE (AAS );(2)∵△ACB ≌△BDE ,∴AB=BE=10,在Rt △BDE 中,由勾股定理8==,又∵∠CAB+∠ABC=90°,∴∠ABC+∠EBD=90°,∴∠ABD=180°-∠ABC-∠EBD=90°,∴S △ABD =11AB BD=108=4022⋅⨯⨯. 【点睛】 本题考查三角形全等判定与性质,勾股定理,直角三角形面积,掌握三角形全等判定与性质,勾股定理应用方法,直角三角形面积的求法是解题关键.24.(1)见解析;(2)1【分析】(1)利用“两角法”进行证明;(2)利用(1)中相似三角形的对应边成比例来求AE 的长度.【详解】解:(1)证明:∵∠C =∠ADE ,∠A =∠A ,∴△ADE ∽△ACB(2)解:由(1)知,△ADE ∽△ACB , 则AD AE AC AB= ∵AB =3,AD =2,CE =5, ∴253AE AE =+, 得:121,6AE AE ==-(舍去)∴AE 的长是1【点睛】本题考查了相似三角形的判定与性质.本题关键是要懂得找相似三角形,利用相似三角形的性质求解.25.(1)见解析 (2)见解析【分析】(1)根据等腰三角形的性质得到∠B=∠C ,根据三角形的内角和定理和平角的定义得到∠BED=∠CDF ,于是得到△BDE ∽△CFD ;(2)根据相似三角形的性质得到对应边成比例,等量代换得到比例式,判定相似三角形,最后根据相似三角形的性质得出FD 平分∠EFC .【详解】解:(1)∵AB=AC=BC ,∴∠B=∠C=60°,∵∠BED=180°-∠B-∠BDE=120°-∠BDE ,∠CDF=180°-∠EDF-∠BDE=120°-∠BDE ,∴∠BED=∠CDF ,∴△BDE ∽△CFD ;(2)∵△BDE ∽△CFD , ∴BD DE CF DF=, ∵点D 是BC 的中点,∴BD=CD , ∴CD DE CF DF= ∵∠EDF=∠C=60°,∴△DEF ∽△CDF ,∴∠DFE=∠CFD ,∴FD 平分∠EFC .【点睛】本题考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握相似三角形的判定和性质是解题的关键.26.【分析】巧用未知数表示比值,转化为方程求解即可.【详解】::2:3:4a b c =,∴设2a k =,3b k =,4c k =,∵2316a b c -+=,261216k k k ∴-+=,解得2k =,4a ∴=, 6b =,8c =,2328181610a b c ∴+-=+-=.【点睛】本题考查了比例的性质,理解比例,合理引入未知数解题是解题的关键.。
北师版初三数学上册第四章相似图形知识点讲解

九年级(上)第四章图形的相像(1)形态一样的图形叫相像图形,在相像多边形中,最简洁的是相像三角形.(2) 相像多边形:假如两个边数一样的多边形的对应角相等,对应边成比例,这两个多边形叫做相像多 边形.相像多边形对应边长度的比叫做相像比.一.成比例线段(1)线段的比假如选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。
(2)成比例线段在四条线段d c b a ,,,中,假如b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有依次的,假如说a ,d c b ,,成比例,那么应得比例式为:b a =dc . ②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项,假如b=c ,即 a b bd =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。
③推断给定的四条线段是否成比例的方法:第一排:现将四条线段的长度统一单位,再按大小依次排列好;第二算:分别算出前两条线的长度之比与后两条线段的长度之比;第三判:若两个比相等,则这四条线段是成比例线段,否则不是(3)比例的性质(留意性质立的条件:分母不能为0) 根本性质:① a:b=c:d 则有 ad=bc (两外项之积等于两内向之积);② ②2::a b b c b a c =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.(2) 更比性质(交换比例的内项或外项):()()()a bc d a c d cb d b ad bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项(3)合、分比性质:a c abcd b d b d ±±=⇔=. (4)等比性质:假如)0(≠++++====n f d b nm f e d c b a ,那么b an f d b m e c a =++++++++ . 注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以削减未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③ 可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ba f db ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . (4)比例题常用的方法有:比例合分比法,比例等比法,设参法,连等设k 法,消元法二,平行线分线段成比例(1)平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE EF=====或或或或等. 留意:是所截的线段成比例,而跟平行线无关,所以比例线段中不行能 有AD,BE,CF 的比例关系(2)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB .即12AC BC AB AC == 简记为:长短=全长注:黄金三角形:顶角是360的等腰三角形。
浙教版数学九年级上册 第四章 相似三角形 单元练习(含答案)

浙教版数学九年级上册第四章相似三角形一、选择题1.如果2a =5b ,那么下列比例式中正确的是( )A .a b =25B .a 5=2b C .a 2=b 5D .a 5=b 22.如图,直线l 1∥l 2∥l 3,AC =6,DE =3,EF =2,则AB 的长为( )A .3B .125C .165D .1853.如图,点P 是线段AB 的黄金分割点,且PA >PB ,若AB =2,则PA 的长度是( )A .5−1B .3−5C .25−4D .14.如图, 在▱ABCD 中, E 是边AB 上一点, 连结AC ,DE 相交于点F . 若AE EB =23,则 AF CF 等于( )A .13B .23C .25D .355.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )A .B .C.D.6.△ABC和△DEF是两个等边三角形,AB=2,DE=4,则△ABC与△DEF的面积比是( ) A.1:2B.1:4C.1:8D.1:27.如图,在△ABC中,BC=6,AC=8,∠C=90°,以B为圆心,BC长为半径画弧,与AB交于点D,再分别以点A,D为圆心,大于12AD的长为半径画弧,两弧交于点M,N,作直线MN,分别交AC,AB于点E,F,则AE的长度为( )A.52B.103C.3D.228.如图,△ABC和△A1B1C1是以点O为位似中心的位似图形,点A在线段O A1上,若OA:A A1=1:2,则△ABC和△A1B1C1的周长之比为( )A.1:2B.2:1C.1:3D.3:19.如图,在△ABC中,D为线段AC上一点,点E在AC的延长线上,过点D作DF∥AB交BC于点F,连结BE,EF,若A C2+D E2=A E2,则△BEF与△DCF的面积比为( )A.1:2B.1:3C.2:3D.2:510.如图,矩形ABCD中,AB=4,AD=2,E为边AD上一个动点,连接BE,取BE的中点G,点G绕点E逆时针旋转90°得到点F,连接CF,则△CEF面积的最小值是( )A .4B .154C .3D .114二、填空题11.如图,AC 、BD 交于点O ,连接AB 、CD ,若要使△AOB ∽△COD ,可以添加条件 .(只需写出一个条件即可)12.已知△ABC ∽△DEF ,且AB:DE =1:3,△ABC 与△DEF 的周长比是 .13.如图,在这架小提琴中,点C 是线段AB 的黄金分割点(BC >AC ).若AB =60cm ,则BC = cm .14.如图,在Rt △ABC 中,∠ABC =90°,AB =4,AC =5,AE 平分∠BAC ,点D 是AC 的中点,AE 与BD交于点O ,则的值AOOE .15.如图,矩形ABCD 中,AB =3 6 ,BC =12,E 为AD 中点,F 为AB 上一点,将△AEF 沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF 的长是 .16.如图,正方形ABCD 中,BF =FG =CG ,BE =2AE ,CE 交DF 、DG 于M 、N 两点,有下列结论:①DF ⊥EC ;②S △MFC =59S 四边形MFBE ;③DM :MF =2:1;④MN NC =913.其中,正确的有 .三、解答题17.(1)已知线段a =2,b =6,求线段a ,b 的比例中项线段c 的长.(2)已知x :y =3:2,求2x−yx的值.18.如图,已知D 、E 分别是△ABC 的边AB 、AC 上的点,DE ∥BC ,AD BD =32,求DE BC 的值.19.如图,AD 、BC 相交于点P ,连接AC 、BD ,且∠1=∠2,AC =6,CP =4,DP =2,求BD 的长.20. 如图,在平行四边形ABCD 中,E 为DC 边上一点,∠EAB =∠EBC .(1)求证:△ABE∽△BEC ;(2)若AB=4,DE=3,求BE的长.21.如图,在四边形ABCD中,OA=OC,OB=OD,AB=BC,AC=12,BD=16.(1)求证:四边形ABCD时菱形;(2)延长BC至点M,连接OM交CD于点N,若∠M=12∠BAC,求MNOM.22.如图,AB∥CD,且AB=2CD,E是AB的中点,F是边BC上的动点(F不与B,C重合),EF与BD相交于点M.(1)求证:△FDM∽△FBM;(2)若F是BC的中点,BD=18,求BM的长;(3)若AD=BC,BD平分∠ABC,点P是线段BD上的动点,是否存在点P使DP⋅BP=BF⋅CD,若存在,求出∠CPF的度数;若不存在,请说明理由.23.如图,在平面直角坐标系中,已知抛物线y=12x2+bx+c与x轴交于A、B两点,与y轴交于C点,且OB=OC=4.(1)求抛物线的解析式;(2)在抛物线上是否存在点M,使∠ABC=∠BCM,如果存在,求M点的坐标,如果不存在,说明理由;(3)若D是抛物线第二象限上一动点,过点D作DF⊥x轴于点F,过点A、B、D的圆与DF交于E点,求△ABE的面积.答案解析部分1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】B6.【答案】B7.【答案】A8.【答案】C9.【答案】A10.【答案】B11.【答案】∠A=∠C(答案不唯一)12.【答案】1:313.【答案】(305−30)14.【答案】9415.【答案】21516.【答案】①④17.【答案】(1)解:∵线段a=2,b=6,线段c是线段a、b的比例中项,∴c2=ab=12,∴c=23(负值舍去);(2)解:∵x:y=3:2,∴可设x=3k,y=2k(k≠0),∴2x−yx=6k−2k3k=43.18.【答案】3519.【答案】BD=320.【答案】(1)证明:∵平行四边形ABCD,∴AB//CD,∴∠EBA=∠BEC,又∵∠EAB=∠EBC,∴△ABE∽△BEC.(2)解:∵四边形ABCD 平行四边形,∴AB =DC =4,∵DE =3,∴CE =1,∵△ABE∽△BEC ,∴AB EB =EBEC,∴AB ⋅CE =B E 2=4×1=4,∴BE =2.21.【答案】(1)证明:∵ 在四边形ABCD 中,OA=OC ,OB=OD∴ 四边形ABCD 是平行四边形 ∵ AB=BC∴ 平行四边形ABCD 是菱形。
浙教版九年级数学上册习题课件:课时训练 4.1 比例线段 第二课时

15.在线段 AB 上取两点 ,AB 是成比例线段,求线段 CD 的长.
解:设 CD=x cm,则 DB=AB-AC-CD=6-1-x=5-x(cm), ∵AC,CD,DB,AB 是成比例线段,即1x=5-6 x,∴x2-5x+6=0, 解得:x=2 或 3.
3.Rt△ABC 中,∠ACB=90°,AC=BC,则AACB的值为( C )
1
2
A.1
B.2
C. 2
D. 2
4.在相同时刻的物高与影长成比例,小明的身高为 1.5 m,在地面上的影长为
2 m,同时一古塔在地面上的影长为 40 m,则古塔高为( C )
A.60 m
B.40 m
C.30 m
D.25 m
第4章 相似三角形 4.1 比例线段
第2课时 比例线段
目标1 了解线段比和成比例线段的 概念
目标2 掌握比例在实际生活中的应 用
1.已知一矩形的长 a=1.35 m,宽 b=60 cm,则 a∶b 的值为( C )
A.9∶400
B.9∶40
C.9∶4
D.90∶4
2.下面 4 条线段中,不能成比例的是( C ) A.a=3,b=6,c=2,d=4 B.a=1,b= 2,c= 6,d= 3 C.a=4,b=6,c=5,d=10 D.a=2,b= 5,c= 15,d=2 3
8.如图,ABDD=AECE=32,则ABDB=
,AECC=
.
9.如图,一幅矩形油画的长为 40 cm,宽为 25 cm,此幅油画的外围镶有画 框,已知画框的宽度为 5 m,则画框内外所构成的两个矩形的长和宽成比例线段 吗?说明理由.
解:画框内外所构成的两个矩形的长和宽不成比例线段.因为3550≠2450.
九年级数学第四章图形的相似课时练习题及答案

九(上) 第四章图形的相似 分节练习第1节 成比例线段1、在某市城区地图(比例尺1:9000)上;新安大街的图上长度与光华大街的图上长度分别是16 cm 和10 cm . ★(1)新安大街与光华大街的实际长度各是多少米?(2)新安大街与光华大街的图上长度之比是多少?它们的实际长度之比呢?2、【基础题】已知P 是线段AB 上的一点;且AP :PB =2:5;则AB :PB =______. ★★★3、【基础题】已知a;b;c;d 是成比例线段;其中a =3 cm;b =2 cm;c =6 cm;求线段d 的长. ★【基础题】已知DC BD EA BF =;且3=BD ;2=DC ;4=EA ;则BF =______. ★★★ 4、【基础题】 (1)已知2=b a ;求b b a +; (2)已知25=b a ;求ba b a +-. ★★★ 5、【基础题】 若2===fe d c b a ;且4=++f d b ;则=++e c a ______. ★ k c b a b c a a c b =+=+=+ (0≠c b a ++);那么函数k kx y +=的图象一定不经过第______象限. ★6、【综合题】若235cb a ==;且8=+-c b a ;则a =______. ★ 6.1【提高题】已知151110a c c b b a +=+=+;求a :b :c ☆第2节 平行线分线段成比例 7、【基础题】如左下图;321l l l ∥∥;两条直线被它们所截; AB =2;BC =3;EF =4;求DE. ★7.1【综合题】如右上图;321////l l l ;AM =2;MB =3;CD =4.5;则ND =______;CN =______. ★8、如左下图;ABC △中;DE BC ∥;2AD =;3AE =;4BD =;则AC =______. ★★★8.1、【综合题】如右上图;在△ABC 中;EF ∥CD ;DE ∥BC ;求证:AF ·BD = AD ·FD ★l 3l 2l 1F E D C B A第3节 相似多边形9、【基础题】下列各组图形中;两个图形形状不一定相同的是( ) ★A 、两个等边三角形B 、有一个角是35°的两个等腰三角形C 、两个正方形D 、两个圆9.1、【综合题】下列各组图形中相似的图形是( ) ★A 、对应边成比例的多边形B 、四个角都对应相等的两个梯形C 、有一个角相等的两个菱形D 、各边对应成比例的两个平行四边形10、【基础题】以正方形各边中点为顶点;可以组成一个新正方形;求新正方形与原正方形的相似比. ★10.1、【综合题】两个正六边形的边长分别为a 和b ;请问它们是否相似?不相似请说明理由;相似求出相似比. ★11、【基础题】已知矩形草坪长20 m ;宽10 m ;沿草坪四周外围有1 m 宽的环形小路;小路内外边缘所成的矩形相似吗?为什么?11.1【综合题】如图有一张矩形纸片;折成一半后形成的矩形与原矩形相似;则原矩形的长、宽的比是多少? ★12、六边形ABCDEF ∽六边形111111F E D C B A ;ο62=B ∠;则1B ∠=______.第4节 探索三角形相似的条件13、【基础题】从下面这些三角形中;选出相似的三角形. ★★★13.1【基础题】如图;在下列每个图形中(每个图形都各自独立);是否存在相似的三角形;如果存在;把它们用字母表示出来;并简要说明识别的根据. ★★★14、【基础题】如左下图;D 、E 分别是△ABC 的边AB 、AC 上的点;DE ∥BC;AD =2;BD =3;DE =4;求BC 的长. ★★★14.1【基础题】如右上图;BD 和EC 相交于点A;ED ∥BC;BD =12;AD =4;EC =9;则AC =______. ★★★14.2、【基础题】如左下图;在△ABC 中;点D 、E 在BC 上;且FD ∥AB ;FE ∥AC ;那么△ABC 和△FDE是否相似;为什么? ★★★14.3【基础题】如右上图;为了估算河的宽度;我们可以在河对岸选定一个目标作为点A ;再在河的这一边选点B 和C ;使BC AB ⊥;然后再选点E ;使BC EC ⊥;确定BC 与AE 的交点为D ;测得120=BD 米;60=DC 米;50=EC 米;你能求出两岸之间AB 的大致距离吗? ★★★14.4【综合题】如左下图;△ABC 为等边三角形;双向延长BC 到D 、E;使得∠DAE =120°;求证:BC 是BD 、CE 的比例中项. ★15、【基础题】如右上图在Rt △ABC 中; ∠ACB =90°;CD ⊥AB 于D . ★★★(1)请指出图中所有的相似三角形; (2)你能得出AD CD =2·DB 吗?15.1、【综合题】如右图;正方形ABCD 的边长为2;AE =EB;MN =1;线段MN 的两端在CB 、CD 上滑动;当CM= 时;ΔAED 与N;M;C 为顶点的三角形相似. ★16、【综合题】右边四个三角形;与左边的三角形相似的是( ) ★★★16.1、【综合题】如右图;在大小为4×4的正方形网格中;是相似三角形的是 ( ) ★★★A. ①和②B. ②和③C. ①和③D. ②和④17、【综合题Ⅱ】(巴中)如图;在平行四边形ABCD 中;过点A 作AE ⊥BC;垂足为E;连接DE;点F 为线段DE 上一点;且∠AFE=∠B(1)求证:△ADF ∽△DEC;(2)若AB=8;AD=6;AF=4;求AE 的长.黄金分割18、【综合题Ⅰ】如图;点C 是线段AB 的黄金分割点(AC >BC );已知AB =2 cm;求AC 的长度和ABAC 的值. ★18.1【基础题】已知M 是线段AB 的黄金分割点;且AM >BM . (1)写出AB 、AM 、BM 之间的比例式;(2)如果AB =12 cm ;求AM 与BM 的长. ★【基础题】一支铅笔长16 cm ;把它按黄金分割后;较长部分涂上橘红色;较短部分涂上浅蓝色;那么橘红色部分的长是 _____ cm ;浅蓝色部分的长是 ____ cm . (结果保留一位小数) ★第5节 相似三角形判定定理的证明19、【综合题Ⅰ】如左下图;BC AE AB DE AC AD ==. 求证:AE AB =. ★20、【综合题Ⅲ】如右上图;在等边三角形ABC 中;点D 、E 、F 分别是三边上的点;且AE =BF =CD ;那么△ABC 与△DEF 相似吗?请说明理由. ☆21、【综合题Ⅲ】如图;在ABC △中(∠B ≠∠C );AB =8 cm;BC =16 cm;点P 从点A 开始沿边AB 向点B 以2 cm/s 的速度移动;点Q 从点B 开始沿边BC 向点C 以4 cm/s 的速度移动;如果点P 、Q 分别从点A 、B 同时出发; 经几秒钟△PBQ 与△ABC 相似?试说明理由. ★第6节 利用相似三角形测高22、【基础题】高4 m 的旗杆在水平地面上的影子长6 m;此时测得附近一个建筑物的影长24 m;求该建筑物的高.★★★、【基础题】旗杆的影子长6米;同时测得旗杆顶端到其影子顶端的距离是10米;如果此时附近的小树影子长3米;那么小树有多高? ★22.2【综合题Ⅰ】(2007湖南怀化)如图;九年级(1)班课外活动小组利用标杆测量学校旗杆的高度;已知标杆高度3m CD =;标杆与旗杆的水平距离15m BD =;人的眼睛与地面的高度 1.6m EF =;人与标杆CD 的水平距离2m DF =;人的眼睛E 、标杆顶点C 和旗杆顶点A 在同一直线;求旗杆AB 的高度. ★★★22.3、【综合题Ⅲ】张明同学想利用树影测校园内的树高。
浙教版初三上册数学第四章相似三角形的性质及其应用第2课时相似三角形的周长比、面积比随堂练习(解析版)

浙教版初三上册数学第四章41.[2021·重庆B 卷]已知△ABC ∽△DEF ,且相似比为1∶2,则△A BC 与△DEF 的面积比是( A )A. 1∶4B. 4∶1C. 1∶2D. 2∶1【解析】 依照相似三角形的面积比等于相似比的平方可得S △ABC ∶S △DEF =1∶4.2.[2021·重庆A 卷]若△ABC ∽△DEF ,相似比为3∶2,则对应高线的比为( A )A .3∶2B .3∶5C .9∶4D .4∶9【解析】 因为△ABC ∽△DEF ,依照相似三角形的性质“相似三角形对应高线之比等于相似比”,故选A.3.如图4-5-10,在△ABC 中,D ,E 分别是AB ,AC 的中点,则下列结论不正确的是( D )A .BC =2DEB .△ADE ∽△ABC C.AD AE =AB AC D .S △ABC =3S △ADE【解析】 ∵在△ABC 中,D ,E 分别是边AB ,AC 的中点,∴DE ∥B C ,DE =12BC ,∴BC =2DE ,故A 正确;∵DE ∥BC ,∴△ADE ∽△ABC ,故B 正确;∵DE ∥BC ,∴AD AB =AE AC ,即AD AE =AB AC ,故C 正确;∵DE 是△ABC 的中位线,∴DE ∶BC =1∶2,∴S △ABC =4S △ADE ,故D 错误. 图4-5-10 图4-5-114.[2021·湘西]如图4-5-11,在△ABC 中,DE ∥BC ,DB =2AD ,△ADE 的面积为1,则四边形DBCE 的面积为( D )A .3B .5C .6D .8【解析】 由DE ∥BC ,DB =2AD ,得△ADE ∽△ABC ,AD AB =13. ∵S △ADE =1,S △ADE S △ABC =19,∴S △ABC =9. ∴S 四边形DBCE =SABC -S △ADE =8.故选D.5.[2021·连云港]如图4-5-12,已知,△ABC ∽△DEF ,AB ∶DE =1∶2,则下列等式一定成立的是( D ) A.BC DF =12 B.∠A 的度数∠D 的度数=12 C.△ABC 的面积△DEF 的面积=12 D.△ABC 的周长△DEF 的周长=12图4-5-12 图4-5-136.[2021·莘县一模]如图4-5-13,在▱ABCD 中,E 为CD 上一点,连结AE ,BE ,BD ,且AE ,BD 交于点F ,S △DEF ∶S △ABF =4∶25,则DE ∶EC =( A )A .2∶3B .2∶5C .3∶5D .3∶2【解析】 ∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠EAB =∠DEF ,∠AFB =∠DFE ,∴△DEF ∽△BAF.∵S △DEF ∶S △ABF =4∶25,∴DE AB =25,∵AB =CD ,∴DE ∶EC =2∶3.7.一副三角板叠放如图4-5-14,则△AOB 与△DOC 的面积之比为__1∶3__.图4-5-148.已知△ABC ∽△DEF ,DE AB =23,△ABC 的周长是12 cm ,面积是30 cm2.(1)求△DEF 的周长;(2)求△DEF 的面积. 解:(1)∵△ABC ∽△DEF ,DE AB =23,∴△DEF 的周长为12×23=8(cm);(2)∵△ABC ∽△DEF ,DE AB =23,∴△DEF 的面积为30×⎝ ⎛⎭⎪⎫232=1313(cm2). 9.已知两个相似三角形的一对对应边长分别是35 cm 和14 cm.(1)已知它们的周长相差60 cm ,求这两个三角形的周长;(2)已知它们的面积相差588 cm2,求这两个三角形的面积.解:(1)∵两个相似三角形的对应边长分别是35 cm 和14 cm ,∴这两个三角形的相似比为5∶2,∴这两个三角形的周长比为5∶2.设较大的三角形的周长为5x cm ,较小的三角形的周长为2x cm. ∵它们的周长相差60 cm ,∴5x -2x =60,∴x =20,∴5x =5×20=100,2x =2×20=40,∴较大的三角形的周长为100 cm ,较小的三角形的周长为40 cm ;(2)∵这两个三角形的相似比为5∶2,∴这两个三角形的面积比为25∶4.设较大的三角形的面积为25x cm2,较小的三角形的面积为4x cm2. ∵它们的面积相差588 cm2,∴(25-4)x =588,解得x =28,∴25x =25×28=700,4x =4×28=112,∴较大的三角形的面积为700 cm2,较小的三角形的面积为112 cm2.10.如图4-5-15,在△ABC 中,点D ,E 分别在边AB ,AC 上,且AE AB =AD AC =12,则S △ADE ∶S 四边形BCED 的值为( C )A .1∶ 3B .1∶2C .1∶3D .1∶4图4-5-15 图4-5-1611.[2021·咸宁]如图4-5-16,在△ABC 中,中线BE ,CD 相交于点O ,连结DE ,下列结论:①DE BC =12;②S △DOE S △COB =12;③AD AB =OE OB ;④S △ODE S △ADE =13.其中正确的个数有( C )A. 1个B. 2个 C .3个 D. 4个【解析】 ①∵DE 是△ABC 的中位线,∴DE =12BC ,即DE BC =12,故①正确;②∵DE 是△ABC 的中位线,∴DE ∥BC ,∴△DOE ∽△COB , ∴S △DOE S △COB =⎝ ⎛⎭⎪⎫DE BC 2=⎝ ⎛⎭⎪⎫122=14,故②错误; ③∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD AB =DE BC ,∵△DOE ∽△COB ,∴OE OB =DE CB ,∴AD AB =OE OB ,故③正确;④∵△ABC 的中线BE 与CD 交于点O ,∴O是△ABC的重心,依照重心性质,得BO=2OE,△ABC的高线长=3△BOC的高线长,∵△ABC与△BOC同底(BC),∴S△ABC=3S△BOC,由②和③,得S△ODE=14S△COB,S△ADE=14S△ABC,∴S△ODES△ADE=13.故④正确.综上所述,①③④正确.故选C.12.如图4-5-17,在Rt△ABC中(∠C=90°),放置边长分别为3,4,x的三个正方形,则x的值为(C)A.5 B.6 C.7 D.12图4-5-17 第12题答图【解析】如答图,可知△DEF∽△HMN,∴EFMN=DFHN,即3x-4=x-34,解得x=7(x=0舍去).故选C.13.[2021·河北区校级模拟]如图4-5-18,AD=DF=FB,DE∥FG ∥BC,则SⅠ∶SⅡ∶SⅢ=__1∶3∶5__.图4-5-18【解析】∵DE∥FG∥BC,∴△ADE∽△AFG∽△ABC,∵AD=DF=FB,∴AD∶AF∶AB=1∶2∶3,∴S△ADE∶S△AFG∶S△ABC=1∶4∶9,∴SⅠ∶SⅡ∶SⅢ=1∶3∶5.14.如图4-5-19,在△ABC中,BC>AC,点D在BC上,且DC =AC,∠ACB的平分线CF交AD于点F.E是AB的中点,连结EF.(1)求证:EF∥BC;(2)若△ABD的面积是6,求四边形BDFE的面积.图4-5-19解:(1)证明:∵DC=AC,∴△ACD为等腰三角形.又∵CF平分∠ACD,∴F 为AD 的中点.又∵E 为AB 的中点,∴EF 为△ABD 的中位线,∴EF ∥BC ;(2)由(1)得EF ∥BC ,且EF BD =12,∴△AEF ∽△ABD ,∴S △AEF ∶S △ABD =1∶4,∴S 四边形BDFE ∶S △ABD =3∶4.又∵S △ABD =6,∴S 四边形BDFE =92.15.如图4-5-20,AC 是⊙O 的直径,点B 在⊙O 上,∠ACB =30°.(1)利用尺规作∠ABC 的平分线BD ,交AC 于E ,交⊙O 于D ,连结C D(保留作图痕迹,不写作法);(2)在(1)所作的图形中,求△ABE 与△CDE 的面积之比.图4-5-20 第15题答图解:(1)如答图所示;(2)如答图,连结OD ,设⊙O 半径为r , 在△ABE 和△DCE 中,⎩⎪⎨⎪⎧∠BAE =∠CDE ,∠AEB =∠DEC , ∴△ABE ∽△DCE.∵在Rt △ABC 中,∠ABC =90°,∠ACB =30°,∴AB =12AC =r.∵BD 平分∠ABC ,∴∠ABD =∠CBD =45°,又∵∠ABD =∠ACD ,∠ACD =∠ODC =45°,∴∠DOC =90°.∵在Rt △ODC 中,DC =OD2+OC2=2r , ∴S △ABE S △CDE =⎝ ⎛⎭⎪⎫AB DC 2=⎝ ⎛⎭⎪⎫r 2r 2=12. 16.[2021·梅州改编] 如图4-5-21,在Rt △ABC 中,∠C =90°,AC =5 cm ,∠A =60°,动点M 从点B 动身,在BA 边上以2 cm/s 的速度向点A 匀速运动,同时动点N 从点C 动身,在CB 边上以 3 cm/s 的速度向点B 匀速运动,设运动时刻为t(s)(0≤t ≤5),连结MN.图4-5-21(1)若BM =BN ,求t 的值;(2)若△MBN 与△ABC 相似,求t 的值与△MBN 和△ABC 的周长比;(3)当t 为何值时,四边形ACNM 的面积最小?要求出最小值.解:(1)∵在Rt △ABC 中,∠C =90°,AC =5 cm ,∠A =60°,∴A B =10 cm ,BC =5 3 cm.由题意,得BM =2t(cm),CN =3t(cm),BN =(53-3t)cm , 由BM =BN ,得2t =53-3t ,解得t =532+3=103-15; (2)①当△MBN ∽△ABC 时, ∴MB AB =BN BC ,即2t 10=53-3t 53,解得t =52, ∴MB AB =12,∴△MBN 和△ABC 的周长比为12;②当△NBM ∽△ABC 时, NB AB =BM BC ,即53-3t 10=2t 53,解得t =157, ∴BM BC =237,∴△MBN 和△ABC 的周长比为237. 综上所述,当t =52 s 或t =157 s 时,△MBN 与△ABC 相似,对应的△MBN 和△ABC 的周长比为12或237;(3)如答图,过点M 作MD ⊥BC 于点D ,可得MD =t cm.第16题答图设四边形ACNM 的面积为y cm2,∴y =S △ABC -S △BMN =12AC ·BC -12BN ·MD =12×5×53-12×(53-3t)t=32t2-532t +2532=32⎝ ⎛⎭⎪⎫t -522+758 3. ∴依照二次函数的性质可知,当t =52时,y 的值最小.∴当t =52 s 时,四边形ACNM 的面积最小,最小为758 3 cm2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1__比例线段__
第2课时 比例线段
1.[xx·西固区校级模拟]下列线段中,能成比例的是( D )
A .3 cm ,6 cm ,8 cm ,9 cm
B .3 cm ,5 cm ,6 cm ,9 cm
C .3 cm ,6 cm ,7 cm ,9 cm
D .3 cm ,6 cm ,9 cm ,18 cm
2.在相同时刻的物高与影长成比例,小明的身高为1.5 m ,在地面上的影长为2 m ,同时一古塔在地面上的影长为40 m ,则古塔高为( C )
A .60 m
B .40 m
C .30 m
D .25 m
【解析】 设古塔高为x (m),则有x 40=1.52
,解得x =30.故选C. 3.已知四条线段a ,b ,c ,d 是成比例线段,即a b =c d
,下列各式错误的是( C ) A .ad =bc B.a +c b +d =a b
C.a -b b =c -b d
D.a 2b 2=c 2
d 2 4.已知A ,B 两地的实际距离AB =5 000 m ,画在地图上的距离A ′B ′=2 cm ,则这张地图的比例尺是( D )
A .2∶5
B .1∶25 000
C .25 000∶1
D .1∶250 000
5.已知P 是线段AB 上一点,且
AP PB =25,则AB PB
等于( A ) A.75 B.52
C.27
D.57
【解析】 由AP PB =25,则可设AP =2k ,PB =5k ,∴AB =7k ,∴AB PB =7k 5k =75
.故选A. 6.四条线段a ,b ,c ,d 成比例,其中b =3 cm ,c =2 cm ,d =6 cm ,则线段a 的长为__1__cm.
【解析】 ∵a ,b ,c ,d 是成比例线段,∴a b =c d ,∴a 3=26
,∴a =1. 7.[xx·娄底]湖南地图出版社首发的竖版《中华人民共和国地图》,将南海诸岛与中国大陆按同比例尺1∶6 700 000表示出来,使读者能够全面、直观地认识我国版图,若在这种地图上量得我国南北的图上距离是82.09 cm ,则我国南北的实际距离大约是__5__500__km(结果精确到1 km).
8.正方形的边长与对角线的比是;等边三角形的边长与高线长的比是__.
【解析】 设正方形的边长为1,则对角线长为2,其比为1∶2;设等边三角形的边长为1,则高线长为
32,其比为1∶32=2∶ 3.
9.若△ABC 的三个内角的比为1∶2∶3,则这个三角形的三边长的比为.
【解析】 △ABC 的三个内角为30°,60°,90°,所以设30°角所对的直角边为1,则斜边长为2,另一直角边长为3,故三边长的比为1∶3∶2. 10.已知线段m =10 mm ,n =2 cm ,e = 2 cm ,d =2 2 cm ,试判断m ,n ,e ,d 是否是成比例线段.
解:∵m =1 cm ,n =2 cm ,e = 2 cm ,d =2 2 cm ,
∴md =2 2 cm 2,ne =2 2 cm 2,
∴md =ne ,∴m n =e d
,
∴m ,n ,e ,d 是成比例线段.
11.已知线段a =4,b =6,c =2,请另确定一条线段d 的长度,使a ,b ,c ,d 为成比例线段. 解:∵线段a ,b ,c ,d 为成比例线段, ∴a b =c d
.又∵a =4,b =6,c =2,
∴d =bc a =6×24
=3,∴线段d 的长为3. 12.如图4-1-1,已知AD DB =AE EC
,AD =6.4 cm ,DB =4.8 cm ,EC =4.2 cm ,求AC 的长.
图4-1-1 解:∵AD DB =AE EC ,∴6.44.8=AE 4.2
, ∴AE =6.4×4.24.8
=5.6(cm), ∴AC =AE +EC =5.6+4.2=9.8(cm).
13.如图4-1-2,延长线段AB 到点C ,使BC =2AB ,再延长线段BA 到点D ,使AD =12
AB ,则CD ∶BD 为( A )
图4-1-2
A .7∶3
B .5∶2
C .7∶2
D .5∶3
【解析】 ∵CD =AD +AB +BC =12AB +AB +2AB =72AB ,BD =AD +AB =12AB +AB =32
AB , ∴CD ∶BD =72AB ∶32
AB =7∶3.故选A. 14.已知在△ABC 和△A ′B ′C ′中,AB A ′B ′=BC B ′C ′=AC A ′C ′=32
,A ′B ′+B ′C ′+A ′C ′=16 cm ,则AB +BC +AC =( B )
A .48 cm
B .24 cm
C .18 cm
D .36 cm
【解析】 ∵AB =32A ′B ′,BC =32B ′C ′,AC =32A ′C ′,∴AB +BC +AC =32
(A ′B ′+B ′C ′+A ′C ′)=3
2×16=24(cm).故选B.
15. △ABC 与△DEF 在网格中的位置如图4-1-3所示,如果每个小正方形的边长都是1.
(1)求AB DE ,BC EF ,AC DF
的值; (2)求△ABC 的周长与△DEF 的周长的比;
(3)在AB ,BC ,AC ,DE ,EF ,DF 这六条线段中,指出其中三组成比例的线段.
图4-1-3
解:(1)AB =42,BC =6,AC =25,DE =22,EF =3,DF =5,
∴AB
DE =2,BC
EF =2,AC
DF =2;
(2)∵AB DE =BC
EF =AC
DF ,
∴AB +BC +AC DE +EF +DF =2DE +2
EF +2DF
DE +EF +DF =2,
∴△ABC 的周长与△DEF 的周长的比为2∶1;
(3)∵AB DE =BC
EF ,
∴AB ,DE ,BC ,EF 是成比例的线段;
∵AB DE =AC
DF ,
∴AB ,DE ,AC ,DF 是成比例的线段;
∵BC
EF =AC
DF ,
∴BC ,EF ,AC ,DF 是成比例的线段.
16.如图4-1-4,已知AD
DB =AE EC =32,求AB DB ,EC AC ,AB
AD .
图4-1-4
解:∵AD DB =32
, ∴令AD =3k ,DB =2k ,
则AB =AD +DB =5k ,
∴AB DB =5k 2k =52.同理AB AD =5k 3k =53,EC AC =25
. 17.如图4-1-5,在Rt △ABC 中,CD 是斜边AB 上的高线,AC =8,BC =6,求CD 的长.
图4-1-5
解:在Rt △ABC 中,由勾股定理,得AB =AC 2+BC 2=82+62=10.
∵S △ABC =12AC ·BC =12
AB ·CD , ∴AC ·BC =AB ·CD ,
∴AC AB =CD BC ,∴810=CD 6,∴CD =4.8.
18.如图4-1-6,已知AD ,CE 是△ABC 中边BC ,AB 上的高线,求证:AD ∶CE =AB ∶BC .
图4-1-6
证明:∵S △ABC =12AD ·BC =12
AB ·CE , ∴AD ·BC =AB ·CE ,即AD ∶CE =AB ∶BC
感谢您的支持,我们会努力把内容做得更好!。