高三数学复数测试题doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、复数选择题
1.在复平面内,复数
534i i -(i 为虚数单位)对应的点的坐标为( ) A .()3,4 B .()4,3- C .43,55⎛⎫- ⎪⎝⎭ D .43,55⎛⎫- ⎪⎝⎭
2.若复数(1)()(i a i i -+是虚数单位)为纯虚数,则实数a 的值为( )
A .2
B .1
C .0
D .1-
3.欧拉是瑞士著名数学家,他首先发现:e cos isin i θθθ=+(e 为自然对数的底数,i 为虚数单位),此结论被称为“欧拉公式”,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系.根据欧拉公式可知,i e π=( )
A .1
B .0
C .-1
D .1+i
4.已知i 是虚数单位,复数2z i =-,则()12z i ⋅+的模长为( )
A .6
B C .5 D 5.若复数1z i i ⋅=-+,则复数z 的虚部为( ) A .-1
B .1
C .-i
D .i 6.复数312i z i =
-的虚部是( ) A .65i - B .35i C .35 D .65
- 7.已知复数512z i =
+,则z =( )
A .1
B
C
D .5
8.若(1)2z i i -=,则在复平面内z 对应的点位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 9.若1m i i
+-是纯虚数,则实数m 的值为( ).
A .1-
B .0
C .1
D 10.已知复数2021
11i z i
-=+,则z 的虚部是( ) A .1- B .i - C .1 D .i
11.设复数z 满足方程4z z z z ⋅+⋅=,其中z 为复数z 的共轭复数,若z 的实部为
,则z 为( )
A .1
B
C .2
D .4 12.在复平面内,复数z 对应的点为(,)x y ,若22(2)4x y ++=,则( )
A .22z +=
B .22z i +=
C .24z +=
D .24z i += 13.复数
2i i -的实部与虚部之和为( ) A .35 B .15- C .15 D .35
14.复数12z i =-(其中i 为虚数单位),则3z i +=( )
A .5
B C .2
D 15.题目文件丢失!
二、多选题
16.已知复数2020
11i z i
+=-(i 为虚数单位),则下列说法错误的是( )
A .z 的实部为2
B .z 的虚部为1
C .z i =
D .||z =17.若复数351i z i
-=
-,则( )
A .z =
B .z 的实部与虚部之差为3
C .4z i =+
D .z 在复平面内对应的点位于第四象限
18.已知复数z 满足220z z +=,则z 可能为( ).
A .0
B .2-
C .2i
D .2i+1- 19.若复数z 满足(1i)3i z +=+(其中i 是虚数单位),复数z 的共轭复数为z ,则( )
A .|z |=
B .z 的实部是2
C .z 的虚部是1
D .复数z 在复平面内对应的点在第一象限 20.下列关于复数的说法,其中正确的是( )
A .复数(),z a bi a b R =+∈是实数的充要条件是0b =
B .复数(),z a bi a b R =+∈是纯虚数的充要条件是0b ≠
C .若1z ,2z 互为共轭复数,则12z z 是实数
D .若1z ,2z 互为共轭复数,则在复平面内它们所对应的点关于y 轴对称
21.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )
A .复数z 的虚部为i
B .z =
C .复数z 的共轭复数1z i =-
D .复数z 在复平面内对应的点在第一象限
22.下列命题中,正确的是( )
A .复数的模总是非负数
B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应
C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限
D .相等的向量对应着相等的复数
23.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )
A .||z =
B .复数z 的共轭复数为z =﹣1﹣i
C .复平面内表示复数z 的点位于第二象限
D .复数z 是方程x 2+2x +2=0的一个根
24.以下为真命题的是( )
A .纯虚数z 的共轭复数等于z -
B .若120z z +=,则12z z =
C .若12z z +∈R ,则1z 与2z 互为共轭复数
D .若120z z -=,则1z 与2z 互为共轭复数
25.对于复数(,)z a bi a b R =+∈,下列结论错误..
的是( ). A .若0a =,则a bi +为纯虚数
B .若32a bi i -=+,则3,2a b ==
C .若0b =,则a bi +为实数
D .纯虚数z 的共轭复数是z - 26.已知复数z 满足23z z iz ai ⋅+=+,a R ∈,则实数a 的值可能是( ) A .1 B .4- C .0
D .5 27.(多选)()()321i i +-+表示( )
A .点()3,2与点()1,1之间的距离
B .点()3,2与点()1,1--之间的距离
C .点()2,1到原点的距离
D .坐标为()2,1--的向量的模
28.设()()2225322z t t t t i =+-+++,t ∈R ,i 为虚数单位,则以下结论正确的是
( )
A .z 对应的点在第一象限
B .z 一定不为纯虚数
C .z 一定不为实数
D .z 对应的点在实轴的下方
29.设复数z 满足12z i =--,i 为虚数单位,则下列命题正确的是( )
A .|z |=
B .复数z 在复平面内对应的点在第四象限
C .z 的共轭复数为12i -+
D .复数z 在复平面内对应的点在直线2y x =-上
30.已知复数i z a b =+(a ,b ∈R ,i 为虚数单位),且1a b +=,下列命题正确的是( ) A .z 不可能为纯虚数
B .若z 的共轭复数为z ,且z z =,则z 是实数
C .若||z z =,则z 是实数
D .||z 可以等于12